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Abstract

We design a meta-model for the loss distribution of a large credit portfolio in the Gaussian copula

model. Using both the Wiener chaos expansion on the systemic economic factor and a Gaussian ap-

proximation on the associated truncated loss, we significantly reduce the computational time needed for

sampling the loss and therefore estimating risk measures on the loss distribution. The accuracy of our

method is confirmed by many numerical examples.
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1 Introduction

In credit risk modeling, one needs to properly model and sample the loss distribution L associated to the

credit portfolio of K obligors in order to compute the probability of large losses P (L > x), for large x. More

precisely, the loss L takes the form :

L :=

K∑
k=1

lkYk, (1.1)

where Yk = 1 or 0 according to the default (or not) of the kth obligor and lk is the related Loss Given

Default. Such quantity appears in many credit risk measurements such as Var, CVar. . . (see [ADEH99,

CLV04, MFE05, BR13] for extensive references on risk measures and credit risk). The problem we address

in this work corresponds to a large number K of obligors: indeed, it is often that banks are facing portfolio

with K ≥ 105 obligors. Therefore, any Monte-Carlo (MC) simulation scheme is hugely time-consuming, since

generating a single sample of L requires to compute all terms of the sum (1.1). Estimating P (L > x) by

MC can then take hours using only few hundreds/thousands samples, whence resulting in a quite imprecise

estimation of the probability of interest. To overcome this, we design a new meta-model for sampling the

loss, based on the Wiener chaos decomposition. A meta-model is an approximation of the true model, which

has the advantage of being much faster to evaluate, and consequently, which is more suitable for massive MC

simulations and asymptotic statistical error analysis. As we will see, the level of approximation of L can be

tuned as the user wants, so that we obtain a full range of meta-models from exact to rough, with decreasing

accuracy but increasing speed-up.
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Our contributions. We derive the meta-model in the framework where the default variables (Yk : k) obey

a copula model, first introduced by Li [Li00] to cop with the credit dependency analysis. See also [ASB03],

where the one-factor normal copula model is used for the CDO (Collateralized Debt Obligation) pricing.

See Section 2 for a precise description of the model. All the defaults depend on a common variable Z (the

systemic risk factor, which plays the role of a macro-economic variable), modelled as standard normal random

variables, and conditionally to Z, defaults are independent. Extensions to multifactor is discussed in details

in Subsection 3.3.

Our main result is a meta-model for L which takes the following form (see Theorem 7):

L(ω) ≈
I∑
i=0

εK,i(ω) Hei(Z(ω)), (1.2)

where

• (Hei(·) : i ≥ 0) is the family of probabilists’ Hermite polynomials;

• I a truncation parameter tuning the accuracy of the meta-model;

• the (random) coefficients εK,i form a normal vector with explicit characteristics (depending on the LGD

and other default parameters), and independent of Z. The significant gain is that these characteristics

can be computed off-line, so that sampling the meta-model reduces to sample a I-dimensional normal

vector and the systemic risk factor Z. Therefore, instead of sampling K terms, we essentially sample I

terms.

The meta-model (1.2) writes as a (truncated) Wiener chaos decomposition of L in the Z variable.

Background results. At the beginning of the 2000’s, there have been numerous works related to the

numerical approximation of CDO pricing (before the 2007-crisis, these products were very popular). It

is related to the computation of the tranche function E [(L − x)+] for many attachement levels x and for

some loss L of the form (1.1). The main methodology is to derive explicit approximations for conditional

quantities E [(L − x)+ | Z] (and then integrate over Z 1): the problem is simpler since the conditional loss

writes as a sum of independent random variables. For instance, in [Vas91], Vasicek proposed a Gaussian

approximation using the principle of Central Limit Theorem. The authors of [JEK08] have significantly

improved the zero-order Gaussian approximation by identifying some correction terms using the Stein method;

alternatively to Gaussian approximations available for some specific parameter regime, they also provide

Poisson approximations. Still taking advantage of the sum of independent random variables, some works

made use of the explicit characteristic functions available for the conditional loss and the use of saddle-

point techniques to provide approximations of the tranche function, see [YHZ06] for instance. All these

references (and others therein) provide approximations of the conditional loss distribution using a probability

distribution with parameters θ depending on Z. For large portfolio (K → +∞), this may be computationally

very intensive, since for any sampled risk factor Z (a priori many for computing the outer non-conditional

expectation), the parameters θ(Z) have to be re-evaluated hence recomputing all the K terms in (1.1)

conditionally to Z. Our approach based on the Wiener chaos decomposition is different since we factorize

the dependence with respect to (w.r.t.) Z from the other variables (see Theorem 7), so that the critical part

(related to K large) can be made off-line.

A second difference between the above references and our work is that we derive directly an approximation

on L, independently of the threshold x appearing in the tranche function E [(L − x)+] or in the survival

function P (L > x). We are working directly at the level of approximating the loss distribution, rather than

its statistics (through test functions): our approach is closer to a simulation-based experience that a risk

manager could wish to have (with visualisation of loss histograms . . . ).

1which is standard using Monte Carlo method or any numerical integration method
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Another family of numerical methods to sample L and efficiently compute their statistics is the MC method

with importance sampling (IS). This is quite efficient, especially for extreme loss thresholds x. Important

references are [GL05], where the authors apply IS conditionally on Z (the common factors affecting obligors)

and IS to the factors themselves. The tuning of this approach depends on x and the computational time also

suffers from having many obligors (K → +∞). Our work takes a different route as we wish to approximate

the full distribution of L, especially as K → +∞.

Although Gaussian meta-modeling is quite well-known among the Uncertainty Quantification community,

we are not aware of any use for financial engineering problems, and in particular for assessing portfolio credit

risk. For a recent account on meta-modeling with polynomial chaos and Gaussian processes, see [LMS16].

Organisation of the paper. In section 2, we briefly recall the Gaussian copula model of [Li00], state known

properties on probabilists’ Hermite polynomials and the Wiener chaos decomposition. Then, we compute

the chaos decomposition of the indicator function 1c≤Z where Z is standard normal and c a constant, and

apply this to obtain a stochastic chaos decomposition of order I (denoted LI) for the portfolio loss L. We

then show how the coefficients of this decomposition can be well approximated by suitable multidimensional

normal distributions. We provide also the L2 error and a central limit theorem for the approximation

LI . Technicalities are postponed to Section 5. In Section 3, we give explicit expressions to compute the

characteristics of the normal vector needed for the approximation and test our approach on different portfolio

scenarios. We summarize our main contributions and conclude in Section 4.

Notations.

• N = {0, 1, . . . , } for the non-negative integers.

• Let n ∈ N∗, x ∈ Rn, Σ ∈ Rn×n positive definite and X
d
= N (0,Σ), set

ΦΣ(x) := P (X ≤ x) =

∫ x1

−∞
· · ·
∫ xn

−∞

e−
1
2 t
>Σ−1t

(2π)
n
2 (det(Σ))

1
2

dt1 . . . dtn.

In the case n = 1 and Σ = 1, we simply write Φ for ΦΣ.

• For n,m ∈ N, δnm denotes the Kronecker delta i.e δnm = 1 if n = m and 0 otherwise.

2 Gaussian Copula Model, Wiener chaos decomposition and main

result on meta-models

2.1 Gaussian copula model for the portfolio credit risk problem

We are considering the one-year loss of a large portfolio composed of K obligors, each having a deterministic

LGD lk ≥ 0. The marginal default probability of the kth obligor is denoted by pk, it is assumed to be known

either from credit ratings, market prices, corporate bonds or credit default swaps. In this framework, the

one-year total loss from defaults (without any provision) is defined as :

L :=

K∑
k=1

lkYk, (2.1)

where Yk represents the default indicator for the kth obligor at one-year; i.e Yk = 1 if the kth obligor defaults

or 0 otherwise. We assume that the defaults obey to the copula model. Namely, in the Gaussian copula

model,

Yk = 1Xk≥ck (2.2)
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with stochastic factors Xk and thresholds ck (referred as a default boundary), and the dependence among

obligors is achieved through a multivariate normal vector (X1, . . . , XK) with standardized entries (Xk
d
=

N (0, 1)).

For the sake of clarity, we choose to first focus our analysis on a 1-dimensional factor model where Xk

takes the form :

Xk = ρkZ +
√

1− ρ2
kεk,

where Z
d
= N (0, 1) is a systemic risk factor, εk

d
= N (0, 1) is an idiosyncratic risk associated with the kth

obligor (independent from Z), ρk ∈ (−1, 1) a correlation parameter. The (εk)1≤k≤K are independent, and

independent from Z. The extension to a d-multi-factor model is presented in Section 3.3.

We assume from now on that ρk 6= 0: indeed, from the economic point of view, there is always a

dependency between the default of an obligor and the systemic risk factor. From the mathematical point of

view, the set of random variables Yk associated to ρk = 0 forms an independent sequence, and independent

from the other Yl, their marginal distributions are just Bernoulli distributions, thus they can be easily treated

separately from the dependent Yl.

The default boundary ck := Φ−1(1 − pk) = −Φ−1(pk) is such that it matches the constraint pk =

P (Yk = 1): indeed, the choice of ck readily implies that

P (Yk = 1) = P (Xk ≥ ck) = Φ (−ck) = pk.

Then, the default event writes (remembering that we exclude the case ρk = 0) :

{Xk ≥ ck} = {akεk + bk ≤
ρk
|ρk|

Z} where ak =
−
√

1− ρ2
k

|ρk|
, bk =

−Φ−1(pk)

|ρk|
. (2.3)

Here, we emphazise that both random variables are normally distributed :

ρk
|ρk|

Z
d
= N (0, 1) , akεk + bk

d
= N

(
bk, a

2
k

)
.

2.2 Wiener chaos decomposition of the indicator function

We first recall some well-known results on the probabilists’ Hermite polynomials of degree i ∈ N. See [Sze75,

Chapter V] and [Fun92] for extensive references on orthogonal polynomials. For (2.4)-(2.5)-(2.7)-(2.13),

we refer to [LK10, Section B.1.2]. For (2.11) and (2.12), see [Nua06, Chapter 1] and [Bai48] respectively.

Equalities (2.6) and (2.9) readily follow from (2.7). Equality (2.8) is derived from the exact Taylor expansion

w.r.t. x at point y, combined with He
(m)
i (y) = i!

(i−m)!Hem(y) (0 ≤ m ≤ i) which follows from (2.11). Equality

(2.10) is a direct consequence of (2.5) and (2.11). The exponential generating function (2.14) is obtained

from the series expansion of exw−
w2

2 =
∑
i≥0

ci
i!w

i with ci = ∂i

∂wi

(
exw−

w2

2

)∣∣∣
w=0

= Hei (x) .

Proposition 1. For every i ∈ N, the following properties hold for the probabilists’ Hermite polynomials :

Hei(x) = (−1)ie
x2

2
di

dxi

(
e−

x2

2

)
, (2.4)

He0(x) = 1, He1(x) = x, Hei+2(x) = xHei+1(x)− (i+ 1)Hei(x), (2.5)

Hei (−x) = (−1)iHei(x), (2.6)

Hei(x) = i!

b i2c∑
m=0

(−1)m

m! (i− 2m)!

xi−2m

2m
, (2.7)

Hei (x+ y) =

i∑
m=0

(
i

m

)
xi−mHem (y) , (2.8)

He2i(0) = (−1)i
(2i)!

2ii!
, He2i+1(0) = 0, (2.9)
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He′′i (x)− xHe′i(x) + iHei(x) = 0, (2.10)

He′i+1(x)− (i+ 1)Hei(x) = 0, (2.11)

∀A ∈ R, Hei (Ax) =

b i2c∑
m=0

Ai−2m
(
A2 − 1

)m i!

m!(i− 2m)!
2−mHei−2m(x), (2.12)

∀i, j ∈ N,
∫

R
Hei(x)Hej(x)

e−
x2

2

√
2π

dx = i!δij , (2.13)

∀x,w ∈ R, exw−
w2

2 =

∞∑
i=0

Hei (x)
wi

i!
. (2.14)

We recall that any measurable function ϕ : R 7→ R, such that E
[
ϕ2(Z)

]
< +∞, can be decomposed into

L2 (chaos decomposition) as

ϕ(Z) =

∞∑
i=0

αiHei(Z)

with αi = E [ϕ(Z)Hei(Z)] /i!. Before applying this result to the indicator function on the event (2.3), we

need the following Proposition.

Proposition 2. Let Z be a standard normal random variable and c ∈ R. Then the following chaos decom-

position holds :

1c≤Z =

∞∑
i=0

αi(c)Hei(Z) (2.15)

with α0(c) = Φ (−c) and for i ∈ N∗,

αi(c) =
e−

c2

2 Hei−1(c)

i!
√

2π
=
e−

c2

2

i
√

2π

b i−1
2 c∑

m=0

(−1)m

m! (i− 1− 2m)!

ci−1−2m

2m
. (2.16)

Furthermore, the following relations between coefficients hold:

∀i ∈ N, αi+2(c) =
c

i+ 2
αi+1(c)− i

(i+ 1)(i+ 2)
αi(c). (2.17)

The above equality (2.15) holds in L2, and thus for almost every Z. Actually (see the discussion below),

the equality holds for Z 6= c.

2.3 Wiener chaos decomposition of the loss

At this point, in view of (2.3), since ρk
|ρk|Z

d
= Z

d
= N (0, 1) , we would like to apply (2.15) with c = akεk + bk.

However since (2.15) holds a.s. (i.e. except on a set of zero measure Ec) and the c’s are to be chosen as

random, one needs to be cautious. Fortunately, the convergence in (2.15) does not hold only for almost

every Z, but for all Z 6= c. This is a consequence of the Uspensky’s criterion for pointwise convergence of

Hermite series [Usp26]; moreover, whenever needed, the series on the right-hand side of (2.15) converges to

the left-hand side uniformly on any compact set of Z-values that does not contain c. For the special case,

Z = c, it converges to 1
2 (Gibbs phenomenon), see [San91, Section IV.10]. It implies that on the complement

of the set E =
⋃K
k=1

{
akεk + bk = ρk

|ρk|Z
}

, the equality (2.15) holds simultaneously for c = akεk + bk for

all k ∈ {1, . . . ,K}. Since the sequence (εk)k=1,...,K is independent from ρk
|ρk|Z and the law of ρk

|ρk|Z has not

atoms, the set E has zero probability. It implies that we have a.s.

L(2.3)
=

K∑
k=1

lk1{akεk+bk≤
ρk

|ρk|
Z} (2.18)
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=

K∑
k=1

lk

∞∑
i=0

αi (akεk + bk) Hei

(
ρk
|ρk|

Z

)

=

∞∑
i=0

{
K∑
k=1

lkαi (akεk + bk)
ρik
|ρk|i

}
Hei (Z) .

The last equality can be easily obtained noticing that :

Hei

(
ρk
|ρk|

Z

)
= Hei (Z) 1ρk>0 + Hei (−Z) 1ρk<0

(2.6)
= Hei (Z) 1ρk>0 + (−1)

i
Hei (Z) 1ρk<0 =

ρik
|ρk|i

Hei (Z) .

(2.19)

Truncating the sum over i at I gives the so-called I-chaos decomposition of the loss. This is our first main

result.

Theorem 3. Under the assumption that (εk)k=1,...,K is independent from Z, the chaos decomposition of the

loss L with respect to Z is given by :

L =
∞∑
i=0

{
K∑
k=1

lkαi (akεk + bk)
ρik
|ρk|i

}
Hei (Z) , (2.20)

where the αi(.)’s are given in Proposition 2. Then, the associated truncated chaos decomposition of order

I ∈ N of the loss L or I-chaos decomposition is defined by :

LI =

I∑
i=0

{
K∑
k=1

lkαi (akεk + bk)
ρik
|ρk|i

}
Hei (Z) . (2.21)

The analysis of the truncation error is made possible by a better understanding on how fast the coefficients

αi decrease to 0: it will be handled by the next two results.

Lemma 4. For every n ∈ N, the successive relative maxima of x ∈ R → e−
x2

2 |Hen(x)| form a decreasing

(resp. increasing) sequence for x ≥ 0 (resp. for x ≤ 0).

Corollary 5. For every n ∈ N, define Mn := max
x∈R

(
e−x

2
He2n(x)

(n+1)!

)
then :

Mn =


(2m)!

(2m+ 1) (m!)
2

22m
if n = 2m

e−x
2
1,2m+2He2

2m+1 (x1,2m+1)

(2m+ 2)!
if n = 2m+ 1

,

M2m+1 < M2m, (2.22)

where m ∈ N and x1,2m+2 > 0 denotes the first positive zero of He2m+2.

For the reader interested in estimates on the maximum of weighted Hermite polynomials, see the work

of Krasikov [Kra04]. Notice that his estimates are different as he considers physicists’ Hermite polynomials

Hi (.) which are linked to the probabilists’ Hermite polynomials through the relation Hi (x) = 2i/2Hei
(√

2x
)
.

Yet the upper bound obtained in [Kra04, Theorem 1] is not equivalent to that of our Corollary 5 (even after

the above rescaling). Our above upper bound is tight and customized to our setting.

We are now in a position to analyse the truncation error related to the chaos decomposition of Proposition

2 and Theorem 3. We recall that (εk)k=1...K is independent from Z.
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Figure 1: Plot of x 7→ e−
x2

2 |Hen(x)| for n = 1, ..., 5 to illustrate Lemma 4.

Figure 2: Plot of x 7→ e−x
2
He2n(x)

(n+1)! for n = 1, ..., 5, to illustrate the inequality (2.22).

Theorem 6. Let I ∈ N∗, c ∈ R and Z a standard normal random variable. Then, there exists C(2.23) ≥ 0

which does not depend on I and K, such that:

sup
c∈R

E

∣∣∣∣∣1c≤Z −
I∑
i=0

αi(c)Hei(Z)

∣∣∣∣∣
2
 ≤ C(2.23)√

I
, and E

[
|L − LI |2

]
≤ C(2.23)

(∑K
k=1 lk

)2

√
I

. (2.23)

A careful analysis of the proof shows that this result holds without assuming that (εk)k=1...K forms a

independent sequence, only the independence w.r.t. Z is required. It is interesting for the extension to the

7



multi-factor model (see the discussion in Section 3.3). According to the numerical experiments reported in

Figure 6, it seems that the above estimates are tight (one can not improve the convergence rate).

Proof of Theorem 6. First note that the second estimate is a direct consequence of the first one. Indeed,

starting from (2.18)-(2.19)-(2.21), using positivity of the lk’s, the Cauchy-Schwarz inequality, the fact that
ρk
|ρk|Z

d
= Z

d
= N (0, 1) and the first estimate, we have :

E
[
|L − LI |2

]
=E

∣∣∣∣∣
K∑
k=1

lk

(
1{akεk+bk≤

ρk

|ρk|
Z} −

I∑
i=0

αi (akεk + bk) Hei(
ρk
|ρk|

Z)

)∣∣∣∣∣
2


≤
K∑

k,k′=1

lklk′E

[ ∣∣∣∣∣1{akεk+bk≤
ρk

|ρk|
Z} −

I∑
i=0

αi (akεk + bk) Hei(
ρk
|ρk|

Z)

∣∣∣∣∣
×

∣∣∣∣∣1{ak′ εk′+bk′≤ ρk

|ρk|
Z} −

I∑
i=0

αi (ak′ εk′ + bk′ ) Hei(
ρk′

|ρk′ |
Z)

∣∣∣∣∣
]

≤
K∑

k,k′=1

lklk′E

∣∣∣∣∣1{akεk+bk≤
ρk

|ρk|
Z} −

I∑
i=0

αi (akεk + bk) Hei(
ρk
|ρk|

Z)

∣∣∣∣∣
2
1/2

× E

∣∣∣∣∣1{ak′ εk′+bk′≤ ρ
k′
|ρk′ |

Z} −
I∑
i=0

αi (ak′ εk′ + bk′ ) Hei(
ρk′

|ρk′ |
Z)

∣∣∣∣∣
2
1/2

=

K∑
k,k′=1

lklk′E

∣∣∣∣∣1{akεk+bk≤Z} −
I∑
i=0

αi (akεk + bk) Hei(Z)

∣∣∣∣∣
2
1/2

× E

∣∣∣∣∣1{ak′ εk′+bk′≤Z} −
I∑
i=0

αi (ak′ εk′ + bk′ ) Hei(Z)

∣∣∣∣∣
2
1/2

≤
C(2.23)√

I

( K∑
k=1

lk

)2

.

Now, let us prove the first estimate. The quadratic error of the truncated projection is equal to:

E

∣∣∣∣∣1c≤Z −
I∑
i=0

αi(c)Hei(Z)

∣∣∣∣∣
2
 (2.15)

= E

∣∣∣∣∣
∞∑

i=I+1

αi(c)Hei(Z)

∣∣∣∣∣
2
 (2.13)

=

∞∑
i=I+1

i!αi(c)
2 (5.2)

=

∞∑
i=I

e−c
2

He2
i (c)

2π(i+ 1)!
.

Since the above upper bound is decreasing in I and in view of the advertised upper bound of Theorem 6, it

is enough to consider the case of I even, i.e. I = 2N for some N ∈ N∗. For such I, by Corollary 5, we have

∞∑
i=2N

e−c
2

He2
i (c)

2π(i+ 1)!
=

1

2π

∞∑
p=N

(
e−c

2

He2
2p(c)

(2p+ 1)!
+
e−c

2

He2
2p+1(c)

(2p+ 2)!

)

≤ 1

2π

∞∑
p=N

(M2p +M2p+1)

≤ 1

π

∞∑
p=N

M2p =
1

π

∞∑
p=N

(2p)!

(2p+ 1) (p!)
2

22p
.

Now using Stirling’s formula p! ∼
p→∞

√
2πp

(
p
e

)p
, we have :

(2p)!

(2p+ 1) (p!)
2

22p
∼

p→∞

√
2π2p

(
2p
e

)2p
(2p+ 1)2πp

(
p
e

)2p
22p

∼
p→∞

1

2
√
πp

3
2

.
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Standard computations about comparing tails of series and integrals show that, for any α > 1,

∞∑
k=N

1

pα
∼

N→∞

1

α− 1

1

Nα−1
.

Applying the above with α = 3/2 directly gives

1

π

∞∑
p=N

(2p)!

(2p+ 1) (p!)
2

22p
∼

N→∞

Cst√
N
,

whence the announced result.

Owing to (2.21), we can write

LI =

I∑
i=0

εK,iHei(Z) with εK,i =

K∑
k=1

lkαi (akεk + bk)
ρik
|ρk|i

, (2.24)

where (εk)k=1...K are i.i.d. standard normal random variables and independent from Z. The striking property

is that the coefficients (εK,i)i∈0,...,I write as a sum of independent random variables. The next result gives

a sufficient condition so that one can replace the coefficients by a Gaussian random vector, with explicit

characteristics.

Theorem 7. Let I ∈ N. For every k ∈ {1, . . . ,K}, recall the definitions from (2.3) :

ak =
−
√

1− ρ2
k

|ρk|
, bk =

−Φ−1(pk)

|ρk|
,

and set for every i, j ∈ {0, . . . , I} :

mK,i :=

K∑
k=1

lk
ρik
|ρk|i

µi(ak, bk), sK,i,j :=

K∑
k=1

l2kσi,j(ak, bk), (2.25)

with µi(a, b) := E [αi(aX + b)] and σi,j(a, b) := Cov (αi(aX + b), αj(aX + b)) for a ∈ R, b ∈ R and X
d
=

N (0, 1).

Now, assume that the matrix sK = (sK,i,j : 0 ≤ i, j ≤ I) is invertible for large K and that

‖s−1
K ‖ sup

1≤k≤K
l2k −−−−−→

K→+∞
0 with ‖s−1

K ‖ := sup
x∈RI+1,x 6=0

|s−1
K x|
|x|

. (2.26)

Then, the random chaos coefficients vector εK = (εK,i)i∈{0,...,I} satisfies the following Central Limit Theorem

(CLT) :

s
−1/2
K (εK −mK)

d−−−−→
K→∞

N (0, IdI+1), (2.27)

where mK = (mK,i)i∈{0,...,I} .

The assumption (2.26) is rather a theoretical condition which is not easy to simplify, since it links the losses

given default lk, the correlations ρk and the unconditional default probabilities pk. If we ignore the covariance

term σi,j(.) and simplify the variance to 1, sK =
(∑K

k=1 l
2
k

)
IdI+1 and the condition (2.26) becomes

sup1≤k≤K l
2
k∑K

k=1 l
2
k

−−−−−→
K→+∞

0, (2.28)

9



which is, to our opinion, the main take-home message of (2.26): the Gaussian approximation holds if none

of the individual square loss is significantly too large compared to the global sum.

From (2.27), as K is assumed to be large, it is natural to approximate the vector εK = (εK,i)i∈{0,...,I}
with a normal vector of mean mK and covariance matrix sK . The larger the number of obligors K, the

better the normal approximation will be. Besides, explicit formulas for µi(.), σi,j(.) are given in Section 3.1,

yielding thus explicit expressions for mK and sK . As these characteristics can be computed off-line, sampling

the meta-model thus reduces to sampling a I-dimensional Gaussian vector and the systemic risk factor Z,

making our approach much faster (see Section 3.2 for further details and remarks on the implementation of

our model).

Proof of Theorem 7. We take K large enough, so that sK is invertible and we can define properly s
−1/2
K .

It is then straightforward to check that the vector εK has mean mK and covariance matrix sK . Since

s
−1/2
K (εk −mK) is a sum of independent vectors, has zero mean and unit covariance matrix, the announced

CLT (2.27) is a direct consequence of the CLT for arrays of sums of independent random variables as soon

as we check Lindeberg condition (see [BR10, Theorem 18.2] or [JS13, Theorem VII.5.2]): i.e., for any ε > 0

and i ∈ {0, . . . , I}, we need :

K∑
k=1

l2kE

[∣∣∣s−1/2
K αi(akεk + bk)− s−1/2

K µ(ak, bk)
∣∣∣2 1R+

(
l2k

∣∣∣s−1/2
K αi(akεk + bk)− s−1/2

K µ(ak, bk)
∣∣∣2 − ε)] −−−−→

K→∞
0.

On the one hand, observe that{
l2k

∣∣∣s−1/2
K αi(akεk + bk)− s−1/2

K µ(ak, bk)
∣∣∣2 ≥ ε} ⊂{l2k‖s−1

K ‖ |αi(akεk + bk)− µ(ak, bk)|2 ≥ ε
}

⊂

{
‖s−1
K ‖ sup

1≤k≤K
l2k sup

c,a,b
|αi(c)− µ(a, b)|2 ≥ ε

}

where we have used that α and µ are bounded (by a constant depending only on the number of coefficients

I + 1). On the other hand, owing to (2.26), for large K the above event is empty. Therefore, the Lindeberg

condition is obviously satisfied and this concludes the proof.

In light of the above Theorem, we define the Gaussian approximation of the I-chaos decomposition by :

LG
I =

I∑
i=0

εG
K,iHei (Z) where εG

K =
(
εG
K,i

)
i=0...I

d
= N (mK , sK) , (2.29)

where we recall that both mK = (mK,i)i=0...I and sK = (sK,i,j)i,j=0...I have been defined in (2.25).

3 Implementation of the model

3.1 Main analytical formulas

Proposition 8. Let a ∈ R∗, b ∈ R and X a standard normal random variable. For every i, j ∈ N, define

µi(a, b) := E [αi(aX + b)] ,

σi,j(a, b) := Cov (αi(aX + b), αj(aX + b)) .

Then the following recursive relations hold :µ0(a, b) = Φ
(
− b√

1+a2

)
, µ1(a, b) = e

− b2

2(1+a2)
√

2π
√

1+a2
,

µi+2(a, b) = b
(i+2)(1+a2)µi+1(a, b)− i

(i+2)(i+1)(1+a2)µi(a, b),

(3.1)
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

σ0,0(a, b) = ΦΣ

(
(−b,−b)>

)
− µ0(a, b)2, Σ =

(
1 + a2 a2

a2 1 + a2

)
,

σ0,1(a, b) = µ1(a, b)
(
µ0

(
a√

1+a2
, b

1+a2

)
− µ0(a, b)

)
,

σ0,i+2(a, b) = b
(i+2)(1+a2)σ0,i+1(a, b)− i

(i+1)(i+2)(1+a2)σ0,i(a, b)− a2

(i+2)(1+a2)µ1(a, b)µi+1

(
a√

1+a2
, b

1+a2

)
,

σi+1,j+1(a, b) = 1
a2(i+1)

[
−
(
1 + a2

)
(j + 2)σi,j+2(a, b) + bσi,j+1(a, b)− j

j+1σi,j(a, b)
]
− µi+1(a, b)µj+1(a, b).

(3.2)

We exclude the case a = 0 from the statement since in that case we directly get µi(a, b) = αi(b),

σi,j(a, b) = 0. In the non-trivial case a 6= 0, the above result gives an effective scheme to compute all the

parameters of the meta-model. If the coefficients related to i, j ∈ {0, . . . , I} are sought, then one shall start

with getting µi(a, b) from i = 0 to I using the above initialization and iteration. Then, one shall compute

σ0,j(a, b) from j = 0 to I. The computation of σi+1,j(a, b) from the σi,.(a, b) is more difficult: since one

needs (in particular) σi,j+2(a, b), and by iteration σi−l,j+l+2(a, b) for l = 0 to i. It means that the previous

computations for µi(a, b) and σ0,j(a, b) have to be carried out for i, j = 0, . . . , 2I, in order to be able, at the

end, to get σi,j(a, b) for all i, j = 0, . . . , I.

The computation by induction of the means µi(a, b), the variances σi,i(a, b), the covariances σi,j(a, b) is

very simple from the algorithmic point of view. However, for evaluations with I large and for many different

(a, b) (the default parameters), we may prefer to have explicit formulas, in order to get possibly more efficient

schemes according to the way this is implemented on a computer. The following results are aimed at giving

explicit representations of these coefficients as multiple sums, that are straightforward to compute without

induction. Note that the expressions below need only to be stated for i, j 6= 0. Indeed from Proposition 8,

the case i = 0 and/or j = 0 has already be treated as we have derived a closed-form expression for µ0(a, b)

and a recurrence relation for σ0,j(a, b) = σj,0(a, b) for j ∈ {0, . . . , I}.

Lemma 9. For every i, j ∈ N∗, µi(a, b), σi,j(a, b) can be expressed explicitly as :

µi(a, b) =
e
− b2

2(1+a2)

i
√

2π

b i−1
2 c∑

k=0

a2kHei−1−2k

(
b

1+a2

)
2kk! (i− 1− 2k)! (1 + a2)

k+1/2
,

σi,j (a, b) =
e
− b2

1+2a2

2πi!j!
√

1 + 2a2

b
i−1
2 c∑

k=0

b j−1
2 c∑

p=0

(
i− 1

2k

)(
j − 1

2p

) a2(k+p) (2 (k + p))!Hei−1−2k

(
b

1+2a2

)
Hej−1−2p

(
b

1+2a2

)
(1 + 2a2)

k+p
2k+p (k + p)!

+

b i−2
2 c∑

k=0

b j−2
2 c∑

p=0

(
i− 1

2k + 1

)(
j − 1

2p+ 1

) a2(k+p+1) (2 (k + p+ 1))!Hei−2k−2

(
b

1+2a2

)
Hej−2p−2

(
b

1+2a2

)
(1 + 2a2)

k+p+1
2k+p+1 (k + p+ 1)!


− µi (a, b)µj (a, b) .

3.2 Numerical tests

We first focus our attention to the approximation of the indicator funcion 1c≤Z ≈
∑I
i=0 αi (c) Hei(Z) and

illustrate it with several plots. Keeping in mind that the random variable Z is standard normal, we restrict

our attention to [−3, 3] for the possible values of Z (more precisely P (Z ∈ [−3, 3]) ≈ 0.997). Concerning the

threshold c, note that in our framework it takes values in R. Indeed in light of (2.3),

c = akεk + bk
d
= N

(
bk, a

2
k

)
.

The values taken by the normally distributed threshold c thus fully depend on both the values of the default

probability pk and the correlation ρk for the kth obligor.
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3.2.1 Values taken by the threshold c

Figure 3: On the left, ρ 7→ 1−ρ2
ρ2 . On the right, (ρ, p) 7→ −Φ−1(p)

ρ .

On Figure 3, we plot (omitting the dependence of k) the mean (ρ, p) 7→ −Φ−1(p)
|ρ| and the variance ρ 7→ 1−ρ2

ρ2

for positive correlations (similar analysis would be obtained for negative correlation). From both plots, we see

that extreme values are obtained with either small correlation and/or small default probability. Economically,

this can be interpreted as follows : under such regimes (high values for c), we see that for the event {c ≤ Z}
to occur, one needs to have an extreme economic scenario (high values for Z). Indeed as the obligor would

(almost) not depend on the econonomy and/or would have a very small default probability, only extreme

values of Z (most likely during a crisis) may lead to default.

3.2.2 Approximation of the indicator 1c≤Z w.r.t. Z

To visualize the approximation for the indicator function, on Figure 4 we plot for 4 different values of

fixed c ∈ {−1, 0, 1, 2}, the I-chaos decomposition associated where I ∈ {5, 20, 50, 80}. We see that as I

increases, the quality of the approximation improves together with an increasing number of oscillations and

lower amplitudes; the L2 convergence does not imply the uniform convergence (Gibbs phenomenon at the

discontinuity point, see [San91, Section IV.10]). We notice also that the value c introduces a dissymetry on

the quality of the approximation. Indeed if c < 0 (resp. c > 0), the approximation seems much accurate for

Z > c (resp. Z < c) while for c = 0 the approximation remains the same.

There is another phenomena worth mentioning when one approximates the indicator function (bounded

function) using the Wiener chaos decomposition. As we are approximating the indicator function with a

sum of Hermite polynomials (non-bounded functions), one has that for large values of Z, the quality of the

approximation deteriorates completely getting extreme amplitudes (see Figure 5). However as said before,

Z is standard normal and such values for Z are very unlikely. Let us also notice that the rough estimate

obtained in Theorem 6 allows us to cover a large range of values for the threshold c though the estimate

could presumably be refined for certain range of values.

Finally in order to illustrate the L2 error in Theorem 6, we provide the log-log plot of the mean square

error MSE = E

[∣∣∣1c≤Z −∑I
i=0 αi(c)Hei(Z)

∣∣∣2] w.r.t. I for 4 different values of fixed c ∈ {−1, 0, 1, 2}. More

precisely, we fix I = 50, generate N = 5 × 105 i.i.d. samples (Zn)1≤n≤N
d
= N (0, 1) and estimate the MSE

by MC simulation. As expected, we retrieve the error like Cst/
√
I since log(MSE) is a linear function w.r.t.

log(I) with a slope of −1/2 (see Figure 6). Actually note that in light of Theorem 6, we have a closed
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Figure 4: I-chaos decompositons for 1c≤Z with I ∈ {5, 20, 50, 80} and c ∈ {−1, 0, 1, 2}

formula for the MSE i.e MSE =
∑∞
i=I+1 i!αi(c)

2. However in order to avoid numerical instability by trying

to compute Hermite polynomials of very high degree (over i = 200, errors are returned), we prefer to use a

MC simulation to evaluate numerically the MSE.

3.2.3 The portfolio loss and its chaos decomposition

Let us recall that the I-chaos decomposition (2.21) and its Gaussian-based approximation (2.29) for the

portfolio loss are given by

LI =

I∑
i=0

εK,iHei(Z) =

I∑
i=0

{
K∑
k=1

lkαi(akεk + bk)
ρik∣∣ρik∣∣
}

Hei(Z), LG
I =

I∑
i=0

εG
K,iHei (Z) ,

where akεk + bk
d
= N

(
bk, a

2
k

)
, ak = −

√
1−ρ2k
|ρk| , bk = −Φ−1(pk)

|ρk| and εG
K

d
= N (mK , sK).

To fix ideas, we give below the algorithm to generate N samples from the Gaussian-based approximation

LG
I . As stated before, the only parameters (which can be computed off-line) needed, are the mean vector

mK and covariance matrix sK that can be either computed using the recurrence relations in Proposition 8

or by explicit expressions stated in Lemma 9. The costly step (with respect to K) is made off-line when

computing mK and sK , this is a very significant improvement compared to the crude algorithm where new

sums over k have to be made at each sample of L. More precisely, the Gaussian-based approximation allows

us to bypass the computation of the sum over all obligors needed in a naive approach for the sampling of L
(see Algorithms 1, 2 and Remark 10). Note that we actually take advantage of the fact that K is very large

since the larger the number of obligors, the better the Gaussian-based approximation will be.
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Figure 5: I-chaos decompositons for 10≤Z with I ∈ {5, 20, 50, 80} to illustrate extreme amplitudes in the

tails

Figure 6: log

(
E

[∣∣∣1c≤Z −∑I
i=0 αi(c)Hei(Z)

∣∣∣2]) w.r.t. log(I) for c ∈ {−1, 0, 1, 2}
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Algorithm 1: Gaussian-based approximation for the loss L
Input: N (nonnegative integer), mK (vector of size I + 1), sK (covariance matrix of size (I + 1, I + 1))

Output: LG,(1:N)
I =

((
LG
I

)(1)
, . . . ,

(
LG
I

)(N)
)

1 LG,(1:N)
I =

((
LG
I

)(1)
, . . . ,

(
LG
I

)(N)
)
← (0, . . . , 0) (vector of size N)

2 for n = 1 . . . N do

3 Generate Z(n) ∼ N (0, 1) (scalar)

4 Generate
(
εG
K

)(n) ∼ N (mK , sK) (vector of size I + 1 independent of Z(n))

5
(
LG
I

)(n) ← 0 (scalar)

6 for i = 0 . . . I do

7
(
LG
I

)(n) ←
(
LG
I

)(n)
+
(
εG
K,i

)(n)
Hei

(
Z(n)

)
Algorithm 2: Naive algorithm to sample from L
Input: N (nonnegative integer), (a1, . . . , aK) (vector of size K), (b1, . . . , bK) (vector of size K),

(ρ1, . . . , ρK) (vector of size K), (l1, . . . , lK) (vector of size K)

Output: L(1:N) =
(
L(1), . . . ,L(N)

)
1 L(1:N) =

(
L(1), . . . ,L(N)

)
← (0, . . . , 0) (vector of size N)

2 for n = 1 . . . N do

3 Generate Z(n) ∼ N (0, 1) (scalar)

4 Generate (εK)
(n)

=
(
ε

(n)
K,1, . . . , ε

(n)
K,K

)
∼ N (0, IdK) (vector of size K independent of Z(n))

5 L(n) ← 0 (scalar)

6 for k = 1 . . .K do

7 L(n) ← L(n) + lk1
akε

(n)
K,k+bk≤

ρk

|ρk|
Z(n)

Remark 10. To assess the efficiency of our method, we provide both complexity of the two algorithms, in

terms of elementary operations. We assume that any Hermite polynomial of degree i can be computed at

one unit cost O(1): this is a reasonable assumption since one usually needs to compute these polynomials

at once from degree 0 to I, which can be done by the recursive relation (2.5). For giving the complexity of

Algorithm 1, we separate the offline/online parts for the approximation.

Offline computational cost : From Proposition 8, we see that µ0, µ1 are explicit (unit cost) and each

(µi)i≥2 requires one unit cost O(1) owing to the recursive relation (3.1). Hence from the Definition 2.25,

computing mK requires O(KI) operations. A similar analysis gives that the computational cost for sK using

(3.2) is O(KI2) and O(I3) for having a Cholesky decomposition of sK . Overall the offline cost is O(KI) +

O(KI2) + O(I3) = O(KI2), using that usually K � I.

Online computationcal cost : Once a Cholesky decomposition of sK is obtained, sampling (εG
K,i)i=0...I

can be done at cost O(I2), which implies that our Gaussian-based algorithm for N samples only requires

O(NI2) operations.

The total cost of Algorithm 1 is then O(KI2) + O(NI2). On the contrary, the naive Algorithm 2 would

require O(NK) operations. Remembering that K ≥ 105 and I ≤ 50 (in most cases it is already enough), the

computational cost of Algorithm 1 is much smaller.

We now want to test such a decomposition and see how well it approximates the true portfolio loss L.

More precisely, we consider different portfolio scenarios {A,B} as choices need to be made for the kth obligor

correlation ρk, default probability pk and the loss lk together with the values taken by the economy Z. We

fix the (large) number of obligors at K = 5× 105. For each scenario, we provide :

• The histogram of N = 104 samples εK,i together with the normal probability density centered at mK,i

and with variance sK,i,i for different i ∈ {1, 3, 6, 8}. Indeed for a fixed i ∈ {0, . . . , I}, we know from
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Theorem 7 that E [εK,i] = mK,i, Var (εK,i) = sK,i,i. We thus want to test how well the εK,i marginals

are close to a normal N (mK,i, sK,i,i) .

• The kernel density estimation (k.d.e.) of LI̧ conditionally on Z from N = 104 samples LI |Z and the

’true’ conditional loss L|Z for different economic scenarios Z ∈ {−1, 0, 1, 2} and truncation parameters

I ∈ {1, 3, 6, 9}.

• The k.d.e. of L and LG
I for I ∈ {1, 3, 6, 9} with N = 105 samples.

• In order to assess if LG
I succeeds in approximating L in the tails, we provide the quantile-quantile plot

of LG
I w.r.t. L for I ∈ {1, 3, 6, 9, 12, 15} with N = 105 samples.

Portfolio A : We consider both homogeneous correlation and default probability i.e ∀k ∈ {1, . . .K},
pk = 0.01, ρk = 0.1 and take the kth loss of the form lk = 1/

√
k. Note that in that case, we have that

ak =
−
√

1−ρ2
|ρ| = a, bk = −Φ−1(p)

|ρ| = b and for every i, j ∈ {0, . . . , I} , mK,i = µi(a, b)
ρi

|ρ|i
∑K
k=1 lk, sK,i,j =

σi,j(a, b)
∑K
k=1 l

2
k. The simplified Lindeberg condition (2.28) easily holds as sup1≤k≤K l

2
k = 1 and∑K

k=1
1
k −−−−−→K→+∞

+∞.

Figure 7: Histograms of εK,i with the p.d.f of N (E [εK,i] ,Var (εK,i)) for i ∈ {1, 3, 6, 9} for the Portfolio A
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Figure 8: K.d.e of LG
I for I ∈ {1, 3, 6, 9} and L conditionally on Z ∈ {−1, 0, 1, 2} for the Portfolio A

(a) Distribution of L (b) K.d.e of LGI for I ∈ {1, 3, 6, 9} and L

Figure 9: Loss of Portfolio A
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(a) I = 1 (b) I = 3

(c) I = 6 (d) I = 9

Figure 10: Q-Q plots of LG
I w.r.t. L for the Portfolio A

In Figure 7, all marginals εK,i for i = 1, 3, 6, 9 seem to be very close to a normal distribution centered at

mK,i and with variance sK,i indicating that a Gaussian approximation seems legit. In both Figures 8 and 9,

we see that the Gaussian-based approximation LG
I quickly converges to the ’true’ loss L for small I as both

densities are indistinguishable from I = 3. As for the previous graphs, the Q-Q plot in Figure 10 shows a

poor approximation for I = 1. From I = 6, the two distributions have almost the same estimated quantiles

with an error of approximately (2/N) × 100 = 0.002% (2 quantiles differ totally when L ≥ 36). Notice also

that increasing the truncating parameter from I = 6 to I = 9 does not seem to yield any improvement which

probably indicates that the error (for those I) comes from the Gaussian approximation of the εK,i.

Portfolio B :We consider the same portfolio as in [GL05] i.e ∀k ∈ {1, . . .K} , pk = 0.01
(
1 + sin

(
16πk
K

))
+

0.001, ρk
d
= U

(
[0, 1/

√
10]
)

+ 0.001 (we add 0.001 so that pk 6= 0 and ρk 6= 0 for every obligor k) and lk =(⌈
5k
K

⌉)2
. Note in that case that the marginal default probabilities vary between 0.001% and 2.001% with a

mean 1.0005% and the loss lk are 1, 4, 9, 16, 25 withK/5 at each level. Notice also that the simplified Lindeberg

condition (2.28) holds since sup1≤k≤K l
2
k = 25 and

∑K
k=1

(⌈
5k
K

⌉)2 ≥ 25
K2

∑K
k=1 k

2 = 25
K2

K(K+1)(2K+1)
6 ∼

25
3 K

2 −−−−−→
K→+∞

+∞. We recall that K = 5× 105.
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Figure 11: Histograms of lk, pk, ρk for the Portfolio B

Figure 12: Histograms of εK,i with the p.d.f of N (E [εK,i] ,Var (εK,i)) for i ∈ {1, 3, 6, 9} for the Portfolio B

19



Figure 13: K.d.e of LG
I for I ∈ {1, 3, 6, 9} and L conditionally on Z ∈ {−1, 0, 1, 2} for the Portfolio B

(a) Distribution of L (b) K.d.e of LGI for I ∈ {1, 3, 6, 9} and L

Figure 14: Loss of Portfolio B
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(a) I = 1 (b) I = 3

(c) I = 6 (d) I = 9

(e) I = 12 (f) I = 15

Figure 15: Q-Q plots of LG
I w.r.t. L for the Portfolio B

In the simplified portfolio A, our approximation seems to give excellent results. We now want to challenge

our method by conducting the same analysis with a less homogenous (and thus more realistic) portofolio.

Figures 12, 13 and 14 essentially give the same results as for the Portfolio A where we see that a small I

seems to already give satisfying results. For the Q-Q plot of Figure 15 however, we notice that for I = 1, 3

our method is unable to approach accurately the true loss. From I = 6, our approximation provides quite

satisfactory results with an error of approximately (10/N) × 100 = 0.01% (10 quantiles differ totally when

L ≥ 250000). Hence, our approach can be used for the computation of risk measures (such as VaR) up to

99.99% which is probably more than enough for the current regulation. Again notice that increasing the

truncating parameter from I = 6 does not seem to give a better approximation (probably due to the lack of
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perfect accuracy of the Gaussian approximation).

3.3 Extension to the d-factor credit model

In this section, we extend our results obtained so far to a d-factor Gaussian copula model. For the sake

of clarity, we introduce the following standard multi-index notation; for multi-indices i = (i1, . . . , id) , j =

(b1, . . . , bd) ∈ Nd0 and vector x = (x1, . . . , xd) ∈ Rd, we write :

• i± j = (i1 ± j1, . . . , id ± jd) (componentwise sum and difference);

• |i| = i1 + · · ·+ id (sum of components);

• i! = i1! . . . id! (factorial);

•
(
|i|
i

)
= |i|

i! = |i|
i1!...id! (multinomial coefficient);

• xi = xi11 . . . xidd (power);

• ‖x‖ =
√
x2

1 + · · ·+ x2
d (Euclidean norm).

So far our analysis was built on a one-factor (d = 1) model. The extension to a d-factor credit model goes

as follows (see [GL05]). The default event indicator remains Yk = 1{Xk≥ck} (as for (2.2)), with a stochastic

factor Xk taking now the form

Xk = ρk ·Z + βkεk =

d∑
j=1

ρkjZj + βkεk,

where the d systemic factors (each representing an industry sector or a geographic zone) Z = (Z1, . . . , Zd)

are independent standard normal random variable and εk is an idiosyncratic risk factor. The sequence

(εk)k=1,...,K is made of independent standard normal random variables, and independent from the d systemic

factors.

Without loss of generality, we can assume that the coefficients are adjusted so that the stochastic factor

Xk is standard normal. The factor loadings vector (correlations to the systemic factors) for the kth obligor are

denoted by ρk = (ρk1, . . . , ρkd). Since Xk is standard normal, we can set βk =
√

1− ‖ρk‖2. The constraint

pk = P (Yk = 1) gives again

ck = −Φ−1(pk).

We now give the extension to both Theorem 6 and 7 in the d-factor Gaussian copula model.

Theorem 11. Let d ∈ N∗ and I ∈ N. For every k ∈ {1, . . . ,K}, define

ak = −
√

1− ‖ρk‖2
‖ρk‖

, bk = −Φ (pk)

‖ρk‖
,

and set for every multi-indices i = (i1, . . . , id) , j = (j1, . . . , jd) ∈ {0, . . . I}d ,

εK,i =

K∑
k=1

lk

(
ρk
‖ρk‖

)i( |i|
i

)
α|i| (akεk + bk) ,

where α (.) has been defined in Proposition 2. Then, in the d-factor model, the loss L and LI write as :

L =

∞∑
i=0

∑
|i|=i

εK,iHei1(Z1) . . .Heid(Zd), LI =

I∑
i=0

∑
|i|=i

εK,iHei1(Z1) . . .Heid(Zd). (3.3)
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The L2 error for the I-truncated chaos decomposition is the same as in Theorem 6 i.e. there exists C > 0,

E
[
|L − LI |2

]
≤ C√

I

(
K∑
k=1

lk

)2

. (3.4)

Before giving the proof, note that an extension to the CLT (2.27) holds also in the d-factor Gaussian

copula model. For every multi-indices i = (i1, . . . , id) , j = (j1, . . . , jd) ∈ {0, . . . I}d , let

mK,i = E [εK,i] =

K∑
k=1

lk

(
ρk
‖ρk‖

)i( |i|
i

)
µ|i| (ak, bk) ,

sK,i,j = Cov (εK,i, εK,j) =

K∑
k=1

l2k

(
ρk
‖ρk‖

)i+j( |i|
i

)(
|j|
j

)
σ|i|,|j| (ak, bk) ,

and define the associated mean and covariance matrix :

mK = (mK,i : |i| = i; i ∈ {0, . . . , I}) , sK = (sK,i,j : |i| = i; |j| = j; i, j ∈ {0, . . . , I}) .

Under the same assumption (2.26), it is natural to approximate the vector

εK = (εK,i : |i| = i; i ∈ {0, . . . , I})

with a Gaussian vector εG
K with mean mK and covariance matrix sK .

Proof of Theorem 11. Remembering that ck = −Φ−1 (pk), in the d-multi-factor model the default event

rewrites as :

{Xk ≥ ck} =
{
ρk ·Z +

√
1− ‖ρk‖2εk ≥ ck

}
=

{
ρk
‖ρk‖

·Z ≥ akεk + bk

}
,

where ρk
‖ρk‖ · Z =

∑d
j=1

ρkj√
ρ2k1+···+ρ2kj

Zj
d
= N (0, 1) since the (Zj)j=1,...,d are i.i.d. standard normal. We can

thus apply Proposition 2 with c = akεk + bk and Z = ρk
‖ρk‖ ·Z so that :

1Xk≥ck =

∞∑
i=0

αi (akεk + bk) Hei

(
ρk
‖ρk‖

·Z
)
,

at any Z such that ρk
‖ρk‖ ·Z 6= akεk + bk. We now need the following Lemma to proceed with the expansion

of the term Hei

(
ρk
‖ρk‖ ·Z

)
.

Lemma 12. Let d ∈ N∗, i ∈ N and a = (a1, . . . , ad) ,b = (b1, . . . , bd) ∈ Rd with ‖a‖ = 1. Then, the following

decompositon holds :

Hei (a · b) =
∑
|i|=i

ai
(
i

i

)
Hei1 (b1) . . .Heid (bd)

Proof. Taking x = a · b in (2.14), we first get :

ea·bw−
w2

2 =

∞∑
i=0

Hei (a · b)
wi

i!
. (3.5)

Since ‖a‖ = 1, notice that the exponential rewrites also as :

ea·bw−
w2

2 =

d∏
j=1

ebjajw−
(ajw)2

2 =

d∏
j=1

∞∑
ij=0

Heij (bj) a
ij
j

wij

ij !
, (3.6)

where we have applied (2.14) with w as ajw and x as bj . We identify each term of both series and obtain

the announced claim by successively taking the derivative w.r.t. w and setting w = 0.
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Applying Lemma 12 with a = ρk
‖ρk‖ and b = Z, we obtain :

1Xk≥ck =

∞∑
i=0

αi (akεk + bk)
∑
|i|=i

(
ρk
‖ρk‖

)i(
i

i

)
Hei1(Z1) . . .Heid(Zd),

and this gives (3.3).

The estimate (3.4) remains the same as in Theorem 6 noticing that L =
∑∞
i=0 αi (akεk + bk) Hei

(
ρk
‖ρk‖ ·Z

)
with ρk

‖ρk‖ ·Z
d
= N (0, 1), because in the proof of Theorem 6, we only need that (εk)1≤k≤K is independent of

Z.

4 Conclusion

In this paper, through the use of the Wiener chaos decomposition we have designed a meta-model to sig-

nificantly reduce the computational effort needed to sample from the loss distribution of very large credit

portfolio. Instead of going over all K obligors, we essentially sum over a I + 1 Gaussian vector whose charac-

teristics can be computed off-line. Our approach gives accurate and fast results that have been numerically

tested on two different portfolios. We have seen that even with a small I, the approximation performs well

even in the tails (up to 99.99% quantile). Such method can therefore be used to estimate risk measures such

as VaR and CVaR that need to be computed often for regulatory purposes. The next step would now be to

give an estimate of the Gaussian approximation error between LI and LG
I so that we could get an estimate

of the full error between L and LG
I . This is a difficult issue, since the Gaussian dimension is asymptotically

infinite (as I → +∞), and we will tackle this analysis in future research.

5 Technical proofs

5.1 Proof of Proposition 2

By definition αi(c) = 1
i!E [1c≤ZHei(Z)]. Hence :

α0(c) = P (Z ≥ c) = Φ (−c) (5.1)

and using Equation (2.4), we have for every i ∈ N∗ :

αi(c) =
1

i!

∫ ∞
c

Hei(Z)
e−

z2

2

√
2π

dz =
(−1)i

i!
√

2π

∫ ∞
c

di

dzi

(
e−

z2

2

)
dz =

(−1)i−1

i!
√

2π

di−1

dzi−1

(
e−

z2

2

)∣∣∣∣
z=c

=
e−

c2

2 Hei−1(c)

i!
√

2π
. (5.2)

Consequently α1(c) = e−
c2

2√
2π

and using Equation (2.5), one has :

αi+2(c) =
e−

c2

2 Hei+1(c)

(i+ 2)!
√

2π
=

e−
c2

2

(i+ 2)!
√

2π
(cHei(c)− iHei−1(c)) =

c

i+ 2
αi+1(c)− i

(i+ 1)(i+ 2)
αi(c).

Finally, the explicit expression for α is a direct consequence of the relation αi(c) = e−
c2

2 Hei−1(c)

i!
√

2π
and Equation

(2.7).
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5.2 Proof of Lemma 4

We proceed as in [Sze75, Theorem 7.6.1]. Using Equation (2.10), a direct computation shows that the function

z(x) := Hen(x)e−
x2

2 solves the following ordinary differential equation (ODE):

z′′(x) + xz′(x) + (n+ 1)z(x) = 0.

Now let (n+1)f(x) := (n+1)
(

Hen(x)e−
x2

2

)2

+
(

d
dx

{
Hen(x)e−

x2

2

})2

and notice that f(x) =
(

Hen(x)e−
x2

2

)2

when
(

d
dx

{
Hen(x)e−

x2

2

})2

= 0. Further using the ODE above, we have :

(n+ 1)f ′(x) = 2(n+ 1)
(

Hen(x)e−
x2

2

) d

dx

{
Hen(x)e−

x2

2

}
+ 2

d

dx

{
Hen(x)e−

x2

2

} d2

dx2

{
Hen(x)e−

x2

2

}
= −2x

(
d

dx

{
Hen(x)e−

x2

2

})2

.

For x > 0 (resp. x < 0) the derivative of f is strictly negative (resp. positive) except at a finite number of

points. Hence f(x) is (strictly) decreasing on x ≥ 0 (resp. increasing on x ≤ 0). Remind that at the points

of maxima of x 7→ z2(x), f(x) and z2(x) coincide, whence the announced result.

5.3 Proof of Corollary 5

Let us define zn : x ∈ R→ e−
x2

2 Hen(x)√
(n+1)!

and notice that z2
n is an even function owing to (2.6). We thus restrict

our attention to x ≥ 0. It is known that zeros of orthogonal polynomials are both real and distinct (see

[Sze75, Theorem 3.3.1]): therefore, for any m ∈ N∗ we can denote the 2m (resp. 2m − 1) zeros of He2m(x)

(resp. He2m−1(x)) by x−m,2m < · · · < x−1,2m < 0 < x1,2m < · · · < xm,2m (resp. x−(m−1),2m−1 < · · · <
x0,2m−1 = 0 < · · · < xm−1,2m−1 ). Also, the derivative of z2

n is given by :

(
z2
n (x)

)′ (2.11)
=

1

(n+ 1)!

(
−2xe−x

2

He2
n(x) + 2e−x

2

nHen(x)Hen−1(x)
)

=
2e−x

2

Hen(x)

(n+ 1)!
(−xHen(x) + nHen−1(x))

(2.5)
= −2e−x

2

Hen(x)Hen+1(x)

(n+ 1)!
.

Therefore, the critical points of z2
n are the zeros of Hen and Hen+1. But z2

n is non-negative, vanishes at the

n zeros of Hen, and converges to 0 at ±∞; therefore the points of maxima of z2
n must be the n+ 1 zeros of

Hen+1. By Lemma 4, the maxima of z2
n is achieved at x0,n = 0 (resp. x1,n) if n is odd (resp. even). In view

of (2.9), we obtain for any n ∈ N,

Mn =


He22m(0)
(2m+1)! = (2m)!

(2m+1)(m!)222m , if n = 2m,

e−(x1,2m+2)2He22m+1(x1,2m+2)

(2m+2)! , if n = 2m+ 1.

Let us now prove that M2m+1 < M2m for every m ∈ N. First notice that the following recursive relations for

zn hold:

zn+2 (x) =
Hen+2 (x) e−

x2

2√
(n+ 3)!

(2.5)
=

(xHen+1 (x)− (n+ 1) Hen (x)) e−
x2

2√
(n+ 3)!
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=
xHen+1 (x) e−

x2

2

√
n+ 3

√
(n+ 2)!

− (n+ 1) Hen (x) e−
x2

2√
(n+ 3) (n+ 2)

√
(n+ 1)!

=
x√
n+ 3

zn+1 (x)− n+ 1√
(n+ 3) (n+ 2)

zn (x) , (5.3)

z′n (x)
(2.11)

=
(nHen−1 (x)− xHen (x)) e−

x2

2√
(n+ 1)!

(2.5)
= −

√
n+ 2 zn+1 (x) , (5.4)

z′′n (x)
(5.4)
= −

√
n+ 2z′n+1 (x)

(5.4)
=
√

(n+ 2) (n+ 3) zn+2 (x)

(5.3)
= x

√
n+ 2 zn+1 (x)− (n+ 1) zn (x)

(5.4)
= −xz′n (x)− (n+ 1) zn (x) . (5.5)

Now define the map fn : x → (zn (x))
2

+ 1
n+1 (z′n (x))

2 (5.4)
= (zn (x))

2
+ n+2

n+1 (zn+1 (x))
2

whose derivative

equals:

f ′n (x) = 2z′n (x)

(
zn (x) +

z′′n (x)

n+ 1

)
(5.5)
= − 2x

n+ 1
(z′n (x))

2
.

Hence fn is (strictly) decreasing on [0,+∞) (z′n vanishes only at a finite number of points). Now consider

the case where n is even, i.e n = 2m for m ∈ N; then using that x1,2m+2 > 0 we have :

f2m (x1,2m+2) < f2m (0) . (5.6)

On the other hand, f2m (0) = (z2m (0))
2

+ 2m+2
2m+1 (z2m+1 (0))

2 (2.9)
= (z2m (0))

2
= M2m and f2m (x1,2m+2) =

(z2m (x1,2m+2))
2

+ 2m+2
2m+1 (z2m+1(x1,2m+2))

2
> M2m+1. Finally, owing to (5.6) we get :

M2m+1 < M2m,

which concludes the proof.

5.4 Proof of Proposition 8

In the proof, X,Y, Z are independent standard normal random variables.

� Results on the mean µ.(., .). By definition of α0 (see (5.1)) we get:

µ0(a, b) = E [Φ (−aX − b)] = E [P (Y < −aX − b | X)] .

Using that aX + Y
d
= N

(
0, 1 + a2

)
, we get :

E [α0(aX + b)] = Φ

(
− b√

1 + a2

)
.

Now we compute µ1(a, b): invoke the expression of α1(·) from (5.2) to write

µ1(a, b) =

∫
R

e−
(aX+b)2

2

√
2π

e−
x2

2

√
2π

dx =
e
− b2

2(1+a2)

√
2π

∫
R

e
− 1+a2

2

(
x+ ab

1+a2

)2

√
2π

dx =
e
− b2

2(1+a2)

√
2π
√

1 + a2
.

We turn to the derivation of the three-term recurrence relation for µi(a, b). From Proposition 2, it follows

that

µi+2(a, b) = E

[
aX + b

i+ 2
αi+1(aX + b)− i

(i+ 1)(i+ 2)
αi(aX + b)

]
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=
a

i+ 2
E [Xαi+1(aX + b)] +

b

i+ 2
µi+1(a, b)− i

(i+ 1)(i+ 2)
µi(a, b). (5.7)

An integration by parts gives

E [Xαi+1(aX + b)] =
(−1)i

(i+ 1)!
√

2π

∫
R
x

di

dzi

(
e−

z2

2

)∣∣∣∣
z=ax+b

e−
x2

2

√
2π

dx

=
(−1)i

(i+ 1)!
√

2π
a

∫
R

di+1

dzi+1

(
e−

z2

2

)∣∣∣∣
z=ax+b

e−
x2

2

√
2π

dx

= −a(i+ 2)µi+2(a, b).

Plugging the above into (5.7) readily gives(
1 + a2

)
µi+2(a, b) =

b

i+ 2
µi+1(a, b)− i

(i+ 1)(i+ 2)
µi(a, b).

� Initialization of the variance/covariance terms. First, we have :

σ0,0(a, b) = E
[
Φ (−aX − b)2

]
− E [Φ (−aX − b)]2 .

Now notice that :

E
[
Φ (−aX − b)2

]
=

∫
R

(∫
R2

1y<−ax−b
e−

y2

2

√
2π

dy1z<−ax−b
e−

z2

2

√
2π

dz

)
e−

x2

2

√
2π

dx

= E [1Y+aX<−b1Z+aX<−b]

using that X,Y, Z are i.i.d. Whence, since Y + aX
d
= N

(
0, 1 + a2

)
, Z + aX

d
= N

(
0, 1 + a2

)
and

Cov (Y + aX,Z + aX) = a2, we get

E
[
Φ (−aX − b)2

]
= ΦΣ

(
(−b,−b)>

)
,

where Σ =

(
1 + a2 a2

a2 1 + a2

)
.

Consider now the covariance. For the sake of clarity we introduce the notation

ρi,j(a, b) := E [αi(aX + b)αj(aX + b)]⇐⇒ σi,j(a, b) = ρi,j(a, b)− µi(a, b)µj(a, b). (5.8)

Then we have :

ρ0,1(a, b) = E [α0(aX + b)α1(aX + b)]

=

∫
R
α0(aX + b)α1(aX + b)

e−
x2

2

√
2π

dx

=

∫
R

Φ (−ax− b) e
− (aX+b)2

2

√
2π

e−
x2

2

√
2π

dx

=
e
− b2

2(1+a2)

√
2π

∫
R

Φ (−ax− b) e
− 1+a2

2

(
x+ ab

1+a2

)2

√
2π

dx

(setting y =
√

1 + a2x+ ab√
1+a2

)

=
e
− b2

2(1+a2)

√
2π
√

1 + a2

∫
R

Φ

(
− a√

1 + a2
y − b

1 + a2

)
e−

y2

2

√
2π

dy (5.9)
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=
e
− b2

2(1+a2)

√
2π
√

1 + a2
µ0

(
a√

1 + a2
,

b

1 + a2

)
= µ1(a, b)µ0

(
a√

1 + a2
,

b

1 + a2

)
.

We get the announced result for σ0,1(a, b) owing to (5.8).

� Three-term recurrence relation on variance/covariance. Similarly, using (2.17) in Proposition 2 yields

ρ0,i+2(a, b) = E [α0(aX + b)αi+2(aX + b)]

=
a

i+ 2
E [Xα0(aX + b)αi+1(aX + b)] +

b

i+ 2
ρ0,i+1(a, b)− i

(i+ 1)(i+ 2)
ρ0,i(a, b).

Integrating by parts as before yields :

E [Xα0(aX + b)αi+1(aX + b)] =
(−1)i

(i+ 1)!
√

2π

∫
R
xΦ (−ax− b) di

dzi

(
e−

z2

2

)∣∣∣∣
z=ax+b

e−
x2

2

√
2π

dx

=
(−1)i

(i+ 1)!
√

2π

∫
R

(
−ae

− (aX+b)2

2

√
2π

di

dzi

(
e−

z2

2

)∣∣∣∣
z=ax+b

+aΦ (−ax− b) di+1

dzi+1

(
e−

z2

2

)∣∣∣∣
z=ax+b

)
e−

x2

2

√
2π

dx. (5.10)

Using the new variable y =
√

1 + a2x+ ab√
1+a2

, we show (similar computations to (5.9)) that the first integral

is equal to

− a(−1)ie
− b2

2(1+a2)

(i+ 1)!
√

2π
√

1 + a2

∫
R

1√
2π

di

dzi

(
e−

z2

2

)∣∣∣∣
z= a√

1+a2
y+ b

1+a2

e−
y2

2

√
2π

dy

=− aµ1(a, b)µi+1

(
a√

1 + a2
,

b

1 + a2

)
.

Besides, the second integral at the right-hand side of (5.10) is

− a(−1)i+1(i+ 2)

(i+ 2)!
√

2π

∫
R

Φ (−ax− b) di+1

dzi+1

(
e−

z2

2

)∣∣∣∣
z=ax+b

e−
x2

2

√
2π

dx

=− a(i+ 2)ρ0,i+2(a, b).

All in all, (5.10) becomes finally :

(
1 + a2

)
ρ0,i+2(a, b) = − a2

i+ 2
µ1(a, b)µi+1

(
a√

1 + a2
,

b

1 + a2

)
+

b

i+ 2
ρ0,i+1(a, b)− i

(i+ 1)(i+ 2)
ρ0,i(a, b);

owing to (5.8), and by substracting (1 + a2)µ0(a, b) times the recursive relation (3.1) on µ.(a, b), the above

is equivalent to

(
1 + a2

)
σ0,i+2(a, b) = − a2

i+ 2
µ1(a, b)µi+1

(
a√

1 + a2
,

b

1 + a2

)
+

b

i+ 2
σ0,i+1(a, b)− i

(i+ 1)(i+ 2)
σ0,i(a, b).

The proof of iterative equation (3.2) for σ0,.(a, b) is complete.

We now handle the proof for the relation on σi,j(a, b) where i, j ∈ N. We proceed analogously; starting

from (2.17), write

ρi,j+2(a, b) = E [αi(aX + b)αj+2(aX + b)]
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=
a

j + 2
E [Xαi(aX + b)αj+1(aX + b)] +

b

j + 2
ρi,j+1(a, b)− j

(j + 1) (j + 2)
ρi,j(a, b).

Next, we derive

E [Xαi(aX + b)αj+1(aX + b)]

=
(−1)i−1

i!
√

2π

(−1)j

(j + 1)!
√

2π

∫
R
x

di−1

dzi−1

(
e−

z2

2

)∣∣∣∣
z=ax+b

dj

dzj

(
e−

z2

2

)∣∣∣∣
z=ax+b

e−
x2

2

√
2π

dx

=
(−1)i−1

i!
√

2π

(−1)ja

(j + 1)!
√

2π

∫
R

(
di

dzi

(
e−

z2

2

)∣∣∣∣
z=ax+b

dj

dzj

(
e−

z2

2

)∣∣∣∣
z=ax+b

+
di−1

dzi−1

(
e−

z2

2

)∣∣∣∣
z=ax+b

dj+1

dzj+1

(
e−

z2

2

)∣∣∣∣
z=ax+b

)
e−

x2

2

√
2π

dx

=− a ((i+ 1)ρi+1,j+1(a, b) + (j + 2) ρi,j+2(a, b)) .

Therefore, all in all, we get(
1 + a2

)
ρi,j+2(a, b) = −a

2(i+ 1)

j + 2
ρi+1,j+1(a, b) +

b

j + 2
ρi,j+1(a, b)− j

(j + 1) (j + 2)
ρi,j(a, b).

Accounting for (2.17), we obtain(
1 + a2

)
σi,j+2(a, b) = −a

2(i+ 1)

j + 2
ρi+1,j+1(a, b) +

b

j + 2
σi,j+1(a, b)− j

(j + 1) (j + 2)
σi,j(a, b).

Now, express ρi+1,j+1(a, b) as a function of the other terms and this gives the announced result in (3.2).

5.5 Proof of Lemma 9

Let A,B ∈ R and X
d
= N (0, 1). It is well-known that the moments of the standard normal distribution are

given by :

E [Xm] =

∫
R
xm

e−
x2

2

√
2π

dx =

{
0 if m = 2k + 1, (k ∈ N)
(2k)!
2kk!

if m = 2k, (k ∈ N)
. (5.11)

From the above relation, we obtain :

E [Hei (AX +B)]
(2.8)
=

i∑
m=0

(
i

m

)
AmHei−m (B)

∫
R
xm

e−x
2/2

√
2π

dx
(5.11)

=

b i2c∑
k=0

i!A2kHei−2k (B)

2kk! (i− 2k)!
. (5.12)

By the identity − (ax+b)2

2 − x2

2 = − 1
2

(√
1 + a2x+ ab√

1+a2

)2

− b2

2(1+a2) , we have :

µi(a, b)
(2.16)

=
1√
2πi!

∫
R

Hei−1(ax+ b)e−
(ax+b)2

2
e−

x2

2

√
2π

dx

=
e
− b2

2(1+a2)

√
2πi!

∫
R

Hei−1(ax+ b)
e
− 1

2

(√
1+a2x+ ab√

1+a2

)2

√
2π

dx

=
e
− b2

2(1+a2)

√
2πi!
√

1 + a2

∫
R

Hei−1

(
a√

1 + a2
y +

b

1 + a2

)
e−

y2

2

√
2π

dy

where we have introduced the new variable y =
√

1 + a2x + ab√
1+a2

in the last equality. The expression for

µi (a, b) is then a direct consequence of (5.12) with A = a√
1+a2

and B = b
1+a2 . Similarly, we get :

E [Hei (AX +B) Hej (AX +B)] =

i∑
m=0

j∑
n=0

(
i

m

)(
j

n

)
Am+nHei−m (B) Hej−n (B)

∫
R
xm+n e

−x2/2

√
2π

dx
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=

b i2c∑
k=0

b j2c∑
p=0

(
i

2k

)(
j

2p

)
A2(k+p)Hei−2k (B) Hej−2p (B) (2 (k + p))!

2k+p (k + p)!

+

b i−1
2 c∑

k=0

b j−1
2 c∑

p=0

(
i

2k + 1

)(
j

2p+ 1

)
A2(k+p+1)Hei−2k−1 (B) Hej−2p−1 (B) (2 (k + p+ 1))!

2k+p+1 (k + p+ 1)!
.

(5.13)

By the identity −(ax+ b)2 − x2

2 = − 1
2

(√
1 + 2a2x+ 2ab√

1+2a2

)2

− b2

1+2a2 , the covariance rewrites :

σi,j (a, b) =
1

2πi!j!

∫
R

Hei−1(ax+ b)Hej−1(ax+ b)e−(ax+b)2 e
− x22
√

2π
dx− µi (a, b)µj (a, b)

=
e
− b2

1+2a2

2πi!j!
√

1 + 2a2

∫
R

Hei−1

(
a√

1 + 2a2
y +

b

1 + 2a2

)
Hej−1

(
a√

1 + 2a2
y +

b

1 + 2a2

)
e−

y2

2

√
2π

dy

− µi (a, b)µj (a, b) ,

where we have introduced this time y =
√

1 + 2a2x + 2ab√
1+2a2

. We conclude using (5.13) with A = a√
1+2a2

and B = b
1+2a2 .
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