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Abstract 

Mutations in genes encoding aaRSs (aminoacyl-tRNA synthetases) have been 

reported in several neurological disorders. KARS is a dual localized lysyl-tRNA 

synthetase (LysRS) and its cytosolic isoform belongs to the multiple aminoacyl-tRNA 

synthetase complex (MSC). Biallelic mutations in KARS gene were described in a 

wide phenotypic spectrum ranging from non-syndromic deafness to complex 

impairments. Here, we report on a patient with severe neurological and neurosensory 

disease investigated by whole exome sequencing and found to carry biallelic 

mutations c.683C>T (p.Pro228Leu) and c.871T>G (p.Phe291Val), the second one 

being novel, in the KARS gene. The patient presented with an atypical clinical 

presentation with an optic neuropathy not previously reported. At the cellular level, 

we show that cytoplasmic KARS was expressed at a lower level in patient cells and 

displayed decreased interaction with MSC. In vitro, these two KARS variants have a 

decreased aminoacylation activity compared to wild type KARS, the p.Pro228Leu 

being the most affected. Our data suggest that dysfunction of cytoplasmic KARS 

resulted in decreased level of translation of the nuclear encoded lysine rich proteins 

belonging to the respiratory chain complex, thus impairing mitochondria functions.  
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Graphical Abstract 

Here, we report on a patient with severe neurological disease, found to carry 

biallelic mutations c.683C>T (p.Pro228Leu) and c.871T>G (p.Phe291Val) in the 

lysyl-tRNA synthetase KARS. 
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lysyl-tRNA synthetase, translation, aaRS, neurological disorder, optic neuropathy, 

deafness, mitochondrial respiratory chain defect 

Introduction 

Aminoacyl-tRNA synthetases (aaRS) belong to a ubiquitously expressed group of 

enzymes responsible for aminoacylation, the process of attaching amino acids to their 

cognate tRNA. In humans, 37 aaRS proteins are encoded by nuclear genes. These 

enzymes can be divided into 3 groups according to the cellular compartment where 

the aminoacylation is performed: cytoplasm, mitochondria or both. KARS is one of 

the 3 human aaRS with a dual localization and its cytosolic isoform is a component of 
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a multiple aminoacyl-tRNA synthetase complex (MSC) (Havrylenko & Mirande, 

2015). This complex increases the efficiency of protein synthesis and is composed of 

at least nine aaRS and three accessory proteins (p18, p38 and p43). The p38/AIMP2 

scaffold protein serves as a cytoplasmic anchor to retain KARS in the complex 

(Kaminska et al., 2009; Quevillon et al., 1999). The phosphorylation at the serine in 

position 207 (P-S207) of the KARS protein induces its release from the MSC and its 

translocation into the nucleus for non-canonical activities in transcription (Debard et 

al., 2017; Ofir-Birin et al., 2013). The P-S207 KARS leads also to increased levels of 

diadenosine tetraphosphate (Ap4A), a second messenger acting as a positive regulator 

of the microphthalmia-associated transcription factor (MITF) (Lee, Nechushtan, 

Figov, & Razin, 2004). Interestingly, increased levels of Ap4A were observed in tears 

of patients with dry eye and with congenital aniridia (Peral et al., 2006; Peral et al., 

2015), and in the aqueous humour from patients with primary open-angle glaucoma 

(Castany et al., 2011). 

Mutations in genes encoding aaRS are reported in a wide spectrum of inherited human 

disorders (Antonellis & Green, 2008; Sauter et al., 2015). Mutations in genes 

encoding mitochondrial aaRS are associated with autosomal recessive isolated or 

syndromic phenotypes involving tissues with high metabolic needs such as brain, 

muscle, heart, and liver (Gotz et al., 2011; Sofou et al., 2015). Mutations in genes 

encoding cytoplasmic aaRS are implicated in different disorders, including 

neurological diseases, with autosomal recessive or dominant inheritance (Latour et al., 

2010). Mutations in the KARS gene (MIM# 601421), encoding the lysyl-tRNA 

synthetase, were described initially in peripheral neuropathy (McLaughlin et al., 2010) 

and few years later in non syndromic hearing loss (Santos-Cortez et al., 2013). A wide 

range of clinical features was reported in patients carrying biallelic mutations in KARS 
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including phenotypes suggesting mitochondrial disorder (Kohda et al., 2016; Lieber et 

al., 2013; McMillan et al., 2015; Murray et al., 2017; Verrigni et al., 2017; Zhou et al., 

2017). 

Here, we report a patient, with biallelic variants in KARS identified by whole exome 

sequencing, who presented with severe neurological and neurosensory impairment. 

Interestingly, while in the patient’s fibroblasts the expression of the mitochondrial 

isoform of the protein was slightly increased, a reduced activity of the complexes I 

and IV was observed in the patient’s skeletal muscle which is compatible with a 

mitochondrial disorder. Although this first result seemed contradictory, we questioned 

whether the dysfunction of the patient’s respiratory chain could be related to a 

decreased expression of some members of complex I and IV encoded by the nuclear 

genome, thus translated into the cytoplasm and afterwards imported into the 

mitochondria. Indeed, a lower amount of the cytoplasmic isoform of KARS was 

observed in the patient’s cells. At the molecular level, using a yeast two-hybrid 

interaction assay, we observed a decreased interaction between KARS bearing either 

of the patient mutations and p38, the interaction partner of KARS in the MSC 

complex. The association of KARS into the MSC complex controls its canonical 

function in translation from those non-canonical as the regulation of transcription. 

This study suggests that a dysfunction in cytoplasmic KARS due to the patient’s 

missense mutations decreased the efficiency of translation of the nuclear encoded 

lysine rich proteins belonging to respiratory chain complexes, thus impairing 

mitochondria functions. 
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Materials and Methods 

Standard protocol approvals and patient consents 

After informed consent of the patient and her parents according to the French 

legislation, peripheral blood samples were obtained from the affected individual and 

her parents as well as control individuals. DNA from all collected samples was 

extracted according to standard procedures. The objectives and the aim of the study 

were clearly explained to the patient and this study was approved by the local ethics 

committee at Hôpitaux Universitaires de Strasbourg (Strasbourg University Hospital). 

Mutational analysis 

Whole exome sequencing was performed in the affected individual (II-1) and the 

healthy parents (I-1 and I-2). Exons of DNA samples were captured with in-solution 

enrichment methodology (Agilent SureSelect XT Clinical Research Exome – 54 Mb) 

and paired-end 75 bases massively parallel sequencing was performed on Illumina 

HiSeq. 4000 instrument. SNP and INDEL variant calling were performed with 

CASAVA1.8.2.  

Exome data processing, variant calling and variant annotation were performed using 

VaRank (Geoffroy et al., 2015). We excluded variants present in dbSNP144 and 

annotated as non-pathogenic (using the “ClinicalSignificance” field) validated by at 

least 2 methods (using the “Validation Status” field) and variants with an allele 

frequency of more than 1% in the dbSNP database (Sherry et al., 2001), the Exome 

Variant Server (http://evs.gs.washington.edu/EVS/), the 1000Genomes (Genomes 

Project et al., 2015), the ExAC Browser database (Lek et al., 2016) or our internal 

exome database. Variant effect on the nearest splice site was predicted using 
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MaxEntScan (Yeo & Burge, 2004), NNSplice (Reese et al., 1997) and Splice Site 

Finder (based on (Shapiro & Senapathy, 1987)). Structural variants were predicted 

using CANOES (Backenroth et al., 2014) and annotated by AnnotSV (Geoffroy et al., 

2018). We focused on variants consistent with an autosomal recessive inheritance 

(patient compound heterozygous or homozygous). 

The mutations were confirmed by bidirectional Sanger sequencing of purified 

polymerase chain reaction (PCR) products, performed by the GATC Sequencing 

Facilities (Konstanz, Germany). The PCR primers are summarized in Supp. Table S1. 

Enzymatic analyses 

Enzymatic activities of the mitochondrial respiratory chain complexes were measured 

in muscle as reported previously (Bourges et al., 2004). 

The in vitro aminoacylation analyses were done as previously described, by using 

[3H]-labeled lysine (PerkinElmer Life Sciences, 1 mCi/ml) (Francin et al., 2002).  

RNA extraction, cDNA synthesis 

RNA was extracted from primary skin fibroblasts of the patient and a healthy 

unrelated control using RNeasy RNA kit (Qiagen). Then we performed reverse 

transcription of mRNA using the BioRad iScriptTM cDNA Synthesis Kit (BioRad). 

Primers used are summarized in Supp. Table S1. 

Western blot and immunofluorescence of human primary cells 

Primary skin fibroblasts from the patient and control individuals were grown in 

DMEM supplemented with 10% fetal calf serum (FCS) and 1% Penicillin-

streptomycin-glutamin (PSG). Cycloheximide (CHX) pulse chase experiments were 
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done to analyse the stability of the proteins (Kao et al., 2015). Cells were collected at 

different time points (0, 1, 4 and 8 hours) after cycloheximide (Sigma, C7698) 

addition into the cell medium at a final concentration of 100 mg/L. Cells were 

collected in RIPA buffer for western blot and KARS detected with three primary 

antibodies (Kaminska et al., 2007): IgG anti-∆Nter-KARS (polyclonal directed against 

the catalytic domain of the KARS), IgG anti-cytoKARS (polyclonal directed against a 

peptide in the N-terminal part of the cytoplasmic form) and IgG anti-mitoKARS 

(polyclonal directed against a peptide in the N-terminal part of the mitochondrial 

form). Cox4 (Abcam AB14744), Cox2 (Invitrogen 459150) and Grim19 (Santa Cruz 

SC66195) were detected with mouse monoclonal antibodies, NDUFB6 (Abcam 

103531) with a rabbit polyclonal antibody. Quantification of bands in western blot 

was done using ImageLab (BioRad) and the stainfree system after inclusion of 0.5% 

(v/v) 2,2,2-Trichloroethanol (TCE, Sigma T54801) into the polyacrylamide gel and 

revelation by UV of the fluorescent tryptophan residues of the proteins to determine 

total amount of proteins on the membrane (Ladner et al., 2004). 

For immunofluorescence, cells were first incubated with 200 nM Mitotracker red 

(Thermofisher Scientific, M22425), then fixed with 4% formaldehyde and 

permeabilised with 0,5% triton. After blocking with phosphate-buffered saline (PBS) 

20% FCS, the cells were incubated for 1 hr with the primary antibody (Rabbit mAb to 

KARS, Abcam, ab129080), washed 3 times in PBS, incubated for 1 hr with secondary 

antibody (goat anti-rabbit Alexa Fluor 488 IgG, Invitrogen, A-11008) and DAPI, 

washed again in PBS and mounted in Elvanol No-Fade™ mounting medium. 

Observation was done on a Zeiss Axio Observer D1, 400X magnification. 
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KARS and p38 interaction assays by yeast two-hybrid 

The pEG202 (LexA DNA-binding protein fusion, HIS3) or pJG4-5 (GAL1 minimal 

promoter bearing the transcription activation domain, TRP1) yeast two-hybrid vectors 

bearing the p38 or cytoplasmic KARS (protein size 597 aa) cDNA were used in this 

study (Quevillon et al., 1999). The P200L or F263V mutation was introduced into the 

cytoplasmic KARS cDNA by PCR with Phusion High-Fidelity DNA polymerase 

(Thermo Scientific). The plasmids pSF496 (pEG202-KARS-P200L), pSF497 (pJG4-

5-KARS-P200L), pSF498 (pEG202-KARS-F263V) and pSF499 (pJG4-5-KARS-

F263V) sequences were verified (GATC Biotech). The Saccharomyces cerevisiae 

EGY48 (MATα ura3 his3 trp1 LexAop(x6)LEU2) two-hybrid strain bearing the 

pSH18-34 (LacZ reporter plasmid; LexAop(x8)-LacZ, URA3) plasmid was used. 

Yeast cells were transformed by the indicated plasmids and two-hybrid assays were 

done as described (Golemis et al., 2001). The β-galactosidase activity resulting from 

LacZ gene expression was monitored by ONPG (O-nitrophenyl-beta-D-

galactopyranoside) assay (Gietz et al., 1997). 

KARS and p38 interaction assays by coimmunoprecipitation (coIP) 

Cells were grown in DMEM (Gibco Invitrogen, 31885), 10% of FBS and Penicillin 

and Streptomycin (P/S) to full confluence. Cells were rinsed with PBS at 4°C, 

resuspended in non-denaturing lysis buffer (20 mM Tris HCL pH 8; 137 mM NaCl; 

1% Nonidet P-40; 2 mM EDTA) with a protease inhibitor cocktail (Roche 

06538282001) and incubated on ice for 15 min under gentle shaking. The samples 

were then centrifuged at 12,000X g for 20 min at 4°C, protein concentration was 

measured using Qubit® Protein Assay Kit (Life Technologies) and then used for 

immunoprecipitation. 500µg of cell lysate were incubated with KARS antibodies 
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(polyclonal rabbit, (Kaminska et al., 2007)) or with p38 antibodies (polyclonal rabbit, 

(Mirande et al., 1982)) on a rocker shaker overnight at 4°C. The immunocomplexes 

were captured by adding protein G sepharose beads (DUTSCHER 17-0618-05) for 2 h 

at 4°C under gentle shaking. Sepharose G beads were washed 6 times for 5 min with 

the non-denaturing lysis buffer bearing protease inhibitor cocktail, then resuspended 

in 2X Laemmli buffer and boiled for 10 min at 95°C to dissociate the 

immunocomplexes from the beads, prior analysis by western-blot. Actin B (ACTB, 

antibodies from Novus NB600-501SS) was used as a negative control for the coIP and 

as loading control for the Input. 

Results 

Clinical report of a patient 

The female patient, born after an unremarkable pregnancy, was the only child of 

unrelated parents. She had history of motor development delays due to cerebellar 

ataxia. She attended normal schooling. Bilateral congenital deafness was diagnosed 

during the first year at school. Cerebral RMN scan performed at the age of 10 was 

unremarkable. 

The clinical manifestations were stable until the age of 28, when she developed 

additional clinical features with progressive visual impairment. The visual acuity was 

measured at 1.30 LogMAR. Fundus examination showed no retinal involvement, but 

reduced thickness in the temporal region (Figure 1A). Goldman visual fields showed 

concentric decrease of peripheral isopters. The visual acuity worsened significantly 

the years later. Cerebellar syndrome increased progressively and other neurological 

features were observed with a pyramidal syndrome of the 4 limbs, a dystonia, and 

pseudobulbar syndrome. The metabolic screen showed hyperlactatemia. The cerebral 
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RMN scan performed at 28 years old revealed white matter anomalies of the dentate 

nucleus, optic radiations and of the corpus callosum splenium (Figure 1B). 

Electromyography showed a sensitive axonal polyneuropathy of the lower limbs.  

In the hypothesis of a mitochondrial disorder a muscle biopsy was performed which 

showed microscopic features compatible with a mitochondriopathy with no ragged-

red fibers but numerous COX negative fibers (Figure 2A). The study of enzymatic 

complex of the mitochondrial respiratory chain in the skeletal muscle revealed a 

partial deficit in the complexes I (68 %) and IV activities (62 %) (Figure 2B). The 

study of the mitochondrial DNA, including the research of the 3 main mutations, the 

analysis of the deletion and the sequencing of the 22 tRNA, was normal. 

This clinical presentation worsened with a progressive cognitive decline and the 

patient died at the age of 33. 

Whole exome sequencing identified biallelic mutations in the KARS gene of the 

patient. 

In the absence of a molecular diagnosis, we performed whole exome sequencing for 

the patient and her healthy parents. In the proband’s sample, 105.423 genetics variants 

(SNV + Indel) were identified. Bioinformatics analyses narrowed down the number of 

variants to biallelic variants in 5 genes (Supp. Table S2). We focused on two biallelic 

variations (NM_001130089.1: c.683C>T, p.Pro228Leu and c.871T>G, p.Phe291Val) 

in the KARS gene (Figure 3). Sanger sequencing confirmed the mutations and familial 

segregation analysis was consistent with disease transmission (Figure 3A). The 

c.683C>T mutation was previously reported in a patient suspected with a 

mitochondrial disorder (Lieber et al., 2013). The c.871T>G mutation is absent from 

dbSNP, 1000 Genomes, EVS, exAC database and our internal database. This variant 
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was localized in the catalytic domain of the KARS protein (Figure 3) and was 

predicted to be deleterious according to SIFT (Kumar et al., 2009) and PolyPhen-2 

(Adzhubei et al., 2010). The amino acid Phe291 is conserved from metazoan to 

bacteria (E. coli and S. aureus), with the exception of the plant Arabidopsis thaliana, 

and the Pro228 is conserved across metazoan species but not in plant, fungi or in 

bacteria (Figure 3D). 

The mRNA coding for the cytoplasmic and mitochondrial isoforms of KARS are 

present in the fibroblasts of the patient. 

The difference between the two isoforms of KARS is due to alternative splicing, with 

splicing of exon 1 to exon 3 for the cytoplasmic isoform, whereas the mitochondrial 

isoform includes exon 2 (Figure 3B). To determine whether both isoforms of KARS 

were present, the cDNA obtained after reverse transcription of RNAs extracted from 

skin fibroblast of the patient was analyzed by PCR. Using primers from exon 1 to 

exon 4 and exon 2 to exon 3, we observed the two isoforms in the patient and in a 

healthy control. Moreover, exons 5 to 9 were analyzed by sequencing and the two 

mutations were detected in the cDNA of the patient (Figure 4A). We did not observe a 

splicing effect of the two mutations. 

Quantification of KARS mRNA by q-RT-PCR revealed a significant increase of 

mitochondrial KARS in the patient cells compared to the control, whereas no 

difference was observed in the expression of cytoplasmic KARS (Figure 4B). 

KARS protein level is decreased in the cytoplasm of patient fibroblasts  

The mitochondria and cytoplasmic isoforms of KARS differ by their N-terminal part 

(Figure 3C). We observed differences at the mRNA levels indicating an increase of 
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mitochondrial KARS in the patient cells compared to control cells (Figure 4B), 

therefore KARS protein level was analyzed in the patient cells. Patient and control 

fibroblasts were grown in complete medium and total proteins collected for western 

blotting. KARS was detected with antibodies directed either against the catalytic 

domain, thus recognizing mitochondrial and cytoplasmic isoforms or specifically 

against the N-terminal thus specific for each isoform (Figure 4C, Supp. Figure S1). 

The overall expression of KARS is lower in patient cells and this is due to a decrease 

in the cytoplasmic KARS. The level of mitochondrial KARS is only slightly higher in 

patient cells, which correlates with what was observed at the mRNA level (Figure 4). 

This decrease in the cytoplasmic form of KARS was not detected to that extent at the 

mRNA level, this could be due to a higher degradation or decreased stability of the 

KARS-P200L and/or KARS-F263V proteins bearing the patient mutation compared to 

the wild type protein. This result was confirmed by analyzing the stability of the total 

KARS proteins after cycloheximide treatment to inhibit de novo protein synthesis 

(Figure 4D). Immunofluorescence with cytoplasmic KARS antibodies and 

Mitotracker red staining done on fibroblasts revealed no differences in the 

mitochondria staining between the control and the patient cells (Figure 5). The KARS 

signal was very faint in the patient cells (affected) indicating a lower level of 

cytoplasmic KARS compared to the control (ctrl) cells (Figure 5). 

The KARS-P200L and KARS-F263V mutations impair KARS association to the 

multiple aminoacyl-tRNA synthetase (MSC) complex  

In human cells, the aaRS are organized in a multiple aminoacyl-tRNA synthetase 

(MSC) complex (Havrylenko & Mirande, 2015). p38, a core protein responsible for 

assembly of the MSC complex, directly interacts with KARS (Ofir-Birin et al., 2013; 

Quevillon et al., 1999). To better understand the cellular defects linked to the two 
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disease mutations in KARS, we studied their interaction with p38 by yeast two-hybrid 

assays. EGY48 yeast cells were transformed by pEG202 plasmid expressing p38, 

KARS, KARS-P200L or KARS-F263V cDNA, the different LexA DNA-binding 

protein fusions do not activate transcription and expression of the LexA fusions was 

confirmed by the repression assay (Figure 6A) (Golemis et al., 2001). These results 

show that the P200L or F263V mutation did not impair the production of the KARS 

protein. The lack of DNA-binding activity by the p38, KARS, KARS-P200L or 

KARS-F263V protein in fusion with the GAL1 promoter transcriptional activation 

domain cloned in pJG4-5 plasmid was also confirmed (Figure 6A) (Golemis et al., 

2001). The yeast two-hybrid assay was done to determine the interaction between p38 

and KARS, KARS-P200L or KARS-F263V proteins. As previously described, p38 

and KARS display a strong interaction in both combinations of two-hybrid plasmids 

(Quevillon et al., 1999), measured by the ONPG assay to determine the level of lacZ 

transcription (Figure 6B). The β-galactosidase produced by the lacZ reporter for two-

hybrid interaction cleaves the colorless ONPG substrate in galactose and o-

nitrophenol (ONP) that absorbs at 420 nm. The KARS-P200L and KARS-F263V 

mutants display a statistically significant reduced interaction with p38 compared to 

wild-type KARS (Figure 6B). The Pro200 (Pro228 in the mitochondrial KARS) 

residue is in the anticodon-binding domain of KARS close to the Ser207 (Ser235 

mitoKARS) phosphorylation site essential for p38 interaction (Ofir-Birin et al., 2013) 

(Figure 3E). The Phe263 (Phe291 mitoKARS) is at the KARS-p38 interaction 

interface (Figure 3E). These yeast two-hybrid data were confirmed by 

coimmunoprecipitation (Co-IP) analyses done on protein lysates extracted from 

patient and control fibroblasts (Figure 6C). The levels of KARS and p38 proteins were 

lower in the protein lysate (Input) of the patient cells compared to the control. 
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However after immunoprecipitation (IP) of either KARS or p38, these two proteins 

were highly enriched in the IP fractions (Figure 6C), but the interacting protein was 

observed in the control samples and only barely detectable in the patient Co-IP 

samples (Figure 6C).  

These different results show that KARS-P200L and KARS-F263V mutations might be 

pathogenic due to their reduced p38 binding, impairing the association of the 

cytoplasmic KARS Lysine-tRNA synthetase with the MSC complex and affecting its 

function in cytoplasmic protein synthesis.  

The two patient variants are affected in aminoacylation in vitro and the level of 

lysine-rich COX4 and NDUFB6 mitochondrial protein is decreased in patient 

fibroblasts 

To determine the aminoacylation activity, wild-type KARS and the two patient 

variants KARS-P200L or KARS-F263V were produced as recombinant proteins in E. 

coli and purified (Supp. Figure S3). A time course of aminoacylation was conducted 

and the relative aminoacylation activity was determined (Figure 7A). The KARS-

P200L shows a strong decrease in its relative activity compared to wild type KARS 

with only 0.14, and the KARS-F263V displays a two-fold decrease with 0.49 of 

relative activity (Figure 7A). This indicates that in vitro these two variants are affected 

in their aminoacylation level compared to wild-type KARS. 

A decreased activity of complex I and IV of the respiratory chain was observed in the 

patient skeletal muscle (Figure 2B), there was an overexpression of mitochondrial 

KARS in patient cells (Figure 4), and the cytoplasmic KARS-P200L or KARS-F263V 

patient proteins interacted poorly with the MSC complex and are affected in protein 

synthesis activity (Figures 6 and 7A). Therefore, we wondered whether the altered 
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mitochondria function could be due to lower levels of lysine rich members of complex 

I and IV encoded by the nuclear genome and thus translated in the cytoplasm before 

being imported into the mitochondria. Indeed, the cytoplasmic form of the mutated 

KARS seems to be affected with a decreased protein level and impaired association to 

the MSC complex (Figures 4, 5 and 6). To verify this hypothesis, we determined 

which members of complex I and IV were rich in lysine (Supp. Figure S2A) and 

among these we analyzed the protein level of the nuclearly encoded COX4 (11.8% of 

lysine) and NDUFB6 (10,9% of lysine), as well as the nuclearly encoded GRIM19 

with less lysine (4.2%), and COX2 (1.8% of lysine) encoded by the mitochondrial 

genome (Figure 7B). The western blot of total protein extracts from control and 

patient cells shows that the protein levels of COX4 and NDUFB6 but not GRIM19 

and COX2 were decreased in the patient fibroblast (Figure 7B and Supp. Figure S2B). 

This indicates that the mitochondrial dysfunction observed in the patient skeletal 

muscle may indeed be due to defects in the cytoplasmic KARS, leading to a lower 

synthesis of lysine-rich nuclearly encoded complex I and IV proteins. 

Discussion 

The lysyl tRNA synthetase KARS is one of the 37 aa tRNA synthetase genes and one 

of the three dual localized aaRS. A single gene encodes these dual localized aaRS, 

whereas mitochondrial aaRSs are encoded in the nucleus by a specific gene different 

from those coding for the cytosolic aaRSs (Bonnefond et al., 2005). The two mRNAs 

of KARS are transcribed by an alternative splicing and are translated in the cytoplasm 

to form the cytoplasmic isoform and the precursor of the mitochondrial isoform 

bearing the MTS (mitochondria targeting sequence) (Figure 3). The mature form of 

mitochondrial KARS is produced during mitochondrial import by cleavage of the N-

terminal MTS of the precursor (Dias et al., 2012). The cytoplasmic isoform represents 
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approximately 70% and the mitochondrial isoform about 30 % of the mature transcript 

from the KARS gene (Tolkunova, Park, Xia, King, & Davidson, 2000).  

A mitochondrial defect phenotype associated with KARS mutations 

Mitochondrial disorders comprise a heterogeneous group of diseases due to 

mitochondrial dysfunctions that can have pleiotropic effects. The features can include 

leukoencephalopathy, sensorineural deafness, optic atrophy, and ataxia. Less than 15-

30 % of suspected mitochondrial disorders are due to a mitochondrial DNA anomaly 

(Dimauro & Davidzon, 2005; Kirby & Thorburn, 2008). More than 1000 nuclear 

genes encode proteins necessary for mitochondrial function that can explain the 

remaining cases (Human MitoCarta2.0). Among the 37 human aaRSs, mutations in 

mitochondrial and dual localized aaRS are associated with different organ 

involvements and could be responsible for a defect in mitochondrial protein synthesis 

(Diodato et al., 2014; Nafisinia et al., 2017; Sauter et al., 2015).  

As no mitochondrial DNA mutations or deletion were detected in the patient 

presenting clinical manifestations compatible with a mitochondrial defect, we 

performed whole exome sequencing and identified biallelic mutations in the KARS 

gene, with one novel mutation. 

Sixteen biallelic KARS mutations are linked to a large spectrum of neurologic or 

neurosensorial diseases (Table 1). Mutations in this gene were initially described to be 

associated with a peripheral neuropathy (McLaughlin et al., 2010) and non syndromic 

hearing impairment (Santos-Cortez et al., 2013). More complex phenotypes were also 

reported, including clinical associations evocative of a mitochondrial disorder (Kohda 

et al., 2016; Lieber et al., 2013; McMillan et al., 2015; Murray et al., 2017; Verrigni et 

al., 2017; Zhou et al., 2017). Our patient presented with an overlapping phenotype 
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with those previously described with hearing loss, abnormal white matter, lactic 

acidosis, and combined enzymatic defects of respiratory chain complexes. 

Nevertheless she had an atypical presentation with a stable evolution until 28 years 

old and worsening clinical manifestations in few years. In addition, she had visual 

impairment with white matter anomalies of optic radiations and optic neuropathy not 

previously reported. 

Impact of the identified KARS mutations  

In higher eukaryotes at least nine aaRSs, including the cytoplasmic KARS isoform 

belong to the MSC complex with three accessory proteins (p18, p38 and p43) 

(Havrylenko & Mirande, 2015). 

Among the two identified variants in KARS gene, the p.Pro228Leu mutation was 

previously described (Lieber et al., 2013) and a recent functional analysis was 

performed, showing defect in mitochondria translation (Ruzzenente et al., 2018). Here 

we show that this KARS-Pro228Leu is severely affected for aminoacylation in vitro. 

The Pro228 amino acid is localized in the anticodon-binding domain of KARS close 

to the P-S207 phosphorylation site essential for p38 interaction and association with 

the MSC (Ofir-Birin et al., 2013). The P-S207 form of KARS is released from the 

MCS and translocates to the nucleus where it is associated to transcriptional activities. 

Among the cellular functions of this P-S207 KARS, its role in the production of the 

second messenger Ap4A has already been studied in the eye in various conditions 

such as a biomarker for raised intra ocular pressure in glaucoma were higher levels of 

Ap4A were observed as well as in the tears from patients suffering of other ocular 

pathologies, as dry eye and congenital aniridia (Castany et al., 2011; Guzman-

Aranguez et al., 2007; Peral et al., 2006; Peral et al., 2015). The potential therapeutic 
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effects of dinucleotide polyphosphates have been proposed for various eye conditions 

including regulation of intra ocular pressure in a mouse model (Carracedo et al., 2016; 

Crooke et al., 2017). In this respect, it is interesting to underline that our patient 

presented with a non glaucomatous optic neuropathy developed in the context of a 

down regulation of KARS effectors suggesting that Ap4A supplementation could 

have been protective if Ap4A deficiency had been proven. This points to the probably 

subtle equilibrium of the Ap4A intraocular levels in various eye conditions (ie: 

glaucomatous versus non glaucomatous ganglion cell loss) as well as to the complex 

pathogenesis underlying these conditions. The known link of P-207 KARS regulating 

MITF, a gene mutated in Waardenburg syndrome type 2 and Tietze syndrome for 

which neurosensory hearing loss is well described, is also highly interesting as our 

patient first clinical manifestation was deafness pointing here to a link of this 

condition with this pathway. The p.Phe291Val mutation is a novel variant that hits the 

catalytic domain of the enzyme and affects an amino acid residue highly conserved 

among diverse metazoan species (Figure 3D) (http://misynpat.org) (Moulinier et al., 

2017). The Phe291 amino acid is at the KARS-p38 interaction interface (Figure 3E). 

The KARS-Phe291Val variant has a 2-fold decrease in relative aminoacylation 

activity compared to wild type KARS. 

The study of the expression level of both KARS isoforms (cytoplasmic and 

mitochondrial) was not performed for the other human KARS mutations previously 

reported. To better understand the disease mechanism of the mutations identified in 

our patient, we studied the impact of both mutations in the two KARS isoforms. 

Investigations on skin fibroblasts of the patient showed that both KARS isoforms are 

present at the mRNA level and that the mutations do not affect the splicing. 

Interestingly, we observed a similar level of cytoplasmic KARS mRNA in the patient 



A
cc

ep
te

d 
A

rt
ic

le
 

and control cells, whereas the cytoplasmic KARS protein level was decreased due to 

higher degradation or decreased stability of the mutant proteins, which could be due to 

lack of association to the MSC complex. Indeed, by using the yeast-two hybrid assay, 

we demonstrated that both mutations are associated with a significantly reduced 

interaction between cytoplasmic KARS and the core protein p38 of the MSC complex. 

These data were confirmed by coimmunoprecipitation assays on lysates from patient 

fibroblasts, showing that less KARS proteins were interacting with p38 compared to 

the control. In parallel to these effects on the cytoplasmic isoform of KARS, we 

observed an increase in mitochondrial KARS at the mRNA level and to some extent at 

the protein level. These results suggest that more mitochondrial KARS could be 

imported into the mitochondria and transformed into its active form. However, this 

cannot compensate for the lysine incorporation during the cytoplasmic production of 

respiratory chain proteins encoded by the nuclear genome, leading to the reduced level 

of cytochrome C oxidase COX4 subunit and to the partial decrease of complex I and 

IV activity in the skeletal muscle of the patient. A similar combined complex 

deficiency and reduction of cytochrome C oxidase was already reported for other 

patients with KARS mutations (Kohda et al., 2016; Verrigni et al., 2017).  

In conclusion, we report biallelic mutations in the KARS gene, one of which had not 

been previously reported, in a patient presenting cerebellar ataxia and optic 

neuropathy in addition to the sensory deafness and neurological features already 

described. Our results show the implication of both mutations in the phenotype of the 

patient. However, further studies are needed to investigate more in details which 

proteins of the respiratory chain are affected and to what extent.  
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Data generated or analyzed during this study are included in the published article and 

the corresponding supplementary data. The raw sequencing data generated in the 

course of this study are not publicly available due to the protocol and the 

corresponding consents used that did not include such information. KARS’ variants 

have been submitted to ClinVar with the following accession numbers 

SCV000808060 and SCV000808061 (https://www.ncbi.nlm.nih.gov/clinvar/). 

Anonymized NGS data and genomic variant data files will be made available upon 

request from qualified investigators studying the molecular basis of genomic 

disorders. Datasets can be obtained via the corresponding author on reasonable 

request. 

Acknowledgments 

We would like to thank the patient and her family for their participation. We thank 

Hubert Becker, Nina Entelis, Marie Sissler and Ivan Tarassov (MitoCross Labex, 

Université de Strasbourg, France) and Luc Moulinier (iCUBE, Strasbourg, France) for 

providing reagents and for discussions. We thank Agnès Rötig and Metodi Metodiev 

(Imagine Institute, Paris, France) for antibodies and for helpful discussions. The 

computing resources for this work were provided by the BICS and BISTRO 

bioinformatics platforms in Strasbourg. 

Conflict of Interest 

We declare no competing interests. 

  



A
cc

ep
te

d 
A

rt
ic

le
 

References 

Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., 
. . . Sunyaev, S. R. (2010). A method and server for predicting damaging 
missense mutations. Nat Methods, 7(4), 248-249. doi:10.1038/nmeth0410-248 

Antonellis, A., & Green, E. D. (2008). The role of aminoacyl-tRNA synthetases in 
genetic diseases. Annu Rev Genomics Hum Genet, 9, 87-107. 
doi:10.1146/annurev.genom.9.081307.164204 

Backenroth, D., Homsy, J., Murillo, L. R., Glessner, J., Lin, E., Brueckner, M., . . . 
Shen, Y. (2014). CANOES: detecting rare copy number variants from whole 
exome sequencing data. Nucleic Acids Res, 42(12), e97. 
doi:10.1093/nar/gku345 

Bonnefond, L., Fender, A., Rudinger-Thirion, J., Giege, R., Florentz, C., & Sissler, M. 
(2005). Toward the full set of human mitochondrial aminoacyl-tRNA 
synthetases: characterization of AspRS and TyrRS. Biochemistry, 44(12), 
4805-4816. doi:10.1021/bi047527z 

Bourges, I., Ramus, C., Mousson de Camaret, B., Beugnot, R., Remacle, C., Cardol, 
P., . . . Issartel, J. P. (2004). Structural organization of mitochondrial human 
complex I: role of the ND4 and ND5 mitochondria-encoded subunits and 
interaction with prohibitin. Biochem J, 383(Pt. 3), 491-499. 
doi:10.1042/BJ20040256 

Carracedo, G., Crooke, A., Guzman-Aranguez, A., Perez de Lara, M. J., Martin-Gil, 
A., & Pintor, J. (2016). The role of dinucleoside polyphosphates on the ocular 
surface and other eye structures. Prog Retin Eye Res, 55, 182-205. 
doi:10.1016/j.preteyeres.2016.07.001 

Castany, M., Jordi, I., Catala, J., Gual, A., Morales, M., Gasull, X., & Pintor, J. 
(2011). Glaucoma patients present increased levels of diadenosine 
tetraphosphate, Ap(4)A, in the aqueous humour. Exp Eye Res, 92(3), 221-226. 
doi:10.1016/j.exer.2010.12.004 

Crooke, A., Guzman-Aranguez, A., Carracedo, G., de Lara, M. J. P., & Pintor, J. 
(2017). Understanding the Presence and Roles of Ap4A (Diadenosine 
Tetraphosphate) in the Eye. J Ocul Pharmacol Ther, 33(6), 426-434. 
doi:10.1089/jop.2016.0146 

Debard, S., Bader, G., De Craene, J. O., Enkler, L., Bar, S., Laporte, D., . . . Becker, 
H. D. (2017). Nonconventional localizations of cytosolic aminoacyl-tRNA 
synthetases in yeast and human cells. Methods, 113, 91-104. 
doi:10.1016/j.ymeth.2016.09.017 

Dias, J., Octobre, G., Kobbi, L., Comisso, M., Flisiak, S., & Mirande, M. (2012). 
Activation of human mitochondrial lysyl-tRNA synthetase upon maturation of 
its premitochondrial precursor. Biochemistry, 51(4), 909-916. 
doi:10.1021/bi201337b 



A
cc

ep
te

d 
A

rt
ic

le
 

Dimauro, S., & Davidzon, G. (2005). Mitochondrial DNA and disease. Ann Med, 
37(3), 222-232. doi:10.1080/07853890510007368 

Diodato, D., Ghezzi, D., & Tiranti, V. (2014). The Mitochondrial Aminoacyl tRNA 
Synthetases: Genes and Syndromes. Int J Cell Biol, 2014, 787956. 
doi:10.1155/2014/787956 

Fonseca, B., Martinez-Aguila, A., de Lara, M. J. P., & Pintor, J. (2017). Diadenosine 
tetraphosphate as a potential therapeutic nucleotide to treat glaucoma. 
Purinergic Signal, 13(2), 171-177. doi:10.1007/s11302-016-9547-y 

Francin, M., Kaminska, M., Kerjan, P., & Mirande, M. (2002). The N-terminal 
domain of mammalian Lysyl-tRNA synthetase is a functional tRNA-binding 
domain. J Biol Chem, 277(3), 1762-1769. doi:10.1074/jbc.M109759200 

Genomes Project, C., Auton, A., Brooks, L. D., Durbin, R. M., Garrison, E. P., Kang, 
H. M., . . . Abecasis, G. R. (2015). A global reference for human genetic 
variation. Nature, 526(7571), 68-74. doi:10.1038/nature15393 

Geoffroy, V., Herenger, Y., Kress, A., Stoetzel, C., Piton, A., Dollfus, H., & Muller, J. 
(2018). AnnotSV: An integrated tool for Structural Variations annotation. 
Bioinformatics. doi:10.1093/bioinformatics/bty304 

Geoffroy, V., Pizot, C., Redin, C., Piton, A., Vasli, N., Stoetzel, C., . . . Muller, J. 
(2015). VaRank: a simple and powerful tool for ranking genetic variants. 
PeerJ, 3, e796. doi:10.7717/peerj.796 

Gietz, R. D., Triggs-Raine, B., Robbins, A., Graham, K. C., & Woods, R. A. (1997). 
Identification of proteins that interact with a protein of interest: applications of 
the yeast two-hybrid system. Mol Cell Biochem, 172(1-2), 67-79.  

Golemis, E. A., Serebriiskii, I., Finley, R. L., Jr., Kolonin, M. G., Gyuris, J., & Brent, 
R. (2001). Interaction trap/two-hybrid system to identify interacting proteins. 
Curr Protoc Cell Biol, Chapter 17, Unit 17 13. 
doi:10.1002/0471143030.cb1703s08 

Gotz, A., Tyynismaa, H., Euro, L., Ellonen, P., Hyotylainen, T., Ojala, T., . . . 
Suomalainen, A. (2011). Exome sequencing identifies mitochondrial alanyl-
tRNA synthetase mutations in infantile mitochondrial cardiomyopathy. Am J 
Hum Genet, 88(5), 635-642. doi:10.1016/j.ajhg.2011.04.006 

Guzman-Aranguez, A., Crooke, A., Peral, A., Hoyle, C. H., & Pintor, J. (2007). 
Dinucleoside polyphosphates in the eye: from physiology to therapeutics. Prog 
Retin Eye Res, 26(6), 674-687. doi:10.1016/j.preteyeres.2007.09.001 

Havrylenko, S., & Mirande, M. (2015). Aminoacyl-tRNA synthetase complexes in 
evolution. Int J Mol Sci, 16(3), 6571-6594. doi:10.3390/ijms16036571 

Kaminska, M., Havrylenko, S., Decottignies, P., Gillet, S., Le Marechal, P., 
Negrutskii, B., & Mirande, M. (2009). Dissection of the structural organization 
of the aminoacyl-tRNA synthetase complex. J Biol Chem, 284(10), 6053-
6060. doi:10.1074/jbc.M809636200 



A
cc

ep
te

d 
A

rt
ic

le
 

Kaminska, M., Shalak, V., Francin, M., & Mirande, M. (2007). Viral hijacking of 
mitochondrial lysyl-tRNA synthetase. J Virol, 81(1), 68-73. 
doi:10.1128/JVI.01267-06 

Kao, S. H., Wang, W. L., Chen, C. Y., Chang, Y. L., Wu, Y. Y., Wang, Y. T., . . . 
Yang, P. C. (2015). Analysis of Protein Stability by the Cycloheximide Chase 
Assay. Bio Protoc, 5(1). doi:10.21769/BioProtoc.1374 

Kirby, D. M., & Thorburn, D. R. (2008). Approaches to finding the molecular basis of 
mitochondrial oxidative phosphorylation disorders. Twin Res Hum Genet, 
11(4), 395-411. doi:10.1375/twin.11.4.395 

Kohda, M., Tokuzawa, Y., Kishita, Y., Nyuzuki, H., Moriyama, Y., Mizuno, Y., . . . 
Okazaki, Y. (2016). A Comprehensive Genomic Analysis Reveals the Genetic 
Landscape of Mitochondrial Respiratory Chain Complex Deficiencies. PLoS 
Genet, 12(1), e1005679. doi:10.1371/journal.pgen.1005679 

Kumar, P., Henikoff, S., & Ng, P. C. (2009). Predicting the effects of coding non-
synonymous variants on protein function using the SIFT algorithm. Nat 
Protoc, 4(7), 1073-1081. doi:10.1038/nprot.2009.86 

Ladner, C. L., Yang, J., Turner, R. J., & Edwards, R. A. (2004). Visible fluorescent 
detection of proteins in polyacrylamide gels without staining. Anal Biochem, 
326(1), 13-20. doi:10.1016/j.ab.2003.10.047 

Latour, P., Thauvin-Robinet, C., Baudelet-Mery, C., Soichot, P., Cusin, V., Faivre, L., 
. . . Rousson, R. (2010). A major determinant for binding and aminoacylation 
of tRNA(Ala) in cytoplasmic Alanyl-tRNA synthetase is mutated in dominant 
axonal Charcot-Marie-Tooth disease. Am J Hum Genet, 86(1), 77-82. 
doi:10.1016/j.ajhg.2009.12.005 

Lee, Y. N., Nechushtan, H., Figov, N., & Razin, E. (2004). The function of lysyl-
tRNA synthetase and Ap4A as signaling regulators of MITF activity in 
FcepsilonRI-activated mast cells. Immunity, 20(2), 145-151.  

Lek, M., Karczewski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., Fennell, T., . . 
. Exome Aggregation, C. (2016). Analysis of protein-coding genetic variation 
in 60,706 humans. Nature, 536(7616), 285-291. doi:10.1038/nature19057 

Lieber, D. S., Calvo, S. E., Shanahan, K., Slate, N. G., Liu, S., Hershman, S. G., . . . 
Mootha, V. K. (2013). Targeted exome sequencing of suspected mitochondrial 
disorders. Neurology, 80(19), 1762-1770. 
doi:10.1212/WNL.0b013e3182918c40 

McLaughlin, H. M., Sakaguchi, R., Liu, C., Igarashi, T., Pehlivan, D., Chu, K., . . . 
Antonellis, A. (2010). Compound heterozygosity for loss-of-function lysyl-
tRNA synthetase mutations in a patient with peripheral neuropathy. Am J Hum 
Genet, 87(4), 560-566. doi:10.1016/j.ajhg.2010.09.008 

McMillan, H. J., Humphreys, P., Smith, A., Schwartzentruber, J., Chakraborty, P., 
Bulman, D. E., . . . Geraghty, M. T. (2015). Congenital Visual Impairment and 
Progressive Microcephaly Due to Lysyl-Transfer Ribonucleic Acid (RNA) 



A
cc

ep
te

d 
A

rt
ic

le
 

Synthetase (KARS) Mutations: The Expanding Phenotype of Aminoacyl-
Transfer RNA Synthetase Mutations in Human Disease. J Child Neurol, 30(8), 
1037-1043. doi:10.1177/0883073814553272 

Mirande, M., Cirakoglu, B., & Waller, J. P. (1982). Macromolecular complexes from 
sheep and rabbit containing seven aminoacyl-tRNA synthetases. III. 
Assignment of aminoacyl-tRNA synthetase activities to the polypeptide 
components of the complexes. J Biol Chem, 257(18), 11056-11063.  

Moulinier, L., Ripp, R., Castillo, G., Poch, O., & Sissler, M. (2017). MiSynPat: An 
integrated knowledge base linking clinical, genetic, and structural data for 
disease-causing mutations in human mitochondrial aminoacyl-tRNA 
synthetases. Hum Mutat, 38(10), 1316-1324. doi:10.1002/humu.23277 

Murray, C. R., Abel, S. N., McClure, M. B., Foster, J., 2nd, Walke, M. I., Jayakar, P., 
. . . Tekin, M. (2017). Novel Causative Variants in DYRK1A, KARS, and 
KAT6A Associated with Intellectual Disability and Additional Phenotypic 
Features. J Pediatr Genet, 6(2), 77-83. doi:10.1055/s-0037-1598639 

Nafisinia, M., Riley, L. G., Gold, W. A., Bhattacharya, K., Broderick, C. R., 
Thorburn, D. R., . . . Christodoulou, J. (2017). Compound heterozygous 
mutations in glycyl-tRNA synthetase (GARS) cause mitochondrial respiratory 
chain dysfunction. PLoS One, 12(6), e0178125. 
doi:10.1371/journal.pone.0178125 

Ofir-Birin, Y., Fang, P., Bennett, S. P., Zhang, H. M., Wang, J., Rachmin, I., . . . Guo, 
M. (2013). Structural switch of lysyl-tRNA synthetase between translation and 
transcription. Mol Cell, 49(1), 30-42. doi:10.1016/j.molcel.2012.10.010 

Peral, A., Carracedo, G., Acosta, M. C., Gallar, J., & Pintor, J. (2006). Increased 
levels of diadenosine polyphosphates in dry eye. Invest Ophthalmol Vis Sci, 
47(9), 4053-4058. doi:10.1167/iovs.05-0980 

Peral, A., Carracedo, G., & Pintor, J. (2015). Diadenosine polyphosphates in the tears 
of aniridia patients. Acta Ophthalmol, 93(5), e337-342. doi:10.1111/aos.12626 

Quevillon, S., Robinson, J. C., Berthonneau, E., Siatecka, M., & Mirande, M. (1999). 
Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of 
protein-protein interactions and characterization of a core protein. J Mol Biol, 
285(1), 183-195. doi:10.1006/jmbi.1998.2316 

Reese, M. G., Eeckman, F. H., Kulp, D., & Haussler, D. (1997). Improved splice site 
detection in Genie. J Comput Biol, 4(3), 311-323.  

Ruzzenente, B., Assouline, Z., Barcia, G., Rio, M., Boddaert, N., Munnich, A., . . . 
Metodiev, M. D. (2018). Inhibition of mitochondrial translation in fibroblasts 
from a patient expressing the KARS p.(Pro228Leu) variant and presenting 
with sensorineural deafness, developmental delay, and lactic acidosis. Hum 
Mutat, 39(12), 2047-2059. doi:10.1002/humu.23657 

Santos-Cortez, R. L., Lee, K., Azeem, Z., Antonellis, P. J., Pollock, L. M., Khan, S., . 
. . Leal, S. M. (2013). Mutations in KARS, encoding lysyl-tRNA synthetase, 



A
cc

ep
te

d 
A

rt
ic

le
 

cause autosomal-recessive nonsyndromic hearing impairment DFNB89. Am J 
Hum Genet, 93(1), 132-140. doi:10.1016/j.ajhg.2013.05.018 

Sauter, C., Lorber, B., Gaudry, A., Karim, L., Schwenzer, H., Wien, F., . . . Sissler, M. 
(2015). Neurodegenerative disease-associated mutants of a human 
mitochondrial aminoacyl-tRNA synthetase present individual molecular 
signatures. Sci Rep, 5, 17332. doi:10.1038/srep17332 

Shapiro, M. B., & Senapathy, P. (1987). RNA splice junctions of different classes of 
eukaryotes: sequence statistics and functional implications in gene expression. 
Nucleic Acids Res, 15(17), 7155-7174.  

Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., & 
Sirotkin, K. (2001). dbSNP: the NCBI database of genetic variation. Nucleic 
Acids Res, 29(1), 308-311.  

Sofou, K., Kollberg, G., Holmstrom, M., Davila, M., Darin, N., Gustafsson, C. M., . . . 
Asin-Cayuela, J. (2015). Whole exome sequencing reveals mutations in 
NARS2 and PARS2, encoding the mitochondrial asparaginyl-tRNA synthetase 
and prolyl-tRNA synthetase, in patients with Alpers syndrome. Mol Genet 
Genomic Med, 3(1), 59-68. doi:10.1002/mgg3.115 

Tolkunova, E., Park, H., Xia, J., King, M. P., & Davidson, E. (2000). The human 
lysyl-tRNA synthetase gene encodes both the cytoplasmic and mitochondrial 
enzymes by means of an unusual alternative splicing of the primary transcript. 
J Biol Chem, 275(45), 35063-35069. doi:10.1074/jbc.M006265200 

Verrigni, D., Diodato, D., Di Nottia, M., Torraco, A., Bellacchio, E., Rizza, T., . . . 
Carrozzo, R. (2017). Novel mutations in KARS cause hypertrophic 
cardiomyopathy and combined mitochondrial respiratory chain defect. Clin 
Genet, 91(6), 918-923. doi:10.1111/cge.12931 

Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M., & Barton, G. J. (2009). 
Jalview Version 2--a multiple sequence alignment editor and analysis 
workbench. Bioinformatics, 25(9), 1189-1191. 
doi:10.1093/bioinformatics/btp033 

Yeo, G., & Burge, C. B. (2004). Maximum entropy modeling of short sequence motifs 
with applications to RNA splicing signals. J Comput Biol, 11(2-3), 377-394. 
doi:10.1089/1066527041410418 

Zhou, X. L., He, L. X., Yu, L. J., Wang, Y., Wang, X. J., Wang, E. D., & Yang, T. 
(2017). Mutations in KARS cause early-onset hearing loss and 
leukoencephalopathy: Potential pathogenic mechanism. Hum Mutat, 38(12), 
1740-1750. doi:10.1002/humu.23335 

  



A
cc

ep
te

d 
A

rt
ic

le
 

Figures 

Figure 1: Fundus photograph and Brain MRI of the patient A) Fundus photographs 

of the patient showing optic neuropathy with symmetric temporal wedges of disc pallor. B) 

Brain MRI: axial FLAIR weighted images (a-c), axial diffusion weighted images (d-f) and 

Apparent Diffusion Coefficient maps (g-i) : Hyperintense FLAIR (a-c) lesions of both 

dentate nucleus (arrow), optic radiations (arrow head) and of the corpus callosum splenium 

(cross). The lesions are heterogeneous on diffusion weighted images (d-f), with mild 

hyperintense areas (circle) (d-f) corresponding to elevated diffusion coefficient on Apparent 

Diffusion Coefficient maps (circle) (g-i) and more hyperintense areas (star) (d-f) 

corresponding to restricted diffusion coefficient on Apparent Diffusion Coefficient maps 

(star) (g-i). 
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Figure 2: Morphologic and enzymatic analyses on muscle biopsy of the patient A) 

No ragged-red fibers were observed on modified Gomori trichrome staining (a), but 

numerous COX negative fibers were present (star). Scale bar 50 µm. B) Activity of the 

respiratory chain complexes (normalized to citrate synthase activity), showing partial deficit 

of complex I (68% of the reference range mean) and complex IV (62%). Abnormal activity 

ratios confirm imbalance of complexes. 
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Figure 4: Expression of KARS at mRNA and protein level, from skin fibroblasts of 

the patient A) cDNA sequence after amplification from exon 5 to 9 (using primers 5F and 
9R) showing the two mutations. B) Quantification of KARS mRNA showed an increased 
amount of mitochondrial KARS mRNA in the patient compared to controls. C) Expression 
of mitochondrial and cytoplasmic forms of KARS proteins in control (ctrl) and patient 
(affected) fibroblasts observed by western blot. KARS was detected with three different 
antibodies recognizing either both isoforms of KARS when directed against the catalytic 
domain (total) or specifically the cytoplasmic or mitochondrial isoforms. The asterisk 
indicates the band at the right size. The stainfree loading control shows the total amount of 
proteins loaded on the gel and was used for quantification. Quantification of total, 
cytoplasmic (cyto) and mitochondrial (mito) isoforms of KARS in patient cells as detected 
with the three antibodies mentioned above and represented as percentage (%) of the amount 
of KARS in control cells (ctrl). Values are the mean of five experiments. Statistical analyses 
were done with the T-Test and the p-values were determined, *: p< 0,05, ** p<0,01. D) 
Control (ctrl) and patient (affected) cells were incubated with cycloheximide (100 mg/L) for 
0 to 8 hours before being collected and anti- KARS western blot was performed on the cell 
lysates. The total protein level of KARS was determined relative to the house keeping 
protein GAPDH used as loading control. 
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Figure 5: Immunofluorescence on patient’s skin fibroblasts A decreased amount of 

cytoplasmic KARS was observed in patient (affected) fibroblasts compared to control (ctrl) 

by anti-KARS immunofluorescence microscopy. Cells were grown on coverslips, stained 

with mitotracker red and observed under a fluorescence microscope after anti-KARS 

antibodies labeling. The immunofluorescence staining shows mostly the cytoplasmic KARS 

proteins in control fibroblasts and a decreased fluorescence staining was observed in the 

patient cells. Images were taken with a 400X magnification, scale bar 5 µm. 
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Figure 6: The mutant KARS proteins show decreased interaction with p38 A) The 

EGY48 yeast cells bearing the pSH18-34 LacZ reporter plasmid were transformed by 
pEG202 plasmid expressing p38, KARS, KARS-P200L or KARS-F263V cDNA in fusion 
with the LexA DNA-binding protein, and there was no production of β-galactosidase, 
showing that there is no self-activation. The EGY48 yeast cells bearing the pJK101 control 
plasmid were transformed by pEG202 plasmid expressing p38, KARS, KARS-P200L or 
KARS-F263V cDNA, and expression of the LexA fusions was confirmed by this repression 
assay. The EGY48 yeast cells bearing the pSH18-34 LacZ reporter and pEG202-LexA 
plasmids were transformed by pJG4-5 plasmid expressing p38, KARS, KARS-P200L or 
KARS-F263V cDNA in fusion with the GAL1 promoter transcriptional activation domain; 
no β-galactosidase activity was observed showing that there is no self-DNA binding. B) The 
two-hybrid interaction assay was done in EGY48 yeast cells bearing the pSH18-34 LacZ 
reporter transformed by pEG202-p38 or pJG4-5-p38 and by pJG4-5- or pEG202-KARS, -
KARS-P200L or -KARS-F263V plasmid respectively, and the β-galactosidase activity was 
determined by the ONPG colorimetric assay measuring the optical density (OD) at 420 nm 
that corresponds to ONP production. The KARS missense mutations impair interaction with 
p38. Statistical analyses were done with the T-Test and the p-values were determined, ***: 
p<0,005. C) Coimmunoprecipitation (Co-IP) between p38 and KARS, done in primary 
human fibroblasts. Control (ctrl) or patient (affected) fibroblasts were collected and lysed in 
non-denaturing lysis buffer. Immunoprecipitation was performed on the total whole lysates 
using antibodies directed against KARS (Co-IP KARS) or p38 (Co-IP p38), or without 
antibodies (Neg-IP) as a control. Proteins were detected by western blot in the whole cell 
lysates (Input) and the immunoprecipitations (neg-IP, Co-IP KARS and Co-IP p38) using 
the KARS and p38 antibodies. Actin B (ACTB) was used as a negative control. 
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Figure 7: KARS variants display decreased aminoacylation efficiency and impact 

synthesis of lysine-rich nuclear encoded mitochondrial proteins. A) Time course of 

aminoacylation by KARS wild type and the two variants. Aminoacylations were performed 

with 10 nM of enzyme (KARS, KARS-P200L or KARS-F263V, as indicated), 4 µM of total 

yeast tRNA and 0.5 µM of [3H]-Lysine, the values are the mean of three experiments with 

standard deviation error bars. The relative catalytic activity of the variants compared to the 

wild type KARS is indicated. B) Expression of proteins from the mitochondrial chain in 

control (ctrl) and patient (affected) fibroblasts. Cells were harvested and western blot against 

GRIM19, COX4, NDUFB6 and COX2 performed. Content in lysine (K) as % of total 

number of amino acids indicated as well as whether the gene is in the nuclear or 

mitochondrial genome. 
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Tables 

Table 1: Reported mutations in the KARS gene associated with the phenotypes (hmz: 

homozygous; htz: heterozygous; cmpdt htz: compound heterozygous). 

McLaughlin et 
al., 2010 

Santos-
Cortes et 
al., 2013 

Lieber et al., 
2013 

McMillan 
et al., 2014 

Retterer 
et al., 
2016 

Khoda et 
al., 2016 

Verrigni 
et al., 
2016 

Chen et 
al., 2016 

Jung et 
al., 2017 

Zhou et al., 
2017 

Murray et 
al., 2017 

Number of 
patients 

2 from 2 
families 

3 from 3 
families 1 1 2 1 1 3 1 2 from one 

family  
2 from one 

family 

Microcephaly + + 

Developmental 
delay + (1) + + + + + 

Peripheral 
neuropathy + (2) 

Other 
neurological 

features 

+ (hypotonia, 
dystonia) 

+ 
(seizures) + 

+ 
(myopathy

) 

+ (cognitive 
decline) 

+ (hypotonia, 
seizures, 
ataxia) 

Mitochondrial 
defect 

Increased 
mtDNA in 

muscle 

Combined 
complex 

deficiencies 

Combined 
complex 

deficiencie
s 

Cerebral 
anomalies 

+ 
(symmetric 
abnormal 

subcortical 
white 

matter, 
hypogenesi
s of corpus 
callosum) 

normal 

+ (symmetric 
signal 

anomalies in 
the frontal 

white matter 
periventricula

r and the 
corpus 

callosum) 

CT 
(calcifications 

of the left 
occipitopariet
al junction) 

Hearing 
impairment + + + + + + 

Ophthalmologic 
features  

+ (strabismus, 
ophtalmoplegia

) 

+ (severe 
visual loss, 
pendular 

nystagmus) 

normal 

Cardiomyopath
y + 

Other features 

Vestibular 
Schwannoma, 
dysmorphic 
features (1) 

Mitochondri
al cytopathy  

Mutation in 
KARS gene 

NM_001130089.
1 

cmpdt htz : 
c.398T>A 
(p.L133H) 

c.524_525dupT
T 

htz: 
c.906C>G 
(p.I302M) 

hmz : 
c.517T>C 
(p.Y173H) 

hmz : 
c.1129G>

A 
(p.D377N)  

cmpdt htz : 
c.683C>T 
(p.P228L) 
c.1760C>T 
(p.T587M) 

cmpdt htz : 
c.1396C>T 
(p.R466W) 
c.1657G>

A 
(p.E553K) 

htz: 
c.972G>

A 
(p.M324I

) htz: 
del ex 5-8  

cmpdt htz : 
c.1037T>C 
(p.I346T) 

c.1427T>A 
(p.V476D) 

cmpdt htz : 
c.1133T>

A 
(p.L378H) 
c.1253C>

G 
(p.P418R) 

htz : 
c.1409G>

T 
(p.R470M

)  

htz : 
c.1450T>

G 
(p.C484G)  

cmpdt htz : 
c.1430G>A 
(p.R477H) 
c.1513C>T 
(p.P505S) 

c.1466T>G 
(p.F489C) 
c.1577C>T 
(p.A526V) 




