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Abstract  19 

Brain renin-angiotensin system (RAS) hyperactivity has been implicated in 20 

sympathetic hyperactivity and progressive left ventricular (LV) dysfunction after myocardial 21 

infarction (MI). Angiotensin III, generated by aminopeptidase A (APA), is one of the main 22 

effector peptides of the brain RAS in the control of cardiac function. We hypothesized that 23 

orally administered firibastat (previously named RB150), an APA inhibitor prodrug, would 24 

attenuate heart failure (HF) development after MI in mice, by blocking brain RAS 25 

hyperactivity. Two days after MI, adult male CD1 mice were randomized to three groups, for 26 

four to eight weeks of oral treatment with vehicle (MI+vehicle), firibastat (150 mg/kg; 27 

MI+firibastat) or the angiotensin I converting enzyme inhibitor enalapril (1 mg/kg; 28 

MI+enalapril) as a positive control. From one to four weeks post-MI, brain APA hyperactivity 29 

occurred, contributing to brain RAS hyperactivity. Firibastat treatment normalized brain APA 30 

hyperactivity, with a return to the control values measured in sham group two weeks after MI. 31 

Four and six weeks after MI, MI+firibastat mice had a significant lower LV end-diastolic 32 

pressure, LV end-systolic diameter and volume, and a higher LV ejection fraction than 33 

MI+vehicle mice. Moreover, the mRNA levels of biomarkers of HF (Myh7, Bnp and Anf) 34 

were significantly lower following firibastat treatment. For a similar infarct size, the peri-35 

infarct area of MI+firibastat mice displayed lower levels of mRNA for Ctgf and collagen 36 

types I and III (markers of fibrosis) than MI+vehicle mice. Thus, chronic oral firibastat 37 

administration after MI in mice prevents cardiac dysfunction by normalizing brain APA 38 

hyperactivity, and attenuates cardiac hypertrophy and fibrosis. 39 

Keywords: aminopeptidase A inhibitor; brain renin-angiotensin system; myocardial 40 

infarction; left ventricular dysfunction.  41 
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Introduction     42 

 Heart failure (HF) is a leading cause of death and mortality. Growing evidence of a 43 

role for systemic renin-angiotensin system (RAS) activation in HF has led to the use of 44 

systemic RAS blockers, such as angiotensin I converting enzyme (ACE) inhibitors or 45 

angiotensin type I receptor (AT1R) antagonists in clinical practice [17],[21],[25].  46 

Several studies have implicated brain RAS hyperactivity, inducing sympathetic 47 

hyperactivity, in the development of HF with a reduced ejection fraction (HFrEF) after 48 

myocardial infarction (MI) [15],[3]. Transgenic rats lacking brain angiotensinogen display 49 

attenuated adverse cardiac remodeling after MI [13]. Moreover, brain AT1R blockade by 50 

central losartan infusion strongly inhibits the development of LV dilation and dysfunction in 51 

rats post MI [14]. 52 

Among the bioactive peptides of the brain RAS, angiotensin II (AngII) and 53 

angiotensin III (AngIII) have similar affinities for AT1R. In the brain, aminopeptidase A 54 

(APA; EC 3.4.11.7), a membrane-bound zinc metalloprotease, generates AngIII from AngII, 55 

whereas another membrane-bound zinc metalloprotease, aminopeptidase N (APN; EC 56 

3.4.11.2), metabolizes AngIII into AngIV [36]. By using specific and selective APA and APN 57 

inhibitors (EC33 (3S)-3-amino-4-sulfanylbutane-1-sulfonic acid and PC18 (2S)-2-amino-4-58 

methylsulfanylbutane thiol, respectively [6], [4]) we had shown that brain AngIII, and not 59 

AngII as established in the periphery, was one of the main effector peptides of the brain RAS, 60 

in the control of blood pressure (BP) and arginine-vasopressin release [26],[7],[1],[18],[19]. 61 

Brain AngIII exerts a tonic stimulatory effect on BP control in several experimental models of 62 

hypertension. These findings are consistent with key roles for brain APA and AngIII in the 63 

regulation of brain RAS activity.  64 

  EC33 does not cross the blood-brain barrier. We therefore developed a systemically 65 

active prodrug of EC33, firibastat (previously named RB150) 4,4'-dithio{bis[(3S)-3-66 

aminobutyl sulfonic acid]}, which was obtained by dimerizing two molecules of EC33 67 

through a disulfide bond [7]. Orally administered firibastat (RB150) crosses the intestinal, 68 

hepatic and blood-brain barriers and is therefore able to enter the brain. On arrival in the 69 

brain, the disulfide bridge of firibastat (RB150) is immediately cleaved by brain reductases, 70 

generating two active molecules of EC33 [1],[18],[19]. Oral firibastat (RB150) treatment in 71 

experimental models of hypertension inhibits brain APA activity, blocks brain AngIII 72 

formation and decreases BP in a dose-dependent manner, for up to 9 h after treatment. The 73 

firibastat (RB150)-induced decrease in BP is due to a decrease in sympathetic tone and, thus, 74 
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to a decrease in vascular resistance and to a reduction in arginine-vasopressin release from the 75 

posterior pituitary into the bloodstream, reducing extracellular volume [1],[18],[19]. 76 

Intracerebroventricular firibastat (RB150) infusion for four weeks after MI in rats attenuates 77 

sympathetic hyperactivity and prevents cardiac dysfunction [11]. With a view to the potential 78 

clinical use of firibastat (RB150) for HF treatment, we evaluate here the effects of brain APA 79 

inhibition by chronic oral treatment with firibastat for four or eight weeks, comparing the 80 

effects on LV remodeling of this treatment and systemic ACE inhibition by enalapril after MI 81 

in mice. For this purpose, we followed brain APA activity, cardiac function, cardiac 82 

hypertrophy and fibrosis in parallel after oral treatment for four, six, or eight weeks post MI 83 

with firibastat or enalapril. Enalapril was used as a positive control because oral treatment 84 

with this drug has been shown to improve LV remodeling and HFrEF symptoms in rats and 85 

dogs after acute MI [31],[28], and in patients with reduced left ventricular ejection fraction 86 

(LVEF) [30].   87 
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Materials and Methods 88 

Animals 89 

All procedures were approved by our institutional Ethics Committee (French CEEA 90 

no. 59) and complied with European legislation (Directive 2010/ 63/EU) on animal care. The 91 

project is registered under no. 2017-01 #7844. In this study, we used 143 mice in total, 92 

including five-month-old CD1 males (Charles River, France).  93 

Myocardial infarction model 94 

Surgical procedures for the myocardial infarction model are detailed in supplementary 95 

material. 96 

Oral treatment  97 

Mice were weighed weekly and drug dose was adjusted accordingly as detailed in 98 

supplementary material. 99 

Echocardiographic measurements 100 

Cardiac function was evaluated two, four and six weeks after MI, by transthoracic 101 

echocardiography with a Vevo 2100 (FUJIFILM Visualsonics Inc., Toronto, Canada) 102 

equipped with a linear array 22–55 MHz MicroScan mouse cardiovascular transducer 103 

(MS550D) as detailed in supplementary material.  104 

Assessment of left ventricular hemodynamics 105 

For the in vivo hemodynamic measurements, at four weeks post MI, mice were 106 

anesthetized via an intraperitoneal injection of 50 mg/kg pentobarbital sodium salt (CEVA, 107 

La Ballastiere, France) as detailed in supplementary material.  108 

Assays of brain APA activity and protein determinations 109 

The enzymatic activity of APA was measured with α-L-glutamyl-β-naphthylamide 110 

(GluβNA) (Bachem, Weil am Rhein, Germany) as a synthetic substrate, in initial velocity 111 

conditions, as previously described [7, 38] and detailed in supplementary material.  112 

Evaluation of fibrosis by histological staining 113 

Cardiac cryosections were stained as detailed in supplementary material.  114 

Real-time quantification of gene expression 115 

Real-time quantification of gene expression is detailed in supplementary material.  116 
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Statistical analysis 117 

The results are presented as means ± standard error of the mean (SEM). Statistical analysis 118 

was performed with Prism 7 statistical software (GraphPad Software, RITME, France). The 119 

significance of differences between groups was assessed in Student’s t test (2 groups) or one-120 

way or two-way analysis of variance (ANOVA) followed by Tukey’s test for multiple 121 

comparisons (≥2 groups). P values ≤ 0.05 were considered statistically significant. 122 
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Results 123 

Experimental design 124 

We first induced myocardial infarction (MI) by ligation of the left anterior descending artery 125 

(LAD) on day 0 (Fig. 1). Two days after surgery, oral treatment of the animals was initiated, 126 

with vehicle (peanut butter), firibastat (150 mg/kg) or enalapril (1 mg/kg) once daily. The 127 

used of peanut butter as vehicle reduces animal repetitive-gavage-induced stress [9] without 128 

altering the effectiveness of the molecules administered. Indeed, we have shown that enalapril 129 

given by oral route in peanut butter at the dose of 1 mg/kg inhibited heart ACE activity by 130 

55% after 4 weeks treatment post MI (data not shown). 131 

The enzymatic activity of brain APA was measured two days, and one, two, three and 132 

four weeks post MI. Cardiac function was monitored by echocardiography two weeks after 133 

MI and animals were selected on the basis of their ejection fraction (EF): only animals with 134 

an EF below 55% post MI were retained for the study. In total, 5% of the animals were 135 

excluded. Four and six weeks post MI, EF was evaluated to assess the effect of the treatment. 136 

Animals were randomly allocated to groups two weeks after LAD ligation. This study was 137 

performed in two phases: the first four-week phase to analyze the effects of firibastat or 138 

enalapril treatments on MI development, and the second eight-week phase to follow the long-139 

term effects on HF.   140 

Validation of the myocardial infarction model  141 

LAD coronary artery ligation induced cardiac hypertrophy and dilation of whole heart, 142 

together with an increase in left atrium diameter (Fig. 2A). Calcification of the left atrium was 143 

observed. All MI+vehicle mice were still alive after four weeks, but only 50% of these mice 144 

were still alive after eight weeks. Mortality after oral firibastat and enalapril treatment was 145 

reduced as compared to MI+vehicle: by 27% and 28.6% respectively. 146 

Four weeks post MI, vehicle-treated mice had significantly higher heart mass and 147 

heart weight to body weight ratio than sham-operated mice (sham values 0.19 ± 0.003 g and 148 

0.005 ± 0.0001, respectively, vs. MI+vehicle values 0.28 ± 0.01 g p<0.0001 and a ratio of 149 

0.007 ± 0.0003 p<0.0001) (Fig 2B-C). The increase in heart mass was correlated with a 150 

strong decrease in LVEF, validating this mouse model as an experimental model of HFrEF. 151 

After four weeks, mean LVEF was 63.8 ± 1.5% in sham-operated mice and 45.3 ± 1.8% in 152 

the MI+vehicle group (p<0.0001) (Fig. 2D).  153 

Brain APA activity following oral firibastat treatment 154 
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The enzymatic activity of brain APA was evaluated on fresh brain homogenates, with 155 

GluβNA as a synthetic substrate, in initial velocity conditions. Brain APA activity in the 156 

MI+vehicle group was increased significantly two days after LAD coronary artery ligation by 157 

19% (107 ± 10 nmol Glu βNA hydrolyzed/mg protein/h p=0.0418), relative to sham-operated 158 

mice (90 ± 3 nmol Glu βNA hydrolyzed/mg protein/h) (Fig. 3). Brain APA activity was 159 

highest after one week post MI, at a time point corresponding to the remodeling phase. Brain 160 

APA activity in post MI mice receiving vehicle was increased by 39% after one week, by 161 

28% after two weeks, by 28% after three weeks, and by 20% after four weeks, relative to 162 

sham-operated mice. Oral firibastat treatment for one week post MI in mice had no effect on 163 

brain APA hyperactivity, as shown by comparison with the MI+vehicle group (125 ± 7.6 in 164 

MI+vehicle mice vs. 116.6 ± 6.14 nmol GluβNA hydrolyzed/mg protein/h in the 165 

MI+firibastat group). By contrast, oral firibastat treatment post MI in mice significantly 166 

decreased brain APA activity, by 28% after two weeks, by 30% after three weeks, and by 167 

30% after four weeks, relative to brain APA activity measured in the MI+vehicle group 168 

(111.5 ± 3.3 p=0.0098 at two weeks, 110.18 ± 6.6 p=0.0319 at three weeks and 100.5 ± 5 169 

nmol p=0.0234 at four weeks of GluβNA hydrolyzed/mg protein/h in MI+vehicle mice vs. 170 

90.4 ± 5 p=0.0446 at two weeks, 84 ± 6 p=0.0279 at three weeks and 78 ± 3 nmol p=0.0062 at 171 

four weeks of GluβNA hydrolyzed/mg protein/h in MI+firibastat mice).  172 

Effects of oral firibastat treatment on heart function post MI in mice  173 

Enalapril was included as a positive control in this study. Enalapril is an ACE 174 

inhibitor, approved as a first-line therapy for preventing of LV dysfunction after acute MI in 175 

humans. Inflammation and compensated remodeling phase are maximal one week post MI, so 176 

the LVEF value obtained at this time point is not representative of the true contractility of the 177 

heart. Oral treatment with firibastat or enalapril for two weeks post MI in mice had no 178 

significant effect on LVEF (data not shown: MI+firibastat 49.9 ± 1.39% and MI+enalapril 179 

52.3 ± 1.56% vs. MI+vehicle 46.6 ± 1.1%). The LVEF value generally exceeds 60% in adult 180 

CD1 mice, as confirmed by measurements on sham-operated mice (62.9 ± 1.62% at two 181 

weeks post MI). 182 

Oral firibastat treatment for four weeks significantly decreased left ventricle end 183 

diastolic pressure (LVEDP) (sham -0.96 ± 1.2mmHg; MI+vehicle +9.94 ± 2mmHg p=0.0023; 184 

MI+firibastat 1.74 ± 2.1mmHg p=0.0103; MI+enalapril 2.8 ± 2.7mmHg p=0.0261) (Fig. 4A). 185 

The LVEF of MI+vehicle mice was significantly lower than that in sham-operated mice from 186 
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four to six weeks post MI (45.3 ± 1.77% p<0.0001 at four weeks and 39.1 ± 4.42% p=0.0002 187 

at six weeks in MI+vehicle mice vs. 63.8 ± 1.46% at four weeks and 63.4 ± 1.6 at six weeks 188 

in sham-operated mice) (Fig. 4B-C). Eight weeks after MI, the decrease in LVEF was 189 

maintained (41 ± 5.5%) in MI+vehicle mice. However, 50% of these animals had died by this 190 

time point (data not shown). By contrast, firibastat or enalapril treatment prevented cardiac 191 

dysfunction, as demonstrated by the maintenance of LVEF after four and six weeks of 192 

treatment (50.8 ± 1.23% p=0.0425 and 53.9 ± 2.5% p=0.0087, respectively, in the 193 

MI+firibastat group and 55.3 ± 2.35% p=0.0024 and 57.9 ± 2.7% p=0.0024, respectively, in 194 

the MI+enalapril group) (Fig. 4B-C). No significant difference in LVEF was observed 195 

between mice treated with firibastat and mice treated with enalapril for four (p=0.3166) or six 196 

weeks (p=0.7065). 197 

A relationship between the LVEF decrease induced by firibastat treatment and the 198 

increase in brain APA activity was observed during the time-course of the study after MI 199 

(Fig. 5). Two days after LAD coronary artery ligation, a decrease in LVEF was observed, 200 

together with an increase in brain APA activity (Fig. 5A). This observation led us to start 201 

firibastat treatment two days post MI. After two weeks of firibastat treatment, LVEF had not 202 

significantly improved whereas brain APA hyperactivity was decreased (Fig. 5B). Four 203 

weeks of firibastat treatment in mice post MI, resulting in a normalization of brain APA 204 

activity for two weeks, was required to achieve an almost complete normalization of LVEF 205 

relative to sham-operated mice (Fig. 5C).  206 

Effects of oral firibastat treatment on cardiac hypertrophy post MI in mice 207 

Six weeks after MI, the mean body weight of mice in the MI+vehicle group was 208 

significantly lower (-7.5 g) than that of the sham-operated mice (Table 1). MI induced an 209 

increase in LVED and LVES volumes, LVED and LVES diameters, and fractional shortening 210 

(FS), indicating a dilation of cardiac chambers (Table 1). Oral firibastat treatment for four 211 

weeks post MI in mice significantly reduced LVESD (p=0.0132), LVESV (p<0.0001) and FS 212 

(p=0.0452), whereas firibastat treatment for six weeks significantly decreased only LVESV 213 

(p=0.0082) and LVFS (p=0.0014). Moreover, oral enalapril treatment significantly reduced 214 

LVESV (p=0.0001) and LVFS (p=0.0050) for four weeks; and LVESD (p=0.0248), LVESV 215 

(p<0.0001) and LVFS (p=0.002) for six weeks post MI. Neither treatment modified heart rate 216 

(Table 1).  217 

Effects of oral firibastat treatment on biomarkers of heart failure  218 
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 Biomarkers of HF were evaluated by RT-qPCR (Fig. 6). MI significantly increased 219 

Myh7 (p=0.0055) (Fig. 6A), Bnp (p=0.0022) (Fig. 6B) and Anf (p=0.0289) (Fig. 6C) mRNA 220 

levels, confirming the relevance of the post-MI mouse model as a model of HFrEF. Oral 221 

firibastat treatment for eight weeks post MI in mice markedly and significantly reduced the 222 

mRNA levels for these genes, by 84% in the non-infarct area when compared to MI+vehicle 223 

mice, and to almost the control values measured in sham-operated mice (Myh7 (p=0.0036); 224 

Bnp (p=0.0022) and Anf (p=0.0241)) (Fig. 6A-C), indicating an improvement in cardiac 225 

function. By contrast, oral enalapril treatment for eight weeks post MI in mice did not 226 

significantly reduce mRNA levels for these biomarkers (Fig. 6A-C) in the non-infarct area 227 

relative to the values obtained for the mice of the MI+vehicle group. The protein levels of 228 

mouse pro Brain Natriuretic peptide (NT-ProBNP) on plasma was also determined (Fig. S1). 229 

A significant increase of circulating NT-ProBNP (+191.4 %), at 4 weeks post MI, was 230 

observed in the MI+vehicle group. However, after 4 weeks of oral treatment with both 231 

firibastat and enalapril, significant decreases in plasma NT-ProBNP levels (by 54.84 % and 232 

57.18 %, respectively) were observed when compared to the MI+vehicle group (Fig. S1). The 233 

changes in the protein levels of NT-ProBNP after firibastat and enalapril treatments are 234 

consistent with changes in relative mRNA expression measured under the same experimental 235 

conditions (Fig. 6B). 236 

Effects of oral firibastat treatment on cardiac fibrosis   237 

We investigated the effects of firibastat treatment on the cardiac fibrosis induced by 238 

MI, by quantifying, on heart sections, the percentage of collagen types I (Col I) and III (Col 239 

III) fibers after sirius red staining, for the different groups, after eight weeks of treatment (Fig. 240 

7A). Infarct size was similar for all treatments and was not affected by the number of weeks 241 

of treatment, remaining at approximately 20% of the area of the LV (Fig. 7B). Four weeks 242 

post MI, the infarct size was 19.6±6.1% the area of the LV in MI+vehicle mice, 18.1±4.6% in 243 

MI+firibastat mice, and 20.7±4.5% in MI+enalapril mice (data not shown), and at eight weeks 244 

post MI, it had reached 23.7±1.3% in MI+vehicle mice, 21.7± 3.3% in MI+firibastat mice, 245 

and 21.5±5.4% in MI+enalapril mice (Fig. 7B). Thus, mean MI size was similar in the three 246 

groups of mice that underwent LAD ligation. 247 

 Cardiac fibrosis was quantified in the peri-infarct or non-infarct zones. In the 248 

MI+vehicle group, the percentage fibrosis in the peri-infarct area increased significantly 249 

(p=0.0217). Firibastat treatment reduced fibrosis in the peri-infarct (27%), non-infarct 250 

(interstitial fibrosis) (24%) areas, and perivascular (14%), although this effect was not 251 
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statistically significant (Fig. 7C and S2). The expression levels for genes involved in fibrosis, 252 

such as Ctgf (Fig. 7D), Col I (Fig. 7E), and Col III (Fig. 7F) genes, and the Col I/Col III ratio 253 

(Fig. 7G) were much higher in MI+vehicle mice (Ctgf (p=0.008); Col I (p=0.01); Col III 254 

(p=0.01); and Col I/Col III ratio (p= 0.0020)) than in sham-operated mice. By contrast, 255 

mRNA levels for cardiac fibrosis biomarkers were significantly lower after eight weeks of 256 

firibastat treatment post MI than in sham-operated mice (Ctgf (p=0.0032) and Col I/Col III 257 

ratio (p=0.0280)) (Fig. 7D-G). Eight weeks of enalapril treatment after MI in mice seemed to 258 

be slightly less effective at decreasing mRNA levels for Ctgf, Col I, Col III, and the Col I/Col 259 

III ratio than firibastat treatment (Fig. 7D-G).  260 

Effects of oral firibastat treatment on hypoxia and inflammation biomarkers  261 

The effects of firibastat treatment on inflammatory markers, such as Hif-1α, Tgfβ and 262 

Il-1β, are shown in Fig.S3. The levels of these markers were slightly higher in the MI+vehicle 263 

group than in the sham-operated group (0.8 ± 0.3 A.U. vs. 1.5 ± 0.35 A.U. for Hif-1α; 0.4 ± 264 

0.13 A.U. vs. 0.6 ± 0.2 A.U. for Tgfβ; and 0.006 ± 0.001 A.U. vs. 0.005 ± 0.001 A.U. for Il-265 

1β). Firibastat treatment for four weeks induced a non-significant decrease in mRNA levels 266 

for Hif-1α (1±0.2 A.U.), Tgfβ (0.4±0.09 A.U.) and Il-1β (0.003±0.001 A.U.). Similarly, 267 

enalapril treatment induced a non-significant decrease in mRNA levels for Hif-1α (0.8±0.3 268 

A.U.), Tgfβ (0.3±0.03 A.U.) and Il-1β (0.001±0.0001 A.U.) after four weeks post MI.  269 
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Discussion 270 

The present study provides evidence that oral treatment with firibastat, a brain-271 

penetrating prodrug of the selective APA inhibitor EC33, for four weeks post MI in mice 272 

improves cardiac function and attenuates both cardiac hypertrophy and fibrosis.  273 

Brain APA hyperactivity occurred two days post MI in mice, was maximal after one 274 

week and remained high and stable at two, three and four weeks post MI. Brain APA 275 

hyperactivity contributed to brain RAS hyperactivity, as previously reported in several animal 276 

models of hypertension [7],[1],[18]. Moreover, there is also evidence to suggest that the brain 277 

RAS plays a key role in the progression of HF post MI [33],[35]. The hyperactivity of the 278 

brain RAS post MI leads to an increase in sympathetic neuron activity and arginine-279 

vasopressin release, contributing to the development of HF. Central (intracerebroventricular) 280 

and systemic AT1R blockade prevents sympathetic hyperactivity and markedly attenuates 281 

cardiac remodeling and dysfunction post MI [10],[13],[15]. However, central infusion of the 282 

AT1R blocker losartan lowers LVEDP and improves LV systolic function, whereas systemic 283 

infusion of losartan lowers LVEDP without improving LV systolic function [10],[13],[15]. 284 

These findings suggest that the blocking of brain RAS hyperactivity alone, with the orally 285 

active APA inhibitor prodrug firibastat, which has no effect on systemic RAS activity [26], 286 

[7], may be a promising approach to prevent HF after MI. 287 

APA is a membrane-bound monozinc metalloprotease that generates AngIII, one of 288 

the main effector peptides of the brain RAS, in vivo in the brain [8]. APA is present in the 289 

neurons and vessels of several human and murine brain structures that respond to angiotensin 290 

peptides and are involved in regulating body fluid homeostasis and cardiovascular functions 291 

[23, 38]. Firibastat (RB150) does not inhibit APA activity because its thiol group, unlike that 292 

of EC33, is engaged in a disulfide bridge, preventing its interaction with the zinc atom present 293 

in the active site of APA and essential for its catalytic activity [27]. Firibastat (RB150), in 294 

periphery, does not modified APA activity in organs as heart (Fig. S4). However, this 295 

disulfide bridge enables orally administered firibastat (RB150) to enter the brain. Within the 296 

brain, firibastat (RB150) is immediately cleaved by brain reductases, to generate two 297 

molecules of EC33, which inhibit brain APA activity, block the formation of brain AngIII and 298 

reduce blood pressure in hypertensive rats [37]. However, firibastat (RB150) does not lower 299 

BP in normotensive rats,  consistent with the view that firibastat (RB150) is an 300 

antihypertensive agent rather than a hypotensive agent [1, 8, 18, 20]. In a first exploratory 301 

study, we showed that the central infusion of firibastat (RB150), leading to its immediate 302 
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conversion into EC33 [7], inhibits sympathetic hyperactivity and attenuates cardiac 303 

dysfunction in a rat HF model [11]. Following MI, the brain RAS is rapidly overactivated, 304 

leading to an increase in sympathetic tone, LV dilation and cardiac dysfunction. Our data 305 

suggest that APA plays a major role in the brain RAS, suggesting that treatment with drugs 306 

targeting brain APA, such as firibastat (RB150), should be initiated as soon as possible after 307 

ischemic injury, to ensure the rapid normalization of the brain RAS. 308 

Any clinical use of firibastat in HF patients would depend on chronic oral treatment 309 

with firibastat preventing cardiac dysfunction. We therefore assessed the effect of brain RAS 310 

blockade by chronic oral treatment with firibastat in a mouse HFrEF model. The treatment 311 

was started two days after MI and was pursued for four, six or eight weeks post MI.  312 

Two days post MI, brain APA activity was already increased significantly. Two weeks 313 

of firibastat treatment post MI in mice were required to observe a return of brain APA 314 

hyperactivity to normal values similar to those in the sham-operated group. The normalization 315 

of brain APA hyperactivity by firibastat was maintained throughout the treatment period, 316 

demonstrating a lack of tolerance to the inhibitory effect of firibastat on brain APA activity 317 

after chronic treatment, as reported following repeated oral firibastat (RB150) administrations 318 

over a period of 24 days in alert DOCA-salt hypertensive rats [19].  319 

Four or six weeks of firibastat treatment post MI in mice decreased LVESD and 320 

LVESV without modifying heart rate, consistent with a decrease in LV hypertrophy. In the 321 

same experimental conditions, echocardiography and in vivo hemodynamic measurements 322 

revealed that cardiac function was better preserved in firibastat-treated animals, which 323 

displayed a significant improvement in LVEF and a significant decrease in LVEDP.  324 

Together, these data show that chronic oral treatment with firibastat improves cardiac 325 

function after experimental MI in mice. The decrease in LVEDP may reflect better volume 326 

regulation. In our experimental conditions, firibastat treatment (150 mg/kg/day) was as 327 

effective as enalapril treatment (1 mg/kg/day) for improving cardiac function [22], [30]. In 328 

our experimental conditions, firibastat treatment (150 mg/kg/day) was as effective as enalapril 329 

treatment (1 mg/kg/day) for improving cardiac function [22], [30] without affecting systolic 330 

blood pressure (data not shown). 331 

Interestingly, the decrease in brain APA hyperactivity observed after MI and the 332 

improvement in LVEF during the time-course of firibastat treatment were correlated. 333 

However, two weeks of firibastat treatment to normalize APA hyperactivity appeared to be 334 

required to observe an almost complete recovery of LVEF to values similar to those in sham-335 

operated animals. Thus, permanent brain RAS blockade, decreasing the sympathetic 336 
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hyperactivity observed after MI, could be a beneficial approach for preventing cardiac 337 

dysfunction. 338 

The improvement in cardiac function on firibastat treatment was confirmed by the 339 

significant strong decrease (≈85%) in the levels of HF biomarkers, such as Myh7 [12], Bnp 340 

[5], and Anf [2]. Firibastat treatment over a period of eight weeks decreased the expression of 341 

these biomarkers even more effectively than enalapril treatment (≈45 %).  342 

The improvement in cardiac function induced by firibastat may result from a decrease 343 

in cardiac hypertrophy, as suggested above, but it may also have involved a decrease in 344 

fibrosis in the peri-infarct area. Indeed, sirius red staining after eight weeks of post MI 345 

treatment, showed lower levels of fibrosis in the peri-infarct area in MI+firibastat mice than in 346 

MI+vehicle mice. Furthermore, a major decrease in levels of Ctgf mRNA, a well-established 347 

marker of fibrosis [16], was observed in the non-infarct area. Firibastat treatment also 348 

promoted decreases in the levels of other fibrosis markers, as illustrated by change in the 349 

collagen type I/collagen type III ratio [34]. Firibastat and enalapril treatments were similarly 350 

efficient on cardiac function but the effects of firibastat administration were more marked on 351 

heart failure and fibrosis markers than those observed after enalapril treatment when 352 

compared to MI + vehicle group. Further mechanistic studies are required to elucidate the 353 

precise effect of firibastat on profibrotic signaling cascades. 354 

Interestingly the chronic oral administration of firibastat in post MI mice for four 355 

weeks decreased the levels of markers of inflammation and hypoxia [29], [32] [24], such as 356 

Hif-1α (-33%) Tgfβ (-33%) and Il-1β (-42%), although this effect was not statistically 357 

significant. The lack of significance may be due to the timing of our analyses which were 358 

designed for the quantification of inflammatory markers, but may have been performed too 359 

long after MI, at a time at which the inflammation was already resolved. 360 

Together, these data suggest that chronic oral firibastat treatment after MI normalizes 361 

brain APA hyperactivity, thereby normalizing brain RAS and sympathetic hyperactivity, 362 

whilst preventing cardiac dysfunction and attenuating cardiac hypertrophy and fibrosis. 363 

Firibastat treatment was as effective as enalapril treatment. APA inhibitors may, therefore, 364 

constitute a potential new class of therapeutic agents for the treatment of post MI HF. These 365 

data indicate that it would be worthwhile exploring the clinical efficacy of firibastat further, in 366 

patients with a reduced LVEF after acute MI.  367 
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Table 1. Echocardiography parameters for left ventricular function and mouse body 

weight four and six weeks post MI. LV = left ventricular. The values shown are the mean ± 

SEM. One-way ANOVA followed by Tukey’s tests, *p<0.05, **p<0.01, ***p<0.001 and 

****p<0.0001.  




