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Abstract

We revisit occurrence typing, a technique to refine the type of variables occurring in type-cases and, thus, capture
some programming patterns used in untyped languages. Although occurrence typing was tied from its inception
to set-theoretic types—union types, in particular—it never fully exploited the capabilities of these types. Here we
show how, by using set-theoretic types, it is possible to develop a general typing framework that encompasses and
generalizes several aspects of current occurrence typing proposals and that can be applied to tackle other problems
such as the reconstruction of intersection types for unannotated or partially annotated functions and the optimization
of the compilation of gradually typed languages.
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1. Introduction

TypeScript and Flow are extensions of JavaScript that allow the programmer to specify in the code type annotations
used to statically type-check the program. For instance, the following function definition is valid in both languages

function foo(x : number | string) {
return (typeof(x) === "number")? x+1 : x.trim(); (1)

}

Apart from the type annotation (in red) of the function parameter, the above is standard JavaScript code defining a
function that checks whether its argument is an integer; if it is so, then it returns the argument’s successor (x+1),
otherwise it calls the method trim() of the argument. The annotation specifies that the parameter is either a number
or a string (the vertical bar denotes a union type). If this annotation is respected and the function is applied to either
an integer or a string, then the application cannot fail because of a type error (trim() is a string method of the
ECMAScript 5 standard that trims white-spaces from the beginning and end of the string) and both the type-checker
of TypeScript and the one of Flow rightly accept this function. This is possible because both type-checkers implement
a specific type discipline called occurrence typing or flow typing:1 as a matter of fact, standard type disciplines would
reject this function. The reason for that is that standard type disciplines would try to type every part of the body of the
function under the assumption that x has type number | string and they would fail, since the successor is not defined
for strings and the method trim() is not defined for numbers. This is so because standard disciplines do not take into
account the type test performed on x. Occurrence typing is the typing technique that uses the information provided by
the test to specialize—precisely, to refine—the type of the occurrences of x in the branches of the conditional: since
the program tested that x is of type number, then we can safely assume that x is of type number in the “then” branch,
and that it is not of type number (and thus deduce from the type annotation that it must be of type string) in the
“else” branch.

Occurrence typing was first defined and formally studied by Tobin-Hochstadt and Felleisen [42] to statically type-
check untyped Scheme programs,2 and later extended by Tobin-Hochstadt and Felleisen [43] yielding the development

1TypeScript calls it “type guard recognition” while Flow uses the terminology “type refinements”.
2According to Sam Tobin-Hochstadt, the terminology occurrence typing was first used in a simplistic form by Komondoor et al. [27], although

he and Felleisen were not aware of it the at the moment of the writing of [42].
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of Typed Racket. From its inception, occurrence typing was intimately tied to type systems with set-theoretic types:
unions, intersections, and negation of types. Union was the first type connective to appear, since it was already used
by Tobin-Hochstadt and Felleisen [42] where its presence was needed to characterize the different control flows of
a type test, as our foo example shows: one flow for integer arguments and another for strings. Intersection types
appear (in limited forms) combined with occurrence typing both in TypeScript and in Flow and serve to give, among
other, more precise types to functions such as foo. For instance, since x + 1 evaluates to an integer and x.trim() to
a string, then our function foo has type (number|string)→(number|string). But it is clear that a more precise
type would be one that states that foo returns a number when it is applied to a number and returns a string when it is
applied to a string, so that the type deduced for, say, foo(42) would be number rather than number|string. This is
exactly what the intersection type

(number→number) & (string→string) (2)

states (intuitively, an expression has an intersection of types, noted &, if and only if it has all the types of the intersec-
tion) and corresponds in Flow to declaring foo as follows:

var foo : (number => number) & (string => string) = x => {
return (typeof(x) === "number")? x+1 : x.trim(); (3)

}

For what concerns negation types, they are pervasive in the occurrence typing approach, even though they are used
only at meta-theoretic level,3 in particular to determine the type environment when the type case fails. We already
saw negation types at work when we informally typed the “else” branch in foo, for which we assumed that x did not
have type number—i.e., it had the (negation) type ¬number—and deduced from it that x then had type string—i.e.,
(number|string)&¬number which is equivalent to the set-theoretic difference (number|string)\ number and,
thus, to string.

The approaches cited above essentially focus on refining the type of variables that occur in an expression whose
type is being tested. They do it when the variable occurs at top-level in the test (i.e., the variable is the expression
being tested) or under some specific positions such as in nested pairs or at the end of a path of selectors. In this
work we aim at removing this limitation on the contexts and develop a general theory to refine the type of variables
that occur in tested expressions under generic contexts, such as variables occurring in the left or the right expressions
of an application. In other words, we aim at establishing a formal framework to extract as much static information
as possible from a type test. We leverage our analysis on the presence of full-fledged set-theoretic types connectives
provided by the theory of semantic subtyping. Our analysis will also yield two important byproducts. First, to refine
the type of the variables we have to refine the type of the expressions they occur in and we can use this information to
improve our analysis. Therefore our occurrence typing approach will refine not only the types of variables but also the
types of generic expressions–i.e., any expression whatever form it has—bypassing usual type inference. Second, and
most importantly, the result of our analysis can be used to infer intersection types for functions, even in the absence
of precise type annotations such as the one in the definition of foo in (3): to put it simply, we are able to infer the
type (2) for the unannotated pure JavaScript code of foo (i.e., no type annotation at all), while in TypeScript and Flow
(and any other formalism we are aware of) this requires an explicit and full type annotation as the one given in (3).

Finally, the natural target for occurrence typing are languages with dynamic type tests, in particular, dynamic
languages. To type such languages occurrence typing is often combined not only, as discussed above, with set-
theoretic types, but also with extensible record types (to type objects) and gradual type system (to combine static and
dynamic typing) two features that we study in Section 3 as two extensions of our core formalism. Of particular interest
is the latter. Greenberg [21] singles out occurrence typing and gradual typing as the two “lineages” that partition the
research on combining static and dynamic typing: he identifies the former as the “pragmatic, implementation-oriented
dynamic-first” lineage and the latter as the “formal, type-theoretic, static-first” lineage. Here we demonstrate that
these two “lineages” are not orthogonal or mutually independent, and we combine occurrence and gradual typing
showing, in particular, how the former can be used to optimize the compilation of the latter.

3At the moment of writing there is a pending pull request to add negation types to the syntax of TypeScript, but that is all.
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1.1. Motivating examples
We focus our study on conditionals that test types and consider the following syntax: (e ∈ t)?e:e (e.g., in this

syntax the body of foo in (1) and (3) is rendered as (x ∈ Int)?x + 1:(trim x)). In particular, in this introduction we
concentrate on applications, since they constitute the most difficult case and many other cases can be reduced to them.
A typical example is the expression

(x1x2 ∈ t)?e1:e2 (4)

where xi’s denote variables, t is some type, and ei’s are generic expressions. Depending on the actual t and on the
static types of x1 and x2, we can make type assumptions for x1, for x2, and for the application x1x2 when typing e1 that
are different from those we can make when typing e2. For instance, suppose x1 is bound to the function foo defined
in (3). Thus x1 has type (Int → Int) ∧ (String → String) (we used the syntax of the types of Section 2 where unions
and intersections are denoted by ∨ and ∧ and have priority over→ and ×, but not over ¬). Then, it is not hard to see
that if x2 : Int∨String, then the expression4

let x1 = foo in (x1x2 ∈ Int)?((x1x2) + x2):42 (5)

is well typed with type Int: when typing the branch “then” we know that the test x1x2 ∈ Int succeeded and that,
therefore, not only x1x2 is of type Int, but also that x2 is of type Int: the other possibility, x2 : String, would have made
the test fail. For (5) we reasoned only on the type of the variables in the “then” branch but we can do the same on the
“else” branch as shown by the following expression, where @ denotes string concatenation

(x1x2 ∈ Int)?((x1x2) + x2):((x1x2) @ x2) (6)

If the static type of x1 is (Int → Int) ∧ (String → String) then x1x2 is well typed only if the static type of x2 is (a
subtype of) Int∨String and from that it is not hard to deduce that (6) has type Int∨String. Let us see this in detail. The
expression in (6) is typed in the following type environment: x1 : (Int → Int) ∧ (String → String), x2 : Int ∨ String.
All we can deduce, then, is that the application x1x2 has type Int ∨ String, which is not enough to type either the
“then” branch or the “else” branch. In order to type the “then” branch (x1x2) + x2 we must be able to deduce that
both x1x2 and x2 are of type Int. Since we are in the “then” branch, then we know that the type test succeeded and
that, therefore, x1x2 has type Int. Thus we can assume in typing this branch that x1x2 has both its static type and
type Int and, thus, their intersection: (Int ∨ String) ∧ Int, that is Int. For what concerns x2 we use the static type of
x1, that is (Int → Int) ∧ (String → String), and notice that this function returns an Int only if its argument is of type
Int. Reasoning as above we thus deduce that in the “then” branch the type of x2 is the intersection of its static type
with Int: (Int ∨ String) ∧ Int that is Int. To type the “else” branch we reason exactly in the same way, with the only
difference that, since the type test has failed, then we know that the type of the tested expression is not Int. That is, the
expression x1x2 can produce any possible value barring an Int. If we denote by 1 the type of all values (i.e., the type
any of TypeScript and Flow) and by \ the set difference, then this means that in the else branch we know that x1x2 has
type 1\Int—written ¬Int—, that is, it can return values of any type barred Int. Reasoning as for the “then” branch we
then assume that x1x2 has type (Int ∨ String) ∧ ¬Int (i.e., (Int ∨ String) \ Int, that is, String), that x2 must be of type
String for the application to have type ¬Int and therefore we assume that x2 has type (Int∨String)∧String (i.e., again
String).

We have seen that we can specialize in both branches the type of the whole expression x1x2, the type of the
argument x2, but what about the type of the function x1? Well, this depends on the type of x1 itself. In particular,
if instead of an intersection type x1 is typed by a union type (e.g., when the function bound to x1 is the result of a
branching expression), then the test may give us information about the type of the function in the various branches.
So for instance if in the expression in (4) x1 is of type, say, (s1 → t) ∨ (s2 → ¬t), then we can assume for the
expression (4) that x1 has type (s1 → t) in the branch “then” and (s2 → ¬t) in the branch “else”. As a more concrete
example, if x1 : (Int∨String→ Int) ∨ (Bool∨String→ Bool) and x1x2 is well-typed, then we can deduce for

(x1x2 ∈ Int)?(x1(x1x2) + 42):not(x1(x1x2)) (7)

4This and most of the following expressions are just given for the sake of example. Determining the type in each branch of expressions other
than variables is interesting for constructors but less so for destructors such as applications, projections, and selections: any reasonable programmer
would not repeat the same application twice, (s)he would store its result in a variable. This becomes meaningful with constructor such as pairs, as
we do for instance in the expression in (12).

3



the type Int ∨ Bool: in the “then” branch x1 has type Int∨String → Int and x1x2 is of type Int; in the “else” branch x1
has type Bool∨String→ Bool and x1x2 is of type Bool.

Let us recap. If e is an expression of type t0 and we are trying to type (e ∈ t)?e1:e2, then we can assume that e
has type t0 ∧ t when typing e1 and type t0 \ t when typing e2. If furthermore e is of the form e′e′′, then we may also
be able to specialize the types for e′ (in particular if its static type is a union of arrows) and for e′′ (in particular if the
static type of e′ is an intersection of arrows). Additionally, we can repeat the reasoning for all subterms of e′ and e′′ as
long as they are applications, and deduce distinct types for all subexpressions of e that form applications. How to do
it precisely—not only for applications, but also for other terms such as pairs, projections, records etc—is explained in
the rest of the paper but the key ideas are pretty simple and are presented next.

1.2. Key ideas

First of all, in a strict language we can consider a type as denoting the set of values of that type and subtyping
as set-containment of the denoted values. Imagine we are testing whether the result of an application e1e2 is of type
t or not, and suppose we know that the static types of e1 and e2 are t1 and t2 respectively. If the application e1e2 is
well typed, then there is a lot of useful information that we can deduce from it: first, that t1 is a functional type (i.e.,
it denotes a set of well-typed λ-abstractions, the values of functional type) whose domain, denoted by dom(t1), is a
type denoting the set of all values that are accepted by any function in t1; second that t2 must be a subtype of the
domain of t1; third, we also know the type of the application, that is the type that denotes all the values that may
result from the application of a function in t1 to an argument in t2, type that we denote by t1 ◦ t2. For instance, if
t1 = Int→ Bool and t2 = Int, then dom(t1) = Int and t1 ◦ t2 = Bool. Notice that, introducing operations such as dom()
and ◦ is redundant when working with simple types, but becomes necessary in the presence of set-theoretic types. If
for instance t1 is the type of (3), that is, t1 = (Int→Int) ∧ (String→String), then dom(t) = Int∨String, that is the union
of all the possible input types, while the precise return type of such a function depends on the type of the argument the
function is applied to: either an integer, or a string, or both (i.e., the union type Int∨String). So we have t1 ◦ Int = Int,
t1 ◦ String = String, and t1 ◦ (Int ∨ String) = Int ∨ String (see Section 2.6.1 for the formal definition of ◦).

What we want to do is to refine the types of e1 and e2 (i.e., t1 and t2) for the cases where the test that e1e2 has type
t succeeds or fails. Let us start with refining the type t2 of e2 for the case in which the test succeeds. Intuitively, we
want to remove from t2 all the values for which the application will surely return a result not in t, thus making the test
fail. Consider t1 and let s be the largest subtype of dom(t1) such that

t1 ◦ s ≤ ¬t (8)

In other terms, s contains all the legal arguments that make any function in t1 return a result not in t. Then we can
safely remove from t2 all the values in s or, equivalently, keep in t2 all the values of dom(t1) that are not in s. Let us
implement the second viewpoint: the set of all elements of dom(t1) for which an application does not surely give a
result in ¬t is denoted t1 ‚ t (read, “t1 worra t”) and defined as min{u ≤ dom(t1) | t1 ◦ (dom(t1) \ u) ≤ ¬t}: it is easy to
see that according to this definition dom(t1)\ (t1 ‚ t) is the largest subset of dom(t1) satisfying (8). Then we can refine
the type of e2 for when the test is successful by using the type t2 ∧ (t1 ‚ t): we intersect all the possible results of e2,
that is t2, with the elements of the domain that may yield a result in t, that is t1 ‚ t. When the test fails, the type of e2
can be refined in a similar way just by replacing t by ¬t: we get the refined type t2 ∧ (t1 ‚ ¬t). To sum up, to refine the
type of an argument in the test of an application, all we need is to define t1 ‚ t, the set of arguments that when applied
to a function of type t1 may return a result in t; then we can refine the type of e2 as t+2 =

def t2 ∧ (t1 ‚ t) in the “then”
branch (we call it the positive branch) and as t−2 =

def t2 \ (t1 ‚ t) in the “else” branch (we call it the negative branch).
As a side remark note that the set t1 ‚ t is different from the set of elements that return a result in t (though it is a
supertype of it). To see that, consider for t the type String and for t1 the type (Bool→ Bool) ∧ (Int→ (String ∨ Int)),
that is, the type of functions that when applied to a Boolean return a Boolean and when applied to an integer return
either an integer or a string; then we have that dom(t1) = Int ∨ Bool and t1 ‚ String = Int, but there is no (non-empty)
type that ensures that an application of a function in t1 will surely yield a String result.

Once we have determined t+2 , it is then not very difficult to refine the type t1 for the positive branch, too. If the test
succeeded, then we know two facts: first, that the function was applied to a value in t+2 and, second, that the application
did not diverge and returned a result in t. Therefore, we can exclude from t1 all the functions that, when applied to an
argument in t+2 , yield a result not in t. It can be obtained simply by removing from t1 the functions in t+2 → ¬t, that is,
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we refine the type of e1 in the “then” branch as t+1 = t1 \ (t+2 → ¬t). Note that this also removes functions diverging
on t+2 arguments. In particular, the interpretation of a type t → s is the set of all functions that when applied to an
argument of type t either diverge or return a value in s. As such the interpretation of t → s contains all the functions
that diverge (at least) on t. Therefore removing t → s from a type u removes from u not only all the functions that
when applied to a t argument return a result in s, but also all the functions that diverge on t. Ergo t1 \ (t+2 → ¬t)
removes, among others, all functions in t1 that diverge on t+2 . Let us see all this on our example (7), in particular, by
showing how this technique deduces that the type of x1 in the positive branch is (a subtype of) Int∨String→ Int. Take
the static type of x1, that is (Int∨String → Int) ∨ (Bool∨String → Bool) and intersect it with ¬(t+2 → ¬t), that is,
¬(String→ ¬Int). Since intersection distributes over unions we obtain

((Int∨String→Int) ∧ ¬(String→¬Int)) ∨ ((Bool∨String→Bool) ∧ ¬(String→¬Int))

and since (Bool∨String→Bool) ∧ ¬(String→¬Int) is empty (because String → ¬Int contains Bool∨String → Bool),
then what we obtain is the left summand, a strict subtype of (Int∨String) → Int, namely the functions of type
Int∨String→Int minus those that diverge on all String arguments.

This is essentially what we formalize in Section 2, in the type system by the rule [PAppL] and in the typing
algorithm with the case (20) of the definition of the function Constr.

1.3. Technical challenges
In the previous section we outlined the main ideas of our approach to occurrence typing. However, the devil is in

the details. So the formalization we give in Section 2 is not so smooth as we just outlined: we must introduce several
auxiliary definitions to handle some corner cases. This section presents by tiny examples the main technical difficulties
we had to overcome and the definitions we introduced to handle them. As such it provides a kind of road-map for the
technicalities of Section 2.

Typing occurrences. As it should be clear by now, not only variables but also generic expressions are given different
types in the “then” and “else” branches of type tests. For instance, in (6) the expression x1x2 has type Int in the positive
branch and type Bool in the negative one. In this specific case it is possible to deduce these typings from the refined
types of the variables (in particular, thanks to the fact that x2 has type Int the positive branch and Bool in the negative
one), but this is not possible in general. For instance, consider x1 : Int→ (Int ∨ Bool), x2 : Int, and the expression

(x1x2 ∈ Int)?...x1x2...:...x1x2... (9)

It is not possible to specialize the type of the variables in the branches. Nevertheless, we want to be able to deduce
that x1x2 has type Int in the positive branch and type Bool in the negative one. In order to do so in Section 2 we will
use special type environments that map not only variables but also generic expressions to types. So to type, say, the
positive branch of (9) we extend the current type environment with the hypothesis that the expression x1x2 has type
Int.

When we test the type of an expression we try to deduce the type of some subexpressions occurring in it. Therefore
we must cope with subexpressions occurring multiple times. A simple example is given by using product types and
pairs as in ((x, x) ∈ t1 × t2)?e1:e2. It is easy to see that the positive branch e1 is selected only if x has type t1 and
type t2 and deduce from that that x must be typed in e1 by their intersection, t1 ∧ t2. To deal with multiple occurrences
of a same subexpression the type inference system of Section 2 will use the classic rule for introducing intersections
[Inter], while the algorithmic counterpart will use the operator Refine() that intersects the static type of an expression
with all the types deduced for the multiple occurrences of it.

Type preservation. We want our type system to be sound in the sense of Wright and Felleisen [44], that is, that it
satisfies progress and type preservation. The latter property is challenging because, as explained just above, our type
assumptions are not only about variables but also about expressions. Two corner cases are particularly difficult. The
first is shown by the following example

(e(42) ∈ Bool)?e:... (10)

If e is an expression of type Int → t, then, as discussed before, the positive branch will have type (Int → t) \ (Int →
¬Bool). If furthermore the negative branch is of the same type (or of a subtype), then this will also be the type
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of the whole expression in (10). Now imagine that the application e(42) reduces to a Boolean value, then the whole
expression in (10) reduces to e; but this has type Int→ t which, in general, is not a subtype of (Int→ t)\(Int→ ¬Bool),
and therefore type is not preserved by the reduction. To cope with this problem, the proof of type preservation (see
Appendix A.3.2) resorts to type schemes, a technique introduced by Frisch et al. [19] to type expressions by sets of
types, so that the expression in (10) will have both the types at issue.

The second corner case is a modification of the example above where the positive branch is e(42), e.g., (e(42) ∈
Bool)?e(42):true. In this case the type deduced for the whole expression is Bool, while after reduction we would
obtain the expression e(42) which is not of type Bool but of type t (even though it will eventually reduce to a Bool).
This problem will be handled in the proof of type preservation by considering parallel reductions (e.g, if e(42) reduces
in a step to, say, false, then (e(42) ∈ Bool)?e(42):true reduces in one step to (false ∈ Bool)?false:true): see
Appendix A.2.

Interdependence of checks. The last class of technical problems arise from the mutual dependence of different type
checks. In particular, there are two cases that pose a problem. The first can be shown by two functions f and g both
of type (Int→ Int) ∧ (1→ Bool), x of type 1 and the test:

(( f x, g x) ∈ Int × Bool)? ... : ... (11)

If we independently check f x against Int and g x against Bool we deduce Int for the first occurrence of x and 1 for the
second. Thus we would type the positive branch of (11) under the hypothesis that x is of type Int. But if we use the
hypothesis generated by the test of f x, that is, that x is of type Int, to check g x against Bool, then the type deduced
for x is 0—i.e., the branch is never selected. In other words, we want to produce type environments for occurrence
typing by taking into account all the available hypotheses, even when these hypotheses are formulated later in the flow
of control. This will be done in the type systems of Section 2 by the rule [Path] and will require at algorithmic level
to look for a fix-point solution of a function, or an approximation thereof.

Finally, a nested check may help refining the type assumptions on some outer expressions. For instance, when
typing the positive branch e of

((x, y) ∈ ((Int ∨ Bool) × Int))?e:... (12)

we can assume that the expression (x, y) is of type (Int ∨ Bool) × Int and put it in the type environment. But if in
e there is a test like (x ∈ Int)?(x, y):(...) then we do not want use the assumption in the type environment to type
the expression (x, y) occurring in the inner test (in red). Instead we want to give to that occurrence of the expression
(x, y) the type Int × Int. This will be done by temporarily removing the type assumption about (x, y) from the type
environment and by retyping the expression without that assumption (see rule [EnvA] in Section 2.6.3).

Outline
In Section 2 we formalize the ideas we just presented: we define the types and expressions of our system, their

dynamic semantics and a type system that implements occurrence typing together with the algorithms that decide
whether an expression is well typed or not. Section 3 extends our formalism to record types and presents two ap-
plications of our analysis: the inference of arrow types for functions and a static analysis to reduce the number of
casts inserted by a compiler of a gradually-typed language. Practical aspects are discussed in Section 4 where we
give several paradigmatic examples of code typed by our prototype implementation, that can be interactively tested
at https://occtyping.github.io/. Section 5 presents related work. A discussion of future work concludes this
presentation. To ease the presentation all the proofs are omitted from the main text and can be found in the appendix.

Contributions
The main contributions of our work can be summarized as follows:
• We provide a theoretical framework to refine the type of expressions occurring in type tests, thus removing the

limitations of current occurrence typing approaches which require both the tests and the refinement to take place
on variables.

• We define a type-theoretic approach alternative to the current flow-based approaches. As such it provides different
results and it can be thus profitably combined with flow-based techniques.
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• We use our analysis for defining a formal framework that reconstructs intersection types for unannotated or
partially-annotated functions, something that, in our ken, no other current system can do.

• We prove the soundness of our system. We define algorithms to infer the types that we prove to be sound and
show different completeness results which in practice yield the completeness of any reasonable implementation.

• We show how to extend our approach to records with field addition, update, and deletion operations.
• We show how occurrence typing can be extended to and combined with gradual typing and apply our results to

optimize the compilation of the latter.
We end this introduction by stressing the practical implications of our work: a perfunctory inspection may give the
wrong impression that the only interest of the heavy formalization that follows is to have generic expressions, rather
than just variables, in type cases: this would be a bad trade-off. The important point is, instead, that our formalization
is what makes analyses such as those presented in Section 3 possible (e.g., the reconstruction of the type (2) for the
unannotated pure JavaScript code of foo), which is where the actual added practical value and potential of our work
resides.

2. Language

In this section we formalize the ideas we outlined in the introduction. We start by the definition of types followed
by the language and its reduction semantics. The static semantics is the core of our work: we first present a declarative
type system that deduces (possibly many) types for well-typed expressions and then the algorithms to decide whether
an expression is well typed or not.

2.1. Types
Definition 2.1 (Types). The set of types Types is formed by the terms t coinductively produced by the grammar:

Types t ::= b | t → t | t × t | t ∨ t | ¬t | 0

and that satisfy the following conditions
• (regularity) every term has a finite number of different sub-terms;
• (contractivity) every infinite branch of a term contains an infinite number of occurrences of the arrow or product

type constructors.

We use the following abbreviations: t1 ∧ t2 =
def
¬(¬t1 ∨ ¬t2), t1 \ t2 =

def t1 ∧ ¬t2, 1 =
def
¬0. b ranges over basic types

(e.g., Int, Bool), 0 and 1 respectively denote the empty (that types no value) and top (that types all values) types.
Coinduction accounts for recursive types and the condition on infinite branches bars out ill-formed types such as
t = t ∨ t (which does not carry any information about the set denoted by the type) or t = ¬t (which cannot represent
any set). It also ensures that the binary relation B⊆ Types×Types defined by t1 ∨ t2 B ti, t1 ∧ t2 B ti, ¬t B t is
Noetherian. This gives an induction principle on Types that we will use without any further explicit reference to the
relation.5 We refer to b, ×, and→ as type constructors and to ∨, ∧, ¬, and \ as type connectives.

The subtyping relation for these types, noted ≤, is the one defined by Frisch et al. [19] and detailed description
of the algorithm to decide this relation can be found in [6]. For the reader’s convenience we succinctly recall the
definition of the subtyping relation in the next subsection but it is possible to skip this subsection at first reading
and jump directly to Subsection 2.3, since to understand the rest of the paper it suffices to consider that types are
interpreted as sets of values (i.e., either constants, λ-abstractions, or pairs of values: see Section 2.3 right below) that
have that type, and that subtyping is set containment (i.e., a type s is a subtype of a type t if and only if t contains all
the values of type s). In particular, s → t contains all λ-abstractions that when applied to a value of type s, if their
computation terminates, then they return a result of type t (e.g., 0→ 1 is the set of all functions6 and 1→ 0 is the set
of functions that diverge on every argument). Type connectives (i.e., union, intersection, negation) are interpreted as
the corresponding set-theoretic operators (e.g., s ∨ t is the union of the values of the two types). We use ' to denote
the symmetric closure of ≤: thus s ' t (read, s is equivalent to t) means that s and t denote the same set of values and,
as such, they are semantically the same type. All the above is formalized as follows.

5In a nutshell, we can do proofs by induction on the structure of unions and negations—and, thus, intersections—but arrows, products, and
basic types are the base cases for the induction.

6Actually, for every type t, all types of the form 0→t are equivalent and each of them denotes the set of all functions.
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2.2. Subtyping

Subtyping is defined by giving a set-theoretic interpretation of the types of Definition 2.1 into a suitable domainD:

Definition 2.2 (Interpretation domain [19]). The interpretation domain D is the set of finite terms d produced induc-
tively by the following grammar

dF c | (d, d) | {(d, ∂), . . . , (d, ∂)}
∂F d | Ω

where c ranges over the set C of constants and where Ω is such that Ω < D.

The elements of D correspond, intuitively, to (denotations of) the results of the evaluation of expressions. In par-
ticular, in a higher-order language, the results of computations can be functions which, in this model, are represented
by sets of finite relations of the form {(d1, ∂1), . . . , (dn, ∂n)}, where Ω (which is not in D) can appear in second com-
ponents to signify that the function fails (i.e., evaluation is stuck) on the corresponding input. This is implemented by
using in the second projection the meta-variable ∂ which ranges over DΩ = D ∪ {Ω} (we reserve d to range over D,
thus excluding Ω). This constant Ω is used to ensure that 1 → 1 is not a supertype of all function types: if we used
d instead of ∂, then every well-typed function could be subsumed to 1 → 1 and, therefore, every application could
be given the type 1, independently from its argument as long as this argument is typable (see Section 4.2 of [19] for
details). The restriction to finite relations corresponds to the intuition that the denotational semantics of a function is
given by the set of its finite approximations, where finiteness is a restriction necessary (for cardinality reasons) to give
the semantics to higher-order functions.

We define the interpretation ~t� of a type t so that it satisfies the following equalities, where Pfin denotes the
restriction of the powerset to finite subsets and B denotes the function that assigns to each basic type the set of
constants of that type, so that for every constant c we have c ∈ B(bc) (we use bc to denote the basic type of the
constant c):

~0� = ∅ ~t1 ∨ t2� = ~t1� ∪ ~t2� ~¬t� = D \ ~t�

~b� = B(b) ~t1 × t2� = ~t1� × ~t2�

~t1→t2� = {R ∈ Pfin(D×DΩ) | ∀(d, ∂) ∈ R. d ∈ ~t1� =⇒ ∂ ∈ ~t2�}

We cannot take the equations above directly as an inductive definition of ~� because types are not defined inductively
but coinductively. However, recall that the contractivity condition of Definition 2.1 ensures that the binary relation
B⊆Types×Types defined by t1∨ t2 B ti, t1∧ t2 B ti, ¬t B t is Noetherian which gives an induction principle on Types
that we use combined with structural induction onD to give the following definition which validates these equalities.

Definition 2.3 (Set-theoretic interpretation of types [19]). We define a binary predicate (d : t) (“the element d belongs
to the type t”), where d ∈ D and t ∈ Types, by induction on the pair (d, t) ordered lexicographically. The predicate is
defined as follows:

(c : b) = c ∈ B(b)
((d1, d2) : t1 × t2) = (d1 : t1) and (d2 : t2)

({(d1, ∂1), ..., (dn, ∂n)} : t1 → t2) = ∀i ∈ [1..n]. if (di : t1) then (∂i : t2)
(d : t1 ∨ t2) = (d : t1) or (d : t2)

(d : ¬t) = not (d : t)
(∂ : t) = false otherwise

We define the set-theoretic interpretation ~� : Types→ P(D) as ~t� = {d ∈ D | (d : t)}.

Finally, we define the subtyping preorder and its associated equivalence relation as follows.

Definition 2.4 (Subtyping relation [19]). We define the subtyping relation ≤ and the subtyping equivalence relation
' as t1 ≤ t2 ⇐⇒

def
~t1� ⊆ ~t2� and t1 ' t2 ⇐⇒

def (t1 ≤ t2) and (t2 ≤ t1) .
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2.3. Syntax

The expressions e and values v of our language are inductively generated by the following grammars:

Expr e ::= c | x | ee | λ∧i∈I si→ti x.e | π je | (e, e) | (e∈t) ? e : e
Values v ::= c | λ∧i∈I si→ti x.e | (v, v)

(13)

for j = 1, 2. In (13), c ranges over constants (e.g., true, false, 1, 2, ...) which are values of basic types; x ranges over
variables; (e, e) denotes pairs and πie their projections; (e∈t) ? e1 : e2 denotes the type-case expression that evaluates
either e1 or e2 according to whether the value returned by e (if any) has the type t or not; λ∧i∈I si→ti x.e denotes the
function of parameter x and body e annotated with the type ∧i∈I si → ti. An expression has an intersection type if and
only if it has all the types that compose the intersection. Therefore, intuitively, λ∧i∈I si→ti x.e is a well-typed expression
if for all i∈I the hypothesis that x is of type si implies that the body e has type ti, that is to say, it is well typed if
λ∧i∈I si→ti x.e has type si → ti for all i ∈ I.

2.4. Dynamic semantics

The dynamic semantics is defined as a classic left-to-right call-by-value weak reduction for a λ-calculus with pairs,
enriched with specific rules for type-cases. We have the following notions of reduction:

(λ∧i∈I si→ti x.e) v  e{x 7→ v}
πi(v1, v2)  vi i = 1, 2

(v∈t) ? e1 : e2  e1 v ∈ ~t�V
(v∈t) ? e1 : e2  e2 v < ~t�V

where ~t�V denotes, intuitively, the set of values that have type t. Formally, ~t�V = {v | ∃t′ ∈ typeofV(v). t′ ≤ t} where
typeofV(v) is inductively defined as: typeofV(c) =

def
{bc}, typeofV(λ∧i∈I si→ti x.e) =

def
{t | t ' (∧i∈I si → ti) ∧ (∧ j∈J s′j →

t′j), t � 0}, typeofV((v1, v2)) =
def typeofV(v1) × typeofV(v2) 7.

Contextual reductions are defined by the following evaluation contexts:

C[] ::= [ ] | Ce | vC | (C, e) | (v,C) | πiC | (C∈t) ? e : e

As usual we denote by C[e] the term obtained by replacing e for the hole in the context C and we have that e  e′

implies C[e] C[e′].

2.5. Static semantics

While the syntax and reduction semantics are, on the whole, pretty standard, for what concerns the type system
we will have to introduce several unconventional features that we anticipated in Section 1.3 and are at the core of our
work. Let us start with the standard part, that is the typing of the functional core and the use of subtyping, given by
the following typing rules:

[Const]
Γ ` c : bc

[App]
Γ ` e1 : t1 → t2 Γ ` e2 : t1

Γ ` e1e2 : t2
[Abs+]

∀i∈I Γ, x : si ` e : ti
Γ ` λ∧i∈I si→ti x.e :

∧
i∈I si → ti

[Sel]
Γ ` e : t1 × t2

Γ ` πie : ti
[Pair]

Γ ` e1 : t1 Γ ` e2 : t2
Γ ` (e1, e2) : t1 × t2

[Subs]
Γ ` e : t t ≤ t′

Γ ` e : t′

These rules are quite standard and do not need any particular explanation besides those already given in Section 2.3.
Just notice subtyping is embedded in the system by the classic [Subs] subsumption rule. Next we focus on the
unconventional aspects of our system, from the simplest to the hardest.

7This definition may look complicated but it is necessary to handle some corner cases for negated arrow types (cf. rule [Abs-] in Section 2.5).
For instance, it states that λInt→Int x.x ∈ ~(Int→Int) ∧ ¬(Bool→Int)�V.
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The first unconventional aspect is that, as explained in Section 1.3, our type assumptions are about expressions.
Therefore, in our rules the type environments, ranged over by Γ, map expressions—rather than just variables—into
types. This explains why the classic typing rule for variables is replaced by a more general [Env] rule defined below:

[Env]
Γ ` e : Γ(e)

e ∈ dom(Γ) [Inter]
Γ ` e : t1 Γ ` e : t2

Γ ` e : t1 ∧ t2

The [Env] rule is coupled with the standard intersection introduction rule [Inter] which allows us to deduce for a
complex expression the intersection of the types recorded by the occurrence typing analysis in the environment Γ with
the static type deduced for the same expression by using the other typing rules. This same intersection rule is also
used to infer the second unconventional aspect of our system, that is, the fact that λ-abstractions can have negated
arrow types, as long as these negated types do not make the type deduced for the function empty:

[Abs-]
Γ ` λ∧i∈I si→ti x.e : t

Γ ` λ∧i∈I si→ti x.e : ¬(t1 → t2)
((∧i∈I si → ti) ∧ ¬(t1 → t2)) ; 0

In Section 1.3 we explained that in order for our system to satisfy the property of type preservation, the type system
must be able to deduce negated arrow types for functions—e.g. the type (Int→ Int) ∧ ¬(Bool→ Bool) for λInt→Intx.x.
We demonstrated this with the expression in equation (10), for which type preservation holds only if we are able to
deduce for this expression the type (Int → t) \ (Int → ¬Bool), that is, (Int → t) ∧ ¬(Int → ¬Bool). But the sole rule
[Abs+] above does not allow us to deduce negations of arrows for λ-abstractions: the rule [Abs-] makes this possible.
This rule ensures that given a function λt x.e (where t is an intersection type), for every type t1 → t2, either t1 → t2 can
be obtained by subsumption from t or ¬(t1 → t2) can be added to the intersection t. In turn this ensures that, for any
function and any type t either the function has type t or it has type ¬t (see Petrucciani [34, Sections 3.3.2 and 3.3.3]
for a thorough discussion on this rule). As an aside, note that this kind of deduction is already present in the system
by Frisch et al. [19] though in that system this presence was motivated by the semantics of types rather than, as in our
case, by the soundness of the type system.

Rules [Abs+] and [Abs-] are not enough to deduce for λ-abstractions all the types we wish. In particular, these
rules alone are not enough to type general overloaded functions. For instance, consider this simple example of a
function that applied to an integer returns its successor and applied to anything else returns true:

λ(Int→Int)∧(¬Int→Bool)x . (x∈Int) ? x + 1 : true
Clearly, the expression above is well typed, but the rule [Abs+] alone is not enough to type it. In particular, according
to [Abs+] we have to prove that under the hypothesis that x is of type Int the expression ((x∈Int) ? x + 1 : true) is of
type Int, too. That is, that under the hypothesis that x has type Int ∧ Int (we apply occurrence typing) the expression
x + 1 is of type Int (which holds) and that under the hypothesis that x has type Int \ Int, that is 0 (we apply once more
occurrence typing), true is of type Int (which does not hold). The problem is that we are trying to type the second
case of a type-case even if we know that there is no chance that, when x is bound to an integer, that case will be ever
selected. The fact that it is never selected is witnessed by the presence of a type hypothesis with 0 type. To avoid
this problem (and type the term above) we add the rule [Efq] (ex falso quodlibet) that allows the system to deduce
any type for an expression that will never be selected, that is, for an expression whose type environment contains an
empty assumption:

[Efq]
Γ, (e : 0) ` e′ : t

Once more, this kind of deduction was already present in the system by Frisch et al. [19] to type full fledged overloaded
functions, though it was embedded in the typing rule for the type-case. Here we need the rule [Efq], which is more
general, to ensure the property of subject reduction.

Finally, there remains one last rule in our type system, the one that implements occurrence typing, that is, the rule
for the type-case:

[Case]
Γ ` e : t0 Γ `Enve,t Γ1 Γ1 ` e1 : t′ Γ `Enve,¬t Γ2 Γ2 ` e2 : t′

Γ ` (e∈t) ? e1 : e2 : t′
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The rule [Case] checks whether the expression e, whose type is being tested, is well-typed and then performs the
occurrence typing analysis that produces the environments Γi’s under whose hypothesis the expressions ei’s are typed.
The production of these environments is represented by the judgments Γ `Enve,(¬)t Γi. The intuition is that when Γ `Enve,t Γ1
is provable then Γ1 is a version of Γ extended with type hypotheses for all expressions occurring in e, type hypotheses
that can be deduced assuming that the test e ∈ t succeeds. Likewise, Γ `Enve,¬t Γ2 (notice the negation on t) extends Γ

with the hypothesis deduced assuming that e ∈ ¬t, that is, for when the test e ∈ t fails.
All it remains to do is to show how to deduce judgments of the form Γ `Enve,t Γ′. For that we first define how to

denote occurrences of an expression. These are identified by paths in the syntax tree of the expressions, that is, by
possibly empty strings of characters denoting directions starting from the root of the tree (we use ε for the empty
string/path, which corresponds to the root of the tree).

Let e be an expression and $ ∈ {0, 1, l, r, f , s}∗ a path; we denote e↓$ the occurrence of e reached by the path $,
that is (for i = 0, 1, and undefined otherwise)

e↓ε = e (e1, e2)↓l.$ = e1↓$ π1e↓ f .$ = e↓$
e0 e1↓i.$ = ei↓$ (e1, e2)↓r.$ = e2↓$ π2e↓s.$ = e↓$

To ease our analysis we used different directions for each kind of term. So we have 0 and 1 for the function and
argument of an application, l and r for the left and right expressions forming a pair, and f and s for the argument of
a f irst or of a second projection. Note also that we do not consider occurrences under λ’s (since their type is frozen
in their annotations) and type-cases (since they reset the analysis). The judgments Γ `Enve,t Γ′ are then deduced by the
following two rules:

[Base]
Γ `Enve,t Γ

[Path]
`PathΓ′,e,t $ : t′ Γ `Enve,t Γ′

Γ `Enve,t Γ′, (e↓$ : t′)

These rules describe how to produce by occurrence typing the type environments while checking that an expression e
has type t. They state that (i) we can deduce from Γ all the hypothesis already in Γ (rule [Base]) and that (ii) if we can
deduce a given type t′ for a particular occurrence$ of the expression e being checked, then we can add this hypothesis
to the produced type environment (rule [Path]). The rule [Path] uses a (last) auxiliary judgement `Path

Γ,e,t $ : t′ to deduce
the type t′ of the occurrence e↓$ when checking e against t under the hypotheses Γ. This rule [Path] is subtler than
it may appear at first sight, insofar as the deduction of the type for $ may already use some hypothesis on e↓$ (in
Γ′) and, from an algorithmic viewpoint, this will imply the computation of a fix-point (see Section 2.6.2). The last
ingredient for our type system is the deduction of the judgements of the form `Path

Γ,e,t $ : t′ where $ is a path to an
expression occurring in e. This is given by the following set of rules.

[PSubs]
`PathΓ,e,t $ : t1 t1 ≤ t2

`PathΓ,e,t $ : t2
[PInter]

`PathΓ,e,t $ : t1 `PathΓ,e,t $ : t2
`PathΓ,e,t $ : t1 ∧ t2

[PTypeof]
Γ ` e↓$ : t′

`PathΓ,e,t $ : t′

[PEps]
`PathΓ,e,t ε : t

[PAppR]
`PathΓ,e,t $.0 : t1 → t2 `PathΓ,e,t $ : t′2

`PathΓ,e,t $.1 : ¬t1
t2 ∧ t′2 ' 0

[PAppL]
`PathΓ,e,t $.1 : t1 `PathΓ,e,t $ : t2
`PathΓ,e,t $.0 : ¬(t1 → ¬t2)

[PPairL]
`PathΓ,e,t $ : t1 × t2
`PathΓ,e,t $.l : t1

[PPairR]
`PathΓ,e,t $ : t1 × t2
`PathΓ,e,t $.r : t2

[PFst]
`PathΓ,e,t $ : t′

`PathΓ,e,t $. f : t′ × 1
[PSnd]

`PathΓ,e,t $ : t′

`PathΓ,e,t $.s : 1 × t′

These rules implement the analysis described in Section 1.2 for functions and extend it to products. Let us comment
each rule in detail. [PSubs] is just subsumption for the deduction `Path. The rule [PInter] combined with [PTypeof]
allows the system to deduce for an occurrence $ the intersection of the static type of e↓$ (deduced by [PTypeof])
with the type deduced for $ by the other `Path rules. The rule [PEps] is the starting point of the analysis: if we
are assuming that the test e ∈ t succeeds, then we can assume that e (i.e., e↓ε) has type t (recall that assuming that
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the test e ∈ t fails corresponds to having ¬t at the index of the turnstyle). The rule [PAppR] implements occurrence
typing for the arguments of applications, since it states that if a function maps arguments of type t1 in results of type
t2 and an application of this function yields results (in t′2) that cannot be in t2 (since t2 ∧ t′2 ' 0), then the argument
of this application cannot be of type t1. [PAppL] performs the occurrence typing analysis for the function part of an
application, since it states that if an application has type t2 and the argument of this application has type t1, then the
function in this application cannot have type t1 → ¬t2. Rules [PPair_] are straightforward since they state that the i-th
projection of a pair that is of type t1 × t2 must be of type ti. So are the last two rules that essentially state that if π1e
(respectively, π2e) is of type t′, then the type of e must be of the form t′ × 1 (respectively, 1 × t′).

This concludes the presentation of all the rules of our type system (they are summarized for the reader’s con-
venience in Appendix A.1), which satisfies the property of safety, deduced, as customary, from the properties of
progress and subject reduction (cf. Appendix A.3).

Theorem 2.5 (type safety). For every expression e such that ∅ ` e : t either e diverges or there exists a value v of
type t such that e ∗ v.

2.6. Algorithmic system

The type system we defined in the previous section implements the ideas we illustrated in the introduction and it is
safe. Now the problem is to decide whether an expression is well typed or not, that is, to find an algorithm that given
a type environment Γ and an expression e decides whether there exists a type t such that Γ ` e : t is provable. For that
we need to solve essentially two problems: (i) how to handle the fact that it is possible to deduce several types for the
same well-typed expression and (ii) how to compute the auxiliary deduction system `Path

Γ,e,t for paths.
(i). Multiple types have two distinct origins each requiring a distinct technical solution. The first origin is the

presence of structural rules8 such as [Subs] and [Inter]. We handle this presence in the classic way: we define an
algorithmic system that tracks the minimum type of an expression; this system is obtained from the original system
by removing the two structural rules and by distributing suitable checks of the subtyping relation in the remaining
rules. To do that in the presence of set-theoretic types we need to define some operators on types, which are given
in Section 2.6.1. The second origin is the rule [Abs-] by which it is possible to deduce for every well-typed lambda
abstraction infinitely many types, that is the annotation of the function intersected with as (finitely) many negations of
arrow types as possible without making the type empty. We do not handle this multiplicity directly in the algorithmic
system but only in the proof of its soundness by using and adapting the technique of type schemes defined by Frisch
et al. [19]. Type schemes are canonical representations of the infinite sets of types of λ-abstractions which can be
used to define an algorithmic system that can be easily proved to be sound. The simpler algorithm that we propose in
this section implies (i.e., it is less precise than) the one with type schemes (cf. Lemma Appendix B.20) and it is thus
sound, too. The algorithm of this section is not only simpler but, as we discuss in Section 2.6.4, is also the one that
should be used in practice. This is why we preferred to present it here and relegate the presentation of the system with
type schemes to Appendix B.2.1.

(ii). For what concerns the use of the auxiliary derivation for the Γ `Enve,t Γ′ and `Path
Γ,e,t $ : t′ judgments, we present

in Section 2.6.2 an algorithm that is sound and satisfies a limited form of completeness. All these notions are then
used in the algorithmic typing system given in Section 2.6.3.

2.6.1. Operators for type constructors
In order to define the algorithmic typing of expressions like applications and projections we need to define the

operators on types we used in Section 1.2. Consider the classic rule [App] for applications. It essentially does three
things: (i) it checks that the expression in the function position has a functional type; (ii) it checks that the argument
is in the domain of the function, and (iii) it returns the type of the application. In systems without set-theoretic
types these operations are quite straightforward: (i) corresponds to checking that the expression has an arrow type, (ii)
corresponds to checking that the argument is in the domain of the arrow deduced for the function, and (iii) corresponds
to returning the codomain of that same arrow. With set-theoretic types things get more difficult, since a function can

8In logic, logical rules refer to a particular connective (here, a type constructor, that is, either→, or ×, or b), while identity rules (e.g., axioms
and cuts) and structural rules (e.g., weakening and contraction) do not.
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be typed by, say, a union of intersection of arrows and negations of types. Checking that the function has a functional
type is easy since it corresponds to checking that it has a type subtype of 0→1. Determining its domain and the type
of the application is more complicated and needs the operators dom() and ◦ we informally described in Section 1.2
where we also introduced the operator ‚ . These three operators are used by our algorithm and formally defined as:

dom(t) = max{u | t ≤ u→ 1} (14)
t ◦ s = min{u | t ≤ s→ u} (15)
t ‚ s = min{u | t ◦ (dom(t) \ u) ≤ ¬s} (16)

In short, dom(t) is the largest domain of any single arrow that subsumes t, t ◦ s is the smallest codomain of an arrow
type that subsumes t and has domain s and t ‚ s was explained before.

We need similar operators for projections since the type t of e in πie may not be a single product type but, say, a
union of products: all we know is that t must be a subtype of 1 × 1. So let t be a type such that t ≤ 1 × 1, then we
define:

π1(t) = min{u | t ≤ u × 1} π2(t) = min{u | t ≤ 1 × u} (17)

All the operators above but ‚ are already present in the theory of semantic subtyping: the reader can find how to
compute them in [19, Section 6.11] (see also [6, §4.4] for a detailed description). Below we just show our new
formula that computes t ‚ s for a t subtype of 0 → 1. For that, we use a result of semantic subtyping that states
that every type t is equivalent to a type in disjunctive normal form and that if furthermore t ≤ 0 → 1, then t '∨

i∈I

(∧
p∈Pi

(sp → tp)
∧

n∈Ni
¬(s′n → t′n)

)
with

∧
p∈Pi

(sp → tp)
∧

n∈Ni
¬(s′n → t′n) ; 0 for all i in I. For such a t and any

type s then we have:

t ‚ s = dom(t) ∧
∨
i∈I

 ∧
{P⊆Pi | s≤

∨
p∈P ¬tp}

∨
p∈P

¬sp


 (18)

The formula considers only the positive arrows of each summand that forms t and states that, for each summand,
whenever you take a subset P of its positive arrows that cannot yield results in s (since s does not overlap the inter-
section of the codomains of these arrows), then the success of the test cannot depend on these arrows and therefore
the intersection of the domains of these arrows—i.e., the values that would precisely select that set of arrows—can be
removed from dom(t). The proof that this type satisfies (16) is given in the Appendix B.1.

2.6.2. Type environments for occurrence typing
The second ingredient necessary to the definition of our algorithmic systems is the algorithm for the deduction of

Γ `Enve,t Γ′, that is an algorithm that takes as input Γ, e, and t, and returns an environment that extends Γ with hypotheses
on the occurrences of e that are the most general that can be deduced by assuming that e ∈ t succeeds. For that we
need the notation typeofΓ(e) which denotes the type deduced for e under the type environment Γ in the algorithmic
type system of Section 2.6.3. That is, typeofΓ(e) = t if and only if Γ À e : t is provable.

We start by defining the algorithm for each single occurrence, that is for the deduction of `Path
Γ,e,t $ : t′. This is

obtained by defining two mutually recursive functions Constr and Intertype:

ConstrΓ,e,t(ε) = t (19)
ConstrΓ,e,t($.0) = ¬(IntertypeΓ,e,t($.1)→ ¬IntertypeΓ,e,t($)) (20)
ConstrΓ,e,t($.1) = typeofΓ(e↓$.0) ‚ IntertypeΓ,e,t($) (21)
ConstrΓ,e,t($.l) = π1(IntertypeΓ,e,t($)) (22)
ConstrΓ,e,t($.r) = π2(IntertypeΓ,e,t($)) (23)
ConstrΓ,e,t($. f ) = IntertypeΓ,e,t($) × 1 (24)
ConstrΓ,e,t($.s) = 1 × IntertypeΓ,e,t($) (25)

IntertypeΓ,e,t($) = ConstrΓ,e,t($) ∧ typeofΓ(e↓$) (26)

All the functions above are defined if and only if the initial path$ is valid for e (i.e., e↓$ is defined) and e is well-typed
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(which implies that all typeofΓ(e↓$) in the definition are defined).9 Each case of the definition of the Constr function
corresponds to the application of a logical rule (cf. definition in Footnote 8) in the deduction system for `Path: case
(19) corresponds to the application of [PEps]; case (20) implements [Pappl] straightforwardly; the implementation of
rule [PAppR] is subtler: instead of finding the best t1 to subtract (by intersection) from the static type of the argument,
(21) finds directly the best type for the argument by applying the ‚ operator to the static type of the function and
the refined type of the application. The remaining (22–25) cases are the straightforward implementations of the rules
[PPairL], [PPairR], [PFst], and [PSnd], respectively.

The other recursive function, Intertype, implements the two structural rules [PInter] and [PTypeof] by intersecting
the type obtained for $ by the logical rules, with the static type deduced by the type system for the expression
occurring at $. The remaining structural rule, [Psubs], is accounted for by the use of the operators ‚ and πi in the
definition of Constr.

It remains to explain how to compute the environment Γ′ produced from Γ by the deduction system for Γ `Enve,t
Γ′. Alas, this is the most delicate part of our algorithm. In a nutshell, what we want to do is to define a function
Refine_,_(_) that takes a type environment Γ, an expression e and a type t and returns the best type environment Γ′

such that Γ `Enve,t Γ′ holds. By the best environment we mean the one in which the occurrences of e are associated to
the largest possible types (type environments are hypotheses so they are contravariant: the larger the type the better
the hypothesis). Recall that in Section 1.3 we said that we want our analysis to be able to capture all the information
available from nested checks. If we gave up such a kind of precision then the definition of Refine would be pretty
easy: it must map each subexpression of e to the intersection of the types deduced by `Path (i.e., by Intertype) for each
of its occurrences. That is, for each expression e′ occurring in e, Refinee,t(Γ) would be the type environment that maps
e′ into

∧
{$ | e↓$≡e′} IntertypeΓ,e,t($). As we explained in Section 1.3 the intersection is needed to apply occurrence

typing to expressions such as ((x, x)∈t1 × t2) ? e1 : e2 where some expressions—here x—occur multiple times.
In order to capture most of the type information from nested queries the rule [Path] allows the deduction of the

type of some occurrence $ to use a type environment Γ′ that may contain information about some suboccurrences of
$. On the algorithm this would correspond to applying the Refine defined above to an environment that already is
the result of Refine, and so on. Therefore, ideally our algorithm should compute the type environment as a fixpoint
of the function X 7→ Refinee,t(X). Unfortunately, an iteration of Refine may not converge. As an example, consider
the (dumb) expression (xx∈1) ? e1 : e2. If x : 1 → 1, then when refining the “then” branch, every iteration of Refine
yields for x a type strictly more precise than the type deduced in the previous iteration (because of the $.0 case).

The solution we adopt in practice is to bound the number of iterations to some number no. This is obtained by the
following definition of Refine

Refinee,t =
def (RefineStepe,t)no

where RefineStepe,t(Γ)(e′) =


∧
{$ | e↓$≡e′} IntertypeΓ,e,t($) if ∃$. e↓$ ≡ e′

Γ(e′) otherwise, if e′ ∈ dom(Γ)
undefined otherwise

Note in particular that Refinee,t(Γ) extends Γ with hypotheses on the expressions occurring in e, since dom(Refinee,t(Γ))
= dom(RefineStepe,t(Γ)) = dom(Γ) ∪ {e′ | ∃$. e↓$ ≡ e′}.

In other terms, we try to find a fixpoint of RefineStepe,t but we bound our search to no iterations. Since
RefineStepe,t is monotone (w.r.t. the subtyping pre-order extended to type environments pointwise), then every it-
eration yields a better solution. While this is unsatisfactory from a formal point of view, in practice the problem is
a very mild one. Divergence may happen only when refining the type of a function in an application: not only such
a refinement is meaningful only when the function is typed by a union type, but also we had to build the expression
that causes the divergence in quite an ad hoc way which makes divergence even more unlikely: setting an no twice
the depth of the syntax tree of the outermost type case should be more than enough to capture all realistic cases. For
instance, all examples given in Section 4 can be checked (or found to be ill-typed) with no = 1.

9Note that the definition is well-founded. This can be seen by analyzing the rule [CaseA] of Section 2.6.3: the definition of Refinee,t(Γ) and
Refinee,¬t(Γ) use typeofΓ(e↓$), and this is defined for all $ since the first premisses of [CaseA] states that Γ ` e : t0 (and this is possible only if
we were able to deduce under the hypothesis Γ the type of every occurrence of e.)
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2.6.3. Algorithmic typing rules
We now have all the definitions we need for our typing algorithm, which is defined by the following rules.

[EfqA]
Γ, (e : 0) À e′ : 0

with priority over
all the other rules [VarA]

Γ À x : Γ(x)
x ∈ dom(Γ)

[EnvA]
Γ \ {e} À e : t

Γ À e : Γ(e) ∧ t
e ∈ dom(Γ) and
e not a variable [ConstA]

Γ À c : bc
c < dom(Γ)

[AbsA]
Γ, x : si À e : t′i t′i ≤ ti

Γ À λ
∧i∈I si→ti x.e : ∧i∈I si → ti

λ∧i∈I si→ti x.e < dom(Γ)

[AppA]
Γ À e1 : t1 Γ À e2 : t2 t1 ≤ 0→ 1 t2 ≤ dom(t1)

Γ À e1e2 : t1 ◦ t2
e1e2 < dom(Γ)

[CaseA]
Γ À e : t0 Refinee,t(Γ) À e1 : t1 Refinee,¬t(Γ) À e2 : t2

Γ À (e∈t) ? e1 : e2 : t1 ∨ t2
(e∈t) ?e1:e2 < dom(Γ)

[ProjA]
Γ À e : t t ≤ 1×1

Γ À πie : πi(t)
πie<dom(Γ) [PairA]

Γ À e1 : t1 Γ À e2 : t2
Γ À (e1, e2) : t1 × t2

(e1, e2)<dom(Γ)

The side conditions of the rules ensure that the system is syntax directed, that is, that at most one rule applies when
typing a term: priority is given to [EqfA] over all the other rules and to [EnvA] over all remaining logical rules. The
subsumption rule is no longer in the system; it is replaced by: (i) using a union type in [CaseA], (ii) checking in [AbsA]
that the body of the function is typed by a subtype of the type declared in the annotation, and (iii) using type operators
and checking subtyping in the elimination rules [AppA,ProjA]. In particular, for [AppA] notice that it checks that the
type of the function is a functional type, that the type of the argument is a subtype of the domain of the function,
and then returns the result type of the application of the two types. The intersection rule is (partially) replaced by the
rule [EnvA] which intersects the type deduced for an expression e by occurrence typing and stored in Γ with the type
deduced for e by the logical rules: this is simply obtained by removing any hypothesis about e from Γ, so that the
deduction of the type t for e cannot but end by a logical rule. Of course, this does not apply when the expression e
is a variable, since an hypothesis in Γ is the only way to deduce the type of a variable, which is why the algorithm
reintroduces the classic rule for variables. Finally, notice that there is no counterpart for the rule [Abs-] and that
therefore it is not possible to deduce negated arrow types for functions. This means that the algorithmic system is not
complete as we discuss in details in the next section.

2.6.4. Properties of the algorithmic system
In what follow we will use Γ `

no
A e : t to stress the fact that the judgment Γ À e : t is provable in the algorithmic

system where Refinee,t is defined as (RefineStepe,t)no ; we will omit the index no—thus keeping it implicit—whenever
it does not matter in the context.

The algorithmic system above is sound with respect to the deductive one of Section 2.5

Theorem 2.6 (Soundness). For every Γ, e, t, no, if Γ `
no
A e : t, then Γ ` e : t.

The proof of this theorem (see Appendix B.5) is obtained by defining an algorithmic system Àts that uses type
schemes, that is, which associates each typable term e with a possibly infinite set of types t (in particular a λ-expression
λ∧i∈I si→ti x.e will be associated to a set of types of the form {s | ∃s0 =

∧
i=1..n ti → si ∧

∧
j=1..m ¬(t′j → s′j). 0 ; s0 ≤ s})

and proving that, if Γ À e : t then Γ Àts e : t with t ∈ t: the soundness of À follows from the soundness of Àts .
Completeness needs a more detailed explanation. The algorithmic system À is not complete w.r.t. the language

presented in Section 2.3 because it cannot deduce negated arrow types for functions. However, no practical pro-
gramming language with structural subtyping would implement the full language of Section 2.3, but rather restrict all
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expressions of the form (e∈t) ? e1 : e2 so that the type t tested in them is either non functional (e.g., products, integer,
a record type, etc.) or it is 0 → 1 (i.e., the expression can just test whether e returns a function or not).10 There are
multiple reasons to impose such a restriction, the most important ones can be summarized as follows:

1. For explicitly-typed languages it may yield conterintutive results, since for instance λInt→Intx.x ∈ Bool → Bool
should fail despite the fact that identity functions maps Booleans to Booleans.

2. For implicitly-typed languages it yields a semantics that depends on the inference algorithm, since (λy.(λx.y))3 ∈
3→3 may either fail or not according to whether the type deduced for the result of the expression is either Int→Int
or 3→3 (which are both valid but incomparable).

3. For gradually-typed languages it would yield a problematic system as we explain in Section 3.3.

Now, if we apply this restriction to the language of Section 2.3, then the algorithmic system of section 2.6.3 is
complete. Let say that an expression e is positive if it never tests a functional type more precise than 0 → 1 (see
Appendix B.5 for the formal definition). Then we have:

Theorem 2.7 (Completeness for Positive Expressions). For every type environment Γ and positive expression e, if
Γ ` e : t, then there exist no and t′ such that Γ `

no
A e : t′.

We can use the algorithmic system Àts defined for the proof of Theorem 2.6 to give a far more precise characterization
than the above of the terms for which our algorithm is complete: positivity is a practical but rough approximation.
The system Àts copes with negated arrow types, but it still is not complete essentially for two reasons: (i) the recursive
nature of rule [Path] and (ii) the use of nested [PAppL] that yields a precision that the algorithm loses by using type
schemes in defining of Constr (case (20) is the critical one). Completeness is recovered by (i) limiting the depth of
the derivations and (ii) forbidding nested negated arrows on the left-hand side of negated arrows.

Definition 2.8 (Rank-0 negation). A derivation of Γ ` e : t is rank-0 negated if [Abs–] never occurs in the derivation
of a left premise of a [PAppL] rule.

The use of this terminology is borrowed from the ranking of higher-order types, since, intuitively, it corresponds to
typing a language in which in the types used in dynamic tests, a negated arrow never occurs on the left-hand side of
another negated arrow.

Theorem 2.9 (Rank-0 Completeness). For every Γ, e, t, if Γ ` e : t is derivable by a rank-0 negated derivation, then
there exists no such that Γ `

no
Ats e : t′ and t′ ≤ t.

This last result is only of theoretical interest since, in practice, we expect to have only languages with positive ex-
pressions. This is why for our implementation we use the library of CDuce [3] in which type schemes are absent and
functions are typed only by intersections of positive arrows. We present the implementation in Section 4, but before
we study some extensions.

3. Extensions

As we recalled in the introduction, the main application of occurrence typing is to type dynamic languages. In this
section we explore how to extend our work to encompass three features that are necessary to type these languages.

First, we consider record types and record expressions which, in dynamic languages, are used to implement
objects. In particular, we extend our system to cope with typical usage patterns of objects employed in these languages
such as adding, modifying, or deleting a field, or dynamically testing its presence to specify different behaviors.

Second, in order to precisely type applications in dynamic languages it is crucial to refine the type of some
functions to account for their different behaviors with specific input types. But current approaches are bad at it:

10Of course, there exist languages in which it is possible to check whether some value has a type that has functional subcomponents—e.g., to
test whether an object is of some class that possesses some given methods, but that is a case of nominal rather than structural subtyping, which in
our framework corresponds to testing whether a value has some basic type.
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they require the programmer to explicitly specify a precise intersection type for these functions and, even with such
specifications, some common cases fail to type (in that case the only solution is to hard-code the function and its
typing discipline into the language). We show how we can use the work developed in the previous sections to infer
precise intersection types for functions. In our system, these functions do not require any type annotation or just an
annotation for the function parameters, whereas some of them fail to type in current alternative approaches even when
they are given the full intersection type specification.

Finally, to type dynamic languages it is often necessary to make statically-typed parts of a program coexist with
dynamically-typed ones. This is the aim of gradually typed systems that we explore in the third extension of this
section.

3.1. Record types
The previous analysis already covers a large gamut of realistic cases. For instance, the analysis already handles

list data structures, since products and recursive types can encode them as right-associative nested pairs, as it is done
in the language CDuce (e.g., X = Nil∨ (Int × X) is the type of the lists of integers): see Code 8 in Table 1 of Section 4
for a concrete example. Even more, thanks to the presence of union types it is possible to type heterogeneous lists
whose content is described by regular expressions on types as proposed by Hosoya et al. [22]. However, this is not
enough to cover records and, in particular, the specific usage patterns in dynamic languages of records, whose field
are dynamically tested, deleted, added, and modified. This is why we extend here our work to records, building on the
record types as they are defined in CDuce.

The extension we present in this section is not trivial. Although we use the record types as they are defined in
CDuce we cannot do the same for CDuce record expressions. The reasons why we cannot use the record expressions
of CDuce and we have to define and study new ones are twofold. On the one hand we want to capture the typing
of record field extension and field deletion, two operation widely used in dynamic language; on the other hand we
need to have very simple expressions formed by elementary sub-expressions, in order to limit the combinatorics of
occurrence typing. For this reason we build our records one field at a time, starting from the empty record and adding,
updating, or deleting single fields.

Formally, CDuce record types can be embedded in our types by adding the following two type constructors:

Types t ::= {`1 = t . . . `n = t, _ = t} | Undef

where ` ranges over an infinite set of labels Labels and Undef is a special singleton type whose only value is a constant
undef which is not in D (for that it is a constant akin to Ω): as a consequence Undef and 1 are distinct types, the
interpretation of the former being the constant undef while the interpretation of the latter being the set of all the other
values. The type {`1 = t1 . . . `n = tn, _ = t} is a quasi-constant function that maps every `i to the type ti and every
other ` ∈ Labels to the type t (all the `i’s must be distinct). Quasi constant functions are the internal representation of
record types in CDuce. These are not visible to the programmer who can use only two specific forms of quasi constant
functions, open record types and closed record types (as for OCaml object types), provided by the following syntactic
sugar:11

• {{{`1 = t1, . . . , `n = tn}}} for {`1 = t1 . . . `n = tn, _ = Undef} (closed records).
• {{{`1 = t1, . . . , `n = tn ..}}} for {`1 = t1 . . . `n = tn, _ = 1 ∨ Undef} (open records).

plus the notation ` =?t to denote optional fields, which corresponds to using in the quasi-constant function notation
the field ` = t ∨ Undef.

For what concerns expressions, we cannot use CDuce record expressions as they are, but instead we must adapt
them to our analysis. So as anticipated, we consider records that are built starting from the empty record expression
{} by adding, updating, or removing fields:

Expr e ::= {} | {e with ` = e} | e\` | e.`

in particular e\` deletes the field ` from e, {e with ` = e}′ adds the field ` = e′ to the record e (deleting any existing
` field), while e.` is field selection with the reduction: {..., ` = e, ...}.`  e.

11Note that in the definitions “. . . ” is meta-syntax to denote the presence of other fields while in the open records “..” is the syntax that
distinguishes them from closed ones.
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To define record type subtyping and record expression type inference we need three operators on record types: t.`
which returns the type of the field ` in the record type t, t1 + t2 which returns the record type formed by all the fields in
t2 and those in t1 that are not in t2, and t\` which returns the type t in which the field ` is undefined. They are formally
defined as follows (see Frisch [18] for more details):

t.` =

{
min{u | t ≤ {{{` = u ..}}}} if t ≤ {{{` = 1 ..}}}
undefined otherwise (27)

t1 + t2 = min
{

u
∣∣∣∣∣ ∀` ∈ Labels.

{
u.` ≥ t2.` if t2.` ≤ ¬Undef
u.` ≥ t1.` ∨ (t2.` \ Undef) otherwise

}}
(28)

t\` = min
{

u
∣∣∣∣∣ ∀`′ ∈ Labels.

{
u.`′ ≥ Undef if `′ = `
u.`′ ≥ t.`′ otherwise

}}
(29)

Then two record types t1 and t2 are in subtyping relation, t1 ≤ t2, if and only if for all ` ∈ Labels we have t1.` ≤ t2.`.
In particular {{{..}}} is the largest record type.

Expressions are then typed by the following rules (already in algorithmic form).

[Record]
Γ ` {} : {{{}}}

[Update]
Γ ` e1 : t1 t1 ≤ {{{..}}} Γ ` e2 : t2
Γ ` {e1 with ` = e2} : t1 + {{{` = t2}}}

{e1 with ` = e2} < dom(Γ)

[Delete]
Γ ` e : t t ≤ {{{..}}}

Γ ` e\` : t\`
e\` < dom(Γ) [Proj]

Γ ` e : t t ≤ {{{` = 1 ..}}}
Γ ` e.` : t.`

e.` < dom(Γ)

To extend occurrence typing to records we add the following values to paths: $ ∈ {. . . , a`, u1
` , u

2
` , r`}

∗, with e.` ↓
a`.$ = e↓$, e\` ↓ r`.$ = e↓$, and {e1 with ` = e2} ↓ ui

`.$ = ei↓$ and add the following rules for the new paths:

[PSel]
`PathΓ,e,t $ : t′

`PathΓ,e,t $.a` : {{{` : t′ ..}}} [PDel]
`PathΓ,e,t $ : t′

`PathΓ,e,t $.r` : (t′\`) + {{{` =?1}}}

[PUpd1]
`PathΓ,e,t $ : t′

`PathΓ,e,t $.u
1
` : (t′\`) + {{{` =?1}}}

[PUpd2]
`PathΓ,e,t $ : t

`PathΓ,e,t $.u
2
` : t.`′

Deriving the algorithm from these rules is then straightforward:

ConstrΓ,e,t($.a`) = {{{` : IntertypeΓ,e,t($) ..}}} ConstrΓ,e,t($.r`) = (IntertypeΓ,e,t($))\` + {{{` =?1}}}
ConstrΓ,e,t($.u2

` ) = (IntertypeΓ,e,t($)).` ConstrΓ,e,t($.u1
` ) = (IntertypeΓ,e,t($))\` + {{{` =?1}}}

Notice that the effect of doing t\` + {{{` =?1}}} corresponds to setting the field ` of the (record) type t to the type
1 ∨ Undef, that is, to the type of all undefined fields in an open record. So [PDel] and [PUpd1] mean that if we
remove, add, or redefine a field ` in an expression e then all we can deduce for e is that its field ` is undefined: since
the original field was destroyed we do not have any information on it apart from the static one. For instance, consider
the test:

({x with a = 0} ∈ {{{a = Int, b = Bool ..}}} ∨ {{{a = Bool, b = Int ..}}})?x.b:False

By ConstrΓ,e,t($.u1
` )—i.e., by [Ext1], [PTypeof], and [PInter]—the type for x in the positive branch is (({{{a = Int, b =

Bool ..}}} ∨ {{{a = Bool, b = Int ..}}}) ∧ {{{a = Int ..}}}) + {{{a =?1}}}. It is equivalent to the type {{{b = Bool ..}}}, and thus we
can deduce that x.b has the type Bool.

3.2. Refining function types
As we explained in the introduction, both TypeScript and Flow deduce for the first definition of the function foo

in (1) the type (number∨string) → (number∨string), while the more precise type

(number→number)∧ (string→string) (30)
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can be deduced by these languages only if they are instructed to do so: the programmer has to explicitly annotate foo
with the type (30): we did it in (3) using Flow—the TypeScript annotation for it is much heavier. But this seems like
overkill, since a simple analysis of the body of foo in (1) shows that its execution may have two possible behaviors
according to whether the parameter x has type number or not (i.e., or (number∨string)\number, that is string),
and this is should be enough for the system to deduce the type (30) even in the absence the annotation given in (3). In
this section we show how to do it by using the theory of occurrence typing we developed in the first part of the paper.
In particular, we collect the different types that are assigned to the parameter of a function in its body, and use this
information to partition the domain of the function and to re-type its body. Consider a more involved example in a
pseudo TypeScript that uses our syntax for type-cases

function (x : τ) {
return (x ∈ Real) ? ((x ∈ Int) ? x+1 : sqrt(x)) : !x; (31)

}

where we assume that Int is a subtype of Real. When τ is Real∨Bool we want to deduce for this function the type
(Int → Int) ∧ (Real\Int → Real) ∧ (Bool → Bool). When τ is 1, then the function must be rejected (since it tries to
type !x under the assumption that x has type ¬Real). Notice that typing the function under the hypothesis that τ is 1,
allows us to capture user-defined discrimination as defined by Tobin-Hochstadt and Felleisen [43] since, for instance

let is_int x = (x∈Int)? true : false
in if is_int z then z+1 else 42

is well typed since the function is_int is given type (Int → True) ∧ (¬Int → False). We propose a more general
approach than the one by Tobin-Hochstadt and Felleisen [43] since we allow the programmer to hint a particular type
for the argument and let the system deduce, if possible, an intersection type for the function.

We start by considering the system where λ-abstractions are typed by a single arrow and later generalize it to the
case of intersections of arrows. First, we define the auxiliary judgement Γ ` e . ψ where Γ is a typing environement, e
an expression and ψ a mapping from variables to sets of types. Intuitively ψ(x) denotes the set that contains the types
of all the occurrences of x in e. This judgement can be deduced by the following deduction system that collects type
information on the variables that are λ-abstracted (i.e., those in the domain of Γ, since lambdas are our only binders):

[Var]
Γ ` x . {x 7→ {Γ(x)}}

[Const]
Γ ` c .∅

[Abs]
Γ, x : s ` e . ψ

Γ ` λx : s.e . ψ \ {x}

[App]
Γ ` e1 . ψ1 Γ ` e2 . ψ2

Γ ` e1e2 . ψ1 ∪ ψ2
[Pair]

Γ ` e1 . ψ1 Γ ` e2 . ψ2

Γ ` (e1, e2) . ψ1 ∪ ψ2
[Proj]

Γ ` e . ψ

Γ ` πie . ψ

[Case]
Γ ` e . ψ◦ Γ `Enve,t Γ1 Γ1 ` e . ψ1 Γ1 ` e1 . ψ

′
1 Γ `Enve,¬t Γ2 Γ2 ` e . ψ2 Γ2 ` e2 . ψ

′
2

Γ ` (e ∈ t)?e1:e2 . ψ◦ ∪ ψ1 ∪ ψ
′
1 ∪ ψ2 ∪ ψ

′
2

Where ψ \ {x} is the function defined as ψ but undefined on x and ψ1 ∪ ψ2 denotes component-wise union, that is :

(ψ1 ∪ ψ2)(x) =


ψ1(x) if x < dom(ψ2)
ψ2(x) if x < dom(ψ1)
ψ1(x) ∪ ψ2(x) otherwise

All that remains to do is to replace the rule [Abs+] with the following rule

[AbsInf+]
Γ, x : s ` e . ψ Γ, x : s ` e : t T = {(s, t)} ∪ {(u,w) | u ∈ ψ(x) ∧ Γ, x : u ` e : w}

Γ ` λx:s.e :
∧

(u,w)∈T u→ w

Note the invariant that the domain of ψ is always conatined in the domain of Γ restricted to variables. Simply put, this
rule first collects all possible types that are deduced for a variable x during the typing of the body of the λ and then
uses them to re-type the body under this new refined hypothesis for the type of x. The re-typing ensures that the type
safety property carries over to this new rule.
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This system is enough to type our case study (31) for the case τ defined as Real∨Bool. Indeed, the analysis of the
body yields ψ(x) = {Int,Real \ Int} for the branch (x ∈ Int) ? x+1 : sqrt(x) and, since (Bool∨Real) \Real =

Bool, yields ψ(x) = {Bool} for the branch !x. So the function will be checked for the input types Int, Real \ Int, and
Bool, yielding the expected result.

It is not too difficult to generalize this rule when the lambda is typed by an intersection type:

[AbsInf+]
∀i ∈ I Γ, x : si ` e . ψi Γ, x : si ` e : ti Ti = {(u,w) | u ∈ ψi(x) ∧ Γ, x : u ` e : w}

Γ ` λ
∧

i∈I si→ti x.e :
∧

i∈I(si → ti) ∧
∧

(u,w)∈Ti
(u→ w)

For each arrow declared in the interface of the function, we first typecheck the body of the function as usual (to check
that the arrow is valid) and collect the refined types for the parameter x. Then we deduce all possible output types for
this refined set of input types and add the resulting arrows to the type deduced for the whole function (see Section 4
for an even more precise rule).

In summary, in order to type a function we use the type-cases on its parameter to partition the domain of the
function and we type-check the function on each single partition rather than on the union thereof. Of course, we could
use much a finer partition: the finest (but impossible) one is to check the function against the singleton types of all
its inputs. But any finer partition would return, in many cases, not a much better information, since most partitions
would collapse on the same return type: type-cases on the parameter are the tipping points that are likely to make a
difference, by returning different types for different partitions thus yielding more precise typing.

Even though type cases in the body of a function are tipping points that may change the type of the result of the
function, they are not the only ones: applications of overloaded functions play exactly the same role. We therefore
add to our deduction system a last further rule:

[OverApp]
Γ ` e :

∨∧
i∈I ti → si Γ ` x : t Γ ` e . ψ1 Γ ` x . ψ2

Γ ` e x . ψ1 ∪ ψ2 ∪
⋃

i∈I{x 7→ t ∧ ti}
(t ∧ ti ; 0)

Whenever a function parameter is the argument of an overloaded function, we record as possible types for this param-
eter all the domains ti of the arrows that type the overloaded function, restricted (via intersection) by the static type t
of the parameter and provided that the type is not empty (t ∧ ti ; 0). We show the remarkable power of this rule on
some practical examples in Section 4.

3.3. Integrating gradual typing
Gradual typing is an approach proposed by Siek and Taha [37] to combine the safety guarantees of static typing

with the programming flexibility of dynamic typing. The idea is to introduce an unknown (or dynamic) type, denoted
?, used to inform the compiler that some static type-checking can be omitted, at the cost of some additional runtime
checks. The use of both static typing and dynamic typing in a same program creates a boundary between the two,
where the compiler automatically adds—often costly [41]—dynamic type-checks to ensure that a value crossing the
barrier is correctly typed.

Occurrence typing and gradual typing are two complementary disciplines which have a lot to gain to be integrated,
although we are not aware of any study in this sense. We explore this integration for the formalism of Section 2 for
which the integration of gradual typing was first defined by Castagna and Lanvin [7] and sucessively considerably
improved by Castagna et al. [8] (see Lanvin [28] for a comprehensive presentation).

In a sense, occurrence typing is a discipline designed to push forward the frontiers beyond which gradual typing
is needed, thus reducing the amount of runtime checks needed. For instance, the JavaScript code of (1) and (3) in the
introduction can also be typed by using gradual typing:

function foo(x : ???) {
return (typeof(x) === "number")? x+1 : x.trim(); (32)

}

“Standard” or “safe” gradual typing inserts two dynamic checks since it compiles the code above into:

function foo(x) {
return (typeof(x) === "number")? (x〈number〉)+1 : (x〈string〉).trim();

}
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where e〈t〉 is a type-cast that dynamically checks whether the value returned by e has type t.12 We already saw that
thanks to occurrence typing we can annotate the parameter x by number|string instead of ? and avoid the insertion
of any cast. But occurrence typing can be used also on the gradually typed code above in order to statically detect
the insertion of useless casts. Using occurrence typing to type the gradually-typed version of foo in (32), allows the
system to avoid inserting the first cast x〈number〉 since, thanks to occurrence typing, the occurrence of x at issue
is given type number (but the second cast is still necessary though). But removing only this cast is far from being
satisfactory, since when this function is applied to an integer there are some casts that still need to be inserted outside
the function. The reason is that the compiled version of the function has type ?→number, that is, it expects an
argument of type ?, and thus we have to apply a cast (either to the argument or to the function) whenever this is not
the case. In particular, the application foo(42) will be compiled as foo(42〈?〉). Now, the main problem with such a
cast is not that it produces some unnecessary overhead by performing useless checks (a cast to ? can easily be detected
and safely ignored at runtime). The main problem is that the combination of such a cast with type-cases will lead
to unintuitive results under the standard operational semantics of type-cases and casts. Indeed, consider the standard
semantics of the type-case (typeof(e)==="t") which consists in reducing e to a value and checking whether the
type of the value is a subtype of t. In standard gradual semantics, 42〈?〉 is a value. And this value is of type ?, which
is not a subtype of number. Therefore the check in foo would fail for 42〈?〉, and so would the whole function call.
Although this behavior is type safe, this violates the gradual guarantee [39] since giving a more precise type to the
parameter x (such as number) would make the function succeed, as the cast to ? would not be inserted. A solution
is to modify the semantics of type-cases, and in particular of typeof, to strip off all the casts in values, even nested
ones. While this adds a new overhead at runtime, this is preferable to losing the gradual guarantee, and the overhead
can be mitigated by having a proper representation of cast values that allows to strip all casts at once.

However, this problem gets much more complex when considering functional values. In fact, as we hinted in Sec-
tion 2.6, there is no way to modify the semantics of type cases to preserve both the gradual guarantee and the soundness
of the system in the presence of arbitrary type cases. For example, consider the function f = λ(Int→Int)→Intg.(g∈(Int →
Int)) ? g 1 : true. This function is well-typed since the type of the parameter guarantees that only the first branch can
be taken, and thus that only an integer can be returned. However, if we apply this function to h = (λ?→?x. x)〈Int →
Int〉, the type case strips off the cast around h (to preserve the gradual guarantee), then checks if λ?→?x. x has type
Int → Int. Since ? → ? is not a subtype of Int → Int, the check fails and the application returns true, which is
unsound. Therefore, to preserve soundness in the presence of gradual types, type cases should not test functional
types other than 0→ 1, which is the same restriction as the one presented by Siek and Tobin-Hochstadt [38].

While this solves the problem of the gradual guarantee, it is clear that it would be much better if the application
foo(42) were compiled as is, without introducing the cast 42〈?〉, thus getting rid of the overhead associated with
removing this cast in the type case. This is where the previous section about refining function types comes in handy.
To get rid of all superfluous casts, we have to fully exploit the information provided to us by occurrence typing and
deduce for the function in (32) the type (number→number)∧((?\number)→string), so that no cast is inserted
when the function is applied to a number. To achieve this, we simply modify the typing rule for functions that we
defined in the previous section to accommodate for gradual typing. Let σ and τ range over gradual types, that is
the types produced by the grammar in Definition 2.1 to which we add ? as basic type (see Castagna et al. [8] for
the definition of the subtyping relation on these types). For every gradual type τ, define τ⇑ as the (non gradual) type
obtained from τ by replacing all covariant occurrences of ? by 1 and all contravariant ones by 0. The type τ⇑ can be
seen as the maximal interpretation of τ, that is, every expression that can safely be cast to τ is of type τ⇑. In other
words, if a function expects an argument of type τ but can be typed under the hypothesis that the argument has type
τ⇑, then no casts are needed, since every cast that succeeds will be a subtype of τ⇑. Taking advantage of this property,
we modify the rule for functions as:

[AbsInf+]

T = {(σ′, τ′)} ∪ {(σ, τ) | σ ∈ ψ(x) ∧ Γ, x : σ ` e : τ} ∪ {(σ⇑, τ) | σ ∈ ψ(x) ∧ Γ, x : σ⇑ ` e : τ}
Γ, x : σ′ ` e . ψ Γ, x : σ′ ` e : τ′

Γ ` λx : σ′.e :
∧

(σ,τ)∈T σ→ τ

12Intuitively, e〈t〉 is syntactic sugar for (typeof(e)==="t") ? e : (throw "Type error"). Not exactly though, since to implement compila-
tion à la sound gradual typing it is necessary to use casts on function types that need special handling.
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The main idea behind this rule is the same as before: we first collect all the information we can into ψ by analyzing
the body of the function. We then retype the function using the new hypothesis x : σ for every σ ∈ ψ(x). Furthermore,
we also retype the function using the hypothesis x : σ⇑: as explained before the rule, whenever this typing suceeds it
eliminates unnecessary gradual types and, thus, unecessary casts. Let us see how this works on the function foo in
(32). First, we deduce the refined hypothesis ψ(x) = { number∧? , ?\number }. Typing the function using this new
hypothesis but without considering the maximal interpretation would yield (? → number ∨ string) ∧ ((number ∧
?) → number) ∧ ((?\number) → string). However, as we stated before, this would introduce an unnecessary
cast if the function were to be applied to an integer.13 Hence the need for the second part of Rule [AbsInf+]: the
maximal interpretation of number ∧ ? is number, and it is clear that, if x is given type number, the function type-
checks, thanks to occurrence typing. Thus, after some routine simplifications, we can actually deduce the desired type
(number→ number) ∧ ((?\number)→ string).

4. Implementation

We present in this section preliminary results obtained by our implementation. After giving some technical high-
lights, we focus on demonstrating the behavior of our typing algorithm on meaningful examples. We also provide an
in-depth comparison with the fourteen examples of [43].

4.1. Implementation details

We have implemented the algorithmic system À we presented in Section 2.6.3. Besides the type-checking algo-
rithm defined on the base language, our implementation supports the record types and expressions of Section 3.1 and
the refinement of function types described in Section 3.2. Furthermore, our implementation uses for the inference of
arrow types the following improved rule:

[AbsInf++]
T = {(s \

∨
s′∈ψ(x) s′, t)} ∪ {(s′, t′) | s′ ∈ ψ(x) ∧ Γ, x : s′ ` e : t′}

Γ, x : s ` e . ψ Γ, x : s \
∨

s′∈ψ(x) s′ ` e : t
Γ ` λx:s.e :

∧
(s′,t′)∈T s′ → t′

instead of the simpler [AbsInf+] given in Section 3.2. The difference of this new rule with respect to [AbsInf+] is that
the typing of the body is made under the hypothesis x : s \

∨
s′∈ψ(x) s′, that is, the domain of the function minus all

the input types determined by the ψ-analysis. This yields an even better refinement of the function type that makes
a difference for instance with the inference for the function xor_ (see Code 3 in Table 1): the old rule would have
returned a less precise type. The rule above is defined for functions annotated by a single arrow type: the extension to
annotations with intersections of multiple arrows is similar to the one we did in the simpler setting of Section 3.2.

The implementation is rather crude and consists of 2000 lines of OCaml code, including parsing, type-checking of
programs, and pretty printing of types. CDuce is used as a library to provide set-theoretic types and semantic subtyp-
ing. The implementation faithfully transcribes in OCaml the algorithmic system À as well as all the type operations
defined in this work. One optimization that our implementation features (with respect to the formal presentation) is
the use of a memoization environment in the code of the Refinee,t(Γ) function, which allows the inference to avoid
unnecessary traversals of e. Lastly, while our prototype allows the user to specify a particular value for the no param-
eter we introduced in Section 2.6.2, a value of 1 for no is sufficient to check all examples we present in the rest of the
section.

4.2. Experiments

We demonstrate the output of our type-checking implementation in Table 1 and Table 2. Table 1 lists some
examples, none of which can be typed by current systems. Even though some systems such as Flow and TypeScript
can type some of these examples by adding explicit type annotations, the code 6, 7, 9, and 10 in Table 1 and, even

13Notice that considering number ∧ ? ' number is not an option, since it would force us to choose between having the gradual guarantee or
having, say, number ∧ string be more precise than number ∧ ?.
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more, the and_ and xor_ functions given in (33) and (34) later in this section are out of reach of current systems, even
when using the right explicit annotations.

It should be noted that for all the examples we present, the time for the type inference process is less than 5ms,
hence we do not report precise timings in the table. These and other examples can be tested in the online toplevel
available at https://occtyping.github.io/

In Table 1, the second column gives a code fragment and the third column the type deduced by our implementation
as is (we pretty printed it but we did not alter the output). Code 1 is a straightforward function similar to our intro-
ductory example foo in (1) and (3) where incr is the successor function and lneg the logical negation for Booleans.
Here the programmer annotates the parameter of the function with a coarse type Int ∨ Bool. Our implementation first
type-checks the body of the function under this assumption, but doing so it collects that the type of x is specialized
to Int in the “then” case and to Bool in the “else” case. The function is thus type-checked twice more under each
hypothesis for x, yielding the precise type (Int→ Int)∧ (Bool→ Bool). Note that w.r.t. rule [AbsInf+] of Section 3.2,
the rule [AbsInf++] we use in the implementation improves the output of the computed type. Indeed, using rule [Ab-
sInf+] we would have obtained the type (Int → Int) ∧ (Bool → Bool) ∧ (Bool ∨ Int → Bool ∨ Int) with a redundant
arrow. Here we can see that, since we deduced the first two arrows (Int→ Int)∧ (Bool→ Bool), and since the union of
their domain exactly covers the domain of the third arrow, then the latter is not needed. Code 2 shows what happens
when the argument of the function is left unannotated (i.e., it is annotated by the top type 1, written “Any” in our
implementation). Here type-checking and refinement also work as expected, but the function only type checks if all
cases for x are covered (which means that the function must handle the case of inputs that are neither in Int nor in
Bool).

The following examples paint a more interesting picture. First (Code 3) it is easy in our formalism to program type
predicates such as those hard-coded in the λTR language of Tobin-Hochstadt and Felleisen [43]. Such type predicates,
which return true if and only if their input has a particular type, are just plain functions with an intersection type
inferred by the system of Section 3.2. We next define Boolean connectives as overloaded functions. The not_
connective (Code 4) just tests whether its argument is the Boolean true by testing that it belongs to the singleton type
True (the type whose only value is true) returning false for it and true for any other value (recall that ¬True is
equivalent to Any\True). It works on values of any type, but we could restrict it to Boolean values by simply annotating
the parameter by Bool (which, in the CDuce’s types that our system uses, is syntactic sugar for True∨False) yielding
the type (True→False) ∧ (False→True). The or_ connective (Code 5) is straightforward as far as the code goes, but
we see that the overloaded type precisely captures all possible cases: the function returns false if and only if both
arguments are of type ¬True, that is, they are any value different from true. Again we use a generalized version of
the or_ connective that accepts and treats any value that is not true as false and again, we could easily restrict the
domain to Bool if desired.

To showcase the power of our type system, and in particular of the “ ‚ ” type operator, we define and_ (Code 6)
using De Morgan’s Laws instead of using a direct definition. Here the application of the outermost not_ operator is
checked against type True. This allows the system to deduce that the whole or_ application has type False, which in
turn leads to not_ x and not_ y to have type ¬True and therefore both x and y to have type True. The whole function
is typed with the most precise type (we present the type as printed by our implementation, but the first arrow of the
resulting type is equivalent to (True→ ¬True→ False) ∧ (True→ True→ True)).

All these type predicates and Boolean connectives can be used together to write complex type tests, as in Code 7.
Here we define a function f that takes two arguments x and y. If x is an integer and y a Boolean, then it returns the
integer 1; if x is a character or y is an integer, then it returns 2; otherwise the function returns 3. Our system correctly
deduces a (complex) intersection type that covers all cases (plus several redundant arrow types). That this type is as
precise as possible can be shown by the fact that when applying f to arguments of the expected type, the type statically
deduced for the whole expression is the singleton type 1, or 2, or 3, depending on the type of the arguments.

Code 8 allows us to demonstrate the use and typing of record paths. We model, using open records, the type of
DOM objects that represent XML or HTML documents. Such objects possess a common field nodeType containing
an integer constant denoting the kind of the node (e.g., 1 for an element node, 3 for a text node, . . . ). Depending on
the kind, the object will have different fields and methods. It is common practice to perform a test on the value of
the nodeType field. In dynamic languages such as JavaScript, the relevant field can directly be accessed after having
checked for the appropriate nodeType, whereas in statically typed languages such as Java, a downward cast from the
generic Node type to the expected precise type of the object is needed. We can see that using the record expressions
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Code Inferred type
1 let basic_inf = fun (y : Int | Bool) ->

if y is Int then incr y else lnot y (Int→ Int) ∧ (Bool→ Bool)

2 let any_inf = fun (x : Any) ->
if x is Int then incr x else
if x is Bool then lnot x else x

(Int→ Int) ∧ (¬Int→ ¬Int) ∧
(Bool→ Bool) ∧ (¬(Int ∨ Bool)→ ¬(Int ∨ Bool))

3 let is_int = fun (x : Any) ->
if x is Int then true else false

let is_bool = fun (x : Any) ->
if x is Bool then true else false

let is_char = fun (x : Any) ->
if x is Char then true else false

(Int→ True) ∧ (¬Int→ False)

(Bool→ True) ∧ (¬Bool→ False)

(Char→ True) ∧ (¬Char→ False)
4 let not_ = fun (x : Any) ->

if x is True then false else true (True→ False) ∧ (¬True→ True)

5 let or_ = fun (x : Any) -> fun (y: Any) ->
if x is True then true
else if y is True then true else false

(True→ Any→ True) ∧ (¬True→ True→ True) ∧
(¬True→ ¬True→ False)

6 let and_ = fun (x : Any) -> fun (y : Any) ->
if not_ (or_ (not_ x) (not_ y)) is True
then true else false

(True→ ((¬True→ False) ∧ (True→ True))
∧(¬True→ Any→ False)

7 let f = fun (x : Any) -> fun (y : Any) ->
if and_ (is_int x) (is_bool y) is True
then 1 else

if or_ (is_char x) (is_int y) is True
then 2 else 3

(Int→ (Int→ 2) ∧ (¬Int→ 1 ∨ 3) ∧ (Bool→ 1)∧
(¬(Bool ∨ Int)→ 3) ∧ (¬Bool→ 2 ∨ 3)) ∧

(Char→ (Int→ 2) ∧ (¬Int→ 2) ∧ (Bool→ 2)∧
(¬(Bool ∨ Int)→ 2) ∧ (¬Bool→ 2)) ∧

(¬(Int ∨ Char)→ (Int→ 2) ∧ (¬Int→ 3)∧
(Bool→ 3) ∧ (¬(Bool ∨ Int)→ 3) ∧ (¬Bool→ 2 ∨ 3))
∧ . . . (two other redundant cases omitted)

let test_1 = f 3 true
let test_2 = f (42 ,42) 42
let test_3 = f nil nil

1
2
3

8 atom nil
type Document = { nodeType =9 ..}
and Element = { nodeType=1, childNodes=NodeList ..}
and Text = { nodeType=3,

isElementContentWhiteSpace=Bool ..}
and Node = Document | Element | Text
and NodeList = Nil | (Node , NodeList)
let is_empty_node = fun (x : Node) ->

if x.nodeType is 9 then false
else if x is { nodeType =3 ..} then

x.isElementContentWhiteSpace
else if x.childNodes is Nil then true else false

(Document→ False) ∧
({{{nodeType= 1, childNodes= Nil ..}}}→ True) ∧
({{{nodeType= 1, childNodes= (Node,NodeList) ..}}}→ False) ∧
(Text→ Bool) ∧ . . . (omitted redundant arrows)

9 let xor_ = fun (x : Any) -> fun (y : Any) ->
if and_ (or_ x y) (not_ (and_ x y)) is True
then true else false

True→ ((True→ False) ∧ (¬True→ True)) ∧
(¬True→ ((True→ True) ∧ (¬True→ False))

10 (* f, g have type: (Int ->Int) & (Any ->Bool) *)
let example10 = fun (x : Any) ->

if (f x, g x) is (Int , Bool) then 1 else 2

(Int→ Empty) ∧ (¬Int→ 2)
Warning: line 4, 39-40: unreachable expression

11 let typeof = fun (x:Any) ->
if x is Int then "number"
else if x is Char then "string"
else if x is Bool then "boolean" else "object"

let test = fun (x:Any) ->
if typeof x is "number" then incr x
else if typeof x is "string" then charcode x
else if typeof x is "boolean" then int_of_bool x
else 0

(Int→ "number")∧
(Char→ "string")∧
(Bool→ "boolean")∧
(¬(Bool∨Int∨Char)→ "object") ∧ . . .
(two other redundant cases omitted)

(Int→ Int) ∧ (Char→ Int) ∧ (Bool→ Int)∧
(¬(Bool∨Int∨Char)→ 0) ∧ . . .
(two other redundant cases omitted)

12 atom null
type Object = Null | { prototype = Object ..}
type ObjectWithPropertyL = { l = Any ..}

| { prototype = ObjectWithPropertyL ..}

let has_property_l = fun (o:Object) ->
if o is ObjectWithPropertyL then true else false

let has_own_property_l = fun (o:Object) ->
if o is { l=Any ..} then true else false

let get_property_l = fun (self:Object ->Any) o ->
if has_own_property_l o is True then o.l
else if o is Null then null
else self (o.prototype)

(ObjectWithPropertyL→ True) ∧ (X1→ False) where
X1 = (Nil |{{{l= ?Empty, prototype= X1 ..}}})

({{{l = Any, prototype = Object ..}}}→ True) ∧
((Nil |{{{l = ?Empty, prototype = Object ..}}})→ False)

Object→ Any

Table 1: Types inferred by the implementation
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presented in Section 3.1 we can deduce the correct type for x in all cases. Of particular interest is the last case, since
we use a type case to check the emptiness of the list of child nodes. This splits, at the type level, the case for the
Element type depending on whether the content of the childNodes field is the empty list or not.

Code 9 shows the usefulness of the rule [OverApp]. Consider the definition of the xor_ operator. Here the
rule [AbsInf+] is not sufficient to precisely type the function, and using only this rule would yield a type 1 → 1 →
Bool. Let us follow the behavior of the “ ‚ ” operator. Here the whole and_ is requested to have type True, which
implies that or_ x y must have type True. This can always happen, whether x is True or not (but then depends on the
type of y). The “ ‚ ” operator correctly computes that the type for x in the “then” branch is True∨¬True∨True ' 1, and
a similar reasoning holds for y. However, since or_ has type (True→ 1→ True) ∧ (1→ True→ True) ∧ (¬True→
¬True→ False) then the rule [OverApp] applies and True, 1, and ¬True become candidate types for x, which allows
us to deduce the precise type given in the table. Finally, thanks to rule [OverApp] it is not necessary to use a type case
to force refinement. As a consequence, we can define the functions and_ and xor_ more naturally as:

let and_ = fun (x : Any) -> fun (y : Any) -> not_ (or_ (not_ x) (not_ y)) (33)
let xor_ = fun (x : Any) -> fun (y : Any) -> and_ (or_ x y) (not_ (and_ x y)) (34)

for which the very same types as in Table 1 are deduced.
As for Code 10 (corresponding to our introductory example (11)), it illustrates the need for iterative refinement

of type environments, as defined in Section 2.6.2. As explained, a single pass analysis would deduce for x a type Int
from the f x application and 1 from the g x application. Here by iterating a second time, the algorithm deduces that
x has type 0 (i.e., Empty), that is, that the first branch can never be selected (and our implementation warns the user
accordingly). In hindsight, the only way for a well-typed overloaded function to have type (Int→Int) ∧ (1→Bool) is
to diverge when the argument is of type Int: since this intersection type states that whenever the input is Int, both
branches can be selected, yielding a result that is at the same time an integer and a Boolean. This is precisely reflected
by the case Int → 0 in the result. Indeed our example10 function can be applied to an integer, but at runtime the
application of f x will diverge.

Code 11 implements the typical type-switching pattern used in JavaScript. While languages such as Scheme and
Racket hard-code specific type predicates for each type—predicates that our system does not need to hard-code since
they can be directly defined (cf. Code 3)—, JavaScript hard-codes a typeof function that takes an expression and
returns a string indicating the type of the expression. Code 11 shows that typeof can be encoded and precisely typed
in our system. Indeed, constant strings are simply encoded as fixed list of characters (themselves encoded as pairs as
usual, with special atom nil representing the empty list). Thanks to our precise tracking of singleton types both in the
result type of typeof and in the type case of test, we can deduce for the latter a precise type (the given in Table 1 is
equivalent to (Any→ Int) ∧ (¬(Bool∨Int∨Char)→ 0)).

Code 12 simulates the behavior of JavaScript property resolution, by looking for a property l either in the object
o itself or in the chained list of its prototype objects. In this example, we first model prototype-chaining by defining
a type Object that can be either the atom Null or any record with a prototype field which contains (recursively)
an Object. To ease the reading, we defined a recursive type ObjectWithPropertyL which is either a record with
a field l or a record with a prototype of type ObjectWithPropertyL. We can then define two predicate functions
has_property_l and has_own_property_l that test whether an object has a property through its prototype or
directly. Lastly, we can define a function get_property_l which directly accesses the field if it is present, or
recursively search for it through the prototype chain; the recursive search is implemented by calling the explicitly-
typed parameter self which, in our syntax, refers to the function itself. Of particular interest is the type deduced for
the two predicate functions. Indeed, we can see that has_own_property_l is given an overloaded type whose first
argument is in each case a recursive record type that describes precisely whether l is present at some point in the list
or not (recall that in a record type a field such as {{{` =?Empty ..}}}, indicate that field ` is surely absent). Notice that in
our language a fixpoint combinator can be defined as follows

type X = X -> S -> T
let z = fun (((S -> T ) -> S -> T ) -> (S -> T )) f ->

let delta = fun ( X -> (S -> T ) ) x ->
f ( fun (S -> T ) v -> ( x x v ))

in delta delta
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which applied to any function f:(S→T )→S→T returns a function (z f):S→T such that for every non diverging
expression e of type S , the expression (z f)e (which is of type T ) reduces to f((z f)e). It is then clear that definition
of get_property_l in Code 12, is nothing but syntactic sugar for

let get_property_l =
let aux = fun (self:Object->Any) -> fun (o:Object)->

if has_own_property_l o is True then o.l
else if o is Null then null
else self (o.prototype)

in z aux

where S is Object and T is Any.

4.3. Comparison

In Table 2, we reproduce in our syntax the 14 archetypal examples of Tobin-Hochstadt and Felleisen [43] (we
tried to complete such examples with neutral code when they were incomplete in the original paper). Of these 14
examples, Example 1 to 13 depict combinations of type predicates (such as is_int) used either directly or through
Boolean predicates (such as the or_ function previously defined). Note that for all examples for which there was no
explicit indication in the original version, we infer the type of the function whereas in [43] the same examples are
always in a context where the type of identifiers is known or the input type of function is fully annotated. Notice also
that for Example 6, the goal of the example is to show that indeed, the function is ill-typed (which our typechecker
detects accurately).

The original Example 14 of Tobin-Hochstadt and Felleisen [43] is the only case of their work that our system
cannot directly capture. It can be written in our syntax as:

let example14 = fun (input : Int|String) ->
fun (extra : (Any, Any)) ->

if and2_(is_int input , is_int(fst extra)) is True then
add input (fst extra) (35)

else if is_int(fst extra) is True then
add (strlen input) (fst extra)

else 0

where and2_ is the uncurried version of the and_ function we defined in (33) and is_int is the fuction defined
in the third row of Table 1. Our system rejects the expression above, while the system by Tobin-Hochstadt and
Felleisen [43] correctly infers the function always return an integer. The reason why our system rejects it is because
the type it deduces for the occurrence of input in the 6th line of the code is Int|String rather than String as
required by the application of strlen. The general reason for this failure is that, contrary to [43], our system does not
implement an analysis of the flow of type information. In particular, since the variable input does not occur in the
condition of the second if, then its type is not refined (as it could be). Indeed, if the first test fails, it is either because
fst extra is not an integer (i.e., is_int(fst extra) is not True) or because input is not an integer. Therefore,
in our setting, the type information propagated to the second test for the pair of the arguments in the first test is :
(is_int input , is_int(fst extra)) ∈ ¬(True,True), that is (input, is_int(fst extra)) ∈ (¬Int,True)∨
(Int,False). Since the second test checks whether is_int(fst extra) holds or not, then we could deduce that the
following occurrence of input is of type ¬Int. But since input does not occur in the test, this refinement of the type of
input is not done. Instead, the type deduced for input in the second branch is (String∨Int)∧(¬Int∨Int) = String∨Int
which is not precise enough to type the application strlen input. It not difficult to patch, alas unsatisfactorly, this
example in our system: it suffices to test dummily in the second if the whole argument of and2_, without really
checking its first component:

let example14_alt = fun (input : Int|String) ->
fun (extra : (Any, Any)) ->

if and2_(is_int input , is_int(fst extra)) is True then
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Code Inferred type
1 (* Assumes: add1 : Int -> Int *)

let example1 = fun (x:Any) ->
if x is Int then add1 x else 0

Int→ Int

2 (* Assumes strlen: String -> Int *)
let example2 = fun (x:String|Int) ->
if x is Int then add1 x else strlen x

(Int→ Int) ∧ (String→ Int)

3 let example3 = fun (x: Any) ->
if x is (Any \ False) then (x,x) else false (False→ False) ∧ (¬False¬(¬False,¬False))

4 (*Uses ‘is_int ‘ from Table 1.3 and ‘or_ ‘ from Table 1.5,
assumes f : (Int|String) -> Int *)

let is_string = fun (x : Any) ->
if x is String then true else false

let example4 = fun (x : Any) ->
if or (is_int x) (is_string x) is True then x else ’A’

(String→ True) ∧ (¬String→ False)

(Int→ Int) ∧ (String→ String)∧
(¬Int→ (String ∨ ’A’))∧
(¬String→ (Int ∨ ’A’))∧
(¬(String ∨ Int)→ ’A’)

5 (*Uses ‘and_ ‘ from Table 1.6,
assumes strlen : String -> Int *)

let example5 = fun (x : Any) -> fun (y : Any) ->
if and_ (is_int x) (is_string y) is True then
add x (strlen y) else 0

(Int→ String→ Int) ∧ (Int→ ¬String→ 0)) ∧
(¬Int→ String→ 0) ∧ (¬String→ 0)

6 let example6 = fun (x : Int|String) -> fun (y : Any) ->
if and_ (is_int x) (is_string y) is True then

add x (strlen y) else strlen x

Type error for strlen x, x has type Int ∨ String.

7 let example7 = fun (x : Any) -> fun (y : Any) ->
if
(if (is_int x) is True then (is_string y) else false)
is True then
add x (strlen y) else 0

(Int→ String→ Int) ∧ (Int→ ¬String→ 0)) ∧
(¬Int→ String→ 0) ∧ (¬String→ 0) (identical to example 5)

8 let example8 = fun (x : Any) ->
if or_ (is_int x) (is_string x) is True then true
else false

(Int→ True) ∧ (String→ True) ∧
(¬(String ∨ Int)→ False)

9 let example9 = fun (x : Any) ->
if

(if is_int x is True then is_int x else is_string x)
is True then f x else 0

(Int→ Int) ∧ (String→ Int) ∧
(¬(String ∨ Int)→ 0)

10 let example10 = fun (p : (Any ,Any)) ->
if is_int (fst p) is True then add1 (fst p) else 7 ((Int,Any)→ Int) ∧ ((¬(Int,Any)→ 7)

11 let example11 = fun (p : (Any , Any)) ->
if and_ (is_int (fst p)) (is_int (snd p)) is True
then g p else no

((Int, Int)→ Int) ∧ (((Any,¬Int) ∨ (¬Int,Any))→ no)

12 let example12 =
fun (p : (Any , Any)) ->
if is_int (fst p) is True then true else false

((Int,Any)− > True) ∧ ((¬Int,Any)− > False))

13 let example13 = fun (x : Any) -> fun (y : Any) ->
if and_ (is_int x) (is_string y) is True then 1
else if is_int x is True then 2
else 3

(Int→ String→ 1) ∧ (Int→ ¬String→ 2))∧
(¬Int→ Any→ 3)

14 let example14_alt = fun (input : Int | String) ->
fun (extra : (Any , Any)) ->
if and2_(( is_int input),(is_int (fst extra ))) is True

then add input (fst extra)
else if (is_int input ,is_int (fst extra)) is (Any ,True)

then add (strlen input) (fst extra)
else 0

(Int→ ((Int,Any)→ Int) ∧ ((¬Int,Any)→ 0))∧
(String→ ((Int,Any)→ Int) ∧ ((¬Int,Any)→ 0))

Table 2: Comparison with the 14 examples of Tobin-Hochstadt and Felleisen [43]
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add input (fst extra)
else if (is_int input , is_int(fst extra)) is (Any,True) then

add (strlen input) (fst extra)
else 0

Even if the type of is_int input is not really tested (any result will produce the same effect) its presence in the test
triggers the refinement of the type of the last occurrence of input, which type checks with the (quite precise) type
shown in the entry 14 of Table 2, type that is equivalent to Int ∨ String → ((Int,Any) → Int) ∧ ((¬Int,Any) → 0).
Lifting this limitation through a control-flow analysis is part of our future work.

In our system, however, it is possible to express dependencies between different arguments of a function by
uncurrying the function and typing its arguments by a union of products. To understand this point, consider this
simple example:

let sum = fun (x : Int|String) -> fun (y : Int|String) ->
if x is String then concat x y else add x y

The definition above does not type-check in any available system, and rightly does so since nothing ensures that x and
y will be either both strings (so that concat does not fail) or both integers (so that add does not fail). It is however
possible to state this dependency between the type of the two arguments by uncurring the function and using a union
type:

let sum = fun (x : (Int,Int)|(String,String))
if fst x is String then concat(fst x)(snd x) else add(fst x)(snd x)

this function type-checks in our system (and, of course, in Typed Racket as well) but the corresponding type-
annontated version in JavaScript

function sum (x : [string,string]|[number,number]) {
if (typeof x[0] === "string") {

return x[0].concat(x[1]);
} else {

return x[0] + x[1];
}

}

is rejected both by Flow and TypeScript since their type analyses fail to detect the dependency of the types of the two
projections.

Although these experiments are still preliminary, they show how the combination of occurrence typing and set-
theoretic types, together with the type inference for overloaded function types presented in Section 3.2 goes beyond
what languages like TypeScript and Flow do, since they can only infer single arrow types. Our refining of overloaded
functions is also future-proof and resilient to extensions: since it “retypes” functions using information gathered by
the typing of occurrences in the body, its precision will improve with any improvement of our occurrence typing
framework.

5. Related work

Occurrence typing was introduced by Tobin-Hochstadt and Felleisen [42] and further advanced in [43] in the
context of the Typed Racket language. This latter work in particular is close to ours, with some key differences.
Tobin-Hochstadt and Felleisen [43] define λTR, a core calculus for Typed Racket. In this language types are annotated
by two logical propositions that record the type of the input depending on the (Boolean) value of the output. For
instance, the type of the number? function states that when the output is true, then the argument has type Number,
and when the output is false, the argument does not. Such information is used selectively in the “then” and “else”
branches of a test. Since Tobin-Hochstadt and Felleisen [43] focus their analysis on a particular set of pure opera-
tions, the approach works also in the presence of side-effects. Although the choices made by our and their approach
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seem poles apart (Boolean output of few pure operations vs. any output of every expression), they share some similar
techniques. For instance, our deduction system for `Path plays a similar role as the proof systems and update function
of Tobin-Hochstadt and Felleisen [43, Figures 4, 7 & 9]. In that framework, in order to type a variable (judgement
“Γ ` x : τ”) one needs to prove that the logical formula τx holds (under the hypotheses of Γ). This atomic formula
may not be directly available in Γ but may be proven by a combination of logical deduction rules (Figure 4 of [43]),
or by recursively exploring a path leading to x (Figure 7 and 9 of [43]) a path being a sequence of cdr or car appli-
cations, much like our f and s components of paths. This idea is also present in our deduction system for `Path with
differences pertaining to our type framework and design choices: type restrictions can be encoded using set-theoretic
intersections and negations (instead of meta-functions working on the syntax of types) and our richer language of paths
components. One area where their work goes further than ours is that the type information also flows outside of the
tests to the surrounding context. In contrast, our type system only refines the type of variables strictly in the branches
of a test. This is particularly beneficial when typing functions since the logical propositions of Tobin-Hochstadt and
Felleisen can record dependencies on expressions other than the input of a function. Consider for instance the follow-
ing example (due to [24]) in JavaScript function is-y-a-number(x) { return(typeof(y) === "number") }
which defines a functions that disregards its argument and returns whether the variable y is an integer or not.14 While
our approach cannot deduce for this function but the type 1 → Bool, the logical approach of Tobin-Hochstadt and
Felleisen can record in the type of is-y-a-number the fact that when the function returns true, then y is a number,
and the opposite when it returns false. In our approach, the only possibility to track such a dependency is that the
variable y is the parameter of an outer function to which our analysis could give an overloaded type by splitting the
type Any of y into Number and ¬Number. Under the hypothesis of y being of type Number the type inferred for
is-y-a-number will then be 1→ True, and 1→ False otherwise, thus capturing the wanted dependency. Although
the approach of using logical proposition has the undeniable advantage over ours of providing more a flow sensitive
analysis, we believe that using semantic subtyping as a foundation as we do has also several merits over the logical
proposition approach. First, in our case, type predicates are not built-in. A user may define any type predicate she
wishes by using an overloaded function, as we have shown in Section 4. Second, in our setting, types play the role of
formulæ. Using set-theoretic types, we can express the complex types of variables without resorting to a meta-logic.
This allows us to type all but two of the key examples of Tobin-Hochstadt and Felleisen [43] (the notable exceptions
being Example 9 and 14 in their paper, which use the propagation of type information outside of the branches of a
test). While Typed Racket supports structured data types such as pairs and records only unions of such types can be
expressed at the level of types, and even for those, subtyping is handled axiomatically. For instance, for pairs, the
subtyping rule presented in [43] is unable to deduce that (number× (number∪ bool))∪ (bool× (number∪ bool)) is
a subtype of (and actually equal to) ((number∪ bool)× number)∪ ((number∪ bool)× bool) (and likewise for other
type constructors combined with union types). For record types, we also type precisely the deletion of labels, which,
as far as we know no other system can do. On the other hand, the propagation of logical properties defined in [43] is
a powerful tool, that can be extended to cope with sophisticated language features such as the multi-method dispatch
of the Closure language [5].

For what concerns the first work by Tobin-Hochstadt and Felleisen [42] it is interesting to compare it with our
work because the comparison shows two rather different approaches to deal with the property of type preservation.
Tobin-Hochstadt and Felleisen [42] define a first type system that does not satisfy type-preservation. The reason for
that is that this first type system checks all the branches of a type-case expression, independently from whether they are
selectable or not; this may result in a well-typed expression to reduce to an expression that is not well-typed because it
contains a type-case expression with a branch that, due to the reduction, became both non-selectable and ill-typed (see
[42, Section 3.3]). To obviate this problem they introduce a second type system that extends the previous one with
some auxiliary typing rules that type type-case expressions by skipping the typing of non-selectable branches. They
use this second type system only to prove type preservation and obtain, thus, the soundness of their type system. In
our work, instead, we prefer to start directly with a system that satisfies type preservation. Our system does not have
the problem of the first system of [42] thanks to the presence of the [Efq] rule, that we included for that very purpose,
that is, to skip non-selectable branches during typing. The choice of one or the other approach is mostly a matter of
taste and, in this specific case, boils down to deciding whether some typing problems must be signaled at compile time

14Although such a function may appear nonsensical, Kent [24] argues that it corresponds a programming pattern that may appear in Typed
Racked due to the expansion of some sophisticated macro definitions.
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by an error or a warning. The approach of Tobin-Hochstadt and Felleisen [42] ensures that every subexpression of a
program is well-typed and, if not, it generates a type-error. Our approach allows some subexpressions of a program
to be ill-typed, but only if they occur in dead branches of type-cases: in that case any reasonable implementation
would flag a warning to signal the presence of the dead branches. The very same reasons that explain the presence in
our system of [Eqf], explain why from the beginning we included in our system the typing rule [Abs-] that deduces
negated arrow types: we wanted a system that satisfied type preservation (albeit, for a parallel reduction: cf: Appendix
A.2). We then defined an algorithmic system that is not complete with respect to the type-system but from which it
inherits its soundness. Of course, we could have proceeded as Tobin-Hochstadt and Felleisen [42] did: start directly
with a type-system corresponding to the algorithm (i.e., omit the rule [Abs-]) and later extend this system with the
rule to infer negated arrows, the only purpose of this extension being to prove type preservation. We preferred not to,
not only because we favor type preserving systems, but also because in this way we were able to characterize different
subsystems that are complete with respect to the algorithmic system, thus exploring different language designs and
arguing about their usefulness.

Highly related to our work is Andrew M. Kent’s PhD. dissertation [24], in particular its Chapter 5 whose title
is “A set-theoretic foundation for occurrence typing” where he endows the logical techniques of [43] with the set-
theoretic types of semantic subtyping [19]. Kent’s work builds on the approach developed for Typed Racket that, as
recalled above, consists in enriching the types of the expressions with information to track under which hypotheses
an expression returns false or not (it considers every non false value to be “truthy”). This tracking is performed by
recording in the type of the expression two logical propositions that hold when the expression evaluates to false or
not, respectively. The work in Kent [24, Chapter 5] uses set-theoretic types to express type predicates (a predicate
that holds only for a type t has type p : (t → True) ∧ (¬t → False)) as well as to express in a more compact (and,
sometimes, more precise) way the types of several built-in Typed Racket functions. It also uses the properties of
set-theoretic types to deduce the logical types (i.e., the propositions that hold when an expressions produces false or
not) of arguments of function applications. To do that it defines a type operator called function application inversion,
that determines the largest subset of the domain of a function for which an application yields a result of a given type
t, and then uses it for the special cases when the type t is either False or ¬False so as to determine the logical type
of the argument. For instance, this operator can be used to deduce that if the application boolean? x yields false,
then the logical proposition x∈¬Bool holds true. The definition of our worra operator that we gave in equation (16)
is, in its spirit, the same as Kent’s function application inversion operator (more precisely, the same as the operator
pred Kent defines in Figure 5.7 of his dissertation), even though the two operators were defined independently from
each other. The exact definitions however are slightly different, since the algorithm given in Kent [24, Figure 5.2]
for function application inversion is sound only for functions whose type is an intersection of arrows, whereas our
definition of worra, given in (18), is sound and complete for any function, in particular, for functions that have a union
type (for which Kent’s definition may yield unsound results). Apart from these technical issues, the main difference
of Kent’s approach with respect to ours is that, since it builds on the logical propositions approach, then it focus the
use of set-theoretic types and of the worra (or application inversion) operator to determine when an expression yields
a result of type False or ¬False. We have instead a more holistic approach since, not only our analysis strives to
infer type information by analyzing all types of results (and not just False or ¬False), but also it tries to perform
this analysis for all possible expressions (and not just for a restricted set of expressions). For instance, we use the
operator worra also to refine the type of the function in an application (see discussion in Section 1.2) while in Kent’s
approach the analysis of an application f x refines the properties of the argument x but not of the function f; and
when such an application is the argument of a type test, such as in number? (f x), then in Kent’s approach it is no
longer possible to refine the information on the argument x. The latter is not is a flaw of the approach but a design
choice: as we explain at the end of this section, the approach of Type Racket not only focuses on the inference of
two logical propositions according to the truthy or false value of an expression, but also it does it only for a selected
set of pure expressions of the language, to cope with the possible presence of side effects (and applications do not
belong to this set since they can be be impure). That said, the very fact of focusing on truthy vs. false results may
make Kent’s analysis fail even for pure Boolean tests where it would be naively expected to work. For example,
consider the polymorphic function that when applied to two integers returns whether they have the same parity and
false otherwise: have_same_parity:(Int→Int→Bool)∧(¬Int→Any→False)∧(Any→¬Int→False). We can imagine
to use this function to implicitly test whether two arguments are both integers, as in the body of the following function:
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let f = fun (x : Any) -> fun (y : Any) ->
if have_same_parity x y is True then add x y else 0

While our approach can correctly deduce for this function the type Any→Any→Int, Kent’s approach fails to type check
it since to type the “then” branch requires to deduce that the application have_same_parity x returns the constant
function true only if x is an integer. Finally, Kent’s approach inherits all the advantages and disadvantages that the
logical propositions approach has with respect to ours (e.g., flow sensitive analysis vs. user-defined type predicates)
that we already discussed at the beginning of this section.

Another direction of research related to ours is the one on semantic types. In particular, several attempts have
been made recently to map types to first order formulæ. In that setting, subtyping between types translates to logical
implication between formulæ. Bierman et al. [4] introduce Dminor, a data-oriented language featuring a SELECT-like
construct over collections. Types are mapped to first order formulæ and an SMT-solver is then used to (try to) prove
their satisfiability. The refinement types they present go well beyond what can be expressed with the set-theoretic
types we use (as they allow almost any pure expression to occur in types). However, the system forgoes any notion
(or just characterization) of completeness and the subtyping algorithm is largely dependent on the subtle behavior of
the SMT solver (which may timeout or give an incorrect model that cannot be used as a counter-example to explain
the type-error). As with our work, the typing rule for the if e then e1 else e2 construct of Dminor refines the
type of each branch by remembering that e (resp. ¬e) is true in e1 (resp. e2) and this information is not propagated
to the outer context. A similar approach is taken by Chugh et al. [16], and extended to so-called nested refinement
types. In these types, an arrow type may appear in a logical formula (whereas previous work only allowed formulæon
“base types”). This is done in the context of a dynamic language and their approach is extended with polymorphism,
dynamic dispatch and record types. A problem that is faced by refinement type systems is the one of propagating in the
branches of a test the very precise information learned from the test (usually that some equality between terms holds).
A solution that is for instance chosen by Ou et al. [32] and Knowles and Flanagan [26] is to devise a meta-function that
recursively explores both a type and an expression and constructs a more precise dependent type. In the dependent
type, fresh variables are introduced to name sub-expressions and record the new constraints. This process—called in
the cited works selfification—roughly corresponds to our Constr and Refine functions (see Section 2.6.2). Another
approach is the one followed by Rondon et al. [35] which is completely based on a program transformation, namely, it
consists in putting the term in A-normal form as defined by Sabry and Felleisen [36]. Using a program transformation,
every destructor application (function application, projection, . . . ) is given a name through a let-binding. The problem
of tracking precise type information for every sub-expression is therefore reduced to the one of keeping precise typing
information for a variable. While this solution seems appealing, it is not completely straightforward in our case.
Indeed, to retain the same degree of precision, one would need to identify α-equivalent sub-expressions so that they
share the same binding, something that a plain A-normalization does not provide (and which, actually, must not
provide, since in that case the transformation may not preserve the reduction semantics).

Among the work on refinement types, some have studied the extensions of a refinement type-system with intersec-
tion types. For instance, [1] studies a type system with refinement types, polymorphism and full union and intersection
(but no negation). While the goal of their type-system is to verify secure protocol implementations, the core language
RCF∀∧∨ they present, as well as the associated type-system is a λ-calculus with pattern-matching, let bindings, and a
refining test for equality (as well as protocol-oriented constructs such as channel creation, message passing, and ex-
pression forking). While on the surface their types resemble ours, they follow another direction. First, their language
is fully annotated (meaning that, for instance, polymorphic terms must be explicitly instantiated and intersection types
must also be specified through an annotation). Second, since the subtyping relation they provide is syntactic, it cannot
in general take into account the distributivity of logical connectives with respect to type constructors. This limitation
is however not a problem since the main goal of their subtyping relation is to propagate a kinding information that
they use to characterize the level of knowledge an attacker may have about a particular value. Another work adding
intersection types to refinement types is [33] in the context of liquid types. This work introduces intersection (but
not union nor negations) to liquid types, with a particular focus on intersection of arrow types. This work uses a
syntactic subtyping relation to push down intersection of types into the logical formulas of types. Once the formulas
have been propagated, they are offloaded to an SMT solver to decide the base case of the subtyping relation. Of
particular interest is their type-inference algorithm. Contrary to ours, their inference is based on algorithmW, using
the polymorphic type deduced as a template for an intersection. They can therefore infer intersection arrow types that
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are several distinct instances of the same polymorphic type.
Kent et al. [25] bridge the gap between prior work on occurrence typing and SMT-based (sub-)typing. They

introduce the λRTR core calculus, an extension of λTR of [43] where the logical formulæ embedded in types are not
limited to built-in type predicates, but accept predicates of arbitrary theories. This allows them to provide some
form of dependent typing (and in particular they provide an implementation supporting bitvector and linear arithmetic
theories). The cost of this expressive power in types is however paid by the programmer, who has to write logical
annotations (to help the external provers). Here, types and formulæ remain segregated. Subtyping of “structural”
types is checked by syntactic rules (as in [43]) while logical formulæ present in type predicates are verified by the
SMT solver.

Chaudhuri et al. [15] present the design and implementation of Flow by formalizing a relevant fragment of the
language. Since they target an industrial-grade implementation, they must account for aspects that we could afford
to postpone to future work, notably side effects and responsiveness of the type checker on very large code base.
The degree of precision of their analysis is really impressive and they achieve most of what we did here and, since
they perform flow analysis and use an effect system (to track mutable variables), even more. However, this results
in a specific and very complex system. Their formalization includes only union types (though, Flow accepts also
intersection types as we showed in (3)) which are used in ad hoc manner by the type system, for instance to type
record types. This allows Flow to perform an analysis similar to the one we did for Code 8 in Table 1, but also has
as a consequence that in some cases unions do not behave as expected. In contrast, our approach is more classic
and foundational: we really define a type system, typing rules look like classic ones and are easy to understand,
unions are unions of values (and so are intersections and negations), and the algorithmic part is—excepted for fix
points—relatively simple (algorithmically Flow relies on constraint generation and solving). This is the reason why
our system seems more adapted to study and understand occurrence typing and to extend it with additional features
(e.g., gradual typing and polymorphism) and we are eager to test how much of their analysis we can capture and
enhance by formalizing it in our system. More generally, we believe that what sets our work apart in the palimpsest
of the research on occurrence typing is that we have a type-theoretic foundational approach striving as much as
possible to explain occurrence typing by extending prior (unrelated but standard) work while keeping prior results.
In that respect, we think that our approach is not satisfactory, yet, because it uses non standard type-environments
that map expressions rather than variables to types: but all the rest is standard type-theory. And even on the latter
aspect it must be recognized that the necessity of tracking types not only for variables but also for more structured
expressions is something that shows up, in different forms, in several other approaches. For instance, in the approach
defined for Typed Racket [43] the type-system associates to an expression a quadruple formed by its type, two logical
propositions, and an object which is a pointer to the environment for the type hypothesis about the expression and,
as such, it plays the role of our extended type environments. Likewise, the selfification of [32] and [26], propagates
the precise type constraints learned during a test. One difference with our approach is that with refinement types the
information can be kept at the level of types, since dependent types contain terms and can introduce variables, while
in our approach the mapping is kept separate in a type environment. In summary the tracking of types for structured
expressions seems an aspect common to different approaches to occurrence types, nevertheless we are confident that
even this last non-standard aspect of our system can be removed and that occurrence typing can be explained in a pure
standard type-theoretic setting.

On the practical side, while languages such as Flow and Typed Racket are the golden standard of occurrence
typing, it may be worth citing that there exist other programming languages that implement some much more simplistic
forms of occurrence typing. Languages such as Kotlin [23] and Dart [20] enforce null safety by performing occurrence
typing whenever the tested expression is a variable. CDuce [14] implements a slightly more sophisticated form of
this simplistic occurrence typing since it is able to refine in the branches of a test the type of all variables that occur
in the tested expression as long as they are subexpressions of non-functional values: so for instance for an expression
of the form ((x, ( f z, y))∈(Int×(Int×Int))) ? e1 : e2 CDuce is able to to specialize in e1 the types of x and y (to Int) but
not those of f or z (since they occur in an application). Likewise, Kotlin also supports dynamically testing the type
of an object (using the is operator similar to Java’s instanceOf) and refining the type of the tested variable in the
corresponding branch of a test, without having to resort to a manual down-cast. As expected, Kotlin can only refine
the type of variables it can statically determine to be immutable, namely local variables introduced by an immutable
val binding and mutable references introduced by a var binding, provided the reference is not modified between the
type test and its occurrences in the branch.

32



This work already has a follow-up, which was recently presented at the POPL conference [9]. Both this work
and the system in [9] use the characteristics of semantic subtyping to improve occurrence typing. Both works obtain
this improvement by precisely tracking the type of each occurrence of an expression. However, they use rather
different techniques to track the occurrences of an expression and associate them with types. In this work, we do it
by enriching type environments so that they map occurrences of expressions (expressed in terms of paths) to types.
In [9], instead, the different occurrences of the same expression are tracked by using explicit bindings. In practice,
in [9] every expression is transformed into an intermediate representation—dubbed maximal-sharing canonical form
(MSC-form)— that consists of a list of bindings from variables to expressions whose proper subexpressions are all
variables. This form is called maximal sharing because all occurrences of a given expression are mapped by the same
binding. In other terms, for each subexpression, there is a unique variable and a unique binding that tracks it. The
advantages of using bindings instead of enhanced type environments and paths are twofold. First, the definition of the
type system is standard: type environments map variables to types, and occurrence typing is expressed by combining
the typing rules for type-case expressions with the standard union-elimination rule by MacQueen et al. [30]. Second,
MSC-forms relate via a binding all occurrences of a given expression; so, in particular, they may relate occurrences
that are inside a type-case with occurrences that are outside it. This allows the system of [9] to capture and analyze
the flows of information between different expressions, a kind of analysis that makes the strength of the approaches
heralded by Flow and Typed Racket and which constitutes one of the main limitations of the approach presented here.

We end this presentation of related work with a discussion on side effects. Although in our system we did not take
into account side-effects—and actually our system works because all the expressions of our language are pure—it is
interesting to see how the different approaches of occurrence typing position themselves with respect to the problem
of handling side effects, since this helps to better place our work in the taxonomy of the current literature. As Sam
Tobin-Hochstadt insightfully noticed, one can distinguish the approaches that use types to reason about the dynamic
behavior of programs according to the set of expressions that are taken into account by the analysis. In the case of
occurrence typing, this set is often determined by the way impure expressions are handled. On the one end of the
spectrum lies our approach: our analysis takes into account all expressions but, in its current formulation, it works
only for pure languages. On the other end of the spectrum we find the approach of Typed Racket whose analysis
reasons about a limited and predetermined set of pure operations: all data structure accessors. Somewhere in-between
lies the approach of the Flow language which, as hinted above, implements a complex effect systems to determine
pure expressions. While the system presented here does not work for impure languages, we argue that its foundational
nature predisposes it to be adapted to handle impure expressions as well, by adopting existing solutions or proposing
new ones. For instance, it is not hard to modify our system so that it takes into account only a set of predetermined
pure expressions, as done by Typed Racket: it suffices to modify the definition of Γ `Enve,(¬)t Γ′ (cf. Section 2.5) so
that Γ′ extends Γ with type hypotheses for all expressions occurring in e that are also in the set of predetermined
pure expressions (instead of extending it for all subexpressions of e, tout court). However, such a solution would be
marginally interesting since by excluding from the analysis all applications we would lose most of the advantages
of our approach with respect to the one with logical propositions. Thus a more interesting solution would be to use
some external static analysis tools—e.g., to graft the effect system of Chaudhuri et al. [15] on ours—to detect impure
expressions. The idea would be to mark different occurrences of a same impure expression using different marks.
These marks would essentially be used to verify the presence of type hypotheses for a given expression in a type
environment Γ; the idea being that expressions with different marks are to be considered as different expressions and,
therefore, would not share the same type hypothesis. For instance, consider the test ( f x ∈ Int)? ... : ...: if f x were
flagged as impure, then an occurrence of f x in the “then” branch would not be supposed to be of type Int since it
would be typed in an environment Γ containing a binding for an f x expression having a mark different from the one
in the “then” branch: the regular typing rules would apply for f x in that case. This would certainly improve our
analysis, but we believe that ultimately our system should not resort to external static analysis tools to detect impure
expressions but, rather, it has to integrate this analysis with the typing one, so as to mark only those impure expressions
whose side-effects may affect the semantics of some type-cases. For instance, consider a JavaScript object obj that
we modify as follows: obj["key"] = 3. If the field "key" is already present in obj with type Int and we do not
test it more than about this type, then it is not necessary to mark different occurrences of obj with different marks,
since the result of the type-case will not be changed by the assignment; the same holds true if the field is absent but
type-cases do not discriminate on its presence. Otherwise, some occurrences of obj must use different marks: the
analysis will determine which ones. We leave this study for future work.
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6. Future work and conclusion

In this work we presented the core of our analysis of occurrence typing, extended it to record types and proposed
a couple of novel applications of the theory, namely the reconstruction of intersection types for unannotated functions
and a static analysis to reduce the number of casts inserted when compiling gradually-typed programs. One of the
by-products of our work is the ability to define type predicates such as those used in [43] as plain functions and have
the inference procedure deduce automatically the correct overloaded function type. More generally, our approach
surpasses current ones in that it can deduce precise (overloaded) types for functions that in all other approaches
either require the programmer to specify the full precise type (e.g., the function foo we defined in (1) and (3) in our
introduction) or cannot be typed at all (the and_ and xor_ functions given in (33) and (34) are the most eloquent
examples).

There is still a lot of work to do to fill the gap with real-world programming languages. For example, our analysis
cannot handle flow of information, as we discussed for the function example14 in Section 4. In particular, the result
of a type test can flow only to the branches but not outside the test. As a consequence the current system cannot
type a let binding such as let x = (y∈Int)?‘yes:‘no in (x∈‘yes)?y+1:not(y) which is clearly safe when
y : Int ∨ Bool. Nor can this example be solved by partial evaluation since we do not handle nesting of tests in the
condition( ((y∈Int)?‘yes:‘no)∈‘yes ) ? y+1 : not(y), and both are issues that the system by Tobin-Hochstadt
and Felleisen [43] can handle. We think that it is possible to reuse some of their ideas to perform an information flow
analysis on top of our system to remove these limitations. Some of the extensions we hinted to in Section 4 warrant a
formal treatment. In particular, the rule [OverApp] only detects the application of an overloaded function once, when
type-checking the body of the function against the coarse input type (i.e., ψ is computed only once). But we could
repeat this process whilst type-checking the inferred arrows (i.e., we would enrich ψ while using it to find the various
arrow types of the lambda abstraction). Clearly, if untamed, such a process may never reach a fix point. Studying
whether this iterative refining can be made to converge and, foremost, whether it is of use in practice is among our
objectives.

But the real challenges that lie ahead are the handling of side effects and the addition of polymorphic types. Our
analysis works in pure languages and we already discussed at length at the end of the previous section our plans to
extend it to cope with side-effects. However, the ultimate solution of integrating type and effect analysis in a unique
tool is not more defined than that. For polymorphism, instead, we can easily adapt the main idea of this work to
the polymorphic setting. Indeed, the main idea is to remove from the type of an expression all the results of the
expression that would make some test fail (or succeed, if we are typing a negative branch). This is done by applying
an intersection to the type of the expression, so as to keep only the values that may yield success (or failure) of the
test. For polymorphism the idea is the same, with the only difference that besides applying an intersection we can
also apply an instantiation. The idea is to single out the two most general type substitutions for which some test may
succeed and fail, respectively, and apply these substitutions to refine the types of the corresponding occurrences in the
“then” and “else” branches. Concretely, consider the test x1x2 ∈ t◦ where t◦ is a closed type and x1, x2 are variables
of type x1 : s→ t and x2 : u with u ≤ s. For the positive branch we first check whether there exists a type substitution
σ such that tσ ≤ ¬t◦. If it does not exists, then this means that for all possible assignments of polymorphic type
variables of s → t, the test may succeed, that is, the success of the test does not depend on the particular instance of
s→ t and, thus, it is not possible to pick some substitution for refining the occurrence typing. If it exists, then we find
a type substitution σ◦ such that t◦ ≤ tσ◦ and we refine for the positive branch the types of x1, of x2, and of x1x2 by
applying σ◦ to their types. While the idea is clear, the technical details are quite involved, especially if we also want
functions with intersection types and/or gradual typing. Nevertheless, our approach has an edge on systems that do
not account for polymorphism. This needs a whole gamut of non trivial research that we plan to develop in the near
future building on the work on polymorphic types for semantic subtyping [13] and the research on the definition of
polymorphic languages with set-theoretic types by Castagna et al. [10, 11, 12] and Petrucciani [34].
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Appendix A. Proof of Type Soundness

We give in this section the complete formalization of the declarative type system as well as the proof of its type
safety.

Appendix A.1. The declarative type system

[Env]
Γ ` e : Γ(e)

e ∈ dom(Γ) [Inter]
Γ ` e : t1 Γ ` e : t2

Γ ` e : t1 ∧ t2
[Subs]

Γ ` e : t t ≤ t′

Γ ` e : t′

[Const]
Γ ` c : bc

[App]
Γ ` e1 : t1 → t2 Γ ` e2 : t1

Γ ` e1e2 : t2

[Abs+]
∀i∈I Γ, x : si ` e : ti

Γ ` λ∧i∈I si→ti x.e :
∧

i∈I si → ti

[Abs-]
Γ ` λ∧i∈I si→ti x.e : t

Γ ` λ∧i∈I si→ti x.e : ¬(t1 → t2)
((∧i∈I si → ti) ∧ ¬(t1 → t2)) ; 0

[Case]
Γ ` e : t0 Γ `Enve,t Γ1 Γ1 ` e1 : t′ Γ `Enve,¬t Γ2 Γ2 ` e2 : t′

Γ ` (e∈t) ? e1 : e2 : t′

[Efq]
Γ, (e : 0) ` e′ : t

[Proj]
Γ ` e : t1 × t2

Γ ` πie : ti
[Pair]

Γ ` e1 : t1 Γ ` e2 : t2
Γ ` (e1, e2) : t1 × t2

[Base]
Γ `Enve,t Γ

[Path]
`PathΓ′,e,t $ : t′ Γ `Enve,t Γ′

Γ `Enve,t Γ′, (e↓$ : t′)

[PSubs]
`PathΓ,e,t $ : t1 t1 ≤ t2
`PathΓ,e,t $ : t2

[PInter]
`PathΓ,e,t $ : t1 `PathΓ,e,t $ : t2

`PathΓ,e,t $ : t1 ∧ t2
[PTypeof]

Γ ` e↓$ : t′

`PathΓ,e,t $ : t′

[PEps]
`PathΓ,e,t ε : t

[PAppR]
`PathΓ,e,t $.0 : t1 → t2 `PathΓ,e,t $ : t′2

`PathΓ,e,t $.1 : ¬t1
t2 ∧ t′2 ' 0

[PAppL]
`PathΓ,e,t $.1 : t1 `PathΓ,e,t $ : t2
`PathΓ,e,t $.0 : ¬(t1 → ¬t2)

[PPairL]
`PathΓ,e,t $ : t1 × t2
`PathΓ,e,t $.l : t1

[PPairR]
`PathΓ,e,t $ : t1 × t2
`PathΓ,e,t $.r : t2

[PFst]
`PathΓ,e,t $ : t′

`PathΓ,e,t $. f : t′ × 1
[PSnd]

`PathΓ,e,t $ : t′

`PathΓ,e,t $.s : 1 × t′
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Appendix A.2. Parallel semantics

One technical difficulty in the proof of the subject reduction property is that, when reducing an expression e into v
in a type case, the expression e disappears (e is not a sub-expression of the test anymore) and, thus, we can no longer
refine the expression e in the “then” and “else” branches (which might contain occurrences of e). To circumvent
this issue, we introduce a notion of parallel reduction which essentially reduces all occurrences of a sub-expression
appearing in a type cases also in the “then” and “else” branch at the same time.

The idea is to label each step of reduction done by a context rule with the inner notion of reduction (defined below)
that caused the context to reduce. In case of a reduction of the expression tested in the type case, that same reduction
is applied in parallel to both branches. The semantics based on parallel reduction is given below where expressions
and values are defined as in Section 2.3. The contexts, however, are not exactly those in Section 2.4 since there are
two differences: (i) we remove the test expression context, since this requires a specific rule (rule [τκ]) that performs
the parallel reduction and (ii) context holes are present only at top-level since the parallel reduction will handle the
nesting of contexts by applying the rule [κ] below multiple times. This yields the following definition:

Context C[] ::= e[] | []v | (e, []) | ([], v) | πi[]

For convenience, we denote e e 7→e′
 e′ by e Id

 e′ and by e _
 e′ a step of reduction of the parallel semantics, regardless

of the value on the top of the arrow.

Notions of reduction:

[β]
(λt x.e)v Id

 e{x 7→ v}
[π]

πi(v1, v2) Id
 vi

[τ1]
(v∈t) ? e1 : e2

Id
 e1

v ∈ ~t�V [τ2]
(v∈t) ? e1 : e2

Id
 e2

v < ~t�V

Context reductions:

[κ]
e

er 7→e′r e′

C[e]
er 7→e′r C[e′]

[τκ]
e

er 7→e′r e′

(e∈t) ? e1 : e2
Id
 (e{er 7→ e′r}∈t) ? e1{er 7→ e′r} : e2{er 7→ e′r}

where
~t�V = {v | `V v : t}

with

[Subsum]
`V v : t′ t′ ≤ t

`V v : t
[Const]

`V c : bc

[Pair]
`V v1 : t1 `V v2 : t2
`V (v1, v2) : t1 × t2

[Abs]
t = (∧i∈I si → ti) ∧ (∧ j∈J¬(s′j → t′j)) t � 0

`V λ∧i∈I si→ti x.e : t

Here is a couple of examples of reduction using the parallel semantics:
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[τκ]

[κ]

[β]
(λx. x + 1) 1 Id

 2

((λx. x + 1) 1, true)
(λx. x+1)1 7→ 2
 (2, true)

(((λx. x + 1) 1, true)∈Int × Bool) ? (λx. x + 1) 1 : 0 Id
 ((2, true)∈Int × Bool) ? 2 : 0

and

[τ1]
((2, true)∈Int × Bool) ? 2 : 0 Id

 2
(2, true) ∈ ~Int × Bool�V

Notice that the rule [κ] applies a substitution from an expression to an expressions (rather than from a variable to an
expressions). This is formally defined as follows:

Definition Appendix A.1 (Expression substitutions). Expression substitutions, ranged over by ρ, map an expression
into another expression. The application of an expressions substitution ρ to an expression e, noted eρ is the capture
avoiding replacement defined as follows:

• If e′ ≡α e′′, then e′′{e′ 7→ e} = e.

• If e′ .α e′′, then e′′{e′ 7→ e} is inductively defined as

c{e′ 7→ e} = c

x{e′ 7→ e} = x

(e1e2){e′ 7→ e} = (e1{e′ 7→ e})(e2{e′ 7→ e})
(λ∧i∈I si→ti x.e){e′ 7→ e} = λ∧i∈I si→ti x.(e{e′ 7→ e}) if x < fv(e) ∪ fv(e′)

(πie){e′ 7→ e} = πi(e{e′ 7→ e})
(e1, e2){e′ 7→ e} = (e1{e′ 7→ e}, e2{e′ 7→ e})

((e1∈t) ? e2 : e3){e′ 7→ e} = (e1{e′ 7→ e}∈t) ? e2{e′ 7→ e} : e3{e′ 7→ e}

Notice that the expression substitutions are up to alpha-renaming and perform only one pass. For instance, if
our substitution is ρ = {(λt x.x)y 7→ y}, we have ((λt x.x)((λtz.z)y))ρ = (λt x.x)y. The environments operate up to
alpha-renaming, too.

Finally notice that according to the definition above the rule [τκ] could be equivalently written as follows:

[τκ]
e

ρ
 e′

(e∈t) ? e1 : e2
Id
 ((e∈t) ? e1 : e2)ρ

All the proofs below will use the parallel semantics instead of the standard semantics (of Section 2.4). However,
the safety of the type system for the standard semantics can be deduced from the safety of the type system for the
parallel semantics, using the following lemma:

Lemma Appendix A.2. ∀e, v. e _
 ∗ v⇒ e ∗ v

Proof. This is a known result for the λ−calculus (even extended with conditional, and basic types), obtained using
the Tait and Martin-Löf technique ([2]). See for instance [40] and [29]. The additional substitutions made by the rule
[τκ] will be performed later with the standard semantics.

Appendix A.3. Proofs for the declarative type system
In this section, the only environments that we consider are well-formed environments (see definition below). We

can easily check that every derivation only contains well-formed environments, provided that the initial judgment also
use a well-formed environment. It is a consequence of the fact that rule [Case] requires e to be typeable and that it
only refines subexpressions of e.
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Appendix A.3.1. Environments
Definition Appendix A.3 (Well-formed environment). We say that an environment Γ is well-formed if and only if
∀e ∈ dom(Γ) such that e is not a variable ∃t. Γ \ {e} ` e : t.

In other words, an environment can refine the type of an expression, but only if this expression is already typeable
without this entry in the environment (possibly with a strictly weaker type than the one recorded in Γ).

Definition Appendix A.4 (Bottom environment). Let Γ be an environment.
Γ is bottom (noted Γ = ⊥) if and only if ∃e ∈ dom(Γ). Γ(e) ' 0.

Definition Appendix A.5 ((Pre)order on environments). Let Γ and Γ′ be two environments. We write Γ′ ≤ Γ if and
only if:

Γ′ = ⊥ or (Γ , ⊥ and ∀e ∈ dom(Γ). Γ′ ` e : Γ(e))

This relation is a preorder (proof below).

Definition Appendix A.6 (Application of a substitution to an environment). Let Γ be an environment and ρ a substi-
tution from expressions to expressions. The environment Γρ is defined by:

dom(Γρ) = dom(Γ)ρ

∀e ∈ dom(Γρ), (Γρ)(e) =
∧

{e′∈dom(Γ) | e′ρ≡e}

Γ(e′)

Definition Appendix A.7 (Ordinary environments). We say that an environment Γ is ordinary if and only if its domain
only contains variables.

Appendix A.3.2. Subject Reduction
Property 1 (~_�V properties).

∀s. ∀t. ~s�V ⊆ ~t�V ⇔ s ≤ t

~0�V = ∅
∀t. ~¬t�V = V \ ~t�V
∀s. ∀t. ~s ∨ t�V = ~s�V ∪ ~t�V

Proof. See theorem 5.5, lemmas 6.19, 6.22, 6.23 of [19].

Lemma Appendix A.8 (Alpha-renaming). Both the type system and the semantics are invariant by alpha-renaming.

Proof. Straightforward. For the type system, it is a consequence of the fact that environments are up to alpha-
renaming. For the semantics, it is a consequence of the fact that parallel substitutions in [τκ] are up to alpha-renaming.

Lemma Appendix A.9 (Soundness and completeness of value typing). Let v be a value, t a type, and Γ an environ-
ment.
• If Γ ` v : t and Γ , ⊥, then v ∈ ~t�V.
• If v ∈ ~t�V and v is well-typed in Γ, then Γ ` v : t.

Proof. Immediate by definition of ~.�V.

Lemma Appendix A.10 (Monotonicity). Let Γ and Γ′ be two environments such that Γ′ ≤ Γ. Then, we have:

∀e, t. Γ ` e : t ⇒ Γ′ ` e : t

∀e, t,Γ1. Γ `
Env
e,t Γ1 ⇒ ∃Γ1

′ ≤ Γ1. Γ
′ `Enve,t Γ1

′

∀e, t, $, t′. `PathΓ,e,t $ : t′ ⇒ `PathΓ′,e,t $ : t′
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Proof. Immediate, by replacing every occurrence of rule [Env] in the derivation with Γ by the corresponding derivation
with Γ′, followed by an application of rule [Subs] if needed.

Corollary Appendix A.11 (Preorder relation). The relation ≤ on environments is a preorder.

Lemma Appendix A.12 (Value refinement 1). If we have `Path
Γ,e,t $.x : t′ with x ∈ {0, 1, l, r, f , s} (and e well-typed in

Γ) such that ∀y. e↓$.y is a value and v = e↓$.x < ~t′�V, we can derive `Path
Γ,e,t $ : 0.

Proof. We proceed by induction on the derivation of `Path
Γ,e,t $.x : t′.

We perform a case analysis on the last rule:

[PTypeof] In this case we have Γ ` e↓$.x : t′ with v < ~t′�V. Thus we can derive Γ ` e↓$.x : 0 by using the rule
[Inter] and the rules [Abs+], [Abs-] or [Const].

Let us show that we also have Γ ` e↓$ : 0.

• If x = 0, we know that e↓$ is an application, and we can conclude easily given that 0 ≤ 1→ 0.

• If x = 1, we know that e↓$ is an application, and we can conclude easily given that 0→ 0 ' 0→ 1.

• If x = f or x = s, we know that e↓$ is a projection, and we can conclude easily given that 0 ' 0 × 0.

• If x = l or x = r, we know that e↓$ is a pair, and we can conclude easily given that 0 × 1 ' 1 × 0 ' 0.

Hence we can derive Γ ` e↓$ : 0.

[PInter] We must have v < ~t1 ∧ t2�V. It implies v < ~t1�V ∩ ~t2�V and thus v < ~t1�V or v < ~t2�V. Hence, we can
conclude just by applying the induction hypothesis.

[PSubs] Trivial (we use the induction hypothesis).

[PEps] This case is impossible.

[PAppL] We have v < ~¬(t1 → ¬t2)�V. Thus, we have v ∈ ~t1 → ¬t2�V and in consequence we can derive Γ ` v :
t1 → ¬t2 (because e is well-typed in Γ).

Recall that e↓$.1 is necessarily a value (by hypothesis). By using the induction hypothesis on `Path
Γ,e,t $.1 : t1,

we can suppose e↓$.1 ∈ ~t1�V (otherwise, we can conclude directly). Thus, we can derive Γ ` e↓$.1 : t1.

From Γ ` v : t1 → ¬t2 and Γ ` e↓$.1 : t1, we can derive Γ ` e↓$ : ¬t2 using the rule [App].

Now, by starting from the premise `Path
Γ,e,t $ : t2 and using the rules [PInter] and [PTypeof], we can derive

`Path
Γ,e,t $ : 0.

[PAppR] We have v < ~¬t1�V. Thus, we have v ∈ ~t1�V and in consequence we can derive Γ ` v : t1.

Recall that e↓$.0 is necessarily a value (by hypothesis). By using the induction hypothesis on `Path
Γ,e,t $.0 :

t1 → t2, we can suppose e↓$.0 ∈ ~t1 → t2�V (otherwise, we can conclude directly). Thus, we can derive
Γ ` e↓$.0 : t1 → t2 (because e is well-typed in Γ).

From Γ ` v : t1 and Γ ` e↓$.0 : t1 → t2, we can derive Γ ` e↓$ : t2 using the rule [App].

Now, by starting from the premise `Path
Γ,e,t $ : t′2 and using the rules [PInter] and [PTypeof], we can derive

`Path
Γ,e,t $ : 0.

[PPairL] We have v < ~t1�V. Thus, we have v ∈ ~¬t1�V and in consequence we can derive Γ ` v : ¬t1.

Hence, we can derive Γ ` e↓$ : ¬t1 × 1 (e is well-typed in Γ).

Now, by starting from the premise `Path
Γ,e,t $ : t1 × t2 and using the rules [PInter] and [PTypeof], we can derive

`Path
Γ,e,t $ : 0.

[PPairR] Similar to the previous case.
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[PFst] We have v < ~t′ × 1�V. As we also have v ∈ ~1 × 1�V (because e is well-typed in Γ), we can deduce
v ∈ ~(¬t′) × 1�V.

Hence, we can derive Γ ` v : (¬t′) × 1 and then Γ ` e↓$ : ¬t′.

Now, by starting from the premise `Path
Γ,e,t $ : t′ and using the rules [PInter] and [PTypeof], we can derive

`Path
Γ,e,t $ : 0.

[PSnd] Similar to the previous case.

Corollary Appendix A.13 (Value refinement 2). For any derivable judgement of the form Γ `Enve,t Γ′ (with e well-
typed in Γ), we can construct a derivation of Γ `Enve,t Γ′′ with Γ′′ ≤ Γ′ that never uses the rule [Path] on a path $.x
such that ∀y. e↓$.y refers to a value.

Proof. We can easily remove every such rule from the derivation. If e↓$.x ∈ ~t′�V, the [Path] rule is useless and we
can freely remove it. Otherwise, if e↓$.x < ~t′�V, we can use the previous lemma to replace it with a [Path] rule on
$.

Lemma Appendix A.14 (Value testing). For any derivable judgement of the form Γ `Envv,t Γ′ (with v a value), we have
v ∈ ~t�V ⇒ Γ ≤ Γ′.

Proof. As v is a value, the applications of [Path] have a path $ only composed of l and r and such that e↓$ is a value.
Thus, any derivation `Path

Γ,v,t $ : t′ can only contains the rules [PTypeof], [PInter], [PSubs], [PEps], [PPairL] and
[PPairR].

Moreover, as v ∈ ~t�V, the rules [PEps] can be replaced by a [PTypeof]. Thus we can easily derive Γ ` v : t′ (we
replace [PTypeof] by [Typeof], [PInter] by [Inter], etc.).

Lemma Appendix A.15 (Substitution). Let Γ be an environment. Let ea and eb be two expressions.
Let us suppose that eb is closed and that ea has one of the following form:

• x (variable)

• (e∈t) ? e1 : e2 (if expression)

• v (value)

• vv (application of two values)

• (v, v) (product of two values)

Let us also suppose that ∀t. Γ ` ea : t ⇒ Γ{ea 7→ eb} ` eb : t.
Then, by noting ρ = {ea 7→ eb} we have:

∀e, t. Γ ` e : t ⇒ Γρ ` eρ : t

Proof. Let Γ, ea, eb be as in the statement.
We note ρ the substitution {ea 7→ eb}.
We consider a derivation of Γ ` e : t.
By using the value refinement lemma, we can assume without loss of generality that our derivation does not

contain any rule [Path] on a path $.x such that ∀y. e↓$.y refers to a value.
We can also assume w.l.o.g. that every application of the [Path] rule is such that Γ′, (e↓$ : t′) ≤ Γ′. If it is not the

case, we can easily transform the derivation by intersecting t′ with Γ′(e↓$) using the rules [PInter], [PTypeof] and
[Env]. The rest of the derivation can easily be adapted by adding some [Subs] rules when needed.

Finally, we can assume that, in any environment appearing in the derivation, if the environnement is not bottom,
then a value v can only be mapped to a type t such that v ∈ ~t�V. If it is not the case, then we just have to change the
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[Path] rule that introduce (v : t) into a path rule that introduce (v : 0), by using the rules [PInter] and [PTypeof] (if
v < ~t�V, then v ∈ ~¬t�V and thus Γ ` v : ¬t is derivable).

Now, let’s prove by induction on the derivation the following properties:

∀e, t. Γ ` e : t ⇒ Γρ ` eρ : t

∀e, t,Γ′. Γ `Enve,t Γ′ ⇒ Γρ `Enveρ,t Γ′ρ and we still have ∀t. Γ′ ` ea : t ⇒ Γ′ρ ` eb : t

∀e, t, $, t′ s.t. eρ↓$ is defined. `PathΓ,e,t $ : t′ ⇒`PathΓρ,eρ,t $ : t′

We proceed by case analysis on the last rule of the derivation at the left of the⇒ in order to construct the derivation
at the right.

If the last judgement is of the form Γ ` ea : t, then we can directly conclude with the hypotheses of the lemma.
Thus, we can suppose it is not the case.

There are many cases depending on the last rule:

[Env] If e ∈ dom(Γ), then we have eρ ∈ dom(Γρ) and (Γρ)(eρ) ≤ Γ(e). Thus we can easily derive Γρ ` eρ : t with the
rule [Env] and [Subs].

[Efq] If there exists e ∈ dom(Γ) such that Γ(e) = 0, then (Γρ)(eρ) = 0 so we can easily derive Γρ ` eρ : t with the
rule [Efq].

[Inter] Trivial (by using the induction hypothesis).

[Subs] Trivial (by using the induction hypothesis).

[Const] In this case, cρ = c (because c , ea). Thus it is trivial.

[App] We have (e1e2)ρ = (e1ρ)(e2ρ) (because e1e2 , ea). Thus we can directly conclude by using the induction
hypothesis.

[Abs+] We have (λt′ x.e)ρ = λt′ x.(eρ) (because λt′ x.e , ea).

By alpha-renaming, we can suppose that the variable x is a new fresh variable that does not appear in ea nor eb

(eb is closed).

We can thus use the induction hypothesis on all the judgements Γ, x : si ` e : ti.

[Abs-] Trivial (by using the induction hypothesis).

[Proj] We have (πie)ρ = πi(eρ) (because πie , ea). Thus we can directly conclude by using the induction hypothesis.

[Pair] We have (e1, e2)ρ = (e1ρ, e2ρ) (because (e1, e2) , ea). Thus we can directly conclude by using the induction
hypothesis.

[Case] We have ((e∈ti f ) ? e1 : e2)ρ = (eρ∈ti f ) ? e1ρ : e2ρ (because (e∈ti f ) ? e1 : e2 , ea).

We apply the induction hypothesis on the judgements Γ ` e : t0 and Γ `Enve,ti f
Γ1. We get Γρ ` eρ : t0, Γρ `Enveρ,ti f

Γ1ρ
and ∀t′. Γ1 ` ea : t′ ⇒ Γ1ρ ` eb : t′. Now, we can apply the induction hypothesis on Γ1 ` e1 : t and we have
Γ1ρ ` e1ρ : t.

We proceed similarly on the judgments Γ `Enve,¬ti f
Γ2 and Γ2 ` e2 : t, and so we have all the premises to apply the

[Case] rule in order to get Γρ ` (eρ∈ti f ) ? e1ρ : e2ρ : t′.

[Base] Trivial.

[Path] We have by using the induction hypothesis Γρ `Enveρ,t Γ′ρ and ∀t′′. Γ′ ` ea : t′′ ⇒ Γ′ρ ` eb : t′′.

First, let’s show that we can derive Γρ `Enveρ,t Γ′′ρ with Γ′′ = Γ′, (e↓$ : t′).

There are two cases:

43



• e↓$ is a strict sub-expression of ea.
In this case, it means that among its three possible forms, ea is of the form vv or (v, v). According to the
assumptions we made on the derivation at the beginning of the proof, it implies that $ = ε. Hence, e does
not contain any occurrence of ea, so it is easy to conclude.

• e↓$ is not a strict sub-expression of ea.
In this case, we know that eρ↓$ is defined.
Thus we can apply the induction hypothesis on `Path

Γ′,e,t $ : t′. It gives `Path
Γ′ρ,eρ,t $ : t′. If eρ↓$ ∈ dom(Γ′ρ),

and (Γ′ρ)(eρ↓$) = t′′ � t′, then we can derive `Path
Γ′ρ,eρ,t $ : t′ ∧ t′′ just by using the rules [PInter],

[PTypeof] and [Env].
Using this last judgement together with Γ `Enve,t Γ′, we can derive with the rule [Path] the wanted Γρ `Enveρ,t
Γ′′ρ.

Now, let’s show that ∀t′. Γ′′ ` ea : t′ ⇒ Γ′′ρ ` eb : t′.

Let t′ be such that Γ′′ ` ea : t′.

Recall that we have Γ′ ` ea : t′ ⇒ Γ′ρ ` eb : t′.

If Γ′′ = ⊥, then Γ′′ρ = ⊥ so we are done. So lets us suppose Γ′′ , ⊥.

Let us separate the proof in two cases:

• If e↓$ . ea. In this case, let’s show that we have Γ′ ` ea : t′. Indeed, in the typing derivation of
Γ′′ ` ea : t′, the [Env] rules can only be applied on subexpressions of ea.
If e↓$ is not a strict subexpression of ea (and thus not a subexpression as e↓$ . ea), there is no [Env]
rule applied to e↓$ in the derivation of Γ′′ ` ea : t′ and thus we can easily derive Γ′ ` ea : t′.
If e↓$, is a strict sub-expression of ea, it must be a value (given the possible forms of ea). Moreover, as
Γ′′ , ⊥, we have ∀v ∈ dom(Γ′′). v ∈ ~Γ′′(v)�V (recall the assumptions at the beginning of the proof) and
thus ∀v ∈ dom(Γ′′). Γ′ ` v : Γ′′(v). Thus we can derive Γ′ ` ea : t′ just by replacing every [Env] rule
applied to e↓$ in the derivation of Γ′′ ` ea : t′ by the relevant derivation.
From Γ′ ` ea : t′ we deduce Γ′ρ ` eb : t′. As Γ′′ ≤ Γ′ (according to the assumptions we made on
the derivation at the beginning of the proof) and dom(Γ′) ⊆ dom(Γ′′), we have Γ′′ρ ≤ Γ′ρ and thus, by
monotonicity, Γ′′ρ ` eb : t′.

• If e↓$ ≡ ea. Let us note ta = Γ′′(ea). This time, we can’t derive Γ′ ` ea : t′ from Γ′′ ` ea : t′ because the
rule [Env] could be used on e↓$ = ea (which may not be a value).
However, the rule [Env] can only be used on ea at the end of the derivation of Γ′′ ` ea : t′: there can’t
be any [App], [Abs+], [Proj], [Pair] or [Case] after because the premises of these rules only contain strict
sub-expressions of their consequence. Thus, we can easily transform the derivation so that every [Env]
applied on ea is directly followed by an [Inter]: if there is any [Abs-] or [Subs] between, we can move it
after.
Then, we can (temporarily) remove from the derivation all [Env] applied on ea: for each, we just replace
the following [Inter] rule by its other premise.
It yields a derivation for Γ′′ ` ea : t′′ such that t′′ ∧ ta ≤ t′ and without any [Env] applied to ea. Thus, we
can transform it into a derivation of Γ′ ` ea : t′′ as in the previous point, and we get Γ′ρ ` eb : t′′. Still as
before, we get a derivation for Γ′′ρ ` eb : t′′ by monotonicity.
Now, we can append at the end of this derivation a rule [Inter] with a rule [Env] applied to eb. As
(Γ′′ρ)(eb) ≤ Γ′′(ea) = ta, we obtain a derivation for Γ′′ρ ` eb : t′ (we can add a final [Subs] rule if needed).

[PTypeof] Trivial (by using the induction hypothesis).

[P· · · ] All the remaining rules are trivial.
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Theorem Appendix A.16 (Subject reduction). Let Γ be an ordinary environment, e and e′ two expressions and t a
type. If Γ ` e : t and e _

 e′, then Γ ` e′ : t.

Proof. Let Γ, e, e′ and t be as in the statement.
We construct a derivation for Γ ` e′ : t by induction on the derivation of Γ ` e : t.
If Γ = ⊥ this theorem is trivial, so we can suppose Γ , ⊥.
We proceed by case analysis on the last rule of the derivation:

[Env] As Γ is ordinary, it means that e is a variable. It contradicts the fact that e reduces to e′ so this case is impossible.

[Efq] This case is impossible as Γ , ⊥.

[Inter] Trivial (by using the induction hypothesis).

[Subs] Trivial (by using the induction hypothesis).

[Const] Impossible case (no reduction possible).

[App] In this case, e ≡ e1e2. There are three possible cases:

• e2 is not a value. In this case, we must have e2
_
 e′2 and e′ ≡ e1e′2. We can easily conclude using the

induction hypothesis.

• e2 is a value and e1 is not. In this case, we must have e1
_
 e′1 and e′ ≡ e′1e2. We can easily conclude using

the induction hypothesis.

• Both e1 and e2 are values. This is the difficult case. We have e1 ≡ λ
∧

i∈I si→ti x.ex with
∧

i∈I si → ti ≤ s → t
and Γ ` e2 : s. We can suppose that x is a new fresh variable that does not appear in our environment (if it
is not the case, we can alpha-rename e1).
This means that s ≤

∨
i∈I si and that for any non-empty I′ such that s �

∨
i∈I\I′ si, we have

∧
i∈I′ ti ≤ t

(see lemma 6.8 of [19]). Let us take I′ = {i ∈ I | e2 ∈ ~si�V}. We have I′ not empty: e2 ∈ ~s�V and
s ≤

∨
i∈I si, so according to ~_�V properties we have at least one i such that e2 ∈ ~si�V. We also have

s �
∨

i∈I\I′ si, otherwise there would be a i < I such that e2 ∈ ~si�V (contradiction with the definition of
I′). As a consequence, we get

∧
i∈I′ ti ≤ t.

Now, let’s prove that Γ ` e′ :
∧

i∈I′ ti (which, by subsumption, yields Γ ` e′ : t). For that, we show that for
any i ∈ I′, Γ ` e′ : ti (it is then easy to conclude by using the [Inter] rule).
Let i ∈ I′. We have e2 ∈ ~si�V, and so Γ ` e2 : si (e2 is well-typed in Γ). As e1 is well-typed in Γ, there
must be in its derivation an application of the rule [Abs+] which guarantees Γ, (x : si) ` ex : ti (recall that
Γ , ⊥ and Γ is ordinary so there is no abstraction in dom(Γ)). Let us note Γ′ = Γ, (x : si). We can deduce,
using the substitution lemma, that Γ′{x 7→ e2} ` ex{x 7→ e2} : ti.
Moreover, Γ′{x 7→ e2} = Γ, (e2 : si) and Γ ≤ Γ, (e2 : si). Thus, by monotonicity, we deduce Γ ` ex{x 7→
e2} : ti, that is Γ ` e′ : ti.

[Abs+] Impossible case (no reduction possible).

[Abs-] Impossible case (no reduction possible).

[Proj] In this case, e ≡ πie0. There are two possible cases:

• e0 is not a value. In this case, we must have e0
_
 e′0 and e′ ≡ πie′0. We can easily conclude using the

induction hypothesis.

• e0 is a value. Given that e0 ≤ 1× 1, we have e0 = (v1, v2) with v1 and v2 two values. We also have e Id
 vi.

The derivation of Γ ` (v1, v2) : t1 × t2 must contain a rule [Pair] which guarantees Γ ` vi : ti (recall that
Γ , ⊥ and Γ is ordinary so there is no pair in dom(Γ)). It concludes this case.

[Pair] In this case, e ≡ (e1, e2). There are two possible cases:
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• e2 is not a value. In this case, we must have e2
_
 e′2 and e′ ≡ (e1, e′2). We can easily conclude using the

induction hypothesis.

• e2 is a value and e1 is not. In this case, we must have e1
_
 e′1 and e′ ≡ (e′1, e2). We can easily conclude

using the induction hypothesis.

[Case] In this case, e ≡ (e0∈ti f ) ? e1 : e2. There are three possible cases:

• e0 is a value and e0 ∈ ~ti f �V. In this case we have e′ ≡ e1. We have derivations for Γ ` e0 : t0, Γ `Enve0,ti f
Γ′

and Γ′ ` e1 : t.
As e0 is a value and e0 ∈ ~ti f �V, we have Γ ≤ Γ′ by using the value testing lemma. Thus, by monotonicity,
we have Γ ` e1 : t.

• e0 is a value and e0 < ~t�V. This case is similar to the previous one (we replace ti f by ¬ti f and e1 by e2).

• e0 is not a value. In this case, we have e0
ea 7→eb e′0 and e′ ≡ (e0ρ∈ti f ) ? e1ρ : e2ρ ≡ eρ with ρ = {ea 7→ eb}.

First, let’s notice that we have eb closed (only closed expressions are reducible), and ea has one of the
following forms:

– (e∈t) ? e1 : e2 (if expression)
– vv (application of two values)
– (v, v) (product of two values)

It can be easily proved by induction on the derivation of the reduction step. Secondly, as ea
_
 eb and

as the derivation of this reduction is a strict subderivation of that of e _
 e′, we can use the induction

hypothesis on ea
_
 eb and we obtain ∀t′. Γ ` ea : t′ ⇒ Γρ ` eb : t′. Thus, we can conclude directly by

using the substitution lemma on e and ρ.

Appendix A.3.3. Progress
Lemma Appendix A.17 (Inversion).

~t1 × t2�V = {(v1, v2) | `V v1 : t1, `V v2 : t2}

~b�V = {c | bc ≤ b}

~t → s�V = {λ
∧

i∈I ti→si x.e |
∧
i∈I

ti → si ≤ t → s}

Proof. See lemma 6.21 of [19]

Theorem Appendix A.18 (Progress). If ∅ ` e : t, then either e is a value or there exists e′ such that e _
 e′.

Proof. We proceed by induction on the derivation ∅ ` e : t. We consider the last rule of this derivation:

[Env] This case is impossible (the environment is empty).

[Efq] This case is impossible (the environment is empty).

[Inter] Straightforward application of the induction hypothesis.

[Subs] Straightforward application of the induction hypothesis.

[Const] In this case, e must be a constant so e is a value.

[App] We have e = e1 e2, with ∅ ` e1 : s → t and ∅ ` e2 : s. If one of the ei can be reduced, then e can also be
reduced using the reduction rule [κ].

Otherwise, by using the induction hypothesis we get that both e1 and e2 are values. Moreover, by using the
inversion lemma, we know that e1 has the form λ

∧
i∈I ti→si x.e0. In consequence, e is reducible (the reduction rule

[β] can be applied).
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[Abs+] In this case, e must be a lambda abstraction, so e is a value.

[Abs-] Straightforward application of the induction hypothesis.

[Case] We have e = (e0∈t′) ? e1 : e2. If e0 can be reduced, then e can also be reduced using the reduction rule [τκ].

Otherwise, by using the induction hypothesis we get that e0 is a value. In consequence, e is reducible (the
reduction rule [τi] can be applied).

[Proj] We have e = πie0, t = ti, ∅ ` e0 : t1 × t2. If e0 can be reduced, then e can also be reduced using the rule [κ].

Otherwise, by using the induction hypothesis we get that e0 is a value. Moreover, by using the inversion lemma,
we know that e0 has the form (v1, v2). In consequence, e is reducible (the reduction rule [π] can be applied).

[Pair] We have e = (e1, e2). If one of the ei can be reduced, then e can also be reduced using the reduction rule [κ].

Otherwise, by using the induction hypothesis we get that both e1 and e2 are values. In consequence, e is also a
value.
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Appendix B. Typing Algorithm: Operators, Type Schemes, Proofs of Soundness and Completeness

We give in this section a typing algorithm that uses types schemes and is more general than the one presented
in the main body of the paper (that is, one whose completeness is not limited to positive expressions). We start by
defining how to compute the “ ‚ ” operator and then we define type schemes and the algorithm. We prove that this
algorithm (as well as the one in the main body of the paper) is sound w.r.t. to the declarative type system and that,
under certain restrictions it is also complete.

Appendix B.1. Operator ‚

In this section, we will use the algorithmic definition of ‚ and show that it is equivalent to its descriptive definition.

t '
∨

i∈I

(∧
p∈Pi

(sp → tp)
∧

n∈Ni
¬(s′n → t′n)

)
t ‚ s = dom(t) ∧

∨
i∈I

(∧
{P⊆Pi | s≤

∨
p∈P ¬tp}

(∨
p∈P ¬sp

))
Lemma Appendix B.1 (Correctness of ‚ ). ∀t, s. t ◦ (dom(t) \ (t ‚ s)) ≤ ¬s

Proof. Let t an arrow type. t '
∨

i∈I

(∧
p∈Pi

(sp → tp)
∧

n∈Ni
¬(s′n → t′n)

)
Let s be any type.

Let’s prove that t ◦ (dom(t) \ (t ‚ s)) ≤ ¬s (with the algorithmic definition for ‚ ).
Equivalently, we want (t ◦ (dom(t) \ (t ‚ s))) ∧ s ' 0.

Let u be a type such that u ≤ dom(t) and (t ◦ u) ∧ s ; 0 (if such a type does not exist, we are done).
Let’s show that u ∧ (t ‚ s) ; 0 (we can easily deduce the wanted property from that, by the absurd).
For that, we should prove the following:

∃i ∈ I. u ∧
∧

{P⊆Pi | s≤
∨

p∈P ¬tp}

∨
p∈P

¬sp

 ; 0

From (t ◦ u) ∧ s ; 0, we can take (using the algorithmic definition of ◦) i ∈ I and Q ( Pi such that:

u �
∨
q∈Q

sq and (
∧

p∈Pi\Q

tp) ∧ s ; 0

For any P ⊆ Pi such that s ≤
∨

p∈P ¬tp (equivalently, s ∧
∧

p∈P tp ' 0),
we have P ∩ Q , ∅ (by the absurd, because (

∧
p∈Pi\Q tp) ∧ s ; 0).

Consequently, we have:
∀P ⊆ Pi. s ≤

∨
p∈P

¬tp ⇒
∧
p∈P

sp ≤
∨
q∈Q

sq

We can deduce that: ∨
{P⊆Pi | s≤

∨
p∈P ¬tp}

∧
p∈P

sp

 ≤∨
q∈Q

sq

Moreover, as u �
∨

q∈Q sq, we have u �
∨
{P⊆Pi | s≤

∨
p∈P ¬tp}

(∧
p∈P sp

)
.

This is equivalent to the wanted result.

Lemma Appendix B.2 ( ‚ alternative definition). The following algorithmic definition for ‚ is equivalent to the
previous one:

∀t, s. t ‚ s '
∨
i∈I

 ∨
{P⊆Pi | s�∨

p∈P ¬tp}

dom(t) ∧
∧
p∈Pi

sp ∧
∧

n∈Pi\P

¬sn
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Proof.

t ‚ s = dom(t) ∧
∨
i∈I

 ∧
{P⊆Pi | s≤

∨
p∈P ¬tp}

∨
p∈P

¬sp




'
∨
i∈I

dom(t) ∧
∧

{P⊆Pi | s≤
∨

p∈P ¬tp}

∨
p∈P

¬sp




'
∨
i∈I


dom(t) ∧

∨
p∈Pi

sp

 ∧ ∧
{P⊆Pi | s≤

∨
p∈P ¬tp}

∨
p∈P

¬sp




'
∨
i∈I


dom(t) ∧

∨
p∈Pi

sp ∧
∨

P⊆Pi\{p}

∧
p∈P

sp ∧
∧

n∈(Pi\{p})\P

¬sn



 ∧ ∧

{P⊆Pi | s≤
∨

p∈P ¬tp}

∨
p∈P

¬sp




'
∨
i∈I


dom(t) ∧

∨
p∈Pi

 ∨
P⊆Pi\{p}

sp ∧
∧
p∈P

sp ∧
∧

n∈(Pi\{p})\P

¬sn



 ∧ ∧

{P⊆Pi | s≤
∨

p∈P ¬tp}

∨
p∈P

¬sp




'
∨
i∈I


dom(t) ∧

∨
P⊆Pi
P,∅

∧
p∈P

sp ∧
∧

n∈Pi\P

¬sn


 ∧

∧
{P⊆Pi | s≤

∨
p∈P ¬tp}

∨
p∈P

¬sp




'
∨
i∈I

dom(t) ∧
∨
P⊆Pi
P,∅

∧
p∈P

sp ∧
∧

n∈Pi\P

¬sn

 \ ∨
{P⊆Pi | s≤

∨
p∈P ¬tp}

∧
p∈P

sp




'
∨
i∈I

dom(t) ∧
∨
P⊆Pi
P,∅

∧
p∈P

sp ∧
∧

n∈Pi\P

¬sn

 \ ∨
{P⊆Pi | s≤

∨
p∈P ¬tp}

∧
p∈P

sp ∧
∧

n∈Pi\P

¬sn




'
∨
i∈I

dom(t) ∧
∨

{P⊆Pi | s�∨
p∈P ¬tp}

∧
p∈Pi

sp ∧
∧

n∈Pi\P

¬sn




'
∨
i∈I

 ∨
{P⊆Pi | s�∨

p∈P ¬tp}

dom(t) ∧
∧
p∈Pi

sp ∧
∧

n∈Pi\P

¬sn




Lemma Appendix B.3 (Optimality of ‚ ). Let t, s, two types. For any u such that t ◦ (dom(t) \ u) ≤ ¬s, we have
t ‚ s ≤ u.

Proof. Let t an arrow type. t '
∨

i∈I

(∧
p∈Pi

(sp → tp)
∧

n∈Ni
¬(s′n → t′n)

)
Let s be any type.

Let u be such that t ◦ (dom(t) \ u) ≤ ¬s. We want to prove that t ‚ s ≤ u.
We have:

t ‚ s =
∨
i∈I

 ∨
{P⊆Pi | s�∨

p∈P ¬tp}

ai,P


With:

ai,P = dom(t) ∧
∧
p∈Pi

sp ∧
∧

n∈Pi\P

¬sn
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Let i ∈ I and P ⊆ Pi such that s �
∨

p∈P ¬tp (equivalently, s ∧
∧

p∈P tp ; 0) and such that ai,P ; 0.
For convenience, let a = ai,P. We just have to show that a ≤ u.

By the absurd, let’s suppose that a \ u ; 0 and show that (t ◦ (dom(t) \ u)) ∧ s ; 0.

Let’s recall the algorithmic definition of ◦:

t ◦ (dom(t) \ u) =
∨
i∈I

 ∨
{Q(Pi | dom(t)\u�∨

q∈Q sq}

 ∧
p∈Pi\Q

tp




Let’s take Q = Pi \ P. We just have to prove that:

dom(t) \ u �
∨
q∈Q

sq and s ∧
∧

p∈Pi\Q

tp ; 0

As Pi \ Q = P, we immediatly have s ∧
∧

p∈Pi\Q tp ; 0.
Moreover, we know that a ≤

∧
q∈Q ¬sq (definition of ai,P), so we have:

a ∧
∧
q∈Q

¬sq ' a

Thus:
(a \ u) ∧

∧
q∈Q

¬sq ' (a ∧
∧
q∈Q

¬sq) \ u ' a \ u ; 0

And so:
a \ u �

∨
q∈Q

sq

As dom(t) \ u ≥ a \ u, we can immediatly obtain the remaining inequality.

Theorem Appendix B.4 (Characterization of ‚ ). ∀t, s. t ‚ s = min{u | t ◦ (dom(t) \ u) ≤ ¬s}.

Proof. Immediate consequence of the previous results.

Appendix B.2. Type Schemes

We introduce for the proofs the notion of type schemes and we define a more powerful algorithmic type system
that uses them. It allows us to have a stronger (but still partial) completeness theorem.

The proofs for the algorithmic type system presented in 2.6.3 can be derived from the proofs of this section (see
Section Appendix B.5).

Appendix B.2.1. Type schemes
We introduce the new syntactic category of type schemes which are the terms t inductively produced by the

following grammar.
Type schemes t ::= t | [t → t; · · · ; t → t] | t ©× t | t ©∨ t | Ω

Type schemes denote sets of types, as formally stated by the following definition:

Definition Appendix B.5 (Interpretation of type schemes). We define the function {_} that maps type schemes into
sets of types.

{t} = {s | t ≤ s}
{[ti → si]i=1..n} = {s | ∃s0 =

∧
i=1..n ti → si ∧

∧
j=1..m ¬(t′j → s′j). 0 ; s0 ≤ s}

{t1 ©× t2} = {s | ∃t1 ∈ {t1} ∃t2 ∈ {t2}. t1 × t2 ≤ s}
{t1 ©∨ t2} = {s | ∃t1 ∈ {t1} ∃t2 ∈ {t2}. t1 ∨ t2 ≤ s}
{Ω} = ∅
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Note that {t} is closed under subsumption and intersection and that Ω, which denotes the empty set of types is
different from 0 whose interpretation is the set of all types.

Lemma Appendix B.6 ([19]). Let t be a type scheme and t a type. It is possible to decide the assertion t ∈ {t}, which
we also write t ≤ t.

We can now formally define the relation v ∈ t used in Section 2.4 to define the dynamic semantics of the lan-
guage. First, we associate each (possibly, not well-typed) value to a type scheme representing the best type informa-
tion about the value. By induction on the definition of values: typeof(c) = bc, typeof(λ∧i∈I si→ti x.e) = [si → ti]i∈I ,
typeof((v1, v2)) = typeof(v1) ©× typeof(v1). Then we have v ∈ t ⇐⇒def typeof(v) ≤ t.

We also need to perform intersections of type schemes so as to intersect the static type of an expression (i.e., the
one deduced by conventional rules) with the one deduced by occurrence typing (i.e., the one derived by `Path). For
our algorithmic system (see [EnvA] in Section 2.6.3) all we need to define is the intersection of a type scheme with a
type:

Lemma Appendix B.7 ([19]). Let t be a type scheme and t a type. We can compute a type scheme, written t ©∧ t,
such that {t ©∧ t} = {s | ∃t′ ∈ {t}. t ∧ t′ ≤ s}

Finally, given a type scheme t it is straightforward to choose in its interpretation a type Repr(t) which serves as
the canonical representative of the set (i.e., Repr(t) ∈ {t}):

Definition Appendix B.8 (Representative). We define a function Repr(_) that maps every non-empty type scheme
into a type, representative of the set of types denoted by the scheme.

Repr(t) = t Repr(t1 ©× t2) = Repr(t1) × Repr(t2)
Repr([ti → si]i∈I) =

∧
i∈I ti → si Repr(t1 ©∨ t2) = Repr(t1) ∨ Repr(t2)

Repr(Ω) undefined

Type schemes are already present in the theory of semantic subtyping presented in [19, Section 6.11]. In particular,
it explains how the operators such as ◦, π1(t) and π2(t) can be extended to type schemes (see also [6, §4.4] for a detailed
description).

Appendix B.3. Algorithmic type system with type schemes

We present here a refinement of the algorithmic type system presented in 2.6.3 that associates to an expression
a type scheme instead of a regular type. This allows to type expressions more precisely and thus to have a more
powerful (but still partial) completeness theorem in regards to the declarative type system.

The results about this new type system will be used in Appendix B.5 in order to obtain a soundness and com-
pleteness theorem for the algorithmic type system presented in 2.6.3.
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[EfqAts ]
Γ, (e : 0) Àts e′ : 0

with priority over
all the other rules [VarAts ]

Γ Àts x : Γ(x)
x ∈ dom(Γ)

[EnvAts ]
Γ \ {e} Àts e : t

Γ Àts e : Γ(e) ©∧ t
e ∈ dom(Γ) and e not a variable [ConstAts ]

Γ Àts c : bc
c < dom(Γ)

[AbsAts ]
Γ, x : si Àts e : t′i t′i ≤ ti

Γ Àts λ
∧i∈I si→ti x.e : [si → ti]i∈I

λ∧i∈I si→ti x.e < dom(Γ)

[AppAts ]
Γ Àts e1 : t1 Γ Àts e2 : t2 t1 ≤ 0→ 1 t2 ≤ dom(t1)

Γ Àts e1e2 : t1 ◦ t2
e1e2 < dom(Γ)

[CaseAts ]
Γ Àts e : t0 Refinee,t(Γ) Àts e1 : t1 Refinee,¬t(Γ) Àts e2 : t2

Γ Àts (e∈t) ? e1 : e2 : t1 ©∨ t2
(e∈t) ?e1:e2 < dom(Γ)

[ProjAts ]
Γ Àts e : t t ≤ 1 × 1

Γ Àts πie : πi(t)
πie < dom(Γ) [PairAts ]

Γ Àts e1 : t1 Γ Àts e2 : t2

Γ Àts (e1, e2) : t1 ©× t2
(e1, e2) < dom(Γ)

typeofΓ(e) =

{
t if Γ Àts e : t
Ω otherwise

ConstrΓ,e,t(ε) = t (B.1)
ConstrΓ,e,t($.0) = ¬(IntertypeΓ,e,t($.1)→ ¬IntertypeΓ,e,t($)) (B.2)
ConstrΓ,e,t($.1) = Repr(typeofΓ(e↓$.0)) ‚ IntertypeΓ,e,t($) (B.3)
ConstrΓ,e,t($.l) = π1(IntertypeΓ,e,t($)) (B.4)
ConstrΓ,e,t($.r) = π2(IntertypeΓ,e,t($)) (B.5)
ConstrΓ,e,t($. f ) = IntertypeΓ,e,t($) × 1 (B.6)
ConstrΓ,e,t($.s) = 1 × IntertypeΓ,e,t($) (B.7)
IntertypeΓ,e,t($) = Repr(ConstrΓ,e,t($) ©∧ typeofΓ(e↓$)) (B.8)

RefineStepe,t(Γ) = Γ′ with:
dom(Γ′) = dom(Γ) ∪ {e′ | ∃$. e↓$ ≡ e′}

Γ′(e′) =

{ ∧
{$ | e↓$≡e′} IntertypeΓ,e,t($) if ∃$. e↓$ ≡ e′

Γ(e′) otherwise

Refinee,t(Γ) = RefineStepe,t
no (Γ) with n a global parameter

Appendix B.4. Proofs for the algorithmic type system with type schemes

This section is about the algorithmic type system with type schemes (soundness and some completeness proper-
ties).
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Note that, now that we have type schemes, use a different but more convenient definition for typeofΓ(e) that the
one in Section 2.6.2:

typeofΓ(e) =

{
t if Γ Àts e : t
Ω otherwise

In this way, typeofΓ(e) is always defined but is equal to Ω when e is not well-typed in Γ.
We will reuse the definitions and notations introduced in the previous proofs. In particular, we only consider

well-formed environments, as in the proofs of the declarative type system.

Appendix B.4.1. Soundness
Theorem Appendix B.9 (Soundness of the algorithm). For every Γ, e, t, no, if typeofΓ(e) ≤ t, then we can derive
Γ ` e : t.

More precisely:

∀Γ, e, t. typeofΓ(e) ≤ t ⇒ Γ ` e : t

∀Γ, e, t, $. typeofΓ(e) , Ω⇒`PathΓ,e,t $ : IntertypeΓ,e,t($)

∀Γ, e, t. typeofΓ(e) , Ω⇒ Γ `Enve,t Refinee,t(Γ)

Proof. We proceed by induction over the structure of e and, for two identical e, on the domain of Γ (with the inclusion
order).

Let’s prove the first property. Let t such that {typeofΓ(e)} ≤ t.
If Γ = ⊥, we trivially have Γ ` e : t with the rule [Efq]. Let’s assume Γ , ⊥.
If e = x is a variable, then the last rule used is [VarAts ]. We can derive Γ ` x : t by using the rule [Env] and [Subs].

So let’s assume that e is not a variable.
If e ∈ dom(Γ), then the last rule used is [EnvAts ]. Let t′ ∈ {t} such that t′∧Γ(e) ≤ t. The induction hypothesis gives

Γ \ {e} ` e : t′ (the premise uses the same e but the domain of Γ is strictly smaller). Thus, we can build a derivation
Γ ` e : t by using the rules [Subs], [Inter], [Env] and the derivation Γ \ {e} ` e : t′.

Now, let’s suppose that e < dom(Γ).

e = c The last rule is [ConstAts ]. We derive easily Γ ` c : t with [Const] and [Subs].

e = x Already treated.

e = λ
∧

i∈I ti→si x.e′ The last rule is [AbsAts ]. We have
∧

i∈I ti → si ≤ t. Using the definition of type schemes, let
t′ =

∧
i∈I ti → si ∧

∧
j∈J ¬t′j → s′j such that 0 , t′ ≤ t. The induction hypothesis gives, for all i ∈ I,

Γ, x : si ` e′ : ti.

Thus, we can derive Γ ` e :
∧

i∈I ti → si using the rule [Abs+], and with [Inter] and [Abs-] we can derive
Γ ` e : t′. We can conclude by applying [Subs].

e = e1e2 The last rule is [AppAts ]. We have t1 ◦ t2 ≤ t. Thus, let t1 and t2 such that t1 ≤ t1, t2 ≤ t2 and t1 ◦ t2 ≤ t. We
know, according to the descriptive definition of ◦, that there exists s ≤ t such that t1 ≤ t2 → s.

By using the induction hypothesis, we have Γ ` e1 : t1 and Γ ` e2 : t2. We can thus derive Γ ` e1 : t2 → s using
[Subs], and together with Γ ` e2 : t2 it gives Γ ` e1 e2 : s with [App]. We conclude with [Subs].

e = πie′ The last rule is [ProjAts ]. We have πit ≤ t. Thus, let t′ such that t ≤ t′ and πit′ ≤ t. We know, according to
the descriptive definition of πi, that there exists ti ≤ t such that t′ ≤ 1 × ti (for i = 2) or t′ ≤ ti × 1 (for i = 1).

By using the induction hypothesis, we have Γ ` e′ : t′, and thus we easily conclude using [Subs] and [Proj] (for
instance for the case i = 1, we can derive Γ ` e′ : ti × 1 with [Subs] and then use [Proj]).

e = (e1, e2) The last rule is [PairAts ]. We conclude easily with the induction hypothesis and the rules [Subs] and [Pair].
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e = (e0∈t) ? e1 : e2 The last rule is [CaseAts ]. We conclude easily with the induction hypothesis and the rules [Subs]
and [Case] (for the application of [Case], t′ must be taken equal to t1 ∨ t2 with t1 and t2 such that t1 ≤ t1, t2 ≤ t2
and t1 ∨ t2 ≤ t).

Now, let’s prove the second property. We perform a (nested) induction on $.
Recall that IntertypeΓ,e,t($) = Repr(ConstrΓ,e,t($) ©∧ typeofΓ(e↓$)).
For any t′ such that typeofΓ(e↓$) ≤ t′, we can easily derive `Path

Γ,e,t $ : t′ by using the outer induction hypothesis
(the first property that we have proved above) and the rule [PTypeof].

Now we have to derive `Path
Γ,e,t $ : ConstrΓ,e,t($) (then it will be easy to conclude using the rule [PInter]).

$ = ε We use the rule [PEps].

$ = $′.1 Let’s note f = Repr(typeofΓ(e↓$′.0)), s = IntertypeΓ,e,t($
′) and tres = f ‚ s.

By using the outer and inner induction hypotheses, we can derive `Path
Γ,e,t $

′.0 : f and `Path
Γ,e,t $

′ : s.

By using the descriptive definition of ‚ , we have t′ = f ◦ (dom( f ) \ tres) ≤ ¬s.

Moreover, by using the descriptive definition of ◦ on t′, we have f ≤ (dom( f ) \ tres)→ t′.

As t′ ≤ ¬s, it gives f ≤ (dom( f ) \ tres)→ ¬s.

Let’s note t1 = dom( f ) \ tres and t2 = ¬s. The above inequality can be rewritten f ≤ t1 → t2.

Thus, by using [PSubs] on the derivation `Path
Γ,e,t $

′.0 : f , we can derive `Path
Γ,e,t $

′.0 : t1 → t2. We have:

• t2 ∧ s ' 0 (as t2 = ¬s)

• ¬t1 = tres ∨ ¬dom( f ) = tres

In consequence, we can conclude by applying the rule [PAppR] with the premises `Path
Γ,e,t $′.0 : t1 → t2 and

`Path
Γ,e,t $

′ : s.

$ = $′.0 By using the inner induction hypothesis and the previous case we’ve just proved, we can derive `Path
Γ,e,t $

′ :
IntertypeΓ,e,t($

′) and `Path
Γ,e,t $

′.1 : IntertypeΓ,e,t($
′.1). Hence we can apply [PAppL].

$ = $′.l Let’s note t1 = π1IntertypeΓ,e,t($
′). According to the descriptive definition of π1, we have IntertypeΓ,e,t($

′) ≤
t1 × 1.

The inner induction hypothesis gives `Path
Γ,e,t $

′ : IntertypeΓ,e,t($
′), and thus using the rule [PSubs] we can derive

`Path
Γ,e,t $

′ : t1 × 1. We can conclude just by applying the rule [PPairL] to this premise.

$ = $′.r This case is similar to the previous.

$ = $′. f The inner induction hypothesis gives `Path
Γ,e,t $

′ : IntertypeΓ,e,t($
′), so we can conclude by applying [PFst].

$ = $′.s The inner induction hypothesis gives `Path
Γ,e,t $

′ : IntertypeΓ,e,t($
′), so we can conclude by applying [PSnd].

Finally, let’s prove the third property. Let Γ′ = Refinee,t(Γ) = RefineStepe,t
n0 (Γ). We want to show that Γ `Enve,t Γ′

is derivable.
First, let’s note that `Enve,t is transitive: if Γ `Enve,t Γ′ and Γ′ `Enve,t Γ′′, then Γ `Enve,t Γ′′. The proof is quite easy: we

can just start from the derivation of Γ `Enve,t Γ′, and we add at the end a slightly modified version of the derivation of
Γ′ `Enve,t Γ′′ where:

• the initial [Base] rule has been removed in order to be able to do the junction,

• all the Γ′ at the left of `Enve,t are replaced by Γ (the proof is still valid as this Γ′ at the left is never used in any
rule)
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Thanks to this property, we can suppose that n0 = 1 (and so Γ′ = RefineStepe,t(Γ)). If it is not the case, we just
have to proceed by induction on n0 and use the transitivity property.

Let’s build a derivation for Γ `Enve,t Γ′.
By using the proof of the second property on e that we’ve done just before, we get: ∀$. `Path

Γ,e,t $ : IntertypeΓ,e,t($).
Let’s recall a monotonicity property: for any Γ1 and Γ2 such that Γ2 ≤ Γ1, we have ∀t′. `Path

Γ1,e,t
$ : t′ ⇒`Path

Γ2,e,t
$ : t′.

Moreover, when we also have e↓$ ∈ dom(Γ2), we can derive `Path
Γ2,e,t

$ : t′ ∧ Γ2(e↓$) (just by adding a [PInter] rule
with a [PTypeof] and a [Env]).

Hence, we can apply successively a [Path] rule for all valid $ in e, with the following premises (Γ$ being the
previous environment, that trivially verifies Γ$ ≤ Γ):

If e↓$ ∈ dom(Γ$) `Path
Γ$,e,t

$ : IntertypeΓ,e,t($) ∧ Γ$(e↓$) Γ `Enve,t Γ$

Otherwise `Path
Γ$,e,t

$ : IntertypeΓ,e,t($) Γ `Enve,t Γ$

At the end, it gives the judgement Γ `Enve,t Γ′, so it concludes the proof.

Appendix B.4.2. Completeness
Definition Appendix B.10 (Bottom environment). Let Γ an environment.
Γ is bottom (noted Γ = ⊥) iff ∃e ∈ dom(Γ). Γ(e) ' 0.

Definition Appendix B.11 (Algorithmic (pre)order on environments). Let Γ and Γ′ two environments. We write
Γ′ ≤A Γ iff:

Γ′ = ⊥ or (Γ , ⊥ and ∀e ∈ dom(Γ). typeofΓ(e) ≤ Γ(e))

For an expression e, we write Γ′ ≤e
A

Γ iff:

Γ′ = ⊥ or (Γ , ⊥ and ∀e′ ∈ dom(Γ) such that e′ is a subexpression of e. typeofΓ(e′) ≤ Γ(e′))

Note that if Γ′ ≤A Γ, then Γ′ ≤e
A

Γ for any e.

Definition Appendix B.12 (Order relation for type schemes). Let t1 and t2 two type schemes. We write t2 ≤ t1 iff
{t1} ⊆ {t2}.

Lemma Appendix B.13. When well-defined, the following inequalities hold:

∀t, t. Repr(t ©∧ t) ≤ t ∧ Repr(t)
∀t1, t2, t1, t2. t1 ≤ t2 and t1 ≤ t2 and Repr(t1) ≤ Repr(t2)⇒ Repr(t1 ©∧ t1) ≤ Repr(t2 ©∧ t2)
∀t1, t2. Repr(t1 ◦ t2) ≤ Repr(t1) ◦ Repr(t2)

Proof. Straightfoward, by induction on the structure of t.

Lemma Appendix B.14 (Monotonicity of the algorithm). Let Γ, Γ′ and e such that Γ′ ≤e
A

Γ and typeofΓ(e) , Ω. We
have:

typeofΓ′ (e) ≤ typeofΓ(e) and Repr(typeofΓ′ (e)) ≤ Repr(typeofΓ(e))
∀t, $. IntertypeΓ′,e,t($) ≤ IntertypeΓ,e,t($)
∀t. Refinee,t(Γ′) ≤e

A
Refinee,t(Γ)

Proof. We proceed by induction over the structure of e and, for two identical e, on the domains of Γ and Γ′ (with the
lexicographical inclusion order).

Let’s prove the first property: typeofΓ′ (e) ≤ typeofΓ(e) and Repr(typeofΓ′ (e)) ≤ Repr(typeofΓ(e)). We will focus
on showing typeofΓ′ (e) ≤ typeofΓ(e).
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The property Repr(typeofΓ′ (e)) ≤ Repr(typeofΓ(e)) can be proved in a very similar way, by using the fact that
operators on type schemes like ©∧ or ◦ are also monotone. (Note that the only rule that introduces the type scheme
constructor [_] is [AbsAts ].)

If Γ′ = ⊥ we can conclude directly with the rule [EfqAts ]. So let’s assume Γ′ , ⊥ and Γ , ⊥ (as Γ = ⊥ ⇒ Γ′ = ⊥

by definition of ≤e
A
).

If e = x is a variable, then the last rule used in typeofΓ(e) and typeofΓ′ (e) is [VarAts ]. As Γ′ ≤e
A

Γ, we have
Γ′(e) ≤ Γ(e) and thus we can conclude with the rule [VarAts ]. So let’s assume that e is not a variable.

If e ∈ dom(Γ), then the last rule used in typeofΓ(e) is [EnvAts ]. As Γ′ ≤e
A

Γ, we have typeofΓ′ (e) ≤ Γ(e). Moreover,
by applying the induction hypothesis, we get typeofΓ′\{e}(e) ≤ typeofΓ\{e}(e) (we can easily verify that Γ′\{e} ≤e

A
Γ\{e}).

• If we have e ∈ dom(Γ′), we have according to the rule [EnvAts ] typeofΓ′ (e) ≤ typeofΓ′\{e}(e) ≤ typeofΓ\{e}(e).

Together with typeofΓ′ (e) ≤ Γ(e), we deduce typeofΓ′ (e) ≤ Γ(e) ©∧ typeofΓ\{e}(e) = typeofΓ(e).

• Otherwise, we have e < dom(Γ′). Thus typeofΓ′ (e) = typeofΓ′\{e}(e) ≤ Γ(e) ©∧ typeofΓ\{e}(e) = typeofΓ(e).

If e < dom(Γ) and e ∈ dom(Γ′), the last rule is [EnvAts ] for typeofΓ′ (e). As Γ′ \ {e} ≤e
A

Γ \ {e} = Γ, we have
typeofΓ′ (e) ≤ typeofΓ′\{e}(e) ≤ typeofΓ(e) by induction hypothesis.

Thus, let’s suppose that e < dom(Γ) and e < dom(Γ′). From now we know that the last rule in the derivation of
typeofΓ(e) and typeofΓ′ (e) (if any) is the same.

e = c The last rule is [ConstAts ]. It does not depend on Γ so this case is trivial.

e = x Already treated.

e = λ
∧

i∈I ti→si x.e′ The last rule is [AbsAts ]. We have ∀i ∈ I. Γ′, (x : si) ≤e′
A

Γ, (x : si) (quite straightforward) so by
applying the induction hypothesis we have ∀i ∈ I. typeofΓ′,(x:si)(e

′) ≤ typeofΓ,(x:si)(e
′).

e = e1e2 The last rule is [AppAts ]. We can conclude immediately by using the induction hypothesis and noticing that
◦ is monotonic for both of its arguments.

e = πie′ The last rule is [ProjAts ]. We can conclude immediately by using the induction hypothesis and noticing that
πi is monotonic.

e = (e1, e2) The last rule is [PairAts ]. We can conclude immediately by using the induction hypothesis.

e = (e0∈t) ? e1 : e2 The last rule is [CaseAts ]. By using the induction hypothesis we get Refinee0,t(Γ
′) ≤e0

A Refinee0,t(Γ).
We also have Γ′ ≤

e1
A Γ (as e1 is a subexpression of e).

From those two properties, let’s show that we can deduce Refinee0,t(Γ
′) ≤e1

A Refinee0,t(Γ):

Let e′ ∈ dom(Refinee0,t(Γ)) a subexpression of e1.

• If e′ is also a subexpression of e0, we can directly deduce
typeofRefinee0 ,t(Γ)′ (e

′) ≤ (Refinee0,t(Γ))(e′) by using Refinee0,t(Γ
′) ≤e0

A Refinee0,t(Γ).

• Otherwise, as Refinee0,t(_) is reductive, we have Refinee0,t(Γ
′) ≤A Γ′ and thus by using the induction

hypothesis typeofRefinee0 ,t(Γ
′)(e
′) ≤ typeofΓ′ (e

′). We also have typeofΓ′ (e
′) ≤ Γ(e′) by using Γ′ ≤

e1
A Γ. We

deduce typeofRefinee0 ,t(Γ
′)(e
′) ≤ Γ(e′) = (Refinee0,t(Γ))(e′).

So we have Refinee0,t(Γ
′) ≤e1

A Refinee0,t(Γ). Consequently, we can apply the induction hypothesis again to get
typeofRefinee0 ,t(Γ

′)(e1) ≤ typeofRefinee0 ,t(Γ)(e1).

We proceed the same way for the last premise.

Now, let’s prove the second property. We perform a (nested) induction on $.
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Recall that we have ∀t1, t2, t1, t2. t1 ≤ t2 and t1 ≤ t2 and Repr(t1) ≤ Repr(t2) ⇒ Repr(t1 ©∧ t1) ≤ Repr(t2 ©∧ t2)
(lemma above).

Thus, in order to prove Repr(ConstrΓ′,e,t($) ©∧ typeofΓ′ (e↓$)) ≤ Repr(ConstrΓ,e,t($) ©∧ typeofΓ(e↓$)), we can
prove the following:

ConstrΓ′,e,t($) ≤ ConstrΓ,e,t($)
typeofΓ′ (e↓$) ≤ typeofΓ(e↓$)
Repr(typeofΓ′ (e↓$)) ≤ Repr(typeofΓ(e↓$))

The two last inequalities can be proved with the outer induction hypothesis (for $ = ε we use the proof of the first
property above).

Thus we just have to prove that ConstrΓ′,e,t($) ≤ ConstrΓ,e,t($). The only case that is interesting is the case
$ = $′.1.

First, we can notice that the ‚ operator is monotonic for its second argument (consequence of its declarative
definition).

Secondly, let’s show that for any function types t1 ≤ t2, and for any type t′, we have (t1 ‚ t′) ∧ dom(t2) ≤ t2 ‚ t′.
By the absurd, let’s suppose it is not true. Let’s note t′′ = (t1 ‚ t′) ∧ dom(t2). Then we have t′′ ≤ dom(t2) ≤ dom(t1)
and t2 ≤ t′′ → t′ and t1 � t′′ → t′, which contradicts t1 ≤ t2.

Let’s note t1 = Repr(typeofΓ′ (e↓$
′.0)) and t2 = Repr(typeofΓ(e↓$′.0)) and t′ = IntertypeΓ,e,t($

′). As e is
well-typed, and using the inner induction hypothesis, we have Repr(typeofΓ′ (e↓$

′.1)) ≤ Repr(typeofΓ(e↓$′.1)) ≤
dom(t2).
Thus, using this property, we get:

(t1 ‚ t′) ∧ Repr(typeofΓ′ (e↓$
′.1))

≤(t2 ‚ t′) ∧ Repr(typeofΓ(e↓$′.1))

Then, using the monotonicity of the second argument of ‚ and the outer induction hypothesis:

(t1 ‚ IntertypeΓ′,e,t($
′)) ∧ Repr(typeofΓ′ (e↓$

′.1))
≤(t2 ‚ IntertypeΓ,e,t($

′)) ∧ Repr(typeofΓ(e↓$′.1))

Finally, we must prove the third property.
It is straightforward by using the previous result and the induction hypothesis:
∀e′ s.t. ∃$. e↓$ ≡ e′, we get

∧
{$ | e↓$≡e′} IntertypeΓ′,e,t($) ≤

∧
{$ | e↓$≡e′} IntertypeΓ,e,t($).

The rest follows.

Definition Appendix B.15 (Positive derivation). A derivation of the declarative type system is said positive iff it does
not contain any rule [Abs-].

Theorem Appendix B.16 (Completeness for positive derivations). For every Γ, e, t such that we have a positive
derivation of Γ ` e : t, there exists a global parameter no with which Repr(typeofΓ(e)) ≤ t.

More precisely:

∀Γ, e, t. Γ ` e : t has a positive derivation ⇒ Repr(typeofΓ(e)) ≤ t

∀Γ,Γ′, e, t. Γ `Enve,t Γ′ has a positive derivation ⇒ Refinee,t(Γ) ≤A Γ′ (for no large enough)

Proof. We proceed by induction on the derivation.
Let’s prove the first property. We have a positive derivation of Γ ` e : t.
If Γ = ⊥, we can conclude directly using [EfqAts ]. Thus, let’s suppose Γ , ⊥.
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If e = x is a variable, then the derivation only uses [Env], [Inter] and [Subs]. We can easily conclude just be using
[VarAts ]. Thus, let’s suppose e is not a variable.

If e ∈ dom(Γ), we can have the rule [Env] applied to e in our derivation, but in this case there can only be [Inter]
and [Subs] after it (not [Abs-] as we have a positive derivation). Thus, our derivation contains a derivation of Γ ` e : t′

that does not use the rule [Env] on e and such that t′∧Γ(e) ≤ t (actually, it is possible for our derivation to typecheck e
only using the rule [Env]: in this case we can take t′ = 1 and use the fact that Γ is well-formed). Hence, we can build
a positive derivation for Γ \ {e} ` e : t′. By using the induction hypothesis we deduce that Repr(typeofΓ\{e}(e)) ≤ t′.
Thus, by looking at the rule [EnvAts ], we deduce Repr(typeofΓ(e)) ≤ Γ(e) ∧ Repr(typeofΓ\{e}(e)) ≤ t. It concludes this
case, so let’s assume e < dom(Γ).

Now we analyze the last rule of the derivation:

[Env] Impossible case (e < dom(Γ)).

[Inter] By using the induction hypothesis we get Repr(typeofΓ(e)) ≤ t1 and Repr(typeofΓ(e)) ≤ t2. Thus, we have
Repr(typeofΓ(e)) ≤ t1 ∧ t2.

[Subs] Trivial using the induction hypothesis.

[Const] We know that the derivation of typeofΓ(e) (if any) ends with the rule [ConstAts ]. Thus this case is trivial.

[App] We know that the derivation of typeofΓ(e) (if any) ends with the rule [AppAts ]. Let t1 = typeofΓ(e1) and
t2 = typeofΓ(e2). With the induction hypothesis we have Repr(t1) ≤ t1 → t2 and Repr(t2) ≤ t1, with t2 = t.
According to the descriptive definition of ◦, we have Repr(t1) ◦ Repr(t2) ≤ t1 → t2 ◦ t1 ≤ t2. As we also have
Repr(t1 ◦ t2) ≤ Repr(t1) ◦ Repr(t2), we can conclude that typeofΓ(e) ≤ t2 = t.

[Abs+] We know that the derivation of typeofΓ(e) (if any) ends with the rule [AbsAts ]. This case is straightforward
using the induction hypothesis.

[Abs-] This case is impossible (the derivation is positive).

[Case] We know that the derivation of typeofΓ(e) (if any) ends with the rule [CaseAts ]. By using the induction hy-
pothesis and the monotonicity lemma, we get Repr(t1) ≤ t and Repr(t2) ≤ t. So we have Repr(t1 ©∨ t2) =

Repr(t1) ∨ Repr(t2) ≤ t.

[Proj] Quite similar to the case [App].

[Pair] We know that the derivation of typeofΓ(e) (if any) ends with the rule [PairAts ]. We just use the induction
hypothesis and the fact that Repr(t1 ©× t2) = Repr(t1) × Repr(t2).

Now, let’s prove the second property. We have a positive derivation of Γ `Enve,t Γ′.

[Base] Any value of no will give Refinee,t(Γ) ≤A Γ, even no = 0.

[Path] We have Γ′ = Γ1, (e↓$ : t′). By applying the induction hypothesis on the premise Γ `Enve,t Γ1, we have
RefineStepn

e,t(Γ) = Γ2 with Γ2 ≤A Γ1 for a certain n.

We now proceed by induction on the derivation `Path
Γ1,e,t

$ : t′ to show that we can obtain IntertypeΓ′′,e,t($) ≤ t′

with Γ′′ = RefineStepn′
e,t(Γ2) for a certain n′. It is then easy to conclude by taking no = n + n′.

[PSubs] Trivial using the induction hypothesis.
[PInter] By using the induction hypothesis we get:

IntertypeΓ′′1 ,e,t
($) ≤ t1

IntertypeΓ′′2 ,e,t
($) ≤ t2

RefineStepn1
e,t(Γ1) ≤A Γ′′1

RefineStepn2
e,t(Γ2) ≤A Γ′′2

58



By taking n′ = max(n1, n2), we can have Γ′′ = RefineStepn′
e,t(Γ2) with Γ′′ ≤A Γ′′1 and Γ′′ ≤A Γ′′2 . Thus, by

using the monotonicity lemma, we can obtain IntertypeΓ′′,e,t($) ≤ t1 ∧ t2 = t′.

[PTypeof] By using the outer induction hypothesis we get Repr(typeofΓ2
(e↓$)) ≤ t′. Moreover we have

IntertypeΓ2,e,t($) ≤ Repr(typeofΓ2
(e↓$)) (by definition of Intertype), thus we can conclude directly.

[PEps] Trivial.

[PAppR] By using the induction hypothesis we get:

IntertypeΓ′′1 ,e,t
($.0) ≤ t1 → t2

IntertypeΓ′′2 ,e,t
($) ≤ t′2

t2 ∧ t′2 ' 0

RefineStepn1
e,t(Γ1) ≤A Γ′′1

RefineStepn2
e,t(Γ2) ≤A Γ′′2

By taking n′ = max(n1, n2) + 1, we can have Γ′′ = RefineStepn′
e,t(Γ2) with Γ′′ ≤A RefineStepe,t(Γ′′1 ) and

Γ′′ ≤A RefineStepe,t(Γ′′2 ).
In consequence, we have Repr(typeofΓ′′ (e↓$.0)) ≤ IntertypeΓ′′1 ,e,t

($.0) ≤ t1 → t2 (by definition of
RefineStepe,t). We also have, by monotonicity, IntertypeΓ′′,e,t($) ≤ t′2.
As t2 ∧ t′2 ' 0, we have:

(t1 → t2) ◦ (dom(t1 → t2) \ (¬t1))
' (t1 → t2) ◦ t1 ' t2 ≤ ¬t′2

Thus, by using the declarative definition of ‚ , we know that (t1 → t2) ‚ t′2 ≤ ¬t1.
According to the properties on ‚ that we have proved in the proof of the monotonicity lemma, we can
deduce:

t1 ∧ Repr(typeofΓ′′ (e↓$.0)) ‚ IntertypeΓ′′,e,t($)
≤ t1 ∧ (t1 → t2) ‚ t′2 ≤ t1 ∧ ¬t1 ' 0

And thus Repr(typeofΓ′′ (e↓$.0)) ‚ IntertypeΓ′′,e,t($) ≤ ¬t1.
It concludes this case.

[PAppL] By using the induction hypothesis we get:

IntertypeΓ′′1 ,e,t
($.1) ≤ t1

IntertypeΓ′′2 ,e,t
($) ≤ t2

RefineStepn1
e,t(Γ1) ≤A Γ′′1

RefineStepn2
e,t(Γ2) ≤A Γ′′2

By taking n′ = max(n1, n2), we can have Γ′′ = RefineStepn′
e,t(Γ2) with Γ′′ ≤A Γ′′1 and Γ′′ ≤A Γ′′2 . Thus, by

using the monotonicity lemma, we can obtain IntertypeΓ′′,e,t($.0) ≤ ¬(t1 → ¬t2) = t′.

[PPairL] Quite straightforward using the induction hypothesis and the descriptive definition of π1.

[PPairR] Quite straightforward using the induction hypothesis and the descriptive definition of π2.

[PFst] Trivial using the induction hypothesis.

[PSnd] Trivial using the induction hypothesis.
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From this result, we will now prove a stronger but more complex completeness theorem. We were not able to prove
full completeness, just a partial form of it. Indeed, the use of nested [PAppL] yields a precision that the algorithm loses
by applying Repr() in the definition of Constr. Completeness is recovered by forbidding nested negated arrows on
the left-hand side of negated arrows.

Definition Appendix B.17 (Rank-0 negated derivation). A derivation of the declarative type system is said rank-0
negated iff any application of [PAppL] has a positive derivation as first premise (`Path

Γ,e,t $.1 : t1).

The use of this terminology is borrowed from the ranking of higher-order types, since, intuitively, it corresponds to
typing a language in which in the types used in dynamic tests, a negated arrow never occurs on the left-hand side of
another negated arrow.

Lemma Appendix B.18. If e is an application, then typeofΓ(e) does not contain any constructor [ · · · ]. Consequently,
we have Repr(typeofΓ(e)) ' typeofΓ(e).

Proof. By case analysis: neither [EfqAts ], [EnvAts ] nor [AppAts ] can produce a type containing a constructor [ · · · ].

Theorem Appendix B.19 (Completeness for rank-0 negated derivations). For every Γ, e, t such that we have a rank-0
negated derivation of Γ ` e : t, there exists a global parameter no with which typeofΓ(e) ≤ t.

More precisely:

∀Γ, e, t. Γ ` e : t has a rank-0 negated derivation ⇒ typeofΓ(e) ≤ t

∀Γ,Γ′, e, t. Γ `Enve,t Γ′ has a rank-0 negated derivation ⇒ Refinee,t(Γ) ≤A Γ′ (for no large enough)

Proof. This proof is done by induction. It is quite similar to that of the completeness for positive derivations. In
consequence, we will only detail cases that are quite different from those of the previous proof.

Let’s begin with the first property. We have a rank-0 negated derivation of Γ ` e : t. We want to show typeofΓ(e) ≤ t
(note that this is weaker than showing Repr(typeofΓ(e)) ≤ t).

As in the previous proof, we can suppose that Γ , ⊥ and that e is not a variable.
The case e ∈ dom(Γ) is also very similar, but there is an additional case to consider: the rule [Abs-] could possibly

be used after a rule [Env] applied on e. However, this case can easily be eliminated by changing the premise of this
[Abs-] with another one that does not use the rule [Env] on e (the type of the premise does not matter for the rule
[Abs-], even 1 suffices). Thus let’s assume e < dom(Γ).

Now we analyze the last rule of the derivation (only the cases that are not similar are shown):

[Abs-] We know that the derivation of typeofΓ(e) (if any) ends with the rule [AbsAts ]. Moreover, by using the induction
hypothesis on the premise, we know that typeofΓ(e) , Ω. Thus we have typeofΓ(e) ≤ ¬(t1 → t2) = t (because
every type ¬(s′ → t′) such that ¬(s′ → t′) ∧

∧
i∈I si → ti , 0 is in {[si → ti]}).

Now let’s prove the second property. We have a rank-0 negated derivation of Γ `Enve,t Γ′.

[Base] Any value of no will give Refinee,t(Γ) ≤A Γ, even no = 0.

[Path] We have Γ′ = Γ1, (e↓$ : t′).

As in the previous proof of completeness, by applying the induction hypothesis on the premise Γ `Enve,t Γ1, we
have RefineStepn

e,t(Γ) = Γ2 with Γ2 ≤A Γ1 for a certain n.

However, this time, we can’t prove IntertypeΓ′′,e,t($) ≤ t′ with Γ′′ = RefineStepn′
e,t(Γ2) for a certain n′:

the induction hypothesis is weaker than in the previous proof (we don’t have Repr(typeofΓ(e)) ≤ t but only
typeofΓ(e) ≤ t).

Instead, we will prove by induction on the derivation `Path
Γ1,e,t

$ : t′ that IntertypeΓ′′,e,t($) ©∧ typeofΓ′′ (e↓$) ≤ t′.
It suffices to conclude in the same way as in the previous proof: by taking no = n + n′, it ensures that our final
environment Γno verifies typeofΓ(e↓$)no ≤ t′ and thus we have Γno ≤ Γ′ (given that Repr(0) = 0, we also easily
verify that if Γ′ = ⊥ ⇒ Γno = ⊥).
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[PSubs] Trivial using the induction hypothesis.
[PInter] Quite similar to the previous proof (the induction hypothesis is weaker, but it works the same way).
[PTypeof] By using the outer induction hypothesis we get typeofΓ2

(e↓$) ≤ t′ so it is trivial.
[PEps] Trivial.
[PAppR] By using the induction hypothesis, we get:

IntertypeΓ′′1 ,e,t
($.0) ©∧ typeofΓ′′1 (e↓$.0) ≤ t1 → t2

IntertypeΓ′′2 ,e,t
($) ©∧ typeofΓ′′2 (e↓$) ≤ t′2

t2 ∧ t′2 ' 0

RefineStepn1
e,t(Γ1) ≤A Γ′′1

RefineStepn2
e,t(Γ2) ≤A Γ′′2

Moreover, as e↓$ is an application, we can use the lemma above to deduce IntertypeΓ′′2 ,e,t
($)©∧typeofΓ′′2 (e↓$) =

IntertypeΓ′′2 ,e,t
($) (see definition of Intertype).

Thus we have IntertypeΓ′′2 ,e,t
($) ≤ t′2.

We also have IntertypeΓ′′1 ,e,t
($.0) ≤ Repr(IntertypeΓ′′1 ,e,t

($.0) ©∧ typeofΓ′′1 (e↓$.0)) ≤ t1 → t2.
Now we can conclude exactly as in the previous proof (by taking n′ = max(n1, n2)).

[PAppL] We know that the left premise is a positive derivation. Thus, using the previous completeness theorem,
we get:

IntertypeΓ′′1 ,e,t
($.1) ≤ t1

RefineStepn1
e,t(Γ1) ≤A Γ′′1

By using the induction hypothesis, we also get:

IntertypeΓ′′2 ,e,t
($) ©∧ typeofΓ′′2 (e↓$) ≤ t2

RefineStepn2
e,t(Γ2) ≤A Γ′′2

Moreover, as e↓$ is an application, we can use the lemma above to deduce IntertypeΓ′′2 ,e,t
($)©∧typeofΓ′′2 (e↓$) =

IntertypeΓ′′2 ,e,t
($) (see definition of Intertype).

Thus we have IntertypeΓ′′2 ,e,t
($) ≤ t2.

Now we can conclude exactly as in the previous proof (by taking n′ = max(n1, n2)).
[PPairL] Quite straightforward using the induction hypothesis and the descriptive definition of π1.
[PPairR] Quite straightforward using the induction hypothesis and the descriptive definition of π2.
[PFst] Quite straightforward using the induction hypothesis.
[PSnd] Quite straightforward using the induction hypothesis.

Appendix B.5. Proofs for the algorithmic type system without type schemes
In this section, we consider the algorithmic type system without type schemes, as defined in 2.6.3.

Appendix B.5.1. Soundness
Lemma Appendix B.20. For every Γ, e, t, no, if Γ À e : t, then there exists t ≤ t such that Γ Àts e : t.

Proof. Straightforward induction over the structure of e.

Theorem Appendix B.21 (Soundness of the algorithmic type system without type schemes). For every Γ, e, t, no, if
Γ À e : t, then Γ ` e : t.

Proof. Trivial by using the theorem Appendix B.9 and the previous lemma.
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Appendix B.5.2. Completeness

Simple type ts ::= b | ts × ts | ts ∨ ts | ¬ts | 0 | 0→ 1
Positive type t+ ::= ts | t+ ∨ t+ | t+ ∧ t+ | t+ → t+ | t+ → ¬t+
Positive abstraction type tλ+ ::= t+ → t+ | t+ → ¬t+ | tλ+ ∧ tλ+
Positive expression e+ ::= c | x | e+e+ | λ

tλ+ x.e+ | π je+ | (e+, e+) | (e+∈ts) ? e+ : e+

Lemma Appendix B.22. If we restrict the language to positive expressions e+, then we have the following property:
∀Γ, e+, t. Γ Àts e+ : t⇒ Γ À e+ : Repr(t)

Proof. We can prove it by induction over the structure of e+.
The main idea of this proof is that, as e+ is a positive expression, the rule [Abs-] is not needed anymore because

the negative part of functional types (i.e. the Ni part of their DNF) becomes useless:

• When typing an application e1e2, the negative part of the type of e1 is ignored by the operator ◦.

• Moreover, as there is no negated arrows in the domain of lambda-abstractions, the negative arrows of the type
of e2 can also be ignored.

• Similarly, negative arrows can be ignored when refining an application ( ‚ also ignore the negative part of the
type of e1).

• Finally, as the only functional type that we can test is 0→ 1, a functional type cannot be refined to 0 due to its
negative part, and thus we can ignore its negative part (it makes no difference relatively to the rule [EfqAts ]).

Theorem Appendix B.23 (Completeness of the algorithmic type system for positive expressions). For every type
environment Γ and positive expression e+, if Γ ` e+ : t, then there exist no and t′ such that Γ À e+ : t′.

Proof. Trivial by using the theorem Appendix B.16 and the previous lemma.
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