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Summary

1. Autocorrelation and individual heterogeneity are now considered to reflect biological processes

rather than simply being a nuisance requiring to be accounted for. Before using parameter estimates

that represent autocorrelation and individual heterogeneity to infer biological processes, a statistical

evaluation of their precision and accuracy is required to validate their use.

2. Using simulated data, we evaluated accuracy and precision of temporal autocorrelation and

individual heterogeneity estimates provided by different statistical models. We compared estimates

across different intensity of individual variation and life histories, and sampling effort. We focused

on recurrent binary variables because statistical evaluations of models describing binary processes

have often been overlooked although several evolutionary and ecological processes are expressed

as binary variables (e.g. probability of annual reproduction, plant annual flowering and detection,

seasonal migration decision).

3. Our results showed that autocorrelation and individual heterogeneity were generally better esti-

mated using a ‘time series’ modelling approach, but that a ‘state dependence’ modelling approach

also provided fair estimates in most cases. The latter method was even more robust when data sets

included missing values. Data sets including missing values or consisting of very short times series

resulted in important bias in some instances.

4. Models ignoring either individual heterogeneity or autocorrelation performed poorly, illustrat-

ing the fundamental association between these two processes, and demonstrating that the complex

structure of autocorrelation and individual heterogeneity patterns is difficult to tackle using simple

models.

5. Our work’smajor finding is the demonstration that autocorrelation and individual heterogeneity

need to be both accounted for to provide reliable estimates even in studies focusing on only one of

these processes. Our study also offers a set of practical recommendations for helping researchers

modelling these two processes depending on their scientific aims and the structure of their data.

Finally, our results illustrate that more research is required for estimating individual heterogeneity

when positive temporal autocorrelation is expected because none of the models evaluated provided

suitable estimates.

Key-words: accuracy, first-order autocorrelation, generalized linear mixed models, individual

heterogeneity, precision, random intercept model

Introduction

Autocorrelation and individual heterogeneity are now often

included in ecological and evolutionary studies to account for

the potential confounding effects resulting from the non-

independence among the repeated measures collected, be it at

the individual, temporal or spatial level (van Noordwijk & de

Jong 1986; Diniz-Filho, Bini & Hawkins 2003; van de Pol &

Verhulst 2006). In life-history studies, evolutionary ecologists

usually work with data sets consisting of repeated measures of

a set of individuals taken at different ages. This results in*Correspondence author. E-mail: sandra.hamel@uit.no
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Masaoud& Stryhn 2010). No study, to our knowledge, has yet

focused on the estimation of autocorrelation and individual

heterogeneity and thereby evaluated whether themethods used

to define these two parameters provide accurate measures of

their strength and hence confidence in their use. Furthermore,

previous statistical evaluations of models including autocorre-

lation or individual heterogeneity have been performed for

linearmodels (LM; see e.g. van de Pol &Verhulst 2006;Martin

et al. 2011). Nevertheless, data available in ecology and

evolution often fall outside this linear framework, commonly

consisting of binary, proportion or counts data, and thus often

require to be modelled through generalized LMs (GLM;

Bolker et al. 2009). Parameters estimated from GLM,

however, are not easy to standardize. For instance, the

variance of a Bernoulli ⁄binomial process is maximized at a

mean probability of 0Æ5 and is constrained towards 0 as the

mean probability approaches 0 or 1 (Gaillard &Yoccoz 2003).

Thus, the comparison of parameter estimates is difficult when

the mean probability differs among the binary variables to be

compared. Consequently, performing comparative analyses of

autocorrelation and individual heterogeneity in ecology and

evolution is complex. Accurate and standardized measures of

the strength of autocorrelation and individual heterogeneity

should be highly valuable for determining the relative impor-

tance of these two processes and would allow comparing the

relative contribution of these processes among studies. Because

relying on appropriatemetrics and reliable statistical indicators

is of prime importance, a statistical assessment of the reliability

of these two measures would, therefore, provide an important

step forward in ecology and evolution.

Here, our goals are to evaluate the reliability of estimates

provided by different statistical models for describing temporal

autocorrelation and individual heterogeneity and to develop a

standardization method that would allow comparing the

strengthof these twoprocessesamongstudies.First,wedescribe

parameters included indifferentmodels thatare frequentlyused

in evolutionary ecology and explain which parameters could

reliably measure the amount of autocorrelation and individual

heterogeneity.Wethensimulate longitudinaldatawithdifferent

levels of autocorrelation and individual heterogeneity to assess

the reliability of eachmodel in estimating these parameters.We

simulate data on individuals within populations having

different mean trait values, number of individuals, average life

span, as well as number of missing values, to determine the

influenceof the data structure on the accuracy and the precision

of the autocorrelation and individual heterogeneity measures.

We then compare results across allmodels toprovide guidelines

for evaluating autocorrelation and individual heterogeneity

according to the distribution of the variables and the structure

of the data available to the researcher. We mainly focus on

recurrent variables – as opposed to non-recurrent variables like

mortality – that follow a Bernoulli process (hereafter binary

variables) because numerous evolutionary and ecological

processes are expressed as binary variables (e.g. annual

reproduction, plant annual flowering and detection, seasonal

migration decision), and because statistical evaluations of

models describing binary processes have been neglected.

individual heterogeneity, that is, among-individual variation 
leading to the non-independence of the repeated measures 
collected on the same individuals, as well as temporal 
dependency. Dependency can take many forms. In this case, 
dependency occurs between values of the same variable 
measured at different moments through time, which is referred 
to as temporal autocorrelation. For example, repeated 
measures on individual mass in iteroparous species often result 
in heterogeneity, because larger individuals will usually remain 
heavier than smaller individuals (Nussey et al. 2011). 
Temporal autocorrelation in individual mass can also occur, 
for example, as a result of allocation to reproduction: breeders 
are often lighter than non-breeders at the next reproductive 
attempt and are also more likely to skip reproduction to 
rebuild their condition (Pomeroy et al. 1999), leading to 
temporal oscillation in individual mass. In botany, plant popu-
lation demography is often inferred from presence ⁄ absence 
data on marked individuals, which are recorded at specific time 
intervals over several years (Ké ry & Gregg 2003; Shefferson 
et al. 2011). The plant detection probability, however, can be 
affected by the specific characteristics of each plant, so that 
some individuals are consistently more likely to be detected 
than others at each census, leading to individual heterogeneity. 
Previous detection can also affect future detection and lead to 
temporal autocorrelation (Ké ry & Gregg 2003). Similar situa-
tions also occur in behavioural ecology, when, for example, 
animal personality and previous capture history both affect the 
recapture probability. Bold animals are more likely to be 
captured ⁄ recaptured than shy individuals (Ré ale et al. 2000), 
but an individual recently captured, be it bold or shy, is less 
likely than another individual to be recaptured in the next 
session (Boyer et al. 2010).
Although statistically taking into account the confounding 

effects of autocorrelation and individual heterogeneity is essen-
tial, these effects also have an important biological meaning. 
For instance, works by van de Pol and co-authors (van de Pol 
& Verhulst 2006; van de Pol & Wright 2009) brought the 
biological importance of individual heterogeneity a step 
further. They demonstrated that heterogeneity takes place 
at two different levels (i.e. between- and within-individuals) 
with distinct biological meaning. For example, the between-
individual variance estimated for a life-history trait recorded at 
each age usually represents selection processes, resulting from 
the appearance ⁄ disappearance of individuals, whereas the 
within-individual variance measures growth ⁄ senescence 
processes (van de Pol & Verhulst 2006). These clarifications 
illustrate the wide potential of the different measures of 
individual heterogeneity to answer various ecological and 
evolutionary questions that still remain largely unexplored.
As temporal autocorrelation and individual heterogeneity 

hold a strong potential to enhance biological knowledge, it is 
essential to distinguish between the definition of these concepts 
and the statistical ways of measuring them. Although the valid-
ity of the models incorporating autocorrelation and individual 
heterogeneity has sometimes been assessed, this has mainly 
been evaluated for fixed parameters, often using specific 
autocorrelation and individual heterogeneity values (see e.g.
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In addition,modelling and interpretingparameter estimates are

more complex for binary than for LMs. Nevertheless, we

compare how results from binary models compared with those

of simpler,LMs.

Materials and methods

STATIST ICAL MODELS AND PARAMETERS EVALUATED

The statistical models we analysed can be divided into two general

types that wewill refer to as ‘state dependence’ and ‘time series’. From

these starting models, we derived the other models that are basically a

simplification by removing either the autocorrelation or the individ-

ual variability.

‘State dependence’ models

First, we will evaluate the occurrence of autocorrelation using what

we will refer to as ‘state dependence’ models, which are commonly

used by econometricians tomodel first-order autocorrelation and het-

erogeneity (Heckman 2001; Wooldridge 2005; Berridge & Crouchley

2011). These models assess the influence of the state of a variable in

the past at time t, on the expression of the same variable at the current

time (i.e. modelling dependence on previous state). In ecology and

evolution, the autocorrelation is often assessed with only one time lag

(t = 1), for example, the survival of offspring produced by a female

in a given year in relation with the survival of offspring produced by

the same female the previous year. The sample, therefore, consists of

observations from nID individuals with nAGE repeated measurements

over the lifetime (i.e. at each age), and the response and explanatory

variables take the form of yij and yi,j-t, respectively.When the response

follows a Bernoulli process, this model takes the form of a multilevel

logistic regression:

logitðPrðyij ¼ 1jaiÞÞ¼b0 þ bTyi;j�1 þ fðxAjÞ þ ai ðfor j¼ 1; . . . ; nAGEÞ

ai � Nð0;r2IDÞðfor i ¼ 1; . . . ; nIDÞ

eqn 1

Although this type of model can allow for the inclusion of

covariates, we simply included the effect of age that can take

various functional forms, f(xAj). This model includes a random

intercept ai that follows a Gaussian distribution with a mean of

0 and a variance r2ID, representing heterogeneity among individ-

uals i (also called between-subject effect, see van de Pol &

Wright 2009). This random effect allows fitting a model with a

different intercept for each individual i, therefore, allowing the

estimation of the intercept b0 to vary according to individual

heterogeneity and hence accounting for bias (either of estimates

or of their uncertainty) appearing when r2ID > 0 and the sam-

ple includes repeated measures. Here, we evaluated individual

heterogeneity estimates based on random intercept models rather

than random slope and intercept models because we were inter-

ested in assessing between-individual variance effect on the

dependent variable (but see Appendix S1 and van de Pol &

Wright (2009) for more details on random slope models).

The parameter of interest for measuring the dependence in

eqn (1) is bT. This coefficient measures the link between the

variables while taking into account other covariates and individ-

ual heterogeneity. In a LM with standardized input and

response variables, bT would be equal to the correlation coeffi-

cient r estimated between the two variables (see Schielzeth 2010

p.108), so that if two variables are negatively correlated at )0Æ5,

then bT should be estimated at )0Æ5. In a binary framework,

the interpretation of bT is not straightforward because of the

logit transformation of the data. Nevertheless, the relationship

between a probability and its logit can provide some rules of

thumb for the interpretation of bT (see Gelman & Hill 2007

p.82). Indeed, the derivative of the logit function calculated for

x = 0Æ5 is 4, so the slope at the mid-point of the logistic curve

equals 4. Hence, we can divide logistic regression parameters by

4 to obtain an approximation of their linear predictions (Gel-

man & Hill 2007). For probabilities ranging between 0Æ3 and

0Æ7, the relationship between the probability and its logit is

almost linear. Because it is markedly nonlinear outside of this

range, the slope increases as the probability approaches towards

0 and 1 (see Fig. S1), and hence the coefficient required to

transform a binary parameter for it to compare with a linear

one increases with higher and lower probabilities. To have bin-

ary parameters that compare with linear parameters, we could

divide binary parameters by the derivative of the mean probabil-

ity value (pv). Thus, we evaluated whether using bT*[f¢(pv)]
)1

would provide correlations that would compare with simulated

correlations and hence with correlations obtained from LMs. In

our case, we simulated mean probability (pv) of 0Æ5, 0Æ7 and

0Æ9, and so we used values of f¢(pv) equal to 4Æ00, 4Æ76 and

11Æ13, respectively.

The model in eqn (1) includes a random intercept accounting for

individual heterogeneity, which requires to be accounted for (Gime-

nez & Choquet 2010). This random effect, however, is sometimes

removed when not statistically significant. To assess the influence of

removing individual heterogeneity while trying to measure the

strength of the autocorrelation, we also evaluated variation in param-

eter estimation for the following model, representing a simple logistic

regression:

logit Pr yij ¼ 1
� �� �

¼ b0 þ bTyi;j�1 þ fðxAjÞ for j ¼ 1; . . . ; nAGEð Þ

eqn 2

‘Time series’ models

Because variables used in longitudinal studies consist of repeated

measures at successive life-history stages, data correspond to a

sequential variation of a variable through time, such that variation of

that variable with time forms a time series. For a continuous variable,

for example, where the mass of an individual in a given year is put in

relation with its mass the previous year, a time series model would

evaluate changes in mass, yij, in relation to age, xAj, while assessing

the autocorrelation q among residuals eij. The linear mixed model

with a first-order autoregressive error process with parameter q takes

the following form:

yij ¼ b0 þ fðxAjÞ þ ai þ eij ðfor j ¼ 1; . . . ; nAGEÞ

ai � Nð0;r2IDÞðfor i ¼ 1; . . . ; nIDÞ

Corr½eij; e
0
ij� � qjj

0�jj

eqn 3

For a binary variable, such as the example discussed at eqn (1)

where survival of offspring produced by a female in a given year is put

in relation with survival of offspring produced by the same female the

previous year, a time series model would evaluate variation in off-

spring survival, yij, in relation to mother age, xAj, while assessing the

autocorrelation q between the successive realizations yij. The differ-

ence with the LM of eqn (3) is that the autocorrelation is evaluated

on the realizations yij rather than on the residuals eij because a logistic
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Corr yij; y
0
ij

h i

� qjj
0�jj

eqn 3a

Equation 3a differs from eqn (1) by having the explanatory vari-

able yi,j)1 removed and bT, which previously linked yij and yi,j)1,

replaced with q. This model has the advantage of directly modelling

the autocorrelation. To assess the influence of ignoring potential

autocorrelation when trying to estimate individual heterogeneity for

a variable measured repeatedly through time, we also considered a

model without q:

logitðPrðyij ¼ 1jaiÞ ¼ b0 þ fðxAjÞ þ ai for j ¼ 1; . . . ; nAGEð Þ

ai � Nð0;r2IDÞ for i ¼ 1; . . . ; nIDð Þ
eqn 4

SIMULATIONS

Variation in the population structure (nID, nAGE)

To compare the accuracy and precision of the parameters estimated

by the different models, we simulated binary data following a Ber-

noulli process, that is, simulating one value (0 or 1) for each individual

age. We simulated data for representing a variable measured at suc-

cessive ages.We simulated data sets consisting of 50, 200 or 1000 indi-

viduals (nID) with a longevity (nAGE) of 5, 15 or 40 (see simulation

details in Appendix S1), leading to nine combinations of population

samples. These combinations were representative of population sam-

ples for (i) short-lived species, such as small passerines, rabbits or

small mammals, which usually include a large number of individuals

monitored over a small number of ages (nID = 1000, nAGE = 5), (ii)

relatively long-lived species, such as ungulates, snakes or lizards,

which usually include a lower number of individuals monitored for

longer (nID = 200, nAGE = 15) and (iii) very long-lived species, such

as primates, turtles or some seabirds, which usually include a small

number of individuals monitored throughout their long life

(nID = 50, nAGE = 40). The combinations we selected also included

less typical sample sizes, ranging from few individuals of short-lived

species (nID = 50, nAGE = 5) to large number of individuals of long-

lived species (nID = 1000, nAGE = 40).

Variation in the population parameters (b0, bA, r
2
ID, q

or bT)

In addition to varying the structure of the population data, we also

simulated data sets with different parameter values: mean population

probability, b0, age effect, bA, individual heterogeneity, r
2
ID, and

first-order autocorrelation, q or bT. As the variance of a Bernoulli

process is maximized at a mean probability of 0Æ5 and is

constrained towards 0 as the mean approaches 0 or 1 (Gaillard &

Yoccoz 2003), we evaluated the model performance with different

mean probabilities, that is, average (0Æ5), relatively high (0Æ7) and

very high (0Æ9). We did not simulate very low (0Æ1) and relatively

low (0Æ3) probabilities, as results would mirror results from 0Æ9 and

0Æ7 probabilities, respectively. We simulated weak and strong age

effects, standard variation varying from none to very high (0–1Æ4)

and negative first-order autocorrelation varying from almost null to

very high ()0Æ005 to )0Æ8; Appendix S1 provides further details on

simulation procedures). Concretely, the autocorrelation and

individual heterogeneity values simulated encompassed a range of

situations ranging from individual trajectories that do not vary

among individuals and do not fluctuate with time to trajectories

that vary among individuals and fluctuate with time (see Fig. S4).

We focused on negative first-order autocorrelation because the

observed marginal correlation at the individual level is likely to be

due to individual heterogeneity, so that trade-offs are often

expected to occur once individual heterogeneity has been accounted

for (see e.g. Westendorp & Kirkwood 1998). Nevertheless, positive

temporal autocorrelation might still occur in addition to heteroge-

neity, and Appendix S1 provides the details for simulations based

on positive autocorrelation.

Data sets simulated and estimation of model

performance

All variation in population structure and population parameters

resulted in a total of 3888 combinations of population data sets simu-

lated, and each of the 3888 combinations was simulated 100 times.

Each time, we ran each of the fourmodels (eqns 1, 2, 3a and 4) to esti-

mate first-order autocorrelation and individual heterogeneity (see

Table 1 for a summary of parameters estimated according to each

model). We used the R (R Development Core Team 2010) function

‘glmmPQL’ from the package ‘MASS’ (Venables & Ripley 2002),

which fits a generalized linear mixed model with multivariate normal

random effects using Penalized Quasi-Likelihood, to run models 1, 3

and 4.We used ‘glmmPQL’ because it is one of the rare functions that

allow estimating autocorrelated errors in addition to random effects

(Zhang et al. 2011). For model 2 (which did not include a random

effect), we used theR function ‘glm’ that fits aGLM.For each param-

eter estimated, we computed the mean and the variance over the 100

simulations. We compared the mean estimated value with the simu-

lated value to determine whether bias occurred and used the variance

to evaluate the precision of the estimates. We evaluated whether bias

and variance varied across the different population structures and

population parameters simulated, as well as across the different mod-

els tested. Although models 1–4 could also be fitted under a Bayesian

approach (e.g. with the R package ‘MCMCglmm’, Hadfield 2010; or

Table 1. Summary of eachmodel including first-order autocorrelation and individual heterogeneity parameters for which we estimated accuracy

and precision based on simulations

Model description

First-order

autocorrelation

Individual

heterogeneity

Model 1 State dependence modelling approach including both parameters (eqn 1) bT rID
Model 2 State dependence modelling approach excluding individual heterogeneity (eqn 2) bT –

Model 3 Time series modelling approach including both parameters (eqn 3a) q rID
Model 4 Time series modelling approach excluding autocorrelation (eqn 4) – rID

regression model is not defined in terms of distribution of residuals. 
The generalized linear mixed model with a first-order autoregressive 
error process modelling a binary variable takes the following form:

logitðPrðyij ¼ 1jaiÞÞ ¼ b0 þ fðxAjÞ þ  ai for j ¼ 1; . .  . ; nAGEð Þ

ai � Nð0; r2IDÞ for i ¼ 1; . .  . ; nIDð Þ
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‘INLA’, Rue, Martino & Chopin 2009), we chose to assess the

performance of non-Bayesian models because it is currently the most

common approach used in life-history studies, and because this

approach was shown to provide reliable estimates of autocorrelation

and individual heterogeneity (see below, Li et al. 2011). Furthermore,

mixed models fitted with Bayesian methods can be hard to interpret

because even models with one-way random effects can end up with

bimodal posterior (Liu&Hodges 2003).

Complexity of simulating binary data

In regression models for binary data, the dependence is often defined

with the correlation on the observed values (i.e. 0–1) or in terms of

odds ratio (Lipsitz, Laird & Harrington 1991), whereas the random

effect has a normal distribution on the logit scale, making the simula-

tion of correlated binary data complex (see Appendix S1 for more

details). In addition, because correlation within binary data is con-

strained by the mean probability (Prentice 1988; Chaganty & Harry

2006), not all combinations of autocorrelation and individual hetero-

geneity were possible (Fig. S6). For example, strong negative auto-

correlation cannot occur for very high or very low probability

(Fig. S6). Furthermore, for a given probability, as the standard devia-

tion representing individual heterogeneity increases, the possibility

for a strong negative autocorrelation to occur decreases (Fig. S6).

Thus, numerous combinations of the 3888 potential ones were impos-

sible to simulate because of this natural constraint. For some other

combinations, only a fraction of the 100 simulations were successfully

estimated, and so we only used results from the simulations when

more than 75% of the simulations of a given combination were

successful.

Comparing binary with normally distributed data

To evaluate how parameter estimates from Bernoulli processes

compare with those from Gaussian processes, we simulated a

continuous variable with normally distributed residuals (e.g. mass

of offspring produced by a female each year). For this example,

we set b0 = 0 to simulate a population that is centred on 0. We

selected only some combinations of data structure to perform this

analysis, that is, short-lived species (nID = 1000, nAGE = 5),

relatively long-lived species, (nID = 200, nAGE = 15) and very

long-lived species (nID = 50, nAGE = 40). Results were similar for

all combinations, so we only report results for a population struc-

ture of nID = 200, nAGE = 15. We simulated the same variation

of rID and q (or bT) as for the binary simulations. We used the R

function ‘arima.sim’ to simulate first-order autocorrelation for

normally distributed error based on an autoregressive integrated

moving average model, that is, ARIMA(p,d,q), where p, d and q

are positive integers referring to the order of the autoregressive,

integrated and moving average parts of the model, respectively.

We used a model of the form ARIMA(1,0,0) to include only a

first-order autocorrelation. We simulated the same negative first-

order autocorrelation and standard deviation values as for the

binary simulations. We ran the four models (eqns 1, 2, 3a and 4

for variables with normally distributed residuals, that is, without

the logit transformation) on these simulated data sets to estimate

first-order autocorrelation and individual heterogeneity. Because

residuals followed a normal distribution, we used the R function

‘lme’ (package ‘nlme’; Pinheiro et al. 2010) to fit linear mixed-

effects models (models 1, 3, and 4), and the function ‘lm’ to

fit LMs (model 2). We fitted the models by maximizing the

restricted log-likelihood (i.e. REML method). As for the previous

simulations, we compiled the mean and variance over 100 simula-

tions. Because simulations of continuous data are not constrained like

binary data, all simulations were successful. We then compared bias

and precision of parameters estimated from linear (mixed) models

with those of the binary simulations representing the same population

structure.

Evaluating the influence of incomplete data

As population data consisting of incomplete individual time series are

common when working with free-ranging populations, we evaluated

the influence of missing values on parameter estimates. We thus ran-

domly removed 10, 25 and 50% of the data from each individual time

series and then estimated parameters for models 1–4 for each of the

100 simulations. Again, we compiled the mean and variance over

the 100 simulations and only kept values where more than 75%of the

simulations were successful. We performed this analysis for both the

Gaussian and the binary processes, using only the three combinations

of data structure selected previously. As the influence of missing data

was similar for both processes and was independent of the mean pop-

ulation probability, we only report results for the binary process with

a probability of 0Æ5.

Results

For all combinations that were successfully simulated

(n = 686), mean and precision (95th percentile) of the auto-

correlation and the individual heterogeneity estimated based

on 100 simulations and according to the differentmodels tested

are listed inAppendix S2. Below, we provide a summary of the

bias patterns we observed for the mean. With respect to preci-

sion patterns, the range of precision (i.e. width of the 95th per-

centile of the estimated values) obtained for the

autocorrelation and the individual heterogeneity was overall

much smaller for the ‘time series’ models than for the ‘state

dependence’ ones (see Appendix S1 and Table S1 for detailed

results on precision).

PARAMETERS SIMULATED VS. ESTIMATED

Autocorrelation

Three models included autocorrelation (see Table 1). Esti-

mates of q frommodel 3 provided the most accurate values for

the first-order autocorrelation simulated (Fig. 1f). Estimates

of bT*[f¢(pv)]
)1 from model 1 also provided fairly accurate val-

ues of the autocorrelation simulated, but overestimation began

to appear with strong autocorrelation values and increased as

stronger autocorrelation was simulated (Fig. 1d). Because

small autocorrelation values represent relatively strong auto-

correlation for probabilities approaching 0 or 1 (see Fig. S6),

the overestimation bias observedwith stronger autocorrelation

occurred in smaller q simulated for probabilities of 0Æ7 and 0Æ9

than for a probability of 0Æ5 (see Figs 2a–c). Thus, dividing

binary parameters by f¢(pv) provided accurate autocorrelation

estimates in comparison with the autocorrelation simulated

(and with values estimated from LMs, see Fig. 1a), but only

for simulated autocorrelation values that are weak relative to a
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certain probability. An evaluation a posteriori of the relation-

ship between bT*[f¢(pv)]
)1 and simulated q values suggests

that using the formula bT*([f¢(pv)]*[2Æ5*pv])
)1 would allow

correcting for bias associated with strong autocorrelation

when estimating autocorrelation for binary processes based on

bT estimates of state dependence models (Figs 2d–f). For

model 2, which does not account for individual heterogeneity

compared with model 1, estimates of bT*[f¢(pv)]
)1 provided the

worst fit (Fig. 1e). Estimated values showed the same bias as

for model 1 with increases in the autocorrelation simulated,

but also underestimated the autocorrelation simulated as the

standard deviation simulated increased (Fig. 1e).

Individual heterogeneity

Three models included individual heterogeneity (see Table 1).

Model 3 provided again the most accurate estimates,

whereas estimates from models 1 and 4 were biased (Fig. 3).

For model 3, estimated values were overall not biased, but a

very slight underestimation started to appear with very high

standard deviation simulated (Fig. 3e). The latter effect

became somewhat more important with a small number of

individuals and short time series (Appendix S2). When

neglecting the autocorrelation using model 4, standard

deviation values were underestimated as the strength of the

(a)

(b)

(c) (f) (j)

(i)

(h)(d)

(e)

Fig. 1. Autocorrelation estimated in relation with the autocorrelation and the standard deviation simulated, for models 1–3 (Table 1), for Gauss-

ian (left panels) and Bernoulli (middle panels) processes. Right panels present the influence of 50% missing values for Bernoulli process (results

were similar for Gaussian process; see Fig. S9 for comparison of the results for 10, 25 and 50%missing values). Results are presented for a mean

probability of 0Æ5 for the binary models (and so bT*[ f¢(pv)]
)1 = bT*4

)1), and for a centered mean value of 0 for the linear models, with

nID = 200 and nAGE = 15. Colors represent different standard deviation simulated, from low to high (from dark to light colors; black = 0,

purple = 0Æ2, blue = 0Æ4, red = 0Æ6, green = 0Æ8, orange = 1Æ0, yellow = 1Æ2, and grey = 1Æ4). Dashed lines represent points where estimated

and simulated values are equal. The same axis ranges were used for all panels to aid comparisons. Autocorrelation values were jittered on the

x-axis to better visualize similar estimates.
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autocorrelation simulated increased (lighter colours, Fig. 3f).

When incorporating the autocorrelation in the form of bT

using model 1, standard deviation values were overestimated

as the autocorrelation simulated increased (lighter colours,

Fig. 3d).

INFLUENCE OF VARIATION IN POPULATION

STRUCTURE

Appendix S1 provides detailed results on the influence of

variation in population structure. In general, changes in the

(a)

(b)

(c) (f)

(e)

(d)

Fig. 2. Autocorrelation estimated in relation with the autocorrelation simulated for model 1 following a Bernoulli process, for different probabil-

ity values (pv) and adjustments (left panels: a priori adjustment = bT*[f¢(pv)]
)1, right panels: a posteriori adjustment = bT*([f¢(pv)]*[2Æ5*pv])

)1).

As the probability value increases, fewer values of autocorrelation and standard deviation appear because of the limits imposed for simu-

lating binary data (Fig. S6). Results are presented for nID = 1000 and nAGE = 15. Colors represent different standard deviation simu-

lated, from low to high (from dark to light colors; black = 0, purple = 0Æ2, blue = 0Æ4, red = 0Æ6, green = 0Æ8, orange = 1Æ0,

yellow = 1Æ2, and grey = 1Æ4). Dashed lines represent points where estimated and simulated values are equal. The same axis ranges were

used for all panels to aid comparisons. Autocorrelation values were jittered on the x-axis to better visualize similar estimates.
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number of individuals (nID) and in the length of the time

series (nAGE) did not bias the parameters estimated, except

for short time series, nAGE = 5. Biases with short time series

were almost negligible for the autocorrelation, but were

much more pronounced for individual heterogeneity

(Appendix S1). The worst bias was a strong overestimation

of the standard deviation estimated for a probability of 0Æ9

for all combinations with nAGE = 5 (Fig. S8). These biases

were slightly smaller with larger nID (Appendix S2). Not

surprisingly, smaller samples provided less precise estimates

than large samples, but, interestingly, nAGE had a greater

influence than nID (Appendix S1, Table S1). Modelling short

time series also resulted in singularity issues (model 1)

and ⁄or failed to converge (models 3 and 4) more often than

longer time series (nAGE = 5: 118, nAGE = 15: 10, and

nAGE = 40: 3).

(a)

(b)

(c) (f) (j)

(i)

(h)(d)

(e)

Fig. 3. Standard deviation estimated in relation with the autocorrelation and the standard deviation simulated, for models 1, 3 and 4 (Table 1),

for Gaussian (left panels) and Bernoulli (middle panels) processes. Right panels present the influence of 50%missing values for Bernoulli process

(results were similar for Gaussian process; see Fig. S10 for comparison of the results for 10, 25 and 50% missing values). Results are presented

for a mean probability of 0Æ5 for the binary models, and for a centered mean value of 0 for the linear models, with nID = 200 and nAGE = 15.

Colors represent different first-order autocorrelation simulated, fromweak to strong (from dark to light colors; black = )0Æ005, purple = )0Æ1,

blue = )0Æ2, brown = )0Æ3, red = )0Æ4, green = )0Æ5, orange = )0Æ6, yellow = )0Æ7, and grey = )0Æ8). Dashed lines represent points

where estimated and simulated values are equal. The same axis rangeswere used for all panels to aid comparisons. Standard deviation values were

jittered on the x-axis to better visualize similar estimates.
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BINARY VS. NORMALLY DISTRIBUTED DATA

Apart from the fact that data describing continuous variables

with normally distributed error were not limited by the range

of simulated autocorrelation and standard deviation values,

results from LMs were overall similar with those obtained

from binary ones (Figs 1 and 3). The only exception was that

the relationship between estimates of bT from model 1 and the

autocorrelation simulated was linear for continuous variables

(Figs 1a,d). The latter was expected because, asymptotically,

theory from classical LMs applies to autoregressive models

(Mann&Wald 1943; Chatfield 2004). Indeed, one of themeth-

ods used to fit an autoregressive model is the ordinary least

squares, which corresponds to the LM, and hence, the stan-

dardized regression coefficient and the correlation coefficient

tally (see Chatfield 2004 p.60).

INFLUENCE OF INCOMPLETE LIFE-H ISTORY DATA

Removing data generally resulted in the underestimation of

autocorrelation values (Fig. 1, Fig. S9), but this effect was

mainly pronounced for model 3 (Fig. 1j). As the number of

missing values increased, the greater was the bias in the

autocorrelation estimated (Fig. S9). For model 3, an increase

in missing values led to an underestimation of the autocorrela-

tion, which was particularly important for strong values of

autocorrelation simulated (Fig. S9 bottom panels). This effect

was independent of the standard deviation values simulated

(Fig. S9 bottom panels). In model 1, an increase in missing

values led to an underestimation of the autocorrelation (i.e.

estimated values of bT*[f¢(pv)]
)1 decreased) with greater

standard deviation values simulated (lighter colours, Fig. S9

top panels). This effect did not occur in model 2 (Fig. S9

middle panels), probably because this effect was already

present in the simulations without missing values (Fig. 1e).

This last result indicates that missing values had a similar effect

on the autocorrelation estimated as neglecting individual

heterogeneity in the first place.

The standard deviation estimated was also affected by the

presence of missing values (Fig. 3; Fig. S10). With a greater

percentage of missing values, model 1 underestimated the stan-

dard deviation when standard deviation values simulated were

large (Fig. S10 top panels). Still inmodel 1, the standard devia-

tion was markedly overestimated with increase in the autocor-

relation values simulated (lighter colours, Fig. S10 top panels).

These effects did not occur inmodel 3 and 4 (Figs 3i,j; Fig. S10

middle and bottom panels).

POSIT IVE TEMPORAL AUTOCORRELATION

We found that temporal autocorrelation and individual

heterogeneity are more difficult to estimate reliably for

positive than negative temporal autocorrelation. The two

processes seemed to get mixed up, competing for the same

information, and autocorrelation generally took over, which

resulted in a correct estimation of temporal autocorrelation

but an underestimation of individual heterogeneity (see

Appendix S1 and Fig. S5 for detailed results on positive tem-

poral autocorrelation).

Discussion

Although temporal dependence and individual heterogeneity

are fundamentally important processes in evolutionary and

ecological studies, a clear and detailed evaluation of how best

these processes can be measured and estimated is currently

lacking in the literature. Here, we used simulated data sets to

assess and compare the reliability of different models in esti-

mating temporal autocorrelation and individual heterogeneity

in binary processes, based on realistic situations of individual

variation within populations with contrasted life histories and

sampling intensity. Our results demonstrate that the complex

structure of these patterns is difficult to tackle with simple

models. Indeed, although the state dependence model that

includes individual heterogeneity (model 1) led to relatively fair

autocorrelation and individual heterogeneity estimates, the

time seriesmodel (3) provided by far themost precise and accu-

rate estimates overall. Furthermore, simpler models ignoring

either individual heterogeneity (state dependence model 2) or

autocorrelation (time series model 4) performed relatively

poorly. By ignoring individual heterogeneity, model 2 underes-

timated the autocorrelation even when the occurrence of indi-

vidual heterogeneity was very small. Similarly, model 4

underestimated individual heterogeneity even when only a

small autocorrelation level was introduced in the data.

These simulation results illustrate the fundamental

association between temporal autocorrelation and individual

heterogeneity. Because a complete absence of individual heter-

ogeneity within data containing repeated measures should

rarely be observed, we should expect a frequent co-occurrence

of autocorrelation and individual heterogeneity within longitu-

dinal data sets used to assess variation in life-history traits.

These kinds of expectations coming from our biological under-

standing of the underlying processes are essential formodelling

dependence. It isalso important tonote,however, that temporal

autocorrelation can appear as a result of an inappropriate

modelling of the fixed effects (e.g. modelling the fixed effect

of age using a linear relationship when a curvilinear effect

of age occurs, or neglecting to include an environmental

covariate that is correlated with time; Hodges & Reich

2010). Indeed, statistical researches on spatial dependency

have demonstrated that the form of the dependence

modelled (i.e. residual spatial dependence vs. independence)

markedly affects parameter estimates and that statistical

analyses alone (e.g. model selection) cannot select the most

appropriate form of dependence for modelling the data

(Wakefield 2007). Instead, the form of dependence to be

modelled should be determined by the biological under-

standing of the underlying processes, emphasizing that a

good biological knowledge is required to model properly

both stochastic and fixed effects. Therefore, one must

interpret carefully autocorrelation estimates in situations

where a non-negligible autocorrelation (i.e. >|0Æ1|) is found

but not expected. Furthermore, simple models ignoring
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results confirmed that bT coefficients from LMs are directly

comparable with q values, corresponding to autocorrelation

values. When variables are binary, however, we need to adjust

bT to provide an estimate of autocorrelation that is equivalent

to q (and to bT estimated from LMs). We found that the preci-

sion and the accuracy of adjusted bT were comparable with q,

but an overestimation occurred when data included large auto-

correlation values relative to the maximum autocorrelation

that can occur for a given level of individual heterogeneity. An

evaluation a posteriori of our results suggested that standardiz-

ing bT using the formula bT*([f¢(pv)]*[2Æ5*pv])
)1 allowed cor-

recting for the bias associated with strong autocorrelation

when estimating the autocorrelation based on bT in binary

models. Applying this correction did not result in a perfect

match between the autocorrelation simulated and the bT esti-

mated, as was the case for q estimates, but it allowed capturing

the true relationship and provided a reasonable fit overall.

Therefore, using standardized bT estimates offers a comparable

measure of autocorrelation as using q estimates.

For measuring individual heterogeneity, both the state

dependence model (1) and the time series model (3) provided

similar estimates, except that the state dependence model (1)

was biased when modelling Gaussian processes with strong

autocorrelation values. The state dependence model (1), how-

ever, was more robust to missing values than the time series

model (3). Indeed, our results demonstrated that the larger the

Aim Model Recommendations

Quantify temporal autocorrelation only Time series model 3 Preferred, but only if the data set includes

no or a very low proportion of

missing values (<10%)

State dependence model 1 Recommended if the data set includes >10%

missing values, but bT requires an a posteriori

standardization using bT*([f¢(pv)]*[2Æ5*pv])
)1

State dependence model 2 Not recommended

Quantify individual heterogeneity only Time series model 3 Preferred

State dependence model 1 Recommended, but not if the data set includes a

large proportion of missing values (>25%)

Time series model 4 Not recommended

Quantify both temporal autocorrelation

and individual heterogeneity

Time series model 3 Preferred, but only if the data set includes no or

a very low proportion of missing values (<10%)

State dependence model 1 Recommended, but not if the data set includes

a large proportion of missing values (>25%).

bT requires an a posteriori standardization

using bT*([f¢(pv)]*[2Æ5*pv])
)1

Quantify temporal autocorrelation

and ⁄ or individual heterogeneity

for short time series (nAGE £ 5)

Time series model 3 Recommended, except for estimating heterogeneity

if the mean probability approaches 0 or 1

State dependence model 1 Not recommended, except for estimating

autocorrelation if the number of individuals

monitored is very large (>200)

State dependence model 2 Not recommended

Time series model 4 Not recommended

Quantify temporal autocorrelation

when expecting a positive temporal

autocorrelation

Time series model 3 Preferred

State dependence model 1 Recommended, except when strong

autocorrelation (>0Æ7) is expected

State dependence model 2 Not recommended

Quantify individual heterogeneity

when expecting a positive temporal

autocorrelation

State dependence model 1 Not recommended

Times series model 3 Not recommended

Times series model 4 Not recommended

either individual heterogeneity or autocorrelation should be 
avoided as soon as both processes are suspected to occur in 
a longitudinal data set (see summary of recommendations in 
Table 2). Importantly, studies now commonly include 
individual heterogeneity in models, but the temporal depen-
dence is seldom taken into account. Our results, however, 
clearly demonstrate that individual heterogeneity and 
temporal autocorrelation both need to be included in models 
even when only one of the two processes is investigated 
(Table 2). Moreover, many researchers fit mixed models to 
account for possible confounding effects of individual 
heterogeneity on the focal relationship between traits rather 
than to estimate individual heterogeneity per se. Although 
our study does not focus on measuring the impact of ignoring 
either individual heterogeneity or temporal autocorrelation 
on fixed parameter estimates, the best rule of thumb 
ecologists should use would be modelling both processes in 
all case studies. Such a modelling strategy would allow 
accounting properly for the confounding effects of individual 
heterogeneity or temporal autocorrelation and thereby 
reduce the risk of getting biased estimates.

The time series model (3) provided the best estimates for 
measuring the autocorrelation compared with the state depen-
dence models (1 and 2). State dependence models do not pro-
vide autocorrelation values directly, but through the 
estimation of bT coefficients. For continuous variables, our

Table 2. Summary of recommendations according to the scientific aims
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percentage of missing values in the data sets, the greater was

the bias in estimating autocorrelation and individual heteroge-

neity, although this bias wasmore pronounced for the autocor-

relation than for the individual heterogeneity estimates.

Results differed importantly between data sets containing

<10%missing values and those containing 25%.Although 25

is a relatively high percentage, it represents a population data

set with only 3–4 years missing out of 15 for most individuals,

a figure that is far from being uncommon in long-term longitu-

dinal studies. Finally, data sets based on very short time series

often had convergence problems and, more importantly, led to

seriously biased estimates in some instances. These biases were

reduced when a larger number of individuals were included in

the analyses, but they were still present. It is essential to keep in

mind that measuring temporal autocorrelation and individual

heterogeneity based on short time series and ⁄or on data with a

high proportion of missing values can be misleading (Table 2).

This is noteworthy becausemost studies usually have data con-

sisting of very short time series, often combined with a small

number of individuals not monitored at each census. For

instance, about 65% of populations from which survival and

reproductive costs of reproduction have been investigated in

mammals (as reviewed in Hamel et al. 2010) were based on

time series shorter or equal to 5 years. Of these, about 35%

were also based on a low sample size of about 50 or less indi-

viduals. This suggests that several mammalian populations for

which life-history data have been collected in the past would

not be suitable for reliably measuring temporal autocorrela-

tion and individual heterogeneity processes, a situation that is

likely to be similar in other taxa. Our study, therefore, gener-

ally advises against estimating the strength of the autocorrela-

tion and the individual heterogeneity present in data sets

consisting of very short time series (Clutton-Brock & Sheldon

2010) because these estimates could be misleading (Table 2).

Short time series can be the result of either short monitoring

periods or short species life span. Researchers can prevent the

first problem to occur by monitoring individuals for as long as

possible to estimate reliably both autocorrelation and individ-

ual heterogeneity, but the second problem cannot be avoided.

Nevertheless, autocorrelation and individual heterogeneity can

be estimated reliably for very short time series in some specific

instances, such as whenmore than 200 individuals are sampled

without missing values and the mean population probability is

not close to 0 or 1 (Table 2). Furthermore, although variation

in longevity among individuals did not influence results (see

Appendix S1), unbalanced data sets will necessarily exclude

individuals that die after one time step, which could affect

estimates of autocorrelation and individual heterogeneity.

In this study, we evaluated accuracy and precision of

temporal autocorrelation and individual heterogeneity

estimates provided by different binary models based on

simulated data to determine the reliability of different model

types. Overall, our work suggests that using a time series

approach (model 3) will provide better autocorrelation and

individual heterogeneity estimates, except in the presence of

missing data (>10%), where a state dependence approach

(model 1)will give better estimates (Table 2, see alsoNakagawa

& Freckleton 2008 for suggestions for accounting for

missing values in analyses). As measures of autocorrelation

and individual heterogeneity are now considered to reflect

biological processes rather than simply being a nuisance

requiring to be accounted for (van de Pol & Verhulst 2006;

van de Pol & Wright 2009; Tuljapurkar, Steiner & Orzack

2009), the insights we provide on the reliability of different

models in estimating the intensity of these two processes should

be useful in a large range of situations across different research

areas. Moreover, our work focused primarily on binary

variables, because they are common in life-history studies but

are prone to serious modelling difficulties. To generalize our

approach, future researches should aim at evaluating the

reliability of autocorrelation and individual heterogeneity

estimates for other distributions. In addition, our methods are

not suitable for time-to-event data such as survival, which are

analysed using other types of models (e.g. Cox proportional

hazards models). While a rather large literature on frailty

models has been published following the seminal paper by

Vaupel, Manton & Stallard (1979), no paper to our knowledge

has yet addressed some form of temporally autocorrelated

hazard functions (only some spatially autocorrelated mixed

hazards models have been produced and applied to human

survival models; e.g. Hennerfeind, Brezger & Fahrmeir 2006).

Such models require to be developed to evaluate whether

temporal autocorrelation and individual heterogeneity can be

quantified for time-to-event data. Finally, more research is also

required for estimating individual heterogeneity when positive

temporal autocorrelation is expected because none of the

models evaluated in this study provided suitable estimates

(Fig. S5, Table 2). Nevertheless, these models are useful if

one is only interested in estimating positive temporal

autocorrelation (Table 2).

Acknowledgements

Financial support was provided from Le Fonds québécois de la recherche sur la
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