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Abstract  

Apelin plays a prominent role in body fluid and cardiovascular homeostasis. To explore 

further upstream the role played by this peptide, non-peptidic agonists and antagonists of the 

apelin receptor are required. To identify such compounds which do not exist to date, we used 

an original Fluorescence Resonance Energy Transfer-based assay to screen a GPCR-focused 

library of fluorescent compounds on the human EGFP-tagged apelin receptor. This led to 

isolate E339-3D6 that displayed a 90 nmol/L affinity, behaved as a partial agonist with regard 

to cAMP production and as a full agonist with regard to apelin receptor internalization. 

Finally, E339-3D6 induced vasorelaxation of rat aorta precontracted with noradrenaline and 

potently inhibited systemic vasopressin release in water-deprived mice when 

intracerebroventricularly injected. This compound represents the first non-peptidic agonist of 

the apelin receptor, the optimization of which will allow to develop a new generation of 

vasodilator and aquaretic agents. 
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INTRODUCTION 

Apelin, is a bioactive peptide isolated from bovine stomach extracts and identified as the 

endogenous ligand of the human orphan G protein-coupled receptor (GPCR), APJ (1, 2). 

Apelin derives from a single 77-amino acid precursor, proapelin which has a fully conserved 

C-terminal 17-amino acid sequence in all species studied, apelin 17 (K17F), including the 

pyroglutamyl form of apelin 13 (pE13F) (see Table S1 for sequences) (2-4). Both peptides 

(K17F and pE13F) naturally occur in rat brain and plasma (5). They exhibit a strong 

inhibitory activity on forskolin-induced cAMP production in cells expressing the human (3, 6) 

or the rat apelin receptor (7). These peptides promote phosphorylation of ERKs, Akt and p70 

S6 kinase (8). They are also highly potent inducers of apelin receptor internalization (9, 10).  

Apelin and its receptor are both widely distributed in the brain (4, 7, 11, 12) but are 

particularly highly expressed in the supraoptic (SON) and paraventricular (PVN) 

hypothalamic nuclei. Dual labeling studies demonstrate that within these two nuclei, apelin 

and its receptor co-localize with arginine vasopressin (AVP) in magnocellular neurons (5, 10, 

13, 14). In lactating rats, characterized by increases in both synthesis and release of AVP, 

central injection of K17F inhibits the phasic firing pattern of AVP neurons, thereby resulting 

in decreased AVP release in the blood circulation, and increased aqueous diuresis (5). 

Moreover, after water deprivation, endogenous levels of AVP and apelin are conversely 

regulated to optimize systemic AVP release necessary to avoid additional water loss at the 

kidney level (5, 14). Recently, we also showed that such opposite regulation of plasma apelin 

and AVP levels by osmotic stimuli exists in humans suggesting that apelin, like AVP, may 

participate in the maintenance of body fluid homeostasis not only in rodents but also in 

humans (15). 

Apelin and its receptor are also present in the cardiovascular system, i.e. heart, kidney and 

vessels (16). Systemically administered apelin decreases arterial blood pressure (BP) (4, 9, 10, 

17), via a nitric oxide (NO)-dependent mechanism (17). Consistent with these data, apelin 
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receptor-deficient mice display an exaggerated pressor response to systemic angiotensin II 

(AngII), suggesting a counter-regulatory effect of apelin on AngII (18). Finally, apelin 

improves cardiac contractility and reduces cardiac loading (19-21), suggesting a role for 

apelin in the regulation of cardiovascular functions. In agreement with this hypothesis, when 

apelin-deficient mice are subjected to chronic pressure overload by surgical constriction of the 

aorta, they develop severe and progressive heart failure (22). 

Given the broad array of physiological actions of apelin, its receptor represents a new 

interesting target for therapeutic research and drug design. In this context, the development of 

a nonpeptidic apelin receptor agonist by favouring diuresis and improving the contractile 

performance of the myocardium whilst reducing peripheral resistances could be particularly 

useful for the treatment of heart failure.  

In order to identify an agonist or antagonist of the apelin receptor, we used in the present 

study a novel Fluorescence Resonance Energy Transfer (FRET)-based assay to screen a 

library of fluorescent (lissamine-tagged) nonpeptidic compounds on the human N-terminal 

EGFP-tagged apelin receptor, stably expressed in HEK-293 cells. This screening led to isolate 

several hits whose affinities (9 x 10-8 to 10-6 M) have been confirmed in classical binding 

experiments using radiolabelled pE13F. The most potent hit, E339-3D6 (23) displayed an 

affinity of 9 x 10-8 mol/L, behaved as a partial agonist with regard to cAMP production and as 

a full agonist with regard to apelin receptor internalization. E339-3D6 could be therefore 

considered as a biased agonist. Using molecular modeling, we provided evidence that the 

binding moieties of E339-3D6 and pE13F overlapped within the receptor binding cavity. This 

novel ligand represents an unique and interesting lead compound with agonist properties on 

the apelin receptor, inducing ex vivo a concentration-dependent vasorelaxation of rat aorta 

precontracted with noradrenaline (NA) and decreasing in vivo systemic AVP release in water-

deprived mice, both effects being comparable to those produced by apelin. 
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MATERIALS AND METHODS 

Drugs and Antibodies. Apelin 17 (K17F) and the pyroglutamyl form of apelin 13 (pE13F) 

were synthesized by NeoMPS (Strasbourg, France), see Table S1 for amino acid sequences. 

 

Animals. Male Swiss mice (18-20 g) and adult male Wistar Kyoto rats (300-350 g) were 

maintained under 12 h light/dark cycle with free access to food and water and were obtained 

from Charles River Laboratories (L’Arbresle, France) and from Janvier (Le Genest-St-Isle, 

France). All animal experiments were carried out in accordance with current institutional 

guidelines for the care and use of experimental animals. 

 

Chemistry.  

The solid phase synthesis of the screened fluorescent compound library has been previously 

described (24). Solid phase re-synthesis of the best hit, E339-3D6 (23) and of lissamine-

undecanoic-apelin-13 were described in the online data supplement. 

 

Screening by FRET. A library of 800 fluorescent compounds (lissamine-tagged) were 

screened by FRET on HEK 293 cells stably expressing the full length EGFP-tagged human 

apelin receptor or the EGFP-∆ 16 human apelin receptor (See online data supplement for 

details).  

 

Membrane Preparations and Radioligand Binding Experiments. Membranes from CHO 

or HEK 293 cells stably expressing respectively, the rat apelin receptor-EGFP and the EGFP-

∆ 16 human apelin receptor, were prepared as previously described (25). Membrane 

preparations (5 µg/assay) were incubated for 1 h at 20°C with 2 x 10-10 mol/L [125I]pE13F in 

binding buffer alone or in presence of K17F, pE13F or E339-3D6 at various concentrations. 

Reaction was stopped and filtered on Whatman GF/C filters. After washing radioactivity was 
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counted. Saturation-binding curves were obtained by incubating membrane proteins with 

[125I]pE13F at different concentrations (See online data supplement for details). 

 

cAMP Assay. The cAMP assay was performed as previously described (7) (online data 

supplement for details).  

 

Internalization Assay. CHO cells stably expressing the rat apelin receptor-EGFP or AT1A-

EGFP were seeded at 20 % confluency on glass coverslips coated with polylysine (WI; 0.01 

%) (Sigma-Aldrich, St Quentin, France). Internalization was performed by incubating the 

cells at 37 °C for various times with 10-7 mol/L K17F or lissamine-apelin 13 or with different 

concentrations of E339-3D6 as previously described (9). Cells were then mounted in Mowiol 

for confocal microscopic analysis (See online data supplement for details).  

 

Quantification of Internalization by Digital Image Analysis. Quantification of the extent of 

ligand-induced rat apelin receptor-EGFP internalization was performed by confocal 

microscopy coupled to digital image analysis as previously described (9, 26) (See 

Supplementary Methods for details). 

 

Aortic Rings Preparation and Isometric Tension Recording. According to (27, 28), rat 

aortic rings were equilibrated in physiological salt solution for 120 min under a resting 

tension of 2 g. After checking the integrity of the endothelium, cumulative concentration–

response curves to K17F (10-12 to 10-6 mol/L), E339-3D6 (10-12 to 10-6 mol/L) or Ach (10-10 to 

10-4 mol/L) were constructed after precontraction with NA (3 x 10-6 mol/L) in presence or in 

absence of endothelium. Each concentration of the drug was added every 15 min (See online 

data supplement for details). 
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Intracerebroventricular Injections in Mice and AVP Radioimmunoassay. K17F (1 µg) 

and E339-3D6 (from 0.03 to 2 µg) were administrated by i.c.v. route in conscious mice with 

free access to water or deprived of water for 24 h as previously described (5). Animals were 

killed 1 min after the injection, and trunk blood (0.5-1 mL ) was collected in chilled tubes 

containing 50 µL of 0.3 mol/L EDTA pH 7.4. AVP concentrations were determined as 

previously described (5) from 0.2 mL  of plasma by using a specific vasopressin-[Arg8] RIA 

kit (Biovalley, Marne la Vallée, France).  

 

Data and Statistical Analysis. Values are given as means ± standard error (S.E.M). One-way 

ANOVA or ANOVA for repeated measures followed by a Fisher Protected Least Significance 

(PLSD) or by a Student’s unpaired t-test (peptide versus vehicle) were used to assess the 

significance of the results. 

 

 

RESULTS 

Identification of Apelin Receptor Ligands by a Screening Approach Based on FRET 

When the project started, no convenient radioactive binding assay was available for the apelin 

receptor. An alternative approach using FRET between fluorescently tagged proteins and 

collections of fluorescent molecules just emerged (24, 29-31). We thus decided to adapt this 

technique to set up a screening assay for apelin receptor. We used the human truncated apelin 

receptor EGFP-tagged (EGFP-∆ 16 human apelin receptor) at the N-terminal part as an 

energy donor and ligands carrying a lissamine fluorophore as energy acceptors. The principle 

of the assay consisted in identifying molecules from the library that reduced EGFP 

fluorescence emission as a result of FRET. We screened a library of 800 nonpeptidic 

compounds (24, 29) on cells expressing the EGFP-∆ 16 human apelin receptor. We identified 

three hit compounds inducing FRET including the compound E339-3D6. It displayed the 
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highest affinity for the EGFP-∆ 16 human apelin receptor (Kd = 9 ± 1 x 10-8 mol/L), as 

assessed by determining the amplitude of EGFP extinction at different concentrations of 

E339-3D6 (Figure 1A,B, Table S1). Finally, FRET was also detected with the non truncated 

human apelin receptor, although less intensely (data not shown). 

 

Binding Affinity of E339-3D6 

 The affinity of E339-3D6 for the apelin receptor was confirmed by determining its ability to 

displace [125I]-pE13F (2 x 10-10 mol/L) binding on membrane preparations from HEK 293 

cells or CHO cells stably expressing respectively the EGFP-∆ 16 human apelin receptor and 

the rat apelin receptor tagged at its C-terminal part with EGFP previously characterized (5). 

The total binding for a concentration of [125I]-pE13F of 2 x 10-10 mol/L was 302 ± 27 fmol/mg 

protein, and the specific binding was 290 ± 23 fmol/mg protein. We first determined the 

apparent dissociation constant (Kd) of pE13F (Kd = 1 x 10-10 mol/L) by Scatchard analysis of 

the saturation curves (data not shown). E339-3D6, K17F and pE13F dose-dependently 

inhibited specific binding to the EGFP-∆ 16 human apelin receptor with Ki values of 3.9 ± 0.7 

x 10-7 mol/L, 5.9 ± 1.6 x 10-11 mol/L and 2.9 ± 0.4 x 10-10 mol/L, respectively and to the rat 

apelin receptor with Ki values of 3.8 ± 0.4 x 10-7 mol/L, 5.0 ± 0.8 x 10-11 mol/L and 2.1 ± 0.9 

x 10-10 mol/L, respectively (Table S1). Corresponding Hill coefficient values were close to 

unity, compatible with a single-site competitive model. 

 

Effects of E339-3D6 on Forskolin-Induced cAMP Production 

Incubation of CHO cells stably expressing the rat apelin receptor-EGFP with increasing 

concentrations of E339-3D6 (10-8 to 10-4 mol/L), K17F (10-12 to 10-7 mol/L) and pE13F (10-12 

to 10-7 mol/L) resulted in a concentration-dependent inhibition of forskolin-induced cAMP 

production (Figure 1C) with IC50 of 6.4 ± 1.3 x 10-7 mol/L, 8.3 ± 1.2 x 10-11 mol/L and 2.3 ± 

1.2 x 10-10 mol/L, respectively. The maximal inhibitory effect of E339-3D6 (8135 ± 685 
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fmoles/100,000 cells, n=5) corresponding to 60% of inhibition of forskolin-induced cAMP 

production (20136 ± 1361 fmoles/100,000 cells, n=10) occured for a concentration equal or 

superior to 10-5 mol/L and was significantly different from those induced by K17F (1410 ± 

260 fmoles/100,000 cells, n=10, p<0.001) and pE13F (2477 ± 602 fmoles/100,000 cells, n=5, 

p<0.005). The maximal inhibitory effects of K17F (93 %) and pE13F (87 %) on forskolin-

induced cAMP production occured for concentrations equal or superior to 10-8 mol/L. Under 

basal conditions, E339-3D6, K17F and pE13F applied separately at the concentrations of 10-4 

mol/L or 10-7 mol/L, did not significantly decrease basal cAMP levels (data not shown).  

 

Capacity of E339-3D6 to Trigger Apelin Receptor Internalization 

Confocal microscope analysis of CHO cells stably expressing the rat apelin receptor-EGFP in 

resting conditions displayed intense apelin receptor-EGFP fluorescence at the plasma 

membrane as previously described (9) (Figure 2A). Incubation with 10-7 mol/L K17F or 10-7 

mol/L fluorescent apelin 13 (i.e. lissamine-apelin 13: Lissamine-SO2-NH-(CH2)10-CO-Gln-

Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Met-Pro-Phe-OH) (Figure 2A, S1) for 20 min 

resulted in the internalization of the apelin receptor-ligand complexes (Figure S1A 

arrowheads). We then tested the capacity of E339-3D6 to trigger internalization of apelin 

receptor-EGFP. Incubation of CHO cells with increasing concentrations of E339-3D6 (10-7 to 

10-4 mol/L) for 20 min resulted in the dose-dependent internalization of the rat apelin 

receptor-EGFP (Figure 2B). The maximal internalization occurred for E339-3D6 

concentrations comprised between 3 x 10-6 mol/L and 10-4 mol/L. Moreover, since E339-3D6 

was fluorescent due to the presence of lissamine, its cellular localization was followed during 

the internalization process. After 20 min of incubation with 3 x 10-6 mol/L and 10-4 mol/L 

E339-3D6, an extensive overlap was observed in labeling for the apelin receptor-EGFP and 

E339-3D6 within cytoplasmic vesicles, indicating that the internalization of the apelin 

receptor implies apelin receptor/E339-3D6 complex formation (Figure 2B). In contrast, 
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incubation of CHO cells stably expressing the rat angiotensin II receptor type 1A fused at its 

C-terminus with EGFP (AT1a-EGFP) with 10-4 mol/L E339-3D6 neither induced 

internalization of the AT1a-EGFP receptor nor the internalization of E339-3D6 itself (Figure 

2C). The time-course of the rat apelin receptor-EGFP internalization induced by 3 x 10-5 

mol/L E339-3D6 (Figure S1B) showed the appearance of fluorescent vesicles located under 

the plasma membrane after 5 min of incubation. E339-3D6-induced endocytosis was more 

pronounced after 10 min of incubation and maximal after 20 min. After 45 min of incubation, 

vesicles fused and moved in clusters to the perinuclear region of cells with a slight sorting to 

the plasma membrane (Figure S1B). To evaluate if E339-3D6 and K17F induce the same 

maximal extent of internalization, we quantified at a maximal dose of K17F (10-7 mol/L) and 

E339-3D6 (10-4 mol/L), the extent of ligand-induced rat apelin receptor-EGFP internalization 

by confocal microscopy coupled to digital image analysis (Figure 3) as previously described 

(26). First, the confocal analysis showed that as well for K17F as for E339-3D6, 100% of 

analyzed cells (100 cells for each condition) exhibited a profile of internalization (Figure 

3A). Secondly, quantification of membrane/intracellular fluorescent ratios (M/I) induced by 

10-7 mol/L K17F (M/I = 1.07 ± 0.15, number of cells analyzed=17) or 10-4 mol/L E339-3D6 

(M/I = 1.03 ± 0.11, number of cells analyzed=17) indicated that E339-3D6 and K17F induced 

the same maximal extent of internalization (not statistically different, p=0.95) (Figure 3B,C).  

 

Comparison of the Binding Properties of E339-3D6 versus the Apelin Peptide, pE13F, 

by Molecular Modeling 

The in silico models of the human apelin receptor/pE13F and human apelin receptor/E339-

3D6 complexes obtained after molecular simulation, revealed that both ligands bind in the 

same way within the receptor pocket. Both, pE13F and E339-3D6, exhibited a preferred 

elongated conformation when docked within the receptor cavity. In the complexes, the C-

terminal phenylalanine of pE13F and the lissamine chromophore of E339-3D6 were 
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surrounded by aromatic side-chains of the receptor cavity forming a stable network of π-π 

interactions (Figure 4). In fact, E339-3D6 missing lissamine has much lower affinity for the 

receptor (data not shown). However, lissamine itself even at a high concentration of 10-4 

mol/L did not inhibit specific binding to the rat apelin receptor-EGFP and was not able to 

induce apelin receptor internalization (data not shown).  

 

Vasorelaxing Effects of E339-3D6 on Isolated Rat Aorta 

In aortic rings precontracted with 3 x 10-6 mol/L NA, a concentration-dependent relaxation 

was induced by Ach, K17F and E339-3D6. All these effects were almost abolished in the 

absence of endothelium (Figure 5). The sensitivity (pD2) to K17F and E339-3D6 (8.1 ± 0.3 

and 8.6 ± 0.4, respectively) were significantly different (P < 0.05 and P < 0.01 respectively) 

from the corresponding value for Ach (6.8 ± 0.4) whereas the maximal relaxations (% of 

induced tone) were similar (Emax of 92 ± 2, and 102 ± 1 and 94 ± 5, respectively). 

 

Effects of Intracerebroventricular Injection of E339-3D6 on Systemic Vasopressin 

Release in Conscious Mice Deprived of Water for 24 h 

Water deprivation of mice for 24 h significantly increases plasma AVP levels (87.6 ± 14.2 

pg/mL , n=11 versus 33.2 ± 3.3 pg/mL , n=11; P< 0.005) (Figure 6). As previously described 

(10), i.c.v. injection of K17F in water-deprived mice at the dose of 1 µg (468 pmol) 

(significantly decreased plasma AVP levels (48.5 ± 7.3 pg/mL ) compared with water-

deprived mice injected with saline (87.6 ± 14.2 pg/mL ) (P< 0.05) (Figure 6). I.c.v. injection 

of E339-3D6 in increasing doses (from 0.03 to 2 µg corresponding to 21 to 1422 pmol) to 

water-deprived mice induced a dose-dependent decrease in plasma AVP levels with an ED50 

of 0.09 μg (64 pmol) (Figure 6, inset). The maximal decrease in AVP release induced by 1 

µg (711 pmol) E339-3D6 (- 67 %) was similar to that observed with 1 µg (468 pmol) K17F (- 

72 %) (Figure 6).  
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DISCUSSION 

The endogenous peptide apelin improves cardiac contractility and decreases cardiac loading 

in vivo (19, 20). Together with its ability to decrease arterial BP and systemic AVP release 

inducing an increase in aqueous diuresis (4, 5, 10), this suggests a prominent role for the 

apelin system in body fluid and cardiovascular homeostasis. Therefore the development of a 

specific and selective apelin receptor agonist offers the possibility of exploring the role played 

by this peptide further upstream in cardiovascular diseases and water retention and/or 

hyponatremic disorders and might be useful for the treatment of heart failure. The present 

study identifies the first nonpeptidic agonist for the apelin receptor and describes its 

pharmacological properties in vitro as well as its in vivo biological effects.  

At the beginning of our search for APJ receptor ligands, there was no available binding assay 

suitable for medium or high throughput screening. As an alternative, we decided to use a 

novel emerging strategy based on FRET (31, 32). The human apelin receptor was expressed 

fused to EGFP on its N-terminal. In parallel, libraries of fluorescent, non-peptide compounds 

were synthesized (24, 29). The fluorophore, lissamine, was chosen for its ability to absorb at 

EGFP emission wavelength via FRET. About 800 tagged molecules were thus prepared and 

screened on the EGFP-apelin receptor. As previously validated, such an assay allows the 

detection of molecules binding to the tagged receptor on orthosteric or allosteric sites (30, 33, 

34) without need of a radioligand. This method is of particular interest for orphan receptors 

and when no classical binding assay is easily accessible. In the particular case of the human 

apelin receptor, by using this new screening approach, we have isolated three hit compounds 

including the compound E339-3D6 (23). E339-3D6 displayed an affinity of 9 x 10-8 mol/L for 

the human truncated apelin receptor determined by FRET and a Ki of 3.9 x 10-7 mol/L for the 

human truncated apelin receptor and a Ki of 3.8 x 10-7 mol/L for the rat apelin receptor 

determined by radioligand binding assay. E339-3D6 exhibits a high affinity and selectivity for 
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both rat and human apelin receptor. For instance, the molecule does not lead to FRET 

detection on the following human GPCRs, vasopressin V1a, oxytocin OTR, muscarinic m1R, 

chemokine CXCR4 and CCR5, melanocortin MC3 nor on rat takykinin NK2 receptors (data 

not shown). E339-3D6 provides an original research probe that validate the FRET-based 

strategy that could be applied to other GPCRs, including orphan receptors. 

E339-3D6 inhibits forskolin-stimulated cAMP accumulation but the maximal response 

was only 60% of the maximal responses elicited by the natural full agonists K17F and pE13F, 

showing that E339-3D6 displays partial agonist activity with regard to cAMP production. In 

agreement with the partial agonist behavior, the binding sites for E339-3D6 and pE13F are 

overlapping as shown by the docking of these compounds in the 3D model of the apelin 

receptor. In the α2-adrenergic receptor, full and partial agonists having different intrinsic 

efficacy were shown to induce and/or stabilize distinct conformational states of the receptor 

(35, 36). This suggests that pE13F and E339-3D6 could stabilize different conformations of 

the apelin receptor, pE13F would exclusively bind the active conformation of the receptor 

whereas E339-3D6 would bind both active and inactive conformations of the receptor, thus 

generating quantitatively different amounts of active receptors.  

However, confocal analysis of CHO cells stably expressing the rat apelin receptor-EGFP 

stimulated by K17F or E339-3D6 at maximal concentrations, showed that E339-3D6 and 

K17F induced the same maximal extent of internalization. This shows that E339-3D6 is a full 

agonist with regard to internalization. Since the apelin receptor is internalized by the early 

endosomes via a clathrin-dependent mechanism, probably involving the perinuclear recycling 

compartment (9), it could be concluded that E339-3D6 would be a biased agonist and even an 

imperfect bias where selectivity for different signaling pathways is a matter of degree as 

reviewed by Violin and Lefkowitz (37). 

This is in line with the concept that different ligands can stabilize distinct receptor 

conformations that may differ in their signaling partner preference (38-40), thus inducing 
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different biological responses. Indeed, we previously showed that K16P (the C-terminal 

phenylalanine-deleted fragment of K17F) and K17F bind the apelin receptor with similar 

affinities and equally inhibit forskolin-induced cAMP production, whereas in contrast to 

K17F (9), K16P does not induce apelin receptor internalization and does not decrease arterial 

BP (9). This indicates that a specific receptor conformation inducing internalization is 

required to decrease arterial BP. In the 3D model of the apelin receptor, the C-terminal 

phenylalanine in pE13F is positioned in an aromatic pocket within the receptor binding site. 

Interestingly, we found that the lissamine chromophore in E339-3D6 is similarly embedded, 

which could account in part for the full agonist activity of E339-3D6 with regard to apelin 

receptor internalization. 

Since the apelin induced-decrease in BP was proposed to occur through a NO-mediated 

arterial vasodilatation (17, 18), we first evaluated ex vivo, the effect of E339-3D6 on rat aortic 

vascular tone. To our best knowledge, the effects of K17F on vascular responsiveness of non-

obese normotensive rats were poorly investigated. In db/db mice, apelin 36 restores the 

altered aortic vascular responsiveness to Ach and AngII by potentiating phosphorylation of 

Akt and eNOS (41). Furthermore, apelin 13 produced relaxation in normal human splanchnic 

arteries via NO release after activation of apelin receptors located in the endothelium (42). 

More recently, apelin 36 and pE13F administration in man was shown to cause NO-dependent 

arterial vasodilation (16). Moreover, we recently reported that K17F caused NO-dependent 

vasorelaxation of rat renal glomerular arterioles precontracted with AngII (43). In the present 

work, K17F and E339-3D6 induced a similar concentration- and endothelium-dependent 

vasorelaxation of NA-precontracted aortic rings from normotensive rats. Since the apelin 

induced-decrease in BP was proposed to occur through a NO-mediated arterial vasodilatation 

(17, 18), the apelin- and E339-3D6-induced aorta vasodilatation could be also mediated by 

endocytosis of the apelin receptor. Since E339-3D6 is full agonist with regard to 

internalization, this could explain in part why E339-3D6 has a maximal vasorelaxant effect 
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equal to K17F. Nevertheless, the vasorelaxant action of E339-3D6, even if its affinity for the 

apelin receptor is weaker than that of the endogenous peptide K17F, could be also related to 

higher metabolic stability and biological activity of E339-3D6 as compared to K17F, as 

expected from its non-peptidic structure. 

Interestingly, both K17F and E339-3D6 exhibited a significantly more potent 

vasorelaxant effect than Ach in our experimental conditions, as their pD2 were significantly 

higher than that of Ach despite similar maximal relaxant effects. The endothelium-dependent 

vasorelaxant effect of E339-3D6, similar to that of K17F, is in agreement with the presence of 

apelin receptor binding sites in human aorta (44) and mRNA apelin receptor expression in 

endothelial cells lining large conduit vessels of various organs (16, 43). E339-3D6 is the first 

apelin receptor agonist decreasing arterial vascular tone in normotensive rats, suggesting that 

E339-3D6 could constitute a lead compound for the future development of a new class of 

vasodilator agents. 

Another important part of our study addresses the question whether central administration of 

E339-3D6, like apelin, is able to decrease systemic AVP in 24h-water deprived mice. E339-

3D6 significantly decreased dehydration-induced AVP release and its potency did not differ 

from that of the natural ligand K17F (10). These data suggest that E339-3D6 similarly to 

K17F, when i.c.v injected, is able to rapidly reach the hypothalamic structures involved in 

AVP release and, by acting on apelin receptors expressed by magnocellular vasopressinergic 

neurons, inhibits the phasic electrical activity of these neurons. This subsequently induces a 

decrease in AVP release in the blood circulation. As previously shown for the central action 

of apelin (5), we can hypothesize that an apelin receptor agonist such as E339-3D6, by 

counteracting AVP actions would have aquaretic effects. In this context, apelin receptor 

agonists would be particularly interesting for the treatment of water retention and/or 

hyponatremia, avoiding the excessive loss of sodium and potassium commonly found with the 

use of diuretics. 
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In conclusion, we described the discovery of the first nonpeptidic specific agonist of the 

apelin receptor, E339-3D6, by an original and efficient screening approach. We demonstrated 

ex vivo its ability to produce vasorelaxation of rat aorta as well as its in vivo potential to 

inhibit water deprivation-induced AVP release in the blood circulation. Such compound 

would be useful for a better understanding of the physiopathological roles of apelin and its 

receptor and to evaluate the therapeutic potential of apelin receptor agonists in different 

animal models of pathologies. This ligand represents a unique and very interesting lead 

compound for which a medicinal chemistry program has been undertaken in order to optimize 

its affinity and its bioavailability. Optimization of the structure towards a compound meeting 

the clinical candidate status requirements will also be conducted in order to develop new 

agonists of the apelin receptor which could represent a new generation of vasodilator and 

aquaretic agents. 
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Figure 1. In vitro pharmacological characterization of E339-3D6 (A) structure of compound 

E339-3D6. (B) detection of E339-3D6 binding to the EGFP-∆ 16 human apelin receptor. 

Fluorescence of cells expressing EGFP-∆ 16 human apelin receptor was monitored at 510 nm 

(excitation 470 nm) as a function of time. After 30 sec recording, E339-3D6 (6 x 10-7 mol/L) 

was added to the cells leading to the time-dependent decline of EGFP emission. At time 210 

sec, an excess of pE13F (5 x 10-6 mol/L) was added enabling the E339-3D6 dissociation and 

the initial fluorescence emission recovery. (C) Effects of K17F, pE13F and E339-3D6 on 

forskolin-induced cAMP production in CHO cells stably expressing the rat apelin receptor-

EGFP. cAMP production was induced by treatment of cells with 10-5 mol/L forskolin. The 

effects of various concentrations of K17F, pE13F and E339-3D6 on forskolin-induced cAMP 

production were then evaluated. Data are expressed in fmoles of cAMP produced/100,000 

cells. Means ± SEM of three to ten separate experiments. 

 

Figure 2. Effects of K17F and E339-3D6 on rat apelin receptor-EGFP internalization in CHO 

cells. (A) CHO cells stably expressing the rat apelin receptor-EGFP (in green) were treated 

with K17F (10-7 mol/L) for 20 min. (B) CHO cells stably expressing the rat apelin receptor-

EGFP (green) were treated for 20 min with E339-3D6 (from 10-7 to 10-4 mol/L) (red). Overlay 

was visualized in yellow. (C) CHO cells stably expressing the rat AT1a receptor-EGFP 

(green) were treated for 20 min with 10-4 M of E339-3D6 (red). Each panel is representative 

of three separate experiments. 

 

Figure 3. Quantification of rat apelin receptor-EGFP internalization. (A) Confocal images of 

CHO cells stably expressing the rat apelin receptor-EGFP incubated without (Control), with 

K17F (10-7 mol/L) or with E339-3D6 (10-4 mol/L) for 20 min. (B) Example of gray-scale 

conversion and median filtering of a cell with twelve radial measurement lines outlined. 

Example plots of gray-scale density distribution along the first four radial measurement lines 
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for a cell. The mean density value of the first 30 pixels (shaded), representing the plasma 

membrane, yields the M value and the mean density of the remaining intracellular pixels 

yields the I value. The mean of the 12 M values and the 12 I values is used to calculate the 

M/I ratio for each cell. (C) Histogram of M/I ratio as a function of K17F and E339-3D6 

concentrations. The results are expressed as means ± SEM. Statistical differences were 

assessed using Student’s t comparison test, with a threshold of significance set at P ≤ 0.05. 

 

Figure 4. Docking of pE13F or E339-3D6 into the human apelin receptor 3D model. The 

optimized positions of both pE13F (orange) and E339-3D6 (pink) ligands with the human 

apelin receptor. The side chains of the residues of the apelin receptor interacting with the 

ligands are displayed in green.  

 

Figure 5. Effects of E339-3D6 on rat aorta vascular tone. Cumulative concentration-response 

curves of K17F (circles), E339-3D6 (triangles) and acetylcholine (Ach) (squares) in rat aorta 

with (full symbols) or without (open symbols) endothelium precontracted by NA (3 x 10-6 

mol/L). Data are shown as means ± SEM of three to five independent experiments. 

 

Figure 6. Effects of i.c.v. injection of E339-3D6 in mice on water deprivation-induced 

systemic AVP release. After 24 h of water deprivation, mice received i.c.v. 10 µL saline or 

K17F (1 µg) or increasing amounts of E339-3D6 (from 0.03 to 2 µg) and were compared with 

mice with free access to water that received i.c.v. 10 µL saline. Plasma AVP levels were 

determined 1 min after injection by RIA. Histogram represents the mean ± SEM of plasma 

AVP levels in pg/mL , *p < 0.05, **p < 0.005 versus control. Inset, represents the sigmoidal 

curve of the E339-3D6 dose-response on AVP release in conscious water-deprived mice. 
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