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ABSTRACT
In this work, we propose a new minimal path model with a
Riemannian metric updated scheme during the fast marching
propagation for interactive vessel extraction. The invoked
metric consists of a crossing-adaptive anisotropic radius-
lifted tensor field and a front freezing indicator. The crossing-
adaptive tensor field reduces the anisotropy of the metric on
the crossing points. The indicator steers the front evolution
by freezing the points causing high curvature of a geodesic.
Thus the short branches combination problem commonly ex-
isting in tubular structure delineation by minimal path models
can be solved. We validate our model on the DRIVE and
IOSTAR datasets, which demonstrates that it is able to ex-
tract the centreline position and vessel width from a complex
vessel network efficiently and accuracy.

Index Terms— Geodesic, anisotropy enhancement, Rie-
mannian metric, path feature, tubular structure segmentation

1. INTRODUCTION

Vessel extraction is a crucial step in computer-assisted ther-
apy applications [1]. The minimal path method is a suitable
and efficient tool for vessel structure delineation, in which
vessels are modelled as minimal paths associated to a metric.
However, it is prone to short branches combination problem
and an example is given in Fig. 1. A proper metric has essen-
tial importance in minimal path model, many improvements
on which have been studied to address different situations in
tubular structure segmentation.

The classic Eikonal PDE-based minimal path framework
[2] proposes an isotropic Riemannian metric to measure the
minimal path length, which delineates the vessel centerline.
To further obtain the corresponding width of the vessel, the
abstract radius variable is added to the image domain to con-
struct the radius-lifted metric [3]. Recently, the anisotropic
Riemannian metric taking into account the orientation infor-
mation is widely studied to solve the short branches combina-
tion problem by the orientation enhancement [4, 5]. Besides,

Fig. 1: Short branches combination problem. Column 1 A retinal image
patch with prescribed points ( red and cyan dots). Column 2 and 3 Minimal
paths (blue curve) obtained from [4] and the proposed method, respectively.
Yellow curve represents the vessel boundary.

the curvature information is utilized to obtain a smooth mini-
mal path such as the sub-Riemannian metric [6] and an Finsler
elastica metric with curvature penalization [7].

Let Ω ⊂ R2 be a 2-dimensional image domain. The
multi-scale space is defined as Ω̄ := Ω×[rl, rh], where [rl, rh]
is the radius space. We denote by S+

d the set of symmetric
positive definite matrices with size of d × d (d = 2, 3) and
let Lips([0, 1], Ω̄) be the set of Lipchitz continuous curves
γ : [0, 1]→ Ω̄. A minimal path is a curve γ ∈ Lips([0, 1], Ω̄)
minimizing the path length L globally measured through a
radius-lifted anisotropic Riemannian metricM : Ω̄→ S+

3

L(γ) =

∫ 1

0

√
γ′(t)TM(γ(t))γ′(t) dt. (1)

where the metricM can be expressed as

M(x̄) =

(
Ma(x̄) 0

0 Ps(x̄)

)
, (2)

where x̄ = (x, r) ∈ Ω̄, Ma : Ω̄ → S+
2 is a tensor field

associated to the spatial anisotropy and Ps : Ω̄ → R+ is a
scalar function. Once the metric is determined, the minimal
curve length between the source point s̄ and any point x̄ can
be characterized by the geodesic distance map

Us̄(x̄) = inf
γ∈Lips([0,1],Ω̄)

{L(γ); γ(0) = s̄, γ(1) = x̄}, (3)

which is the unique viscosity solution to the Eikonal PDE

‖∇Us̄(x̄)‖M−1(x̄) = 1,∀x̄ ∈ Ω\{s̄}, (4)



Fig. 2: Reducing the anisotropy of metric on crossing point. Column 1
and 3 Minimal paths (blue curve) detected by [4] and the proposed crossing-
adaptive metric, respectively. Column 2 and 4 The region within the red
rectangle. (Yellow and cyan points are prescribed.)

with Us̄(s̄) = 0. A geodesic Ĉx̄,s̄ linking x̄ to s̄ can be tracked
by solving the gradient descent ordinary differential equation
(ODE):

Ĉ′x̄,s̄(t) = − M
−1(Ĉx̄,s̄(t))∇Us̄(Ĉx̄,s̄(t))

‖M−1(Ĉx̄,s̄(t))∇Us̄(Ĉx̄,s̄(t))‖
, (5)

with Ĉx̄,s̄(0) = x̄. The final geodesic Cs̄,x̄ ∈ Lips([0, 1], Ω̄)

can be obtained by reversing and reparameterizing Ĉx̄,s̄.
In this work, we have proposed a dynamic anisotropic

Riemannian metric depending on the geometric information
and path feature in radius-lifted space, where the associated
minimal paths favour to pass the vessel smooth.

2. THE NEW ANISOTROPIC GEODESIC METRIC
WITH NONLOCAL INFORMATION

The main goal in this section is to establish a new Riemannian
metricMd expressed by

Md(x̄) =M(x̄)δ(x̄),∀(x̄) ∈ Ω̄. (6)

It consists of two ingredients: the crossing-adaptive anisotropic
radius-lifted tensor field M : Ω̄ → S+

2 and the front freez-
ing indicator δ : Ω̄ → {1,∞}, which will be described in
Sections 2.1 and 2.2.

2.1. Computation of the Crossing-Adaptive Tensor Field

We suppose that the intensities inside the tubular structures
are lower than background. The crossing-adaptive tensor field
M can be constructed by blocks as Eq. (2), which is based
on an optimal direction v1(x̄) at each point x̄ and the cor-
responding eigenvalue λ2 characterizing the appearance fea-
ture. The eigenvalues λi (i = 1, 2, · · · , d) extracted from the
optimally oriented flux (OOF) filter [8] are the values of ori-
ented flux along the corresponding eigenvectors vi , which
are computed by λi(x̄) = vTi (x̄)F(x̄)vi(x̄). The optimal
scale map η : Ω → [rl, rh] is defined to obtain the optimal
direction and vesselness map by:

η(x) = arg max
r∈[rl,rh]

{λ2(x, r)} . (7)

We define the vesselness map ζ : Ω → R+
0 and the tubular

feature vector p : Ω→ R2 at the optimal scale η:

ζ(x) = max {λ2(x, η(x)), 0} , p(x) = v1(x, η(x)). (8)

The short branches combination problem usually occurs
at a crossing point due to the vector p(·) usually indicates the
orientation of the stronger vessel at this crossing point. So the
speed computed from the anisotropic metric is slower along
the weak vessel than that along the strong one. To solve this
problem, the anisotropy of the metric on a crossing point is
reduced by utilizing the crossing-adaptive structure tensors as
described [9]. The spatial anisotropy tensor filed Ma and
scalar function Ps ofM are shown as

Ma(x̄) = exp(−αλ2(x̄))Ts(x̄),Ps(x̄) = β exp(−αλ2(x̄)).
(9)

where parameters α, β ∈ R+ control the regularization of
the spatial dimensions and radius dimension. The tensor field
Ts : Ω̄ → S+

2 is computed via a Gaussian kernel Gp with
standard derivative p and the the identity matrix Id

Ts(x, ·) =
(

(Gp ∗ T )(x)/(Gp ∗ ~)(x) + ε Id

)−1

, (10)

where T (x) = ~(x)p(x)pT (x). The parameter ε ∈ R+

is a sufficiently small constant to avoid the singularity, and
~ : Ω → R+

0 is a weighted function to reduce the influence
from the regions outside the vessel structures. We set ~ ∼= ζ
(see in Eq. (8)) in this paper. If x is a vessel point and the
vector p changes slowly, then the eigenvector of the tensor
(Gp ∗ T )(x), which corresponds to the largest eigenvalue,
will approximate to the feature vector p(x). For the vessel
points x nearby a crossing structure, the feature vectors po-
tentially vary fast, leading to that the tensors (Gp ∗ T )(x) are
nearly isotropic. In Fig. 2, we illustrate the effect to remove
the anisotropy of the metric in crossing point.

2.2. Computation of the Front-Freezing Indicator

The front-freezing indicator δ(x̄) is computed based on the
path feature derived from the curvature of the local geodesic
through two extra points m̄, z̄ located on it like the method in
[10]. The local geodesic can be computed through solving
the gradient descent ODE (see in Eq. (5)) on the obtained
geodesic distance map. Let |C| denote the geodesic length.
Backtracking from x̄ stops when |Cx̄,z̄| = Γ, where Γ is a
constant and z̄ is the back-tracked truncated point. The point
m̄ is another extra point defined as the middle point along
the local geodesic. The curvature K is measured by the angle
between two vectors from the local geodesic as in [11] as:

K(x̄) = 〈(m̄−z̄), (x̄−m̄)〉/(‖ m̄−z̄ ‖ × ‖ x̄−m̄ ‖), (11)

where 〈·, ·〉 denotes scalar product, || · || represents the norm
of the vector. The range of K is [1,−1].

The indicator δ is constructed to determine the curvature
range of the tubular structure.

δ(x̄) =

{
1 K(x̄) > K0

+∞ otherwise
, (12)



Fig. 3: Raw 1 Retinal image patches with minimal path (blue curve) and pre-
scribed points (red and cyan dots). Raw 2 Geodesic distances superimposed
on the original images. Column 1 and 3 are computed from [4]. Column
2 and 4 are obtained by the proposed model (Frozen points are denoted as
black dots.).

where K0 is a given threshold. If the value of K for the cur-
rent point is bigger than the given threshold, the wavefront is
propagated as usual, otherwise the this point is frozen. The
indicator takes into account the curvature constraint in order
to seek geodesics without sharp turnings. Such an indicator
is motivated by the fact that the retina blood vessels usually
appear as linear structures with low curvatures. As an exam-
ple, we show the frozen points violating the criterion as black
points in columns 2 and 4 of Fig. 3.

Algorithm 1 Fast Marching Method

Output: Minimal action map Us.
Initialization: Set ∀x̄ = (x, r) ∈ Ω̄ \ {s̄}, set Us̄(x̄) ← ∞,
L(x̄)← Far; Us̄(s̄)← 0, L(s̄)← Trial ; F(x)← 0.

1: while stopping criterion is not reached do
2: Find x̄m minimizing Us̄ and set L(x̄m)← Accepted;
3: if F(xm) = 0 then
4: Compute curvature K via Eq. (11);
5: if K ≤ K0 then
6: Set Us̄(x̄m)←∞ and F(xm)← 1;
7: else
8: for all ȳ ∈ H(x̄m) and L(ȳ) 6= Accepted do
9: Set L(ȳ)← Trial and compute Us̄(ȳ);

10: end for
11: end if
12: else
13: Set Us̄(x̄m)←∞;
14: end if
15: end while

3. FAST MARCHING IMPLEMENTATION

In the course of fast marching front propagation, all the grid
points are labeled as three classes: Far, Trial andAccepted.
The geodesic distance is estimated by solving the Hopf-Lax
operator defined in [12]. The stencil N (x̄) determines the

neighbourhood for each point x̄, and its inverse neighbour-
hood can be described as H(x̄) := {ȳ ∈ Z3; x̄ ∈ N (ȳ)}.
The procedure for the fast marching method is described in
Algorithm. 1.

The proposed Riemannian tensor fieldMd is updated dur-
ing the geodesic distance computation which is actually car-
ried out by computing the front-freezing indicator in a fronts
advancing procedure to determine whether the front points
should be frozen or not. In implementation, once a point
(x, r) is frozen, all the points at position x with different ra-
dius scale belonging to [rl, rh] will be frozen and tagged as
Accepted. This scheme is helpful to save calculation consum-
ing. It is achieved by defining a flag map F : Ω → {0, 1},
whereF(x) = 1 denotes that the point at position x is frozen.
During fast marching fronts propagation, once the point (x, r)
with minimal geodesic on the front is chosen, the value of
F(x) can be checked.

For better visualization, we consider a new distance map
U∗s̄ obtained by minimzing Us̄ over the last dimension

U∗s̄ (x) = min
r∈[rl,rh]

{Us̄(x, r)} (13)

In Fig. 3, we show two examples for U∗s̄ .

4. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we evaluated our proposed model on retinal
image patches from the DRIVE[11] and IOSTAR[13] datasets
quantitatively and qualitatively. An measurement operator R
is defined to validate the segmentation result quantitatively.
Let S represent the pixel set of the segment result and G
denotes the ground truth set. In addition, #‖ · ‖ denotes
the number of pixels within the set. Thus the measurement
is defined as:R = #‖S ∩ G‖/#‖S‖, where R ∈ [0, 1].
R = 1 means that the segmented result is exactly same with
the ground truth. We compare our proposed crossing-adaptive
anisotropic radius-lifted tensor fieldM (caArR), the dynamic
Riemannian metric Md (dArR) with the anisotropic radius-
lifted Riemannian metric (ArR)[4].

Dataset ArR caArR dArR

DRIVE
Avg. 0.365 0.580 0.861
Std. 0.238 0.296 0.041

IOSTAR
Avg. 0.790 0.815 0.881
Std. 0.237 0.210 0.193

Table 1: Quantitative comparison results on retinal images.

We consider Γ = 8 and K0 = 0.9 reasonable choice for
the experiment. Besides, the parameter ε = 0.05 is used to
determine the anisotropic property of the structure tensor. The
parameter α = 5 is related to the influence of the appearance
features. The parameter β = 0.5 controls the radius speed.

We compare the caArR metric with the classic ArR metric
on retinal image patches, which are illustrated in Fig. 4. We



Fig. 4: Comparison results on retinal images. Column 1and 2 Minimal paths
(blue curve) detected by [4] and the proposed crossing-adaptive metric, re-
spectively. Column 3 Vessel with thickness. Cyan and yellow dote are pre-
scribed.

Fig. 5: Comparison results on retinal images. Column 1and 2 Minimal paths
(blue curve) detected by [4] and the proposed model, respectively. Column
3 Vessel with thickness. Cyan and yellow dote are predefined.

show the comparison result of the dArR with the ArR met-
ric in Fig. 5. Besides, the quantitative evaluation is computed
by the measurement operator R shown in Table. 1. We ob-
serve that the classic ArR metric suffered from short branches
combination problem in some situations. The caArR metric
and dArR metric can get the desired geodesic by reducing the
anisotropy in the crossing section and take into account the
curvature feature.

5. CONCLUSION

In this paper, we have proposed a new minimal path model
with dynamic Riemannian metric for tubular structure seg-
mentation by integrating the local geometric feature and
non-local path feature. We constructed the dynamic Rie-
mannian metric during the fast marching front propagation.
The quantitative and qualitative results demonstrated that our
method indeed solves the short branches combination prob-
lem in some situations and detects the desired vessel region
from complex background.
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