

The equation of state of TaC0.99 by X-ray diffraction in radial scattering geometry to 32 GPa and 1073 K

Sergio Speziale, Julia Immoor, A Ermakov, Sébastien Merkel, Hauke Marquardt, Hanns-Peter Liermann

▶ To cite this version:

Sergio Speziale, Julia Immoor, A Ermakov, Sébastien Merkel, Hauke Marquardt, et al.. The equation of state of TaC0.99 by X-ray diffraction in radial scattering geometry to $32\,GPa$ and $1073\,K$. Journal of Applied Physics, $2019,\,126\,(10),\,pp.105107.\,10.1063/1.5115350$. hal-02284714

HAL Id: hal-02284714 https://hal.univ-lille.fr/hal-02284714

Submitted on 12 Sep 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/1.5115350

1 The equation of state of TaC_{0.99} by X-ray diffraction in radial scattering geometry to 32

- 2 GPa and 1073 K
- 3 S. Speziale^{1,*}, J. Immoor², A. Ermakov³, S. Merkel⁴, H. Marquardt^{2,5}, H.P. Liermann³
- ¹German Research Centre for Geosciences GFZ, Telegrafenberg, D-14473 Potsdam,
- 5 Germany
- 6 ²Bayerisches Geoinstitut (BGI), University of Bayreuth, 95440 Bayreuth, Germany
- ³Photon Sciences, Deutsches Elektronen Synchrotron (DESY), FS-PE Building 47c,
- 8 22607 Hamburg, Germany
- ⁴Unité Matériaux Et Transformations (UMET), University of Lille, Bâtiment C6, 59655
- 10 Villeneuve d'Ascq, France
- ⁵Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1
- 12 3AN, U.K.
- *Corresponding author email: speziale@gfz-potsdam.de
- 14 **Abstract.** We have performed in situ synchrotron X-ray diffraction experiments on
- 15 TaC_{0.99} compressed in a diamond anvil cell along 3 isothermal paths to maximum
- pressure (P) temperature (T) conditions of 38.8 GPa at 1073 K. By combining
- measurements performed in axial diffraction geometry at 296 K and in radial geometry at
- 18 673 K and 1073 K, we place constraints on the pressure-volume-temperature (P-V-T)
- 19 equation of state of TaC in a wide range of conditions. A fit of the Birch-Murnaghan
- 20 equation to the measurements performed in axial geometry at ambient temperature yields
- 21 a value of the isothermal bulk modulus at ambient conditions $K_{T0} = 305 \pm 5 \, (1\sigma)$ GPa
- and its pressure derivative $(\partial K_T/\partial P)_{T0} = 6.1 \pm 0.5$. The fit of the Birch-Murnaghan-

- Debye model to our complete P-V-T dataset allows us to constrain the Grüneisen
- 24 parameter at ambient pressure $\gamma_0 = V(\partial P/\partial E)_{V0}$ to the value of 1.2 ± 0.1 .

26 I. INTRODUCTION

- Tantalum carbide TaC_x (0.6 < x < 1) is a B1 structured ultra-high temperature ceramic
- 28 (UHTC) [1]. UHTC materials have the potential to be used in different technological
- applications because of their combined high mechanical strength, extremely good thermal
- 30 stability as well as its resistance to harsh chemical environments.
- 31 Transition metal carbides are in general among the ceramic materials with the best
- 32 characteristics for high temperature applications where enhanced refractory and
- mechanical properties are required [2]. Tantalum carbide has an extremely high melting
- temperature, low electrical conductivity and unusual mechanical behavior with respect to
- 35 the other B1 structured (space group $Fm\bar{3}m$) monocarbides of the group IV and V
- transition metals (TMC) [3, 4].
- 37 The structural, thermodynamic and transport properties of TaC_x (in the following we will
- 38 use TaC except when discussing the effect of non-stoichiometry on specific physical
- 39 properties) have been the subject of many experimental and computational investigations
- and part of the existing results are tabulated in several review publications together with
- 41 the properties of the other TMC [5-27]. In particular, the elastic properties of TaC have
- been the subject of more than ten different experimental and computational studies [6, 15,
- 43 16, 28-39] exploring the effect of pressure or temperature and non-stoichiometry on the
- tensor and the aggregate elastic moduli of single crystals or polycrystals.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/1.5115350

67

45 While several computational studies provide models of the isothermal compression 46 behavior of TaC, only two experimental diamond-anvil cell studies investigate its 47 compression behavior to the multi-GPa stress range at ambient temperature [32, 37]. The 48 first study focuses on the response of micron-sized polycrystalline TaC_{0.98} to compression 49 under different stress conditions, and the second explores the behavior of nanocrystalline 50 TaC under strongly nonhydrostatic stress. 51 To date there are no data on the combined effect of high-pressures, stress and -52 temperatures on the structure and the thermoelastic properties of tantalum carbide. With 53 this study we give a first account of the compression behavior of TaC_{0.99} compressed to 54 more than 40 GPa at ambient temperature and to a maximum of 38.8 GPa at 1073 K, and 55 we place quantitative constraints on the pressure-volume-temperature (PVT) equation of 56 state of this material. 57 Here we use a new approach to place quantitative constraints on the thermoelastic 58 properties of TaC_{0.99}. We combine the results of static compression experiments in a 59 graphite resistive heated diamond-anvil cell using in situ synchrotron X-ray diffraction in 60 radial scattering geometry (an established technique [40-46] yet never used before in 61 studies dedicated to constrain the pressure-volume-temperature equation of state) with 62 those from axial geometry at room temperatures. The use of high-temperature high-63 pressure radial diffraction geometry in combination with a theory of non-hydrostatic 64 lattice strains allows us to quantitatively constrain the departure from hydrostatic stress 65 conditions, which is not straightforward in experiments performed in axial geometry. 66 This is particularly relevant for stiff samples such as TaC when they bridge between the

culets of the two diamond anvils under combined high pressure and high temperature. In

72

73

87

88

68

69

70

71

II. MATERIALS AND METHODS

A. Sample material

75 The starting material for all experiments presented here is a powder of TaC_{0.99} (with

76 nominal stoichiometric TaC composition) produced by American Elements©. We have

determined the chemical composition of our starting material by measuring its unit-cell

volume by X-ray diffraction at the German Research Centre for Geosciences (GFZ) using

79 a STOE Stadi P diffractometer with Cu Kα radiation monochromatized by a Ge(111)

80 crystal. Two separate amounts of sample were mixed with $\sim \! 10$ wt% Si standard (NIST

81 640d) as an internal calibrant. The average of the two measurements yields a unit-cell

parameter $a_0 = 4.4555 \pm 0.0007$ Å. This value corresponds to a composition of TaC_{0.99}

based on the calibration by Bowman [8]. The unit cell parameter of our sample is

84 equivalent within uncertainty to the results of neutron diffraction measurements of a

disordered stoichiometric TaC [9] and 3σ larger (rather than smaller, as expected) than a

86 more recent neutron diffraction study of nominally stoichiometric TaC [10].

B. High-pressure synchrotron X-ray diffraction in axial geometry

89 In these experiments the axis of the diamond anvils is parallel to the incident X-ray beam.

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

TaC_{0.99} was compressed quasi-hydrostatically in a symmetric piston-cylinder type diamond anvil cell [47] with 300 µm culet diamonds. Fine sample powder (with less than 1μm average grain-size) was loaded in a 150 μm wide cylindrical chamber drilled in a 250 µm thick rhenium disk pre-indented to a thickness of 30 µm. Neon gas was loaded as a pressure transmitting medium using the gas-loading facility from Core Labs located at PETRA III and operated by the Extreme Condition Science Infrastructure. A ruby sphere and a \sim 5 µm speckle of gently packed gold powder were used as internal pressure standards [48, 49]. The diamond anvil cell was compressed remotely with a gasmembrane system. X-ray diffraction images were collected at the general purpose experiment table of Extreme Conditions Beamline (ECB, P02.2) of the 3rd generation light source PETRA III at DESY, Hamburg, Germany. The monochromatic incident Xray radiation had a wavelength of 0.2966 Å. The beam was focused to a spot size of 3µm (vertical) by 8 µm (horizontal) full width at half maximum by means of Compound Refractive Lenses (CRL). X-ray diffraction images were collected with a Perkin Elmer XRD1621 flat panel detector at 420 mm distance from the sample. The sample to detector distance and tilting angles of the detector were calibrated using a CeO₂ standard from the National Institute of Standards and Technology (NIST, 674b). Twenty X-ray diffraction images were collected at pressures between 5.1 GPa and 43.6 GPa, including 3 images collected during decompression. The exposure time for each image was 20 s. The images were analyzed with the Fit2d software package [50]. Le Bail fit [51] of the integrated spectra were performed with the software MAUD [52] to determine the unit cell parameter a (TaC crystallizes in the cubic system in the space group Fm3m). A typical X-ray diffraction image and the result of the Le Bail fit are shown in Figure 1.

135

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. PLEASE CITE THIS ARTICLE AS DOI: 10.1063/1.5115350

113 The conditions and the results of the room temperature compression experiments are 114 reported in Tables I and II. 115 116 C. Simultaneous high-pressure high-temperature synchrotron X-ray diffraction in radial 117 scattering geometry 118 Two series of measurements were performed in radial scattering geometry at the general 119 purpose experiment table of the ECB. In these experiments the axis of the diamond anvils 120 is perpendicular to the incident X-ray beam, passing through an X-ray transparent sample 121 chamber, made of a mixture of amorphous boron and epoxy. 122 The setup for these experiments is based on a modified Mao-Bell piston-cylinder type 123 diamond anvil cell equipped with a graphite resistive sandwich heater for high-124 temperature experiments [53]. Pressure in the diamond anvil cell is controlled remotely 125 by a gas membrane system. For temperature measurements two type-R thermocouples are 126 placed in contact with the diamond at short distance from the culets. The diamond anvil 127 cell is placed in a vacuum vessel (capable of maintaining 10⁻⁴ mbar pressure during the 128 experiments) to protect diamonds, the metallic parts of the diamond anvil cell and heater 129 setup from oxidation [54]. 130 $TaC_{0.99}$ powder with a grain size < 1 µm was loaded in 50 µm diameter cylindrical 131 chambers laser-drilled in amorphous boron – epoxy gaskets of 380 µm diameter and 50 132 µm thickness. With such a narrow sample-chamber the entire sample remains as close as 133 possible to the center of the diamond culets, where stress gradients are low and where 134 stress and strain fields are close to ideal axial symmetry that is required in the

interpretation of X-ray diffraction experiments in radial scattering geometry (see section

136 II.D). The ceramic gaskets are supported by a kapton ring. In all the experiments the 137 diameter of the diamond culets was 300 µm and no pressure transmitting medium was 138 employed. 139 In the two high-temperature experimental runs a 5-10 µm wide fragment of less than 5 140 um thick Au foil was placed above the sample as a pressure calibrant. The two high-141 temperature experimental runs were performed using a monochromatic X-ray beam of 142 0.4847 Å wavelength with an identical focus spot-size as for the axial diffraction 143 experiment but slightly different sample to detector distance of 405 mm based on the 144 same calibration approach as for the axial diffraction experiment. 145 The exposure time for all images in the radial X-ray diffraction experiments was 4s. The 146 images were processed using Fit2d [50]. Each image was integrated in 5° azimuthal (ψ) 147 sectors, for a total of 72 patterns per image. The sets of patterns were further analyzed 148 with MAUD software package [55] to determine structural parameters. 149 In ideal conditions, the geometry of the diamond anvil cell imposes a cylindrical 150 symmetry of stress and strain at the center of the sample chamber (i.e. along the culets' 151 axial direction). The stress state far from the center of the culets is more complex [56]. 152 For this reason at each pressure step the optimized position was determined by X-ray 153 absorption scans along the vertical and horizontal direction. An additional diffraction 154 image of gold was collected at each compression step for pressure calibration at high 155 temperatures [49]. 156 In both the 673 K and 1073 K runs the sample was compressed at ambient temperature to 157 2.5 ± 1 GPa and then progressively heated to the target temperature at an average rate of 158 3.2 °C/min and 4.6 °C/min, respectively. A total of 47 X-ray diffraction images were

collected along two isotherms at 673 K and 1073 K. The parameters of all the experimental runs are reported in Table I.

161

162

159

- D. Data analysis of radial diffraction data with MAUD
- All radial X-ray diffraction images were analyzed using MAUD software package.
- MAUD determines both crystal structure parameters, and texture by combining Rietveld
- full-spectrum fitting and a selection of models to describe crystallite sizes, microstrains,
- macroscopic stress and the crystals' preferred orientation [53, 57].
- 167 In radial X-ray diffraction experiments the sample is subject to strongly non-hydrostatic
- macroscopic stress because it is loaded without any soft pressure transmitting medium.
- The X-ray diffraction images display anisotropic strains caused by the uniaxial stress
- applied to the sample. This results in non-circular Debye diffraction rings, with their
- ellipticity being related to the amount of deviatoric stress and the elastic moduli of the
- sample material. Specialized theories to describe non-hydrostatic crystal strains have
- been developed to analyze the X-ray diffraction images collected from samples
- 174 compressed in the diamond anvil cell and other high-pressure devices [57-59]. In our
- analysis here we are interested in the study of the (volume) compression of TaC, and we
- 176 correct for the effect of nonhydrostaticity by using the theory developed by Singh [58].
- Here we assume that the TaC_{0.99} polycrystalline aggregate sample behaves as an
- elastically isotropic material. Following the formulation presented by Singh [58] for the
- isotropic aggregate case:

180
$$d_d(hkl) = d_p(hkl)[1 + (1 - 3\cos^2\psi)Q], \tag{1}$$

181

182

183

184

185

186

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

187
$$\langle Q \rangle = t (1 + \nu)/3E = t/6G,$$
 (2)

Where $\langle Q \rangle$ is the isotropic aggregate Q, averaged on all the diffracting lattice families (see equation (1)), $t = \sigma_3 - \sigma_1$ is the difference between the normal stress along the compression axis and perpendicular to it, ν is the average Poisson's ratio, E is the Young's modulus of the isotropic aggregate sample, and G is the isotropic aggregate shear modulus. The model of Singh [58] is incomplete for aggregates subject to plastic deformation and with large density of defects [60]. However, equation (1) has been shown to be useful to describe such experimental data, extract average stress levels [61], and model plastic behavior of materials using more advanced methods [62]. The unit cell parameter a corresponding to the hydrostatic stress component is determined from the spectrum at $\psi = 54.7$ degrees. The implementation of the model available in MAUD allowed us to fix the values of ν and E and refine the values of σ_3 and σ_1 to fit the observed d-spacings. We calculated the value of $\langle Q \rangle$ by using equation (2). This can finally be easily converted (see equation (1)) into the non-hydrostatic stress contribution to the uncertainty on the unit cell parameter. The uncertainties due nonhydrostatic conditions are in average of the order of 10⁻² Å, substantially larger than the

AP Publishing

203	estimated uncertainties on the values of the unit cell parameter refined with the full
204	spectrum fit which are of the order of 10 ⁻⁴ Å.
205	A typical X-ray diffraction image collected in radial scattering geometry is shown in
206	Figure 2(a). The unrolled sequence of spectra integrated at 5 degree azimuthal-angle
207	steps (see methods) is presented in Figure 2(b) together with the fit result.
208	In both the experiments performed at 673 K and 1073 K pressure was determined by
209	fitting the unit cell parameter of gold, loaded together with the sample in the sample
210	chamber. The analysis of X-ray diffraction of gold was performed similarly to that of the
211	sample material itself. The stress/lattice strain analysis generally gave results of
212	deviatoric stress comparable with those of the TaC _{0.99} sample. In some few cases the fit
213	of stress and lattice strain of gold did not converge to consistent results due to lower than
214	average gold diffraction signal.
215	The 3 X-ray diffraction images collected at 6.0, 6.8 and 8.2 GPa at 673 K and the 5 ones
216	collected at 1073 K from 32.9 to 38.8 GPa show a deviation from the ideal geometry,
217	with a maximum of lattice strains in a direction tilted with respect to the diamond anvil
218	axis (Figure 3). Non-ideal stress conditions are typically due to gasket partial failure at
219	the highest pressures (as in the case of the 1073 K isotherm) or, less frequently, at the
220	lowest pressures, at the first contact between the diamond culets and the ceramic gasket
221	(as in the case of the 673 K isotherm). Nevertheless, we performed a full analysis also of
222	these images and we will discuss the results below.
223	All parameters determined by Rietveld analysis of the diffraction images of TaC _{0.99} in the
224	two radial X-ray diffraction experimental runs are reported in Table II.

E. P-V-T equation of state analysis
A third order Birch-Murnaghan P-V equation of state [63] was fitted to the unit cell
volumes of TaC _{0.99} measured in the experiments performed in axial geometry and quasi-
hydrostatic stress. Pressures were determined from the unit cell volume of gold loaded in
the diamond anvil cell together with the sample [49]. The pressure - volume data were
weighted by the pressure uncertainties on the measurements of both gold and TaC _{0.99}
propagated from the uncertainties of their respective experimentally determined unit cell
volumes.
The three coefficients of the third order Birch-Murnaghan equation are the unit cell
volume at ambient conditions V_0 , the isothermal bulk modulus at ambient conditions K_{T0}
and its isothermal pressure derivative at ambient conditions $(\partial K_T/\partial P)_{T0}$. We fixed the
value of V_0 to the one we measured at the GFZ (see above) and we refined the values of
K_{T0} and $(\partial K_T/\partial P)_{T0}$. The individual data points used in the fit are reported in Table III
("TaC-Ne"). In the fit we did not consider all the data points collected in decompression,
however we will mention, in the discussion, their effect on the fit results. After the first
decompression step the piston and cylinder of the diamond anvil cell were jammed. We
observed a sudden decrease of sample (and Au standard) unit cell volume between each
of the decompression points. The decompression volume – pressure data do not plot on
the compression dataset, even though they overlap within reciprocal pressure
uncertainties. Our interpretation is that, due to the sudden stress release, the stress field
applied to the sample was different with respect to that generated by the smooth stress
increase in compression, and the anomalous stress condition affected the pressure

determination. The last data point, collected at 1 bar after complete pressure release,

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/1.5115350

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

overlaps with the ambient conditions X-ray diffraction measurement and refinements performed at the GFZ (see Figure 4). The pressure volume data of TaC_{0.99} collected in radial diffraction geometry along the two high temperature isotherms at 673 K and 1073 K were used to fit the parameters of the Birch-Murnaghan-Debye P-V-T equation of state (e.g. [64]). Pressures were determined from the measured unit cell volume of gold loaded in the diamond anvil cell together with the sample. Error propagation of the uncertainties on sample and gold experimental unit cell volumes was performed using the same strategy as for the room temperature quasi-hydrostatic experimental dataset. We additionally weighted the data of the high temperature runs (performed without soft pressure transmitting medium) by propagating the additional volume strain caused to the uniaxial stress present in the sample chamber (see section about Q – lattice strains analysis). The uncertainty on temperature in the experimental setup used in this study is estimated to be ± 20 K at 673 K and \pm 60 K at 1073 K [53]. The coefficients of the Birch-Murnaghan-Debye equation are V_0 , K_{T0} and $(\partial K_T/\partial P)_{T0}$ for the reference isotherm, which we fixed to be the ambient temperature isotherm. Three thermal parameters were refined: the Grüneisen parameter at ambient conditions γ_0 , its logarithmic volume derivative $q = (\partial \ln \gamma / \partial \ln V)_T$, and the Debye temperature at ambient conditions θ_0 . Due to our limited dataset we fixed the initial unit cell volume of the reference isotherm (V_0) to our own measurement result and the value of θ_0 to 567 \pm 10 K which is the average of the available literature data [19, 24, 30, 31, 36, 39] excluding the two extreme values [34, 37]. We thus refined the value of q and γ_0 , for which the extant published results are in strong disagreement [17, 31, 36].

The whole dataset used to fit the parameters of the equation of state of TaC _{0.99}	are
--	-----

273 reported in Table II.

274

272

275 III. RESULTS

- A. Isothermal equation of state of TaC_{0.99} at 296 K
- The unit-cell volumes determined in the quasi-hydrostatic experiment are reported in
- Table II. The compression curve is plotted in Figure 4. The third order Birch-Murnaghan
- fit of our data yields $K_{0T} = 305 \pm 5$ GPa and $(\partial K_T/\partial P)_{T0} = 6.1 \pm 0.5$, where K_{0T} is the
- initial bulk modulus and $(\partial K_T/\partial P)_{T0}$ is its initial pressure derivative. We performed our
- fit by fixing V_0 (the initial unit-cell volume) to the value of 88.478 Å³ based on our
- measurement at ambient pressure. The root mean square (RMS) misfit of the pressure
- dataset is 0.29 GPa. We tested the effect of including the three decompression data (these
- collected at 38.9, 32.0 and 18.8 GPa) in the fitted dataset. The fitted coefficients are
- insensitive, within estimated uncertainties, to the inclusion of the decompression data.
- However, the RMS misfit increases by more than 20% by adding these three data points,
- and we decided to exclude them in our final fit (see Table II). The model isothermal
- compression curve is plotted as a solid line in Figure 4.

- 290 B. P-V-T equation of state of TaC_{0.99}
- The high-temperature unit-cell volumes dataset (Table II) combined with the parameters
- of the ambient temperature isotherm were used to fit the thermal coefficients of a Birch-
- Murnaghan-Debye equation of state. We did not include in the dataset the data collected
- 294 at 6.0, 6.8 and 8.2 GPa and 673 K and the 5 ones collected at 1073 K from 32.9 to 38.8

GPa (see also discussion). In the fit we fixed the value of θ_0 to the value of 570 ± 10 K averaged between the available literature data (see methods above). The fit yields an initial value of the Grüneisen parameter $\gamma_0 = 1.2 \pm 0.1$. The value of the logarithmic pressure derivative of the Grüneisen parameter (q) is poorly constrained by the current dataset and the best fit value is $q = 1 \pm 2$. The RMS pressure misfit of the full high temperature dataset is equal to 0.46 GPa. The complete set of coefficient of the pressure-volume-temperature equation of state of TaC_{0.99} based on our experimental results is reported in Table III. The experimental unit-cell volumes and the model isotherms at 296 K, 673 K and 1073 K are plotted in Figure 5.

304

305

295

296

297

298

299

300

301

302

303

IV. DISCUSSION

A. Isothermal equation of state of TaC_{0.99} at 296 K

The values of $K_{0T} = 305 \pm 5$ and $(\partial K_T/\partial P)_{T0} = 6.1 \pm 0.5$ constrained by our new quasi-

308 hydrostatic dataset compare well with the available computational and experimental

results for TaC_x (Table IV).

310 Several ab initio DFT computational studies have investigated the elastic properties of

TaC [6, 13, 15, 18, 33-39]. The values of the ambient pressure bulk modulus are

312 generally similar in all the studies when the same approximation is used for the

313 exchange-correlation electronic interaction. The average for the studies using the

generalized gradient approximation (GGA) is 315 ± 16 GPa and overlaps with our result

within reciprocal 1σ uncertainties. One of the computational studies [33] combines DFT

316 calculations and experimental ultrasonic interferometry data, for only two of the three

elastic stiffness coefficients of TaC. Using the elastic anisotropy expressed as the Zener

anisotropy ratio $A = 2C_{44}/(C_{11} - C_{12})$ [65], from their calculations we can estimate the 318 319 value of the experimental bulk modulus $K_{0S} = 310$ GPa, which agrees with our result 320 within 1σ. Here we point out that the difference between the isothermal bulk modulus 321 K_{0T} and the isentropic bulk modulus K_{0S} expressed by the thermodynamic relationship 322 $K_{0S} = K_{0T}(1 + \alpha \gamma T)$ (where α is the thermal expansion coefficient, and γ is the 323 Grüneisen parameter) in the case of TaC is of the order of 3 ± 1 GPa, which is 324 comparable with the uncertainties of all the existing experimental studies (Table IV). 325 Our best fit K_{0T} is at the lower end of the values of isothermal and isentropic bulk 326 modulus reported in the literature except for a single-crystal ultrasonics study of TaC_{0.90} 327 [29] and a neutron inelastic scattering study of single-crystal TaC [17] which yield K_{0S} = 217 \pm 12 GPa and K_{0S} = 283 GPa, respectively. The three studies performed on TaC_{0.99}, 328 329 present values of the isentropic bulk modulus K_{0S} between 345 GPa, and 317 GPa [28, 330 30, 66] all calculated by extrapolation to full density of ultrasonic experimental studies of 331 porous ceramic materials. If we consider all the available data from elasticity studies 332 including a study of $TaC_{0.98}$ [31] the average value of 335 \pm 13 GPa is compatible with 333 our fitted value only at 3 σ uncertainty level. 334 Only three experimental and three computational studies investigated the pressure 335 dependence of the elastic moduli of TaC_x [16, 31-33, 36, 37]. The pressure derivatives 336 $(\partial K_T/\partial P)_{T0}$ based on experimental studies [31, 32, 37] are equal to 4.97 \pm 0.27, 4.0 \pm 337 0.4 and 4 respectively, and are substantially different from our result. However, the 338 pressure derivative presented in [31] is calculated from ultrasonics pulse-echo 339 measurements of a compressed porous sample without direct measurements of the sample 340 volume. The value reported by [37] is based on a high-pressure X-ray diffraction study of

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

material (see for instance the case of MgO [67]), and it has been fixed in the data analysis. The results of [32] are based on a similar approach as the one used in the present study and the large disagreement deserves a more detailed explanation. Liermann and coauthors [32] performed high-pressure X-ray powder diffraction of TaC_{0.98} compressed in the diamond anvil cell using Al as a pressure transmitting medium. Even though Al is a metal with low shear modulus at ambient conditions, it represents a strong pressure medium if compared to Ne at pressures of tens of GPa. The use of strong pressure media unavoidably produces deviatoric stress in the sample chamber. In axial X-ray diffraction geometry the crystallites which contribute to the measured signal are those with diffracting vectors (the directions normal to the diffracting lattice planes) close to perpendicular to the diamond axes, and thus subject to deviatoric extension (relative to the ideal hydrostatic strain) [58]. This causes underestimation of volume compression and overestimation of the material bulk modulus [67, 68]. In addition to this, the value of bulk modulus and pressure derivative at ambient conditions obtained by fitting high-pressure X-ray diffraction results suffer from trade-offs between the two coefficients of the fitted equation of state [69]. In order to better compare the results of the two studies we have plotted the difference between the P-V isotherms calculated using the two sets of parameters and a common starting volume (Figure 6). This procedure corresponds to comparing pressures along the two isotherms at the same values of compression. The difference between the two compression curves is within three times the average uncertainty of our data if we include the error propagated from the unit-cell volume uncertainty. If we consider that the experimental uncertainties on pressure and unit-cell

nano-particle TaC, which could have a different elastic behavior with respect to the bulk

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

volume in [32] are of the same order of magnitude as the one in our dataset, the disagreement between the two isothermal equations of state is within 2σ reciprocal uncertainties. The similarity between the compression curves of TaC_{0.99} and TaC_{0.98} suggests that, within experimental uncertainties, the isothermal compressibility of TaC_x at 300 K is only marginally sensitive to low levels of nonstoichiometry (0.98 \leq x < 1). The pressure derivative of the bulk modulus from the four ab initio computational studies with local density approximation (LDA) [33], generalized gradient approximation (GGA) [36] and with both approximations [16, 37] is in all cases substantially smaller (between 29% and 42%) than our result. However, this is partially compensated by their larger bulk modulus at room pressure. The discrepancy between our experimental results and ab initio computations could be due to the presence, in our sample material, of a complex defect structure in addition to slight non-stoichiometry, which includes dislocations, grain boundaries and microstrains associated to them. Indeed it has been observed that carbondefective TaC_x ceramics show higher mechanical strength than stoichiometric TaC [3]. The characterization of defects states and their energetics in TaC has been subject of several computational and theoretical studies [70, 71]. A recent study has shown that increasing C vacancies concentration reduces the elastic moduli of TaC_x [72]. However, it is not yet clear what effect this deficiency has on the pressure dependence of bulk modulus. The isothermal compression curves of all the existing high-pressure studies of TaC_x [16, 31-33, 36, 37] are calculated with the same procedure as for [32] (see above) and compared with ours in Figure 6.

B. P-V-T equation of state of TaC_{0.99}

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

 γ_0 = 1.2 ± 0.1. In the framework of the Birch-Murnaghan-Debye model this coefficient is the thermodynamic Grüneisen parameter at ambient conditions. This value is obtained by fitting both our full dataset, or after removing the 3 data points at 6.0, 6.8 and 8.2 GPa and 673 K and the 5 data for 32.9, 34.9 36.1, 37.9 and 38.8 GPa and 1073 K due to their non-ideal geometry (see section 2. Materials and Methods). Our best-fit value of γ_0 compares very well with the value of the elastic Grüneisen parameter $\gamma_{el} = 1.22$ determined for polycrystalline TaC_{0.98} by ultrasonic techniques [31]. However, the elastic Grüneisen parameter is the average value of the volume dependence of the acoustic phonon frequencies at the Brillouin zone center, a parameter which is different from the thermodynamic Grüneisen parameter $\gamma_{th} = \alpha K_s / (\rho C_p)$ (where α is the volume thermal expansion coefficient, K_S is the isentropic bulk modulus, ρ is density and C_p is the specific heat at constant pressure) which controls the thermal pressure contribution in the P-V-T equation of state. The value of the thermodynamic Grüneisen parameter at ambient conditions calculated from the published thermoelastic properties of TaC_x (Table V) ranges between 1.47 and 2.34, that is 30% to 90% larger than the best-fit value to our experimental dataset. The reason of this difference is clearly due to the limitations of the Birch-Murnaghan-Debye model to describe the thermal energy contribution in TaC_{0.99}. The high temperature study of the elastic properties of TaC_{0.99} by Jun and Shaffer [30] shows that the thermodynamic Grüneisen parameter has very strong temperature dependence below 600 K at ambient pressure with a decrease from 1.48 at 300 K to 1.2 at 600 K, and then it remains almost constant at the value of 1.2 at temperatures as high as 1500 K. On the opposite, Peng et al. [36] who use the Debye model and a quasi-harmonic

Our full high-pressure / high-temperature dataset places a strong constrain on the value of

approximation obtain γ slowly increasing with temperature at ambient pressure (Figure
7).
The quasi-harmonic approximation underlying our equation of state assumes that γ is not
explicitly temperature dependent (it is indeed temperature dependent through its volume
dependence). This approximation seems to hold for TaC _{0.99} at temperatures above 600 K.
The result of the fit to our 673 K and 1073 K isotherms constrains an effective high-
temperature value of the ambient pressure thermal Grüneisen parameter, which is more
consistent with the results of high temperature ultrasonics measurements [30] rather than
room temperature ultrasonics [30, 31] or computations [36].
The value of q , the logarithmic volume derivative of the Grüneisen parameter, is poorly
constrained by our high-temperature dataset. The best-fit value of q is strongly affected
by the highest pressures data along the 1073 K isotherm. The fit to our full dataset yields
$q = -0.3 \pm 1.4$, while excluding the non-ideal data points at 32.9, 34.9 36.1, 37.9 and 38.8
GPa at 1073 K from the fit yields $q = 1 \pm 2$ (see also results). The average RMS misfit of
the full dataset (50 data points) is 0.46 GPa, that of the non-ideal 5 data points is 0.59
GPa while that of all the others is 0.44 GPa. The non-ideal data points have a 34% higher
disagreement with the fit than all the rest of the dataset. We interpret this as a systematic
bias probably connected to the non-ideal geometry in these measurements, and we
consider the result of the analysis of the reduced dataset as our best fit result. The fit
results are instead unaffected by including or excluding the 3 non-ideal data points at 6.0
6.8 and 8.2 GPa along the 673 K isotherm. Based on the overall fit of the model
isotherms at 673 K and 1073 K, a value of a close to unity is a good approximation of the

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/1.5115350

where γ_0^{HT} is the high-temperature, ambient pressure value of $\gamma=1.2\pm0.1$ based on our fit (see discussion above), V represents volume and V_0 the volume at ambient conditions. In conclusion, our P-V-T model is able to successfully describe the pressure – volume – temperature relationship for TaC_{0.99} at 296 K and in the high-temperature range between 673 and 1073 K at pressures as high as 35 GPa, while we expect that it fails to describe the high-pressure behavior of TaC_{0.99} in the ~300-600 K temperature regime, especially at low pressures. The parameters for the high-temperature equation of state of TaC_{0.99} are reported in Table III. The extant published results for TaC_x are reported for comparison in Tables IV and V.

V. CONCLUSIONS

Our extensive experimental investigation gives new information about the compression behavior of TaC_{0.99} under very high pressures and temperatures in the diamond anvil cell.

a) We have constrained the parameters of the P-V-T equation of state of TaC_{0.99} to 1073 K and 32 GPa. The ambient pressure derivative of the bulk modulus is substantially higher (50%) with respect to previous studies at the same composition. The thermodynamic Grüneisen parameter refined from our results is lower than the available data at ambient conditions, and it seems to be consistent with the experimental high temperature limit. The approach used here of determining isothermal EOS data from x-ray diffraction data collected in the radial diffraction geometry under nonhydrostatic

conditions is novel and shows the potential of this technique, in particular the use of ceramic gaskets that are more stable at higher temperatures and the lack of a hydrostatic compression medium. Thus, the technique is ideally suited to characterize the thermal-elastic properties of hard materials such as transition metal carbides.

459

460 ACKNOWLEDGMENTS

Part of this research was supported through the projects "GeoMaX" funded under the
Emmy-Noether Program of the German Science Foundation (MA4534/3-1) as well as
grant MA4534/4-1. HM acknowledges support from the Bavarian Academy of Sciences.
We acknowledge technical assistance by A. Ehnes and I. Schwark from the sample
environment group at PETRA III within the framework of the Extreme Conditions
Science Infrastructure ECSI). We thank J. Mainberger for preparing the carbides samples
for the carbon analysis and Martin Harms for proofreading and reformatting the reference

468 469

470 References

list.

- [1] M. J. Gasch, D. T. Ellerby, and S. M. Johnson, in *Handbook of Ceramic Composites*
- edited by N. P. Bansal (Kluwer Academic Publishers, Boston MA, 2005), pp. 197-
- 473 224.
- 474 [2] K. Upadhya, J. M. Yang, and W. P. Hoffmann, Am. Ceram. Soc. Bull., **58**, 51 (1997).
- 475 [3] L. E. Toth, Transition Metal Carbides and Nitrides (Academic Press, New York and
- 476 London, 1971).
- 477 [4] W. S. Williams, Mater. Sci. Eng., **A105/106**, 1 (1988).

the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/1.5115350

This is the author's peer reviewed, accepted manuscript. However,

- 478 [5] K. Hackett, S. Verhoef, R. A. Cutler, and D. K. Shetty, J. Am. Ceram. Soc., 92, 2404
- 479 (2009).
- 480 [6] X.-X. Yu, C. R. Weinberger, and G. B. Thompson, Acta Mater., **80**, 341 (2014).
- 481 [7] B. D. Diwan, Can. J. Phys., **92**, 415 (2014).
- 482 [8] A. L. Bowman, J. Phys. Chem., **65**, 1596 (1961).
- 483 [9] A. I. Gusev, A. A. Rempel, and V. N. Lipatnikov, J. Phys. Condens. Matter, 8, 8277,
- 484 1996.
- 485 [10] K. Nakamura and M. Yashima, Mater. Sci. Eng. B, **148**, 69 (2008).
- 486 [11] J. R. Cooper and R. L. Hansler, J. Chem. Phys., **39**, 248 (1963).
- 487 [12] G. Santoro and R. T. Dolloff, J. Appl. Phys., **39**, 2293 (1968).
- 488 [13] E. I. Isaev, S. I. Simak, I. A. Abrikosov, R. Ahuja, Y. K. Vekilov, M. I. Katsnelson,
- 489 A. I. Lichtenstein, and B. Johansson, J. Appl. Phys., **101**, 123519 (2017).
- 490 [14] B. M. Klein, L. L. Boyer, and D. A. Papaconstantopoulos, Solid State Commun., 20,
- 491 937 (1976).
- 492 [15] H. Li, L. Zhang, Q. Zeng, K. Guan, K. Li, H. Ren, S. Liu, and L. Cheng, Solid State
- 493 Commun., **151**, 602 (2011).
- 494 [16] M. Sahnoun, C. Daul, M. Driz, J. C. Parlebas, and C. Demangeat, Comput. Mater.
- 495 Sci., **33**, 175 (2005).
- 496 [17] H. G. Smith and W. Gläser, Phys. Rev. Lett., **25**, 1611 (1970).
- 497 [18] W. Weber, Phys. Rev. B **8**, 5082 (1973).
- 499 [19] C. P. Kempter, Phys. Status Solidi B, **36**, K137 (1969).
- 500 [20] C. R. Houska, J. Am. Ceram. Soc., **47**, 310 (1964).
- 501 [21] K. K. Kelley, J. Am. Chem. Soc., **62**, 818 (1940).

the online version of record will be different from this version once it has been copyedited and typeset.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be diff.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/1.5115350

- 502 [22] R. O. Elliott and C.P. Kempter, J. Phys. Chem., **62**, 630 (1958).
- 503 [23] C. K. Jun and P.T.B. Shaffer, J. Less Common Met., **24**, 323 (1971).
- 504 [24] K. Frisk and A. Fernández Guillermet, J. Alloy. Compd., **238**, 167 (1996).
- 505 [25] A. Krajewski, L. D'Alessio, and G. De Maria, Cryst. Res. Technol., **33**, 341(1998).
- 506 [26] C. Kral, W. Lengauer, D. Rafaja, and P. Ettmayer, J. Alloy. Compd., 265, 215
- 507 (1998).
- 508 [27] A. Friedrich, B. Winkler, E. A. Juarez-Arellano, and L. Bayarjargal, Mater., 4, 1648
- 509 (2011).
- 510 [28] H. L. Brown, P. E. Armstrong, and C. P. Kempter, J. Chem. Phys., **45**, 547 (1996).
- 511 [29] R. W. Bartlett and C. W. Smith, J. Appl. Phys., **38**, 5428 (1967).
- 512 [30] C. K. Jun and P. T. B. Shaffer, J. Less Common Met., **23**, 367 (1971).
- 513 [31] S. P. Dodd, M. Cankurtaran, and B. James, J. Mater. Sci., **38**, 1107 (2003).
- 514 [32] H. P. Liermann, A. K. Singh, B. Manoun, S. K. Saxena, and C. S. Zha, Int. J.
- 515 Refract. Met. Hard Mater., **23**, 109 (2005).
- 516 [33] L. López-de-la-Torre, B. Winkler, J. Schreuer, K. Knorr, and M. Avalos-Borja, Solid
- 517 State Commun., **134**, 245 (2005).
- 518 [34] Z. Wu, X.-J. Chen, V. V. Struzhkin, and R. E. Cohen, Phys. Rev. B, **71**, 214103
- 519 (2005).
- 520 [35] X.-G. Lu, M. Selleby, and B. Sundman, Acta Mater., **55**, 1215 (2007).
- 521 [36] F. Peng, L. Han, H. Fu, and X. Cheng, Phys. Status Solidi B, **246**, 1590 (2009).
- 522 [37] H.-H. Chen, Y. Bi, H.-K. Mao, J.-A. Xu, L. Liu, Q.-M. Jing, Z. Li, X.-R. Chen, Q.-
- and M. Wang, Int. J. Refract. Met. Hard Mater., **41**, 627 (2013).
- 524 [38] Y. Liu, Y. Jiang, R. Zhou, and J. Feng, J. Alloy. Compd., **582**, 500 (2014).

- 525 [39] G. Sai Gautam and K. C. Hari Kumar, J. Alloy. Compd., **587**, 380 (2014).
- 526 [40] H.-R. Wenk, S. Matthies, R. J. Hemley, H.-K. Mao, and J. Shu, Nature, **405**, 1044
- 527 (2000).
- 528 [41] S. Merkel, A. K. McNamara, A. Kubo, S. Speziale, L. Miyagi, Y. Meng, T. S.
- 529 Duffy, and H.-R. Wenk, Science, **316**, 1729 (2007).
- 530 [42] H. Marquardt and L. Miyagi, Nat. Geosci., **8**, 311 (2015).
- 531 [43] T. S. Duffy, G. Shen, D. L. Heinz, J. Shu, Y. Ma, H.-K. Mao, R. J. Hemley, and A.
- 532 K. Singh, Phys. Rev. B, **60**, 15063 (1999).
- 533 [44] B. Kiefer, S. R. Shieh, T. S. Duffy, and T. Sekine, Phys. Rev. B, **72**, 014102 (2005).
- 534 [45] H. Dong, D. He, T. S. Duffy, and Y. Zhao, Phys. Rev. B, **79**, 014105 (2009).
- 535 [46] S. Merkel, H.-P. Liermann, L. Miyagi, and H.-R. Wenk, Acta Mater., **61**, 5144
- 536 (2013).

- [47] H.-K. Mao, R. J. Hemley, and A. L. Mao, in Advances in high pressure research in
- 538 condensed matter: proceedings of the international conference on condensed matter
- 539 under high pressures edited by B. K. Godwal, (NISCOM, New Delhi, India, 1997),
- 540 pp. 12-19.
- 541 [48] H.-K. Mao, J. Xu, and P. M. Bell, J. Geophys. Res., **91**, 4673, 1986.
- 542 [49] Y. Fei, A. Ricolleau, M. Frank, K. Mibe, G. Shen, and V. Prakapenka, Proc. Natl.
- 543 Acad. Sci., **104**, 9182 (2007).
- [50] A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, and D. Hausermann,
- 545 High Press. Res., **14**, 235 (1996).
- 546 [51] A. Le Bail, H. Duroy, and J. L. Fourquet, Mater. Res. Bull., **23**, 447 (1988).

AIP

- 547 [52] L. Lutterotti, S. Matthies, H.-R. Wenk, A. S. Schultz, and J. W. Richardson, J. Appl.
- 548 Phys., **81**, 594 (1997).
- 549 [53] H.-P. Liermann, S. Merkel, L. Miyagi, H.-R. Wenk, G. Shen, H. Cynn, and W.J.
- 550 Evans, Rev. Sci. Instrum., **80**, 104501 (2009).
- 551 [54] H.-P. Liermann, Z. Konôpková, W. Morgenroth, K. Glazyrin, J. Bednarčik, E. E.
- McBride, S. Petitgirard, J. T. Delitz, M. Wendt, Y. Bican, A. Ehnes, I. Schwark, A.
- Rothkirch, M. Tischer, J. Heuer, H. Schulte-Schrepping, T. Kracht, and H. Franz, J.
- 554 Synchrotron Radiat., **22**, 908 (2015).
- 555 [55] H.-R. Wenk, L. Lutterotti, P. Kaercher, W. Kanitpanyacharoen, L. Miyagi, and R.
- Vasin, Powder Diffr., **29**, 220 (2014).
- 557 [56] C.-M. Sung, C. Goetze, and H.-K. Mao, Rev. Sci. Instrum., **48**, 1386 (1977).
- 558 [57] A. K. Singh and G. C. Kennedy, J. Appl. Phys., **45**, 4686 (1974).
- 559 [58] A. K. Singh, J. Appl. Phys., **73**, 4278 (1993).
- 560 [59] T. Uchida, N. Funamori, and T. Yagi, J. Appl. Phys., **80**, 739 (1996).
- 561 [60] S. Merkel, N. Miyajima, D. Antonangeli, G. Fiquet, and T. Yagi, J. Appl. Phys., 100,
- 562 023510 (2006).
- 563 [61] H. Dong, D. He, T.S. Duffy, and Y. Zhao, Phys. Rev. B, **79**, 014105 (2009).
- 564 [62] S. Merkel, C.N. Tomé, and H.R. Wenk, Phys. Rev. B, **79**, 064110 (2009).
- 565 [63] F. Birch, Phys. Rev., **71**, 809 (1947).
- 566 [64] T. S. Duffy and Y. Wang, in *Ultrahigh-Pressure Mineralogy: Physics and*
- 567 Chemistry of the Earth's Deep Interior edited by R.J. Hemley, Reviews in
- Mineralogy Vol. 37 (Mineralogical Society of America, Washington DC, 1998), pp.
- 569 425-457.

570 [65] C. Zener, *Elasticity and Anelasticity in Metals* (University of Chicago Press,

571 Chicago, 1948).

572 [66] V. G. Bukatov, V. I. Knyazev, O. S. Korostin, and V. M. Baranov, Inorg. Mater., 11,

573 310 (1975).

574 [67] H. Marquardt, S. Speziale, K. Marquardt, H. J. Reichmann, Z. Konôpková, W.

575 Morgenroth, and H.-P. Liermann, J. Appl. Phys., **110**, 113512 (2011).

576 [68] A. K. Singh, High Temp. High Press., **10**, 41 (1978).

577 [69] J. D. Bass, R. C. Liebermann, D. J. Weidner, and S. J. Finch, Phys. Earth Planet.

578 Inter., **25**, 140 (1981).

579 [70] G. R. Gruzalski, and D. M. Zehner, Phys. Rev. B, **34**, 3841 (1986).

580 [71] J.-H. Jhi, S. G. Louie, M. L. Cohen, and J. Ihm, Phys. Rev. Lett., **86**, 3348 (2001).

581 [72] X.-X. Yu, G. B. Thompson, and C. R. Weinberger, J. Europ. Ceram. Soc., **35**, 95

582 (2015).

583

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/1.5115350

584

608

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. PLEASE CITE THIS ARTICLE AS DOI: 10.1063/1.5115350

586	Figure captions
587	Figure 1. X-ray diffraction of TaC _{0.99} compressed in Ne pressure transmitting medium to
588	19.7 GPa at ambient temperature. (a) X-ray diffraction image; (b) Integrated pattern
589	and LeBail calculated best fit spectrum. The bars underneath the pattern are the
590	calculated positions of the diffraction peaks of TaC and of gold (used as an internal
591	pressure standard). The misfit is also plotted as the difference between calculated and
592	observed amplitudes.
593	Figure 2. Radial X-ray diffraction of TaC _{0.99} compressed without pressure transmitting
594	medium to 29.4 GPa at 1073 K. (a) X-ray diffraction image; (b) Sequence of patterns
595	integrated from $5^{\rm o}$ azimuthal sectors and the fit model calculated by MAUD software
596	(the arrows indicate the compression direction parallel to the diamond anvils axes).
597	Figure 3. Example of radial X-ray diffraction measurement in non-ideal sample
598	geometry. (a) Sequence of azimuthally integrated patterns from the radial X-ray
599	diffraction image collected at 38.8 GPa and 1073 K. The direction of the diamond
600	axes (red arrow) does not correspond to that of maximum strain of the sample (white
601	arrow); (b) Ideal case (29.4 GPa and 1073 K) the direction of maximum strain
602	corresponds to the diamond axis direction.
603	Figure 4. Isothermal compression of TaC _{0.99} at ambient temperature (296 K). The dataset
604	used for the analysis is that of experiment "TaC-Ne" (see text). The data collected in
605	decompression were not used for the fit of the P-V equation of state.
606	Figure 5. P-V-T compression behavior of TaC _{0.99} . The data used for fitting are colored as
607	a function of the experimental temperature following the color scale displayed in the

legend. The curves are the best-fit model P-V isotherms at the temperatures of the 3

609	datasets (296 K, 673 K, 1073 K). The white-filled symbols correspond to data points
610	in non-ideal geometry (see text), which were not used for the fit.
611	Figure 6. Comparison of the 296 K P-V equation of state of TaC _{0.99} with the other
612	available models for TaC_{x} compositions. The disagreement is expressed as the
613	difference between the pressures calculated for the different models and our equation
614	of state at the same values of Eulerian strain. The differences are plotted versus the
615	pressure calculated with our equation of state (in abscissa). In the legend "exp"
616	indicates experimental studies, "DFT" indicates computational studies using density
617	functional theory.
618	Figure 7. Temperature dependence TaC _{0.99} thermodynamic Grüneisen parameter at
619	ambient temperature. The results from our P-V-T are compared with the other
620	available results from experimental and computational studies.
621	
622	Tables titles
623	Table I. Experimental condition of the four X-ray diffraction datasets. "Cold compr." is

624

625

626

627

628

629

630

631

Table I. Experimental condition of the four X-ray diffraction datasets. "Cold compr." is the maximum sample pressure before starting heating.

Table II. Summary of the all the experimental results from all the three runs. "stdev P + V-TaC" is the complete uncertainty on pressure including the propagation of the uncertainty on the unit-cell volume of TaC_{0.99}. "<Q>" is the isotropic aggregate value of Q, a measure of the strain due to the deviatoric component of the stress applied to the sample (see main text). "PV fit" indicates whether the data points were used or not in the isothermal (296 K) P-V equation of state fit. "PVT fit" indicates whether the data points were used or not in the P-V-T equation of state fit.

640

641

literature.

632	Table III. Best fit parameters of the P-V-T equation of state of TaC _{0.99} based on our
633	experimental data.
634	Table IV. Comparison of our best-fit thermoelastic parameters for TaC _{0.99} and all the
635	available literature data. "E" is the isotropic aggregate Young's modulus. "Poisson's"
636	is the isotropic aggregate Poisson's ratio. All the parameters refer to ambient
637	conditions. The elastic coefficients are not presented in the original paper.
638	*Parameter fixed in the analysis of the data.
639	Table V. Summary of the available results about the thermal properties of TaC_{x} from the

642 <u>Table I</u>

Experiment	TaC-Ne	TaC-HT1	TaC-HT2
Diffraction geometry	Axial	Radial	Radial
X-ray Wavelength (Å)	0.2966	0.4847	0.4847
DAC type	Symmetric P-C	modif. Mao-Bell	modif. Mao-Bell
diamond anvil culet (μm)	300	300	300
P transmitting Medium	Ne	no	no
P calibrant	Au, ruby	Au	Au
Temperature (K)	296	673	1073
N data points	20	22	25
Max P (GPa)	43.6	33.6	38.8
Exp time (s)	20	4	4
Max membrane P (bar)	28.4	58.9	65.0
Exp duration (h)	3	5	6
Cold compr. (GPa)		2.4	2.6

643

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/1.5115350

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/1.5115350

Table II

Table II				stdev P + V			
Experiment	T (K)	P (GPa)	V (ų)	TaC (GPa)	<q></q>	PV fit	PVT fit
TaC-Ne	296	5.1±0.1	87.06±0.01	0.19		yes	yes
TaC-Ne	296	6.4±0.2	86.71±0.02	0.31		yes	yes
TaC-Ne	296	10.3±0.1	85.79±0.02	0.22		yes	yes
TaC-Ne	296	11.6±0.1	85.47±0.02	0.20		yes	yes
TaC-Ne	296	14.5±0.3	84.81±0.02	0.35		yes	yes
TaC-Ne	296	17.3±0.5	84.21±0.04	0.67		yes	yes
TaC-Ne	296	19.7±0.6	83.82±0.04	0.82		yes	yes
TaC-Ne	296	22.2±0.6	83.35±0.04	0.84		yes	yes
TaC-Ne	296	24.6±0.5	82.91±0.04	0.74		yes	yes
TaC-Ne	296	27.1±0.4	82.43±0.04	0.66		yes	yes
TaC-Ne	296	29.5±0.5	82.02±0.04	0.76		yes	yes
TaC-Ne	296	31.6±0.5	81.64±0.01	0.60		yes	yes
TaC-Ne	296	34.1±0.6	81.21±0.01	0.64		yes	yes
TaC-Ne	296	36.4±0.8	80.83±0.01	0.82		yes	yes
TaC-Ne	296	38.4±0.6	80.48±0.01	0.66		yes	yes
TaC-Ne	296	40.8±0.8	80.07±0.01	0.81		yes	yes
TaC-Ne	296	43.6±0.7	79.63±0.01	0.77		yes	yes
TaC-Ne	296	38.9±0.8	80.47±0.01	0.83		no	yes
TaC-Ne	296	32.0±0.7	81.72±0.02	0.68		no	yes
TaC-Ne	296	18.8±1.0	84.11±0.04	1.06		no	yes
TaC-Ne	296	0.0001	88.478±0.003	0.001		yes	yes
TaC-HT1	673±10	7.4±0.3	86.95±0.10	0.68	0.0009	no	yes
TaC-HT1	674±10	6.0±0.3	87.10±0.11	0.70	0.0010	no	no
TaC-HT1	673±10	6.8±0.3	86.89±0.09	0.64	0.0011	no	no
TaC-HT1	673±10	8.2±0.3	86.68±0.09	0.66	0.0012	no	no
TaC-HT1	673±10	9.4±0.3	86.46±0.11	0.75	0.0014	no	yes
TaC-HT1	682±10	11.0±0.3	86.17±0.10	0.72	0.0015	no	yes
TaC-HT1	673±10	12.6±0.3	85.71±0.11	0.78	0.0018	no	yes
TaC-HT1	673±10	15.3±0.4	85.13±0.10	0.81	0.0022	no	yes
TaC-HT1	673±10	17.4±0.4	84.61±0.11	0.89	0.0024	no	yes

ACCEPTED MANUSCRIPT

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/1.5115350

TaC-HT1	671±10	20.0±0.4	83.99±0.10	0.89	0.0030	no	yes
TaC-HT1	667±10	23.6±0.4	83.39±0.11	0.97	0.0035	no	yes
TaC-HT1	672±10	26.5±0.4	82.84±0.10	0.99	0.0040	no	yes
TaC-HT1	672±10	28.4±0.5	82.42±0.11	1.07	0.0041	no	yes
TaC-HT1	673±10	30.7±0.5	81.96±0.10	1.04	0.0044	no	yes
TaC-HT1	673±10	32.2±0.5	81.52±0.10	1.10	0.0044	no	-
							yes
TaC-HT1	673±10	33.0±0.5	81.51±0.09	1.05	0.0047	no	yes
TaC-HT1	672±10	33.6±0.5	81.54±0.11	1.16	0.0042	no	yes
TaC-HT1	674±10	24.6±0.4	83.09±0.11	1.00	0.0014	no	yes
TaC-HT2	297	1.9±0.3	87.98±0.05	0.43	0.0006	no	yes
TaC-HT2	297	1.8±0.3	87.98±0.05	0.44	0.0005	no	yes
TaC-HT2	297	2.6±0.3	87.80±0.06	0.49	0.0007	no	yes
TaC-HT2	1073±10	2.9±0.2	88.57±0.13	0.67	0.0012	no	yes
TaC-HT2	1072±10	3.0 ± 0.2	88.47±0.12	0.63	0.0017	no	yes
TaC-HT2	1074±10	3.0 ± 0.2	88.46±0.12	0.64	0.0016	no	yes
TaC-HT2	1073±10	2.9±0.2	88.54±0.12	0.65	0.0013	no	yes
TaC-HT2	1069±10	2.9±0.2	88.54±0.13	0.65	0.0014	no	yes
TaC-HT2	1071±10	2.8±0.2	88.58±0.12	0.61	0.0015	no	yes
TaC-HT2	1072±10	2.9±0.2	88.66±0.12	0.64	0.0015	no	yes
TaC-HT2	1073±10	3.0 ± 0.2	88.66±0.13	0.68	0.0016	no	yes
TaC-HT2	1073±10	3.1±0.2	88.68±0.13	0.66	0.0014	no	yes
TaC-HT2	1072±10	3.2 ± 0.2	88.66±0.11	0.61	0.0015	no	yes
TaC-HT2	1056±10	3.2 ± 0.2	88.59±0.12	0.63	0.0018	no	yes
TaC-HT2	1075±10	3.7 ± 0.2	88.48±0.12	0.65	0.0020	no	yes
TaC-HT2	1074±10	11.3±0.3	86.29±0.11	0.75	0.0027	no	yes
TaC-HT2	1075±10	11.4±0.3	86.23±0.11	0.76	0.0029	no	yes
TaC-HT2	1073±10	12.0±0.3	86.08±0.13	0.85	0.0030	no	yes
TaC-HT2	1074±10	13.4±0.3	85.77±0.13	0.88	0.0033	no	yes
TaC-HT2	1073±10	14.7±0.3	85.49±0.12	0.85	0.0036	no	yes
TaC-HT2	1073±10	17.9±0.4	84.75±0.12	0.92	0.0039	no	yes
TaC-HT2	1072±10	20.7±0.4	84.20±0.13	0.99	0.0040	no	yes
TaC-HT2	1073±10	23.3±0.4	83.73±0.14	1.07	0.0041	no	yes
TaC-HT2	1074±10	25.4±0.4	83.35±0.12	1.01	0.0042	no	yes

ACCEPTED MANUSCRIPT

Journal of Applied Physics

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/1.5115350

TaC-HT2	1072±10	27.5±0.4	82.95±0.14	1.15	0.0042	no	yes
TaC-HT2	1073±10	29.4±0.4	82.65±0.12	1.12	0.0043	no	yes
TaC-HT2	1075±10	31.5±0.5	82.38±0.12	1.15	0.0043	no	yes
TaC-HT2	1074±10	32.9±0.5	82.04±0.12	1.14	0.0044	no	no
TaC-HT2	1073±10	34.9±0.5	81.78±0.12	1.21	0.0046	no	no
TaC-HT2	1073±10	36.1±0.5	81.52±0.13	1.29	0.0046	no	no
TaC-HT2	1072±10	37.8±0.5	81.28±0.12	1.25	0.0048	no	no
TaC-HT2	1073±10	38.8±0.5	81.09±0.14	1.37	0.0049	no	no

647 Table III

This study	Parameter	1σ stdev			
V ₀ (Å ³)	88.478	0.020			
K _{T0} (GPa)	305	5			
$(dK_T/dP)_{T0}$	6.1	0.5			
γ_{th0}	1.2	0.1			
Q	1	2			
θ_0 (K)	567	10			

648 649

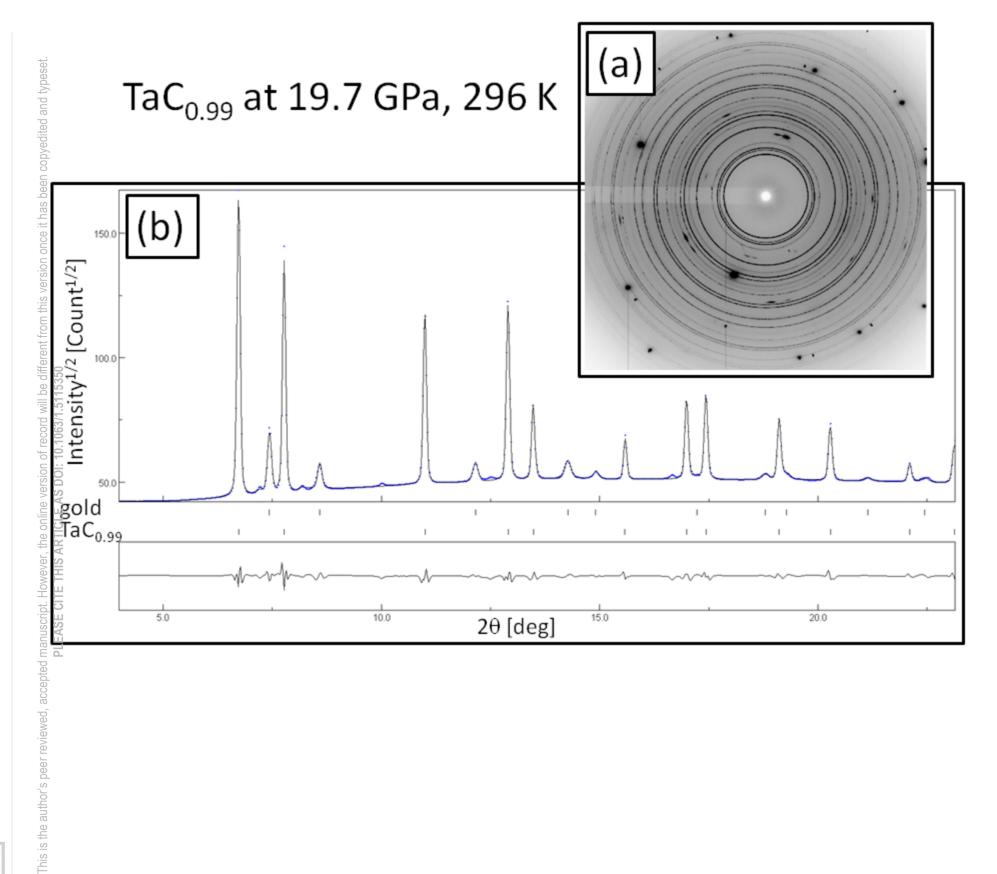
This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/1.5115350

651

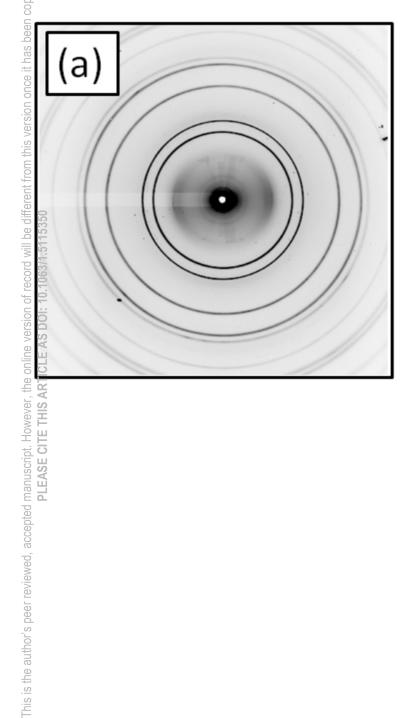
This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

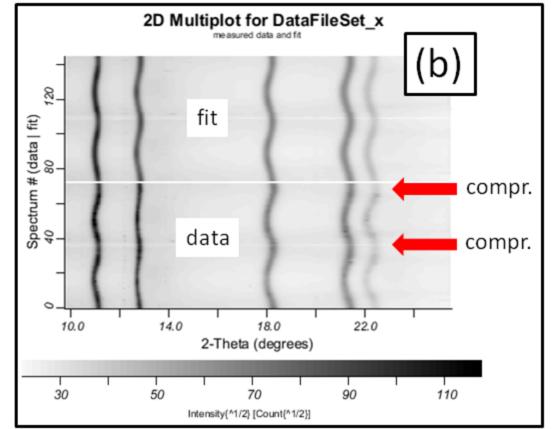
PLEASE CITE THIS ARTICLE AS DOI: 10.1063/1.5115350 Table IV 650


Reference	Ref.#	Method	Composition	V_0 (Å ³)	Density (g/cm ³)	K ₀ (GPa)	G (GPa)	(dK/dP)₀	E (GPa)	Poisson'
This study		A-XRD + R-XRD	TaC _{0.99}	88.478	14.448	305±5		6.1±0.5		
		Thin rod Ultrasound								
Brown et al. (1966)	[28]	resonance	TaC _{0.994}	88.424	14.489	344	216		537	0.24
Bartlett & Smith (1967)	[29]	Ultrasound pulse-echo	TaC _{0.90}		14.65	217±7	120±25		304±64	0.27
Jun & Shaffer (1971)	[30]	Ultrasound resonance	TaC _{0.99}	88.359	14.496	345	216.8		537.7	
Smith & Glaser (1973)	[17]	Neutron Inelastic Scattering	TaC	88.448	14.491	283 [°]	194		474	0.22
Bukatov et al. (1975)	[66]	Ultrasound pulse-echo	TaC _{0.99}			317	227		552	0.21
Dodd et al. (2003)	[31]	Ultrasound pulse-echo	TaC _{0.98}		14.478	332±39	234±27	4.97±0.25	567±68	0.215
Liermann et al. (2005)	[32]	A-XRD (AI PTM)	TaC _{0.98}			340±5		4*		
		A-XRD (nonhydrostatic)	TaC _{0.98}			347±2		4*		
		A-XRD (all data)	TaC _{0.98}			345±9		4±0.4		
López de-la-Torre et	[0.0]		T 0		4404					
al.(2005)	[33]	Ultrasound resonance	TaC		14.64	00=.4				
		DFT (LDA)	TaC	85.533	14.985	365±4		3.6±0.2		
		DFT (GGA)	TaC	92.652	13.833	318±4	191		550	0.21
Wu et al. (2005)	[34]	DFT (LDA)	TaC	85.184	15.046	357	215		536	0.25
Shanoun et al. (2005)	[16]	DFT (LDA)	TaC	84.605	15.149	397.6	390	3.64	882	0.13
		DFT (GGA)	TaC	89.915	14.254	318.98	313	4.34	708	0.13
Isaev et al. (2007)	[13]	DFT (GGA) DFT (GGA)+Debye-	TaC	89.315	14.350	324				
Lu et al. (2007)	[35]	Grüneisen	TaC			317	162		514	0.23
Peng et al. (2009)	[36]	DFT (GGA)	TaC	94.756	13.526	311	188	4.32	470	0.248
Li et al. (2011)	[15]	DFT (LDA)	TaC	86.586	14.802	365.3	168.8		438.8	0.3
		DFT (GGA-PBE)	TaC	95.069	13.482	304.9	120.9		320.3	0.32
		DFT (RPBE)	TaC	95.194	13.464	303.1	120.6		319.5	0.32
		DFT (PW91)	TaC	95.256	13.455	302.3	117.6		312.3	0.33
Chen et al. (2013)	[37]	A-XRD	TaC nano	88.478	14.486	433±7		4*		
		DFT (LDA)	TaC	88.478	14.486	371±3	274	4.29	660	0.21
		DFT (GGA)	TaC	88.478	14.486	310±2	221	4.25	537	0.21
Liu et al. (2014)	[38]	DFT (GGA)	TaC	96.072	13.341	293.5	166.4		491.8	0.221
Sai Gautam et al. (2014)	[39]	DFT (GGA-PBE)	TaC	87.884	14.584	344	229		563	0.227
Yu etal. (2014)	[6]	DFT (GGA)	TaC	89.315	14.350	340	214		531	0.24

652 Table V

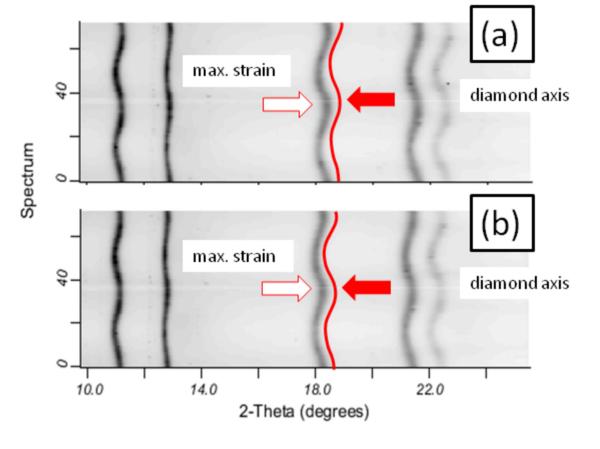
Reference	Ref.#	Method	Composition	Density (g/cm ³)	α₀ (10 ⁻⁶ K ⁻¹)	C _P (JK ⁻¹ Mol ⁻¹)	θο (K)	γ_{th}	V ₀ (ų)
Houska (1964)	[20]	EXP	TaC _{1.02}	14.538	18	(OIT INOI)	(11)		88.270
Kempter (1969)	[19]	EXP	TaC _{0.994}				572		
Kelley (1940)	[21]	EXP	TaC			36.66			
Elliott & Kempter (1958)	[22]	EXP	TaC _{0.984}	14.491	19.77				88.360
Jun & Shaffer (1971)	[23]	EXP	TaC _{0.99}		20.01				
Jun & Shaffer (1971)	[30]	EXP	TaC _{0.99}	14.496			556	1.47	88.360
Dodd et al. (2003)	[31]	EXP	TaC _{0.98}	14.478			593±71		
Lu et al. (2007)	[35]	COMP	TaC				808	2.34	
Peng et al. (2009)	[36]	COMP	TaC	13.526	21		541	2.08	94.760
Liu et al. (2014)	[38]	COMP	TaC	13.341			509.4		96.07
Sai Gautam et al. (2014)	[39]	COMP	TaC	14.584		38.93	588.3		87.883
Frisk & Guillermet (1996)	[24]	COMP	TaC			36.61	551		


This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.


PLEASE CITE THIS ARTICLE AS DOI: 10.1063/1.5115350 653

AIP

TaC_{0.99} at 29.4 GPa, 1073 K

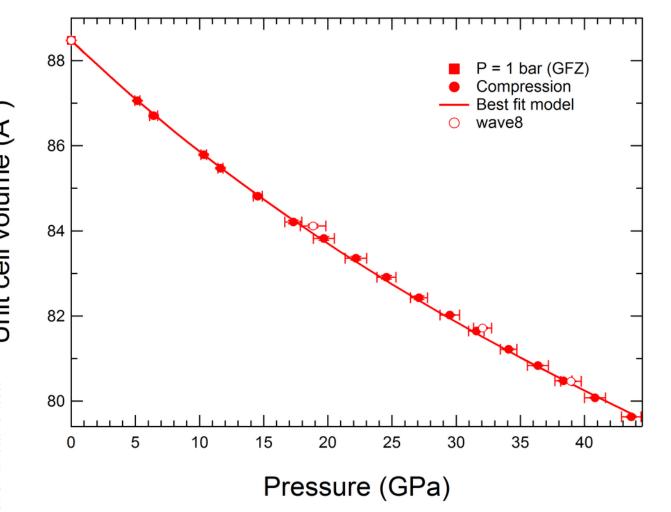


Journal of Applied Physics

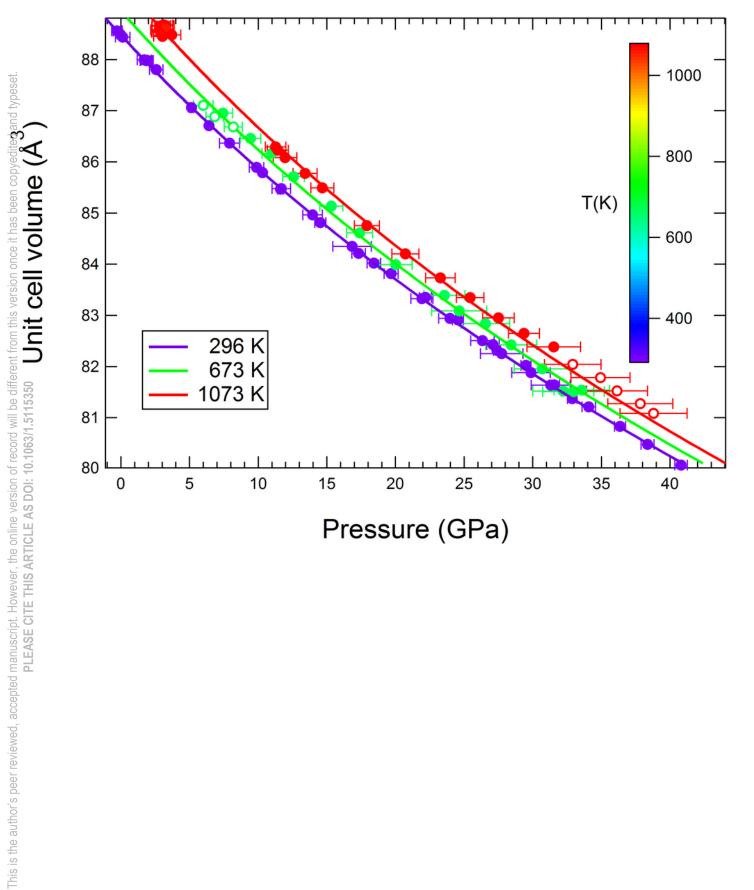
This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/1.5115350

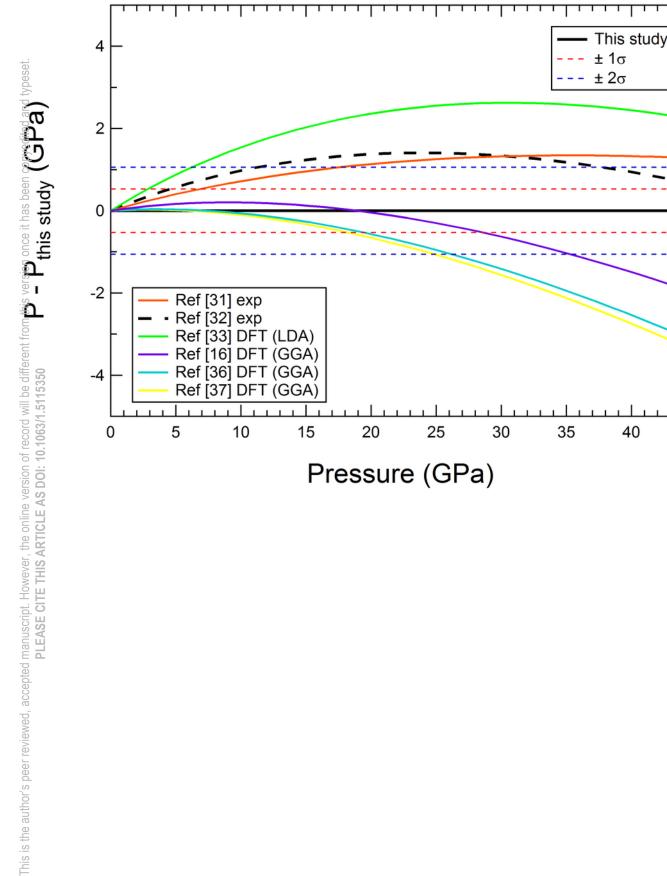
ACCEPTED MANUSCRIPT


Journal of Applied Physics

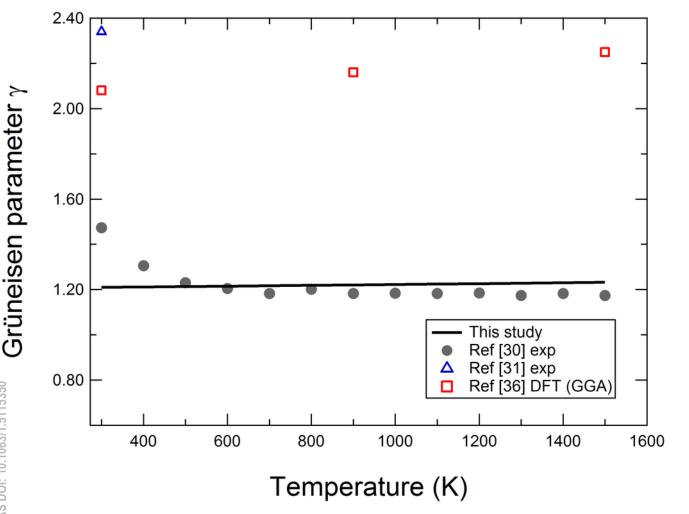
This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.


PLEASE CITE THIS ARTICLE AS DOI: 10.1063/1.5115350

Unit cell volume (A)


Journal of Applied Physic

Journal of Applied Physics



ACCEPTED MANUSCRIPT

Journal of Applied Physics

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. PLEASE CITE THIS ARTICLE AS DOI: 10.1063/1.5115350

