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To the Editor:

Multiple myeloma (MM) is the third most common hemato-
logical malignancy, after Non-Hodgkin Lymphoma and Leu-
kemia. MM is generally preceded by Monoclonal Gammopathy
of Undetermined Significance (MGUS) [1], and epidemiolo-
gical studies have identified older age, male gender, family
history, and MGUS as risk factors for developing MM [2].

The somatic mutational landscape of sporadic MM has
been increasingly investigated, aiming to identify recurrent

genetic events involved in myelomagenesis. Whole exome
and whole genome sequencing studies have shown that MM
is a genetically heterogeneous disease that evolves through
accumulation of both clonal and subclonal driver mutations
[3] and identified recurrently somatically mutated genes,
including KRAS, NRAS, FAM46C, TP53, DIS3, BRAF,
TRAF3, CYLD, RB1 and PRDM1 [3–5].

Despite the fact that family-based studies have pro-
vided data consistent with an inherited genetic suscept-
ibility to MM compatible with Mendelian transmission
[6], the molecular basis of inherited MM predisposition is
only partly understood. Genome-Wide Association
(GWAS) studies have identified and validated 23 loci
significantly associated with an increased risk of devel-
oping MM that explain ~16% of heritability [7] and only a
subset of familial cases are thought to have a polygenic
background [8]. Recent studies have identified rare
germline variants predisposing to MM in KDM1A [9],
ARID1A and USP45 [10], and the implementation of next-
generation sequencing technology will allow the char-
acterization of more such rare variants.

In this study, we sought to explore the involvement of
rare germline genetic variants in susceptibility to MM.
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Within our discovery cohort of peripheral blood samples
(see Supplementary Methods) from 66 individuals from 23
unrelated families analyzed by WES, DIS3 (NM_014953)
was the only gene in which putative loss-of-function variants
were observed in at least two families. An additional cohort
of 937 individuals (148 MM, 139 MGUS, 642 unaffected
relatives and eight individuals with another hematological
condition) from 154 unrelated families (including the indi-
viduals in the discovery cohort) were screened for germline
variants in DIS3 using targeted sequencing (Supplementary
Table S1). In total, we detected DIS3 germline putative loss-
of-function variants in four unrelated families. The DIS3
genotypes for the identified variants were concordant
between WES and targeted sequencing (where available)
and independently confirmed by Sanger sequencing on
DNA extracted from uncultured whole blood. The variant
allele frequencies (VAF) were close to 50%, as expected of a
germline variant (Supplementary figure S1).

The DIS3 gene, located in 13q22.1, encodes for the cata-
lytic subunit of the human exosome complex, and is recur-
rently somatically mutated in MM patients [4, 5, 11, 12].
The somatic variants are predominantly missense variants
localized in the RNB domain mainly abolishing the
exoribonucleolytic activity [4, 13], and are often accom-
panied by LOH or biallelic inactivation due to 13q14
deletion, implying a tumor suppressor role for DIS3 in MM
[5, 12, 13].

The first DIS3 variant, observed in 2 affected siblings
(1 MGUS and 1 MM case) from family B (Fig. 1a), was
located in the splice donor site of exon 13 (c.1755+1G>T;
chr13: 73,345,041; GRCh37/hg19, rs769194741) (Supple-
mentary Figure S1a). It is predicted to abolish the splice donor
site and cause skipping of exon 13, introducing a premature
termination codon (p.Arg557Argfs*3) and result in a trun-
cated DIS3 protein that lacks part of the exonucleolytic active
RNB and S1 domains (Fig. 1b, c). The presence of this var-
iant in two siblings, implying Mendelian segregation, is
consistent with a germline, rather than somatic, origin. We
investigated whether a DIS3 transcript from the variant allele
is generated but is subsequently eliminated by Nonsense
Mediated Decay (NMD) by incubating Lymphoblastoid Cell
Lines (LCLs) derived from the two c.1755+1G>T allele
carriers with and without puromycin, which suppresses NMD.
The mRNA transcript corresponding to the variant allele was
clearly present in LCLs treated with puromycin in both car-
riers, whereas not detectable in untreated LCLs (Fig. 2a),
consistent with the variant allele being transcribed but sub-
sequently degraded via the NMD pathway. In line with this
observation, analysis of DIS3 mRNA expression by qRT-
PCR showed an average 50% reduced expression in the
c.1755+1G>T carriers (range 40.7−61.4%) as compared to
non-carriers (Fig. 2b). A second splicing variant (c.1883
+1G>C; chr13: 73,342,922; GRCh37/hg19) located in the

splice donor site of exon 14 within the RNB domain was
identified in a MM case from family D (Fig. 1a, b, Supple-
mentary figure S1c). However, the individual’s mother
(Q59), affected with amyloidosis, did not carry the variant,
implying that MM in the allele carriers’ maternal uncles is
unlikely to be explained by this DIS3 variant. Whether the
mRNA transcript encoded by this germline variant under-
goes NMD could not be explored due to lack of appropriate
material (LCLs, RNA).

A third DIS3 variant disrupting the wild-type termination
codon (stop-loss) (c.2875T>C; p.*959Gln; chr13:73,333,935;
GRCh37/hg19, rs141067458) (Fig. 1b, Supplementary Fig-
ure S1b) was identified in two unrelated families (A and C,
Fig. 1a). This variant is expected to result in a putative read-
through variant and a DIS3 protein with an additional 13 amino
acids in the C-terminus (p.*959Glnext*14). It was detected in 3
out of 4 affected siblings (2 MGUS (M63, O53) and 1 MM
case (O29)), as well as 5 unaffected relatives (N14, N13, L41,
M33 M50) from family A. The Mendelian segregation of this
variant in this pedigree is also consistent with germline origin.
An additional MM case from family C carried the variant, while
we were unable to assess the other MM-afflicted family
member (Fig. 1a). As expected of a stop-loss variant, NMDwas
not observed (data not shown), and gene expression analysis
showed no effect on DIS3 mRNA levels (Fig. 2b). However,
western blot analysis demonstrated that DIS3 protein levels
were markedly lower (~50%) in the p.*959Glnext*14 carrier
(O53, family A) compared to non-carriers (Fig. 2b, c).

Next, we sought to determine if rare, putative deleterious
variants in DIS3 were more frequent in an independent series
of MM cases compared to unaffected individuals. We per-
formed mutation burden tests between 781 MM cases and
3534 controls from the MMRF CoMMpass Study with WES
data available. After testing for systemic bias in this dataset
(see Supplementary Methods, Supplementary Figure S2), we
undertook a burden test for association between functional
DIS3 variants and MM. DIS3 putative functional variants
(truncating and likely deleterious missense variants, see Sup-
plementary Methods) were more frequent among MM
patients (30/781) than controls (72/3534) (OR= 1.92 95%
CI:1.25–2.96, p= 0.001). Although the p.*959Glnext*14
stop-loss variant was recurrently found in 10/781 MM cases
and 15/3534 controls (OR= 3.07 95%CI:1.38 to 6.87, p=
0.0007), it did not entirely explain the excess of DIS3 variants
among cases as there is evidence for association with other
putative functional variants (Supplementary Figure S3a). We
additionally genotyped the p.*959Glnext*14 stop-loss variant
in an independent series of sporadic MM cases and controls
from the IMMEnSE Consortium. While this variant was very
rare in this series (8/3020 MM cases relative to 3/1786 con-
trols), there was a consistent but non-significant association
between this variant and MM (OR= 3.15 95% CI: 0.74–
13.43 p= 0.122).
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To explore the functional consequence of germ-
line DIS3 variants, we compared MM tumor transcriptomes
from patients harboring germline (n= 21) and somatic (n=
96) DIS3 putative functional variants to non-carriers (n=
655). Differential expression analyses showed an enrichment
of pathways associated with global ncRNA processing and
translational termination in germline DIS3 carriers including

ncRNA processing, ncRNA metabolic process, translational
termination, and RNA metabolism. Among somatic DIS3
carriers, significantly enriched pathways include interferon
alpha/beta signalling, mRNA splicing, mRNA processing and
transcription (Supplementary Figure S3b, Supplementary
tables S3 and S4a–d). These findings are consistent with the
proposed DIS3 role in regulating mRNA processing [14] and

Fig. 1 DIS3 variants in MM cases. a Pedigrees from families carrying
a germline DIS3 variant. Available samples for screening are marked
with a “+” symbol. Families A and C carry the p.*959Glnext*14
(c.2875T>C) stop-loss variant. Family B carries the c.1755+1G>T
splicing variant and family D carries the c.1883+1G>C splicing var-
iant. The genotype of all screened individuals is shown on each ped-
igree. WT: wild type. b, c Schematic representation of identified
germline and somatic variants in the distinct DIS3 protein domains. b
Germline variants were identified through WES and targeted

resequencing in families with reoccurrence of MM/MGUS as well as
in a collection of sporadic MM cases (MMRF CoMMpass Study). The
DIS3 variants discussed in the present study are depicted with a star on
the upper part of the figure. c Somatic DIS3 variants were identified in
sporadic MM cases from the MMRF CoMMpass Study. We observe
that in contrast to the clustering of somatic DIS3 missense variants in
the RNB and PIN domains, germline variants are scattered throughout
the gene and consist of splicing, stop-loss and missense variants
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more specifically mRNA decay, gene expression and small
RNA processing [15]. We also observed that, several long-
intergenic non-protein coding RNAs, non-coding and anti-
sense RNAs were significantly enriched among DIS3 carriers
(Supplementary table S5a, b) supporting previous studies that
demonstrate an accumulation of transcripts from non-protein
coding regions, snoRNA precursors and certain lncRNAs in
DIS3 mutant cells, along a general deregulation of mRNA
levels probably due to the sequestration of transcriptional
factors from the accumulated nuclear RNAs [16].

To our knowledge, this is the first observation of germline
DIS3 likely deleterious variants in familial MM and our
results suggest that the involvement of DIS3 in MM etiology
may extend beyond somatic alterations to germline suscept-
ibility. We reported rare germline DIS3 variants in ~2.6% of
our cohort of families with multiple cases of MM and MGUS

(4/154). The germline variants described here are predicted to
have loss-of-function impact on DIS3. Consistent with this,
the 1755+1G>T (rs769194741) splicing variant induces
NMD and results in reduced DIS3 mRNA expression, sup-
porting the proposal that DIS3 is acting as a tumor suppressor
gene in MM [13]. Moreover, the c.2875T>C (rs141067458)
stop-loss variant (p.*959Glnext*14) results in reduced DIS3
protein expression suggesting that the mutant allele is trans-
lated but degraded shortly after. Notably, in contrast to the
clustering of somatic DIS3 mutations in the PIN and RNB
domains, germline variants identified both in familial and
sporadic MM cases are scattered throughout the gene (Fig. 1b,
c). Despite the fact that these variants do not segregate per-
fectly with MM in the identified families and the rarity of
DIS3 germline likely deleterious variants limits our statistical
power, the subsequent mutation burden and transcriptome

Fig. 2 DIS3 c.1755+1G>T splicing variant results in nonsense-
mediated mRNA decay (NMD) and affects mRNA expression, while
the c.2875C>T (p.*959Glnext*14) stop-loss variant affects protein
levels. a LCLs from patients E18 and E28 (not shown) carrying the
c.1755+1G>T splicing variant were cultured with and without pur-
omycin. The chromatogram from treated cells (with puromycin)
showed a mixture of the wild-type and mutant transcript lacking exon
13, which was not detected in the non-treated cells (without pur-
omycin). Thus, the mutant transcript is degraded by NMD. b Box plot

representing the relative DIS3 mRNA expression in c.1775+1G>A
(n=2) and p.*959Glnext*14 (n= 1) carriers compared to non-carriers
(n= 4). All reactions were performed in triplicates. c Western blot
with an anti-DIS3 antibody was performed in LCLs from one p.
*959Glnext*14 carrier and two wild-type individuals (anti-GAPDH
antibody as internal control). The relative DIS3 expression in the p.
*959Glnext*14 carrier was reduced by 50% compared to non-carriers,
suggesting that the mutant allele is translated but degraded shortly after
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analyses provided supportive data towards DIS3 acting as an
“intermediate-risk” MM susceptibility gene.

Acknowledgements This work was supported by the French National
Cancer Institute (INCA) and the Fondation Française pour la Recherche
contre le Myélome et les Gammapathies (FFMRG), the Intergroupe
Francophone du Myélome (IFM), NCI R01 NCI CA167824 and a
generous donation from Matthew Bell. This work was supported in part
through the computational resources and staff expertise provided by
Scientific Computing at the Icahn School of Medicine at Mount Sinai.
Research reported in this paper was supported by the Office of Research
Infrastructure of the National Institutes of Health under award number
S10OD018522. The content is solely the responsibility of the authors
and does not necessarily represent the official views of the National
Institutes of Health. The authors thank the Association des Malades du
Myélome Multiple (AF3M) for their continued support and participa-
tion. Where authors are identified as personnel of the International
Agency for Research on Cancer / World Health Organization, the authors
alone are responsible for the views expressed in this article and they do
not necessarily represent the decisions, policy or views of the Interna-
tional Agency for Research on Cancer / World Health Organization.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Publisher’s note: Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Weiss BM, Abadie J, Verma P, Howard RS, Kuehl WM. A
monoclonal gammopathy precedes multiple myeloma in most
patients. Blood. 2009;113:5418–22.

2. Morgan GJ, Davies FE, Linet M. Myeloma aetiology and epide-
miology. Biomed Pharmacother. 2002;56:223–34.

3. Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB,
Martincorena I, et al. Heterogeneity of genomic evolution and
mutational profiles in multiple myeloma. Nat Commun. 2014;
5:2997.

4. Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C,
Schinzel AC, et al. Initial genome sequencing and analysis of
multiple myeloma. Nature. 2013;471:467–72.

5. Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS,
Auclair D, et al. Widespread genetic heterogeneity in multiple
myeloma: implications for targeted therapy. Cancer Cell. 2014;
25:91–101.

6. Morgan GJ, Johnson DC, Weinhold N, Goldschmidt H, Landgren O,
Lynch HT, et al. Inherited genetic susceptibility to multiple myeloma.
Leukemia. 2014;28:518–24.

7. Went M, Sud A, Försti A, Halvarsson B-M, Weinhold N, Kimber S,
et al. Identification of multiple risk loci and regulatory mechanisms
influencing susceptibility to multiple myeloma. Nat Commun.
2018;9:3707.

8. Halvarsson B-M, Wihlborg A-K, Ali M, Lemonakis K, Johnsson E,
Niroula A, et al. Direct evidence for a polygenic etiology in familial
multiple myeloma. Blood Adv. 2017;1:619–23.

9. Wei X, Calvo-Vidal MN, Chen S, Wu G, Revuelta MV, Sun J,
et al. Germline mutations in lysine specific demethylase 1 (LSD1/
KDM1A) confer susceptibility to multiple myeloma. Cancer
research 2018. https://doi.org/10.1158/0008-5472.CAN-17-1900.

10. Waller RG, Darlington TM, Wei X, Madsen MJ, Thomas A,
Curtin K, et al. Novel pedigree analysis implicates DNA repair
and chromatin remodeling in multiple myeloma risk. PLoS Genet.
2018;14:e1007111.

11. Weißbach S, Langer C, Puppe B, Nedeva T, Bach E, Kull M, et al.
The molecular spectrum and clinical impact of DIS3 mutations in
multiple myeloma. Br J Haematol. 2015;169:57–70.

12. Walker BA, Mavrommatis K, Wardell CP, Ashby TC, Bauer M,
Davies FE, et al. Identification of novel mutational drivers reveals
oncogene dependencies in multiple myeloma. Blood 2018;132:587–97.

13. Lionetti M, Barbieri M, Todoerti K, Agnelli L, Fabris S, Tonon G,
et al. A compendium of DIS3 mutations and associated tran-
scriptional signatures in plasma cell dyscrasias. Oncotarget. 2015;
6. https://doi.org/10.18632/oncotarget.4674.

14. Dziembowski A, Lorentzen E, Conti E, Séraphin B. A single
subunit, Dis3, is essentially responsible for yeast exosome core
activity. Nat Struct Mol Biol. 2007;14:15–22.

15. Robinson S, Oliver A, Chevassut T, Newbury S. The 3’ to 5’
exoribonuclease DIS3: from structure and mechanisms to biolo-
gical functions and role in human disease. Biomolecules.
2015;5:1515–39.

16. Szczepińska T, Kalisiak K, Tomecki R, Labno A, Borowski LS,
Kulinski TM, et al. DIS3 shapes the RNA polymerase II tran-
scriptome in humans by degrading a variety of unwanted tran-
scripts. Genome Res. 2015;25:1622–33.

Maroulio Pertesi1,2 ● Maxime Vallée1 ● Xiaomu Wei3 ● Maria V. Revuelta 4
● Perrine Galia5,6 ● Delphine Demangel5,6 ●

Javier Oliver1,7 ● Matthieu Foll1 ● Siwei Chen3
● Emeline Perrial8,9 ● Laurent Garderet10,11,12 ● Jill Corre13 ●

Xavier Leleu14 ● Eileen M. Boyle15 ● Olivier Decaux16,17,18 ● Philippe Rodon19
● Brigitte Kolb20

● Borhane Slama21 ●

Philippe Mineur22 ● Eric Voog23
● Catherine Le Bris24 ● Jean Fontan25

● Michel Maigre26 ● Marie Beaumont27 ●

Isabelle Azais28 ● Hagay Sobol29 ● Marguerite Vignon30
● Bruno Royer30 ● Aurore Perrot31 ● Jean-Gabriel Fuzibet32 ●

Véronique Dorvaux33 ● Bruno Anglaret34 ● Pascale Cony-Makhoul35 ● Christian Berthou36
● Florence Desquesnes37 ●

Brigitte Pegourie38 ● Serge Leyvraz39 ● Laurent Mosser40 ● Nicole Frenkiel41 ● Karine Augeul-Meunier42 ●

Isabelle Leduc43 ● Cécile Leyronnas44 ● Laurent Voillat45 ● Philippe Casassus46 ● Claire Mathiot47 ● Nathalie Cheron48
●

Etienne Paubelle49 ● Philippe Moreau50
● Yves–Jean Bignon51

● Bertrand Joly52 ● Pascal Bourquard53
● Denis Caillot54 ●

2328 Letter

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1158/0008-5472.CAN-17-1900
https://doi.org/10.18632/oncotarget.4674
http://orcid.org/0000-0002-7922-0713
http://orcid.org/0000-0002-7922-0713
http://orcid.org/0000-0002-7922-0713
http://orcid.org/0000-0002-7922-0713
http://orcid.org/0000-0002-7922-0713


Hervé Naman55
● Sophie Rigaudeau56

● Gérald Marit57 ● Margaret Macro58
● Isabelle Lambrecht59 ●

Manuel Cliquennois 60
● Laure Vincent 61

● Philippe Helias62 ● Hervé Avet-Loiseau63
● Victor Moreno 64,65

●

Rui Manuel Reis66,67 ● Judit Varkonyi68 ● Marcin Kruszewski69 ● Annette Juul Vangsted70
● Artur Jurczyszyn71

●

Jan Maciej Zaucha72 ● Juan Sainz 73
● Malgorzata Krawczyk-Kulis74 ● Marzena Wątek 75,76

● Matteo Pelosini77 ●

Elzbieta Iskierka-Jażdżewska78 ● Norbert Grząśko79
● Joaquin Martinez-Lopez80 ● Andrés Jerez81 ● Daniele Campa82 ●

Gabriele Buda76 ● Fabienne Lesueur 83
● Marek Dudziński84 ● Ramón García-Sanz 85

● Arnon Nagler86 ●

Marcin Rymko87
● Krzysztof Jamroziak75 ● Aleksandra Butrym88

● Federico Canzian89
● Ofure Obazee89 ●

Björn Nilsson2
● Robert J. Klein 90

● Steven M. Lipkin4
● James D. McKay1 ● Charles Dumontet5,6,8,9

1 Genetic Cancer Susceptibility, International Agency for Research
on Cancer, Lyon, France

2 Department of Laboratory Medicine, Division of Hematology and
Transfusion medicine, Lund University, Lund, Sweden

3 Biological Statistics and Computational Biology, Cornell
University, Ithaca, NY, USA

4 Medicine, Weill Cornell Medical College, New York, NY, USA

5 ProfilExpert, Lyon, France

6 Hospices Civils de Lyon, Lyon, France

7 Medical Oncology Service, Hospitales Universitarios Regional y
Virgen de la Victoria; Institute of Biomedical Research in Malaga
(IBIMA), CIMES, University of Málaga, Málaga, Spain

8 INSERM 1052, CNRS 5286, CRCL, Lyon, France

9 University of Lyon, Lyon, France

10 INSERM, UMR_S 938, Paris, France

11 AP-HP, Hôpital Saint Antoine, Departement d’hematologie et de
therapie cellulaire, Paris, France

12 Sorbonne Universites, UPMC Univ Paris 06, UMR_S 938,
Paris, France

13 IUC-Oncopole and CRCT INSERM U1037, Toulouse, France

14 Inserm CIC 1402 & Service d’Hématologie et Thérapie Cellulaire,
CHU La Miletrie, Poitiers, France

15 Hôpital Claude Huriez, CHRU, Lille, France

16 Service de Medecine Interne, CHU Rennes, Rennes, France

17 Faculte de Medecine, Universite de Rennes 1, Rennes, France

18 INSERM UMR U1236, Rennes, France

19 Unite d’Hematologie et d’Oncologie, Centre Hospitalier,
Perigueux, France

20 Hematologie Clinique, CHU de Reims, Reims, France

21 Service d’Onco hematologie, CH Avignon, Avignon, France

22 Hematologie et pathologies de la coagulation, Grand Hôpital de
Charleroi, Charleroi, Belgium

23 Centre Jean Bernard, Institut Inter-regional de Cancerologie,
Le Mans, France

24 Service post urgences, CHU de FORT DE FRANCE, pôle
RASSUR, Martinique, France

25 Hopital Jean Minjoz, CHRU Besançon, Besançon, France

26 Service d’Hemato-Oncologie, CHU Chartres, Chartres, France

27 Hematologie clinique et therapie cellulaire, CHU Amiens,
Amiens, France

28 Service de rhumatologie, CHU Poitiers, Poitiers, France

29 Cancer Genetics Department, Paoli-Calmettes Institute, Aix-
Marseille University, Marseille, France

30 Service d’Immuno-hematologie, Hôpital Saint Louis, Paris, France

31 Service d’Hematologie, CHU de Nancy, Universite de Lorraine,
Vandoeuvre les Nancy, Nancy, France

32 Internal Medicine Department, Archet Hospital, CHU Nice,
Nice, France

33 Service d’Hematologie, CHR Mercy, Metz, France

34 Unite d’Hematologie, CH Valence, Valence, France

35 Service d’Hematologie, Centre Hospitalier Annecy Genevois,
Epagny Metz-Tessy, France

36 Service d’Hematologie, CHU de Brest, Brest, France

37 Haematology Department, CHU UCL Namur, Yvoir, Belgium

38 Hematologie clinique, CHU de Grenoble, La Tronche, France

39 Departement d’oncologie, CHUV, Lausanne, Switzerland

40 Unite d’oncologie medicale, Pôle medical 2, Hôpital Jacques Puel,
Rodez, France

41 CH Poissy, Saint-Germain-en-Laye, France

42 Service Hematologie, Institut de Cancerologie Lucien Neuwirth,
Saint-Priest-en-Jarez, France

43 Hematologie, CHG Abbeville, Abbeville, France

44 Institut Daniel Hollard, Groupe Hospitalier Mutualiste de
Grenoble, Grenoble, France

45 Service hemato/oncologie, CH William Morey, Chalon sur Saône,
France

46 Hematologie clinique, Hôpital Avicenne, Bobigny, France

47 Intergroupe Francophone du Myelome (IFM), Bobigny, France

48 Service Hematologie, CH Bligny, Briis-sous-Forges, France

49 Service Hematologie, CH Lyon Sud, Pierre Benite, France

50 Service Hematologie, CHU Nantes, Nantes, France

51 Laboratoire de Biologie Medicale OncoGènAuvergne;

Letter 2329

http://orcid.org/0000-0002-4544-7661
http://orcid.org/0000-0002-4544-7661
http://orcid.org/0000-0002-4544-7661
http://orcid.org/0000-0002-4544-7661
http://orcid.org/0000-0002-4544-7661
http://orcid.org/0000-0001-5904-1286
http://orcid.org/0000-0001-5904-1286
http://orcid.org/0000-0001-5904-1286
http://orcid.org/0000-0001-5904-1286
http://orcid.org/0000-0001-5904-1286
http://orcid.org/0000-0002-2818-5487
http://orcid.org/0000-0002-2818-5487
http://orcid.org/0000-0002-2818-5487
http://orcid.org/0000-0002-2818-5487
http://orcid.org/0000-0002-2818-5487
http://orcid.org/0000-0002-9355-2423
http://orcid.org/0000-0002-9355-2423
http://orcid.org/0000-0002-9355-2423
http://orcid.org/0000-0002-9355-2423
http://orcid.org/0000-0002-9355-2423
http://orcid.org/0000-0002-3996-200X
http://orcid.org/0000-0002-3996-200X
http://orcid.org/0000-0002-3996-200X
http://orcid.org/0000-0002-3996-200X
http://orcid.org/0000-0002-3996-200X
http://orcid.org/0000-0001-7404-4549
http://orcid.org/0000-0001-7404-4549
http://orcid.org/0000-0001-7404-4549
http://orcid.org/0000-0001-7404-4549
http://orcid.org/0000-0001-7404-4549
http://orcid.org/0000-0003-4120-2787
http://orcid.org/0000-0003-4120-2787
http://orcid.org/0000-0003-4120-2787
http://orcid.org/0000-0003-4120-2787
http://orcid.org/0000-0003-4120-2787
http://orcid.org/0000-0003-3539-5391
http://orcid.org/0000-0003-3539-5391
http://orcid.org/0000-0003-3539-5391
http://orcid.org/0000-0003-3539-5391
http://orcid.org/0000-0003-3539-5391


Departement d’oncogenetique, UMR INSERM 1240, Centre Jean
Perrin, Clermont-Ferrand, France

52 Service d’hematologie clinique, Pôle medecine de specialite,
Centre Hospitalier Sud Francilien (CHSF), Corbeil-
Essonnes, France

53 Hematologie Clinique, CHU Nîmes, Nîmes, France

54 Hematologie Clinique, CHU Dijon, Dijon, France

55 Hematologie - Oncologie medicale, Centre Azureen de
Cancerologie, Mougins, France

56 Service d’Hematologie et d’Oncologie, CHU de Versailles,
Le Chesnay, France

57 INSERM U1035, Universite de Bordeaux, Bordeaux, France

58 Hematologie Clinique, IHBN-CHU CAEN (University Hospital),
Caen, France

59 Rheumatology Department, Maison Blanche Hospital, Reims
University Hospitals, Reims, France

60 Unite d’Hematologie clinique, Groupement des hôpitaux de
l’Institut Catholique (GHICL), Universite Catholique de Lille,
Lille, France

61 Departement d’hematologie clinique, CHU de Montpellier,
Montpellier, France

62 Service d’Oncologie medicale, CHU de La Guadeloupe, Pointe-a-
Pitre, Guadeloupe

63 Laboratory for Genomics in Myeloma, Institut Universitaire du
Cancer and University Hospital, Centre de Recherche en
Cancerologie de Toulouse, Toulouse, France

64 CIBER Epidemiología y Salud Pública (CIBERESP),
Madrid, Spain

65 Unit of Biomarkers and Susceptibility, Cancer Prevention and
Control Program, IDIBELL, Catalan Institute of Oncology;
Department of Clinical Sciences, Faculty of Medicine, University
of Barcelona, Barcelona, Spain

66 Life and Health Sciences Research Institute (ICVS), School of
Health Sciences, University of Minho, Braga, Portugal; ICVS/
3B’s-PT Government Associate Laboratory, Braga/
Guimarães, Portugal

67 Molecular Oncology Research Center, Barretos Cancer Hospital,
Barretos, São Paulo, Brazil

68 3rd Department of Internal Medicine, Semmelweis University,
Budapest, Hungary

69 Department of Hematology, University Hospital,
Bydgoszcz, Poland

70 Department of Haematology, Rigshospitalet, Copenhagen
University, Copenhagen, Denmark

71 Jagiellonian University Medical College, Department of
Hematology, Cracow, Poland

72 Gdynia Oncology Center, Gdynia and Department of Oncological
Propedeutics, Medical University of Gdańsk, Gdańsk, Poland

73 Genomic Oncology Area, GENYO. Centre for Genomics and
Oncological Research: Pfizer/University of Granada/Andalusian
Regional Government, PTS Granada, Granada, Spain

74 Department of Bone Marrow Transplantation and Hematology-
Oncology M. Sklodowska-Curie Memorial Cancer Center and
Institute of Oncology Gliwice Branch, Gliwice, Poland

75 Department of Hematology, Institute of Hematology and
Transfusion Medicine, Warsaw, Poland

76 Holycross Cancer Center of Kielce, Hematology Clinic,
Kielce, Poland

77 Department of Oncology, Transplants and Advanced
Technologies, Section of Hematology, Pisa University Hospital,
Pisa, Italy

78 Department of Hematology, Medical University of Lodz,
Łódź, Poland

79 Department of Experimental Hemato-oncology, Medical
University of Lubli, Poland; Department of Hematology, St.
John’s Cancer Centre, Polish Myeloma Study Group,
Lublin, Poland

80 Hematology Department, Hospital 12 de Octubre, Universidad
Complutense; CNIO, Madrid, Spain

81 Hematology and Medical Oncology Department, Hospital Morales
Meseguer, IMIB, Murcia, Spain

82 Department of Biology, University of Pisa, Pisa, Italy

83 Inserm U900, Institut Curie, PSL Research University, Mines
ParisTech, Paris, France

84 Teaching Hospital No1, Hematology Dept, Rzeszow, Poland

85 Hematology Department, University Hospital of Salamanca,
IBSAL, Salamanca, Spain

86 Hematology Division, Chaim Sheba Medical Center,
Tel Hashomer, Israel

87 Department of Hematology, Copernicus Hospital, Torun, Poland

88 Wroclaw Medical University, Wroclaw, Poland

89 Genomic Epidemiology Group, German Cancer Research Center
(DKFZ), Heidelberg, Germany

90 Department of Genetics and Genomic Sciences and Icahn Institute
for Genomics and Multiscale Biology, Icahn School of Medicine
at Mount Sinai, New York, NY, USA

2330 Letter




