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Abstract

In this paper, we propose a new three-parameter distribution on the positive real line, called
the gamma power half-logistic distribution. This new distribution is derived to the gamma-G
family of distributions pioneered by Zografos and Balakrishnan (2009) and the power half-
logistic distribution introduced by Krishnarani (2016). Among its advantages, the correspond-
ing hazard rate function has various kinds of shapes, which constitutes a positive point in the
context of statistical modelling. A part of the paper is devoted to some of its main mathe-
matical features, including quantiles, skewness, kurtosis, moments, incomplete moments, mean
deviations, Bonferroni and Lorenz curves, stochastic ordering, reliability parameter and distri-
bution of order statistics. Then, the gamma power half-logistic model is investigated in view of
data analysis. We use the maximum likelihood method for estimating the model parameters,
with a simulation study attesting the good performance of the method. The practical aspect is
discussed with the help of two real life data sets.

Keywords: half-logistic distribution; power half-logistic distribution; gamma-G family of distri-
butions; hazard rate; lifetime data; maximum likelihood method.
AMS Subject: 60E05, 62E15, 62F10.

1 Introduction

By their intrinsic definitions, the distributions defined on the positive real line, i.e., (0,+∞), are
appropriate to model the duration of time until a certain phenomenon happens (death times of
patients, time to mechanical failure. . . ). The notorious distributions on (0,+∞) includes the
chi, Dagum, exponential, Fréchet, gamma, Gompertz, Lomax, Pareto, Rayleigh and Weibull dis-
tributions, and those defined as a fold at zero of symmetric (around zero) distributions as the
half-normal, half-Student, half-Cauchy and half-logistic distributions. All of them are widely used
as models to analyze data sets in many applied fields, as computer science, engineering, economics,
biological studies, medical sciences and hydrology. Thanks to its simplicity, tractable mathematical
properties and ability to fit correctly survival data, the half-logistic (HL) distribution has been the
object of all the attentions. We refer to (Balakrishnan, 1985; Balakrishnan and Puthenpura, 1986;
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Balakrishnan, 1992) and Olapade (2003), and the references therein. Let us just mention that it is
characterized by the survival function (sf) given by

Π̄(x) =
2

1 + eαx
, α, x > 0. (1)

In recent years, aiming to extend or exploit some of its features, several generalizations and ex-
tensions of the HL distribution have been proposed. Among them, there are the generalized
half-logistic (GHL) distribution by Torabi and Bagheri (2010), the type 1 generalized half logistic
(Type 1 GHL) distribution by Olapade (2014), the exponentiated HL-G family of distributions
(EHL-G) by Cordeiro et al. (2014) type I half-logistic-G family of distributions (Type 1 GHL-G)
by Cordeiro et al. (2016), the power half-logistic (PHL) distribution by Krishnarani (2016), the
half-logistic generalized Weibull (HLGW) distribution by Anwar and Bibi (2018), the Marshall
Olkin half-logistic (MOHL) distribution by Yegen and Ozel (2018) and the Kumaraswamy type I
half-logistic (KHL) distribution by El-Sherpieny and Elsehetry (2019). Let us now focus on the
PHL distribution by Krishnarani (2016). First of all, we can presented it as a simple two param-
eter distribution extending the half logistic distribution by the use of the power transformation
method, in the same way that the Weibull distribution extends the exponential distribution. The
corresponding sf is given by

Ḡ(x) = Π̄(xβ) =
2

1 + eαxβ
, α, β, x > 0. (2)

It is shown in Krishnarani (2016) that β has an important role on the curvatures of the related
probability density function (pdf) and on the nature of the tails of the PHL distribution, demon-
strating more flexible properties in comparison to the former HL distribution. Thus, the related
statistical model is adequate to model data sets having tail probability less or greater than the basic
HL model. This is illustrated in Krishnarani (2016) with the help of three real-life data sets. There
is however a room for improvement in terms of model flexibility as suggested by (Krishnarani, 2016,
Figures 3 and 4), where a lack of bathtub or reversed J shapes for the hazard rate function (hrf)
can be observed.

In this paper, we explore a natural extension of the PHL distribution. Following the spirit
of Castellares et al. (2015) for the logistic distribution (on the whole real line), we consider the
gamma-G family of distributions established by Zografos and Balakrishnan (2009) with the PHL
distribution for baseline distribution. Let us now present the gamma-G family of distributions, in
full generality. From a baseline sf denoted by Ḡ(x), the cumulative distribution function (cdf) of
the gamma-G family of distributions is given by

F (x) = γ1
(
δ,− log[Ḡ(x)]

)
, δ, x > 0, (3)

where γ1(δ, z) denotes the so-called regularized lower incomplete gamma function defined by γ1(δ, z) =
γ(δ, z)/Γ(δ), γ(δ, z) =

∫ z
0 t

δ−1e−tdt and Γ(δ) =
∫ +∞
0 tδ−1e−tdt. As established in numerous works

in the field, the new parameter δ aims to increase flexibility to the baseline distribution, including
it as a special case by taking δ = 1. The usefulness of the gamma-G family of distributions is
discussed in detail in (Nadarajah and Rocha, 2016, gamma-G I distributions, page 11), with a
wide broad of baseline distributions and applications. We thus introduce the gamma power half-
logistic (GPHL) distribution characterized by the cdf defined by he cdf of the gamma-G family of
distributions given by (3) with the sf of the PHL distribution (2). In this study, we defend the
merits and advantages of using the GPHL distribution in a statistical setting.

The rest of the paper is unfolded in the following manner. Section 2 describes the GPHL
distribution by their main probabilistic functions, with the analytical study of their shapes. Some
structural properties of the GPHL distribution are exhibited in Section 3, with natural ideas of
extensions. Estimation of the unknown GPHL model parameters are explored in Section 4 with the
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maximum likelihood method. In particular, a Monte Carlo simulation study examines the precision
of the obtained maximum likelihood estimates. Applications of the GPHL model are performed in
Section 5 by the consideration of two real data sets. A brief conclusion is given in Section 6.

2 The GPHL distribution

2.1 Crucial functions

As described in the introduction, the GPHL distribution is characterized by the cdf obtained by
substituting the PHL sf given by (2) in the definition of the gamma-G cdf given by(3). Hence, the
cdf of the GPHL distribution is given by

F (x) = γ1

[
δ,− log

(
2

1 + eαxβ

)]
, δ, α, β, x > 0. (4)

By differentiation, after some algebra, the pdf corresponding to (4) is given by

f(x) =
2αβxβ−1eαx

β

Γ(δ)
(
1 + eαxβ

)2 [− log

(
2

1 + eαxβ

)]δ−1
. (5)

The sf and hrf of the GPHL distribution are, respectively, given by

S(x) = 1− F (x) = 1− γ1
[
δ,− log

(
2

1 + eαxβ

)]
and

h(x) =
f(x)

S(x)
=

2αβxβ−1eαx
β

Γ(δ)
(
1 + eαxβ

)2 [− log

(
2

1 + eαxβ

)]δ−1{
1− γ1

[
δ,− log

(
2

1 + eαxβ

)]}−1
.

2.2 Illustrations

Figure 1 displays some plots of f(x) and h(x) for different values of δ, α and β. The plots in Figure
1 (a) reveal that f(x) can have reversed-J, right skewed shapes, left-skewed and approximately
symmetric. The plots in Figure 1 (b) indicate that h(x) can have IFR (increasing failure rate),
DFR (decreasing failure rate) and BT (bathtub) shapes. These different kinds of shapes show the
high degree of flexibility of the proposed GPHL distribution in comparison to the former PHL
distribution, as mentioned in Introduction.
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Figure 1: Plots of the (a) GPHL pdf (b) GHPL hrf for certain parameter values.
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The rest of the section is devoted to some analytical study of these shapes.

2.3 Asymptotes

The following result presents the asymptotes for f(x) and h(x).

Proposition 1 We have

lim
x→0

f(x) =


+∞ if δβ < 1,

αδ

δΓ(δ)2δ
if δβ = 1,

0 if δβ > 1,

lim
x→+∞

f(x) = 0

and

lim
x→0

h(x) =


+∞ if δβ < 1,

αδ

δΓ(δ)2δ
if δβ = 1,

0 if δβ > 1,

lim
x→+∞

h(x) =


0 if β < 1,

2α if β = 1,

+∞ if β > 1.

Proof. We proceed by using equivalences of the involved functions.
As x→ 0, since − log(2/(1 + eαx

β
)) ∼ 1− 2/(1 + eαx

β
) ∼ (1/2)αxβ, we have

f(x) ∼ αδβ

Γ(δ)2δ
xδβ−1.

Therefore, as x → 0, if δβ < 1, f(x) → +∞, if δβ = 1, f(x) → αδ/(δΓ(δ)2δ) and if δβ > 1,
f(x)→ 0.

As x→ +∞, since − log(2/(1 + eαx
β
)) ∼ αxβ, we have

f(x) ∼ 2αδβ

Γ(δ)
xδβ−1e−αx

β
.

Hence, for any values of the parameters, as x→ +∞, we have f(x)→ 0.
As x→ 0, we have

h(x) ∼ f(x) ∼ αδβ

Γ(δ)2δ
xδβ−1.

Therefore, as x → 0, if δβ < 1, h(x) → +∞, if δβ = 1, h(x) → αδ/(δΓ(δ)2δ) and if δβ > 1,
h(x)→ 0.

As x→ +∞, since γ1(δ, x) ∼ 1− xδ−1e−x/Γ(δ) and − log(2/(1 + eαx
β
)) ∼ αxβ, we have

S(x) ∼ 1

Γ(δ)
αδ−1xβ(δ−1)e−αx

β
.

Therefore,

h(x) =
f(x)

S(x)
∼ 2αβxβ−1.

Hence, as x→ +∞, if β < 1, h(x)→ 0, if β = 1, h(x)→ 2α and if β > 1, h(x)→ +∞. This ends
the proof of Proposition 1. �
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2.4 Shapes

The shapes of f(x) and h(x) can be described analytically. The critical points of f(x) are the roots
of the equation given by ∂ log[f(x)]/∂x = 0, i.e.,[

β − αβxβeαxβ + αβxβ − eαxβ + βeαx
β − 1

]
log

(
2

1 + eαxβ

)
= (1− δ)αβxβeαxβ .

As usual, if x = x0 is a root, then it corresponds to a local maximum, a local minimum or a point of
inflexion depending on whether λ(x0) < 0, λ(x0) > 0, or λ(x0) = 0, where λ(x) = ∂2 log[f(x)]/∂x2,
i.e.,

λ(x) =
(δ − 1)α2β2x2β−2e2αx

β
{

2− δ + log
(

2

1+eαx
β

)}
[
log
(

2

1+eαx
β

)]2 (
1 + eαxβ

)2 .

Similarly, the critical points of h(x) are the roots of the equation given by ∂ log[h(x)]/∂x = 0, i.e.,

β − αβxβeαxβ + αβxβ − eαxβ + βeαx
β − 1

x(1 + eαxβ )
=

(1− δ)αβxβ−1eαxβ

log
(

2

1+eαx
β

) (
1 + eαxβ

)
− 2αβxβ−1eαx

β

Γ(δ)
(
1 + eαxβ

)2 [− log

(
2

1 + eαxβ

)]δ−1{
1− γ1

[
δ,− log

(
2

1 + eαxβ

)]}−1
.

Here again, if x = x• is a root, then it corresponds to a local maximum, a local minimum or
a point of inflexion depending on whether θ(x•) < 0, θ(x•) > 0, or θ(x•) = 0, where θ(x) =
∂2 log[h(x)]/∂x2. To save place, we omit the analytical expression of θ(x).

These critical points, as well as their nature, can be determined numerically using any mathe-
matical softwares (R, Matlab, Mathematica. . . ).

3 Some properties of the GPHL distribution

3.1 Quantile function

The quantile function of the GPHL distribution, denoted by Q(u), satisfies the equation F (Q(u)) =
Q(F (u)) = u, for any u ∈ (0, 1). After some algebra, it is given by

Q(u) =

{
1

α
log
(

2eγ
−1
1 (δ,u) − 1

)}1/β

, u ∈ (0, 1), (6)

where γ−11 (δ, u) denotes the inverse function of γ1 (δ, u) (the so-called inverse of the regularized
lower incomplete gamma function, see DiDonato and Morris (1986)).

The median is given by Med = Q(1/2). In a similar way, we can also determine the quartiles
and octiles.

The quantile finction is also useful examine the skewness and kurtosis of the GPHL distribution.
One can evaluate the Bowley skewness and the Moors kurtosis, for instance. The Bowley skewness
is given by

B =
Q(3/4) +Q(1/4)− 2Q(2/4)

Q(3/4)−Q(1/4)

and the Moors kurtosis is given by

M =
Q(3/8)−Q(1/8) +Q(7/8)−Q(5/8)

Q(3/4)−Q(1/4)
.
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Further details on the Bowley skewness and Moors kurtosis can be found in Kenney and Keeping
(1962) and Moors (1998), respectively. These measures have the advantages to be less sensitive to
outliers and they exist even for distributions without moments.

A remarkable function related to Q(u), with of statistical importance, is the quantile density
function given by

q(u) =
1

f(Q(u))
=

2Γ(δ)eγ
−1
1 (δ,u)

{
1
α log

(
2eγ

−1
1 (δ,u) − 1

)}1/β−1

αβ(2eγ
−1
1 (δ,u) − 1)

{
γ−11 (δ, u)

}δ−1
e−γ

−1
1 (δ,u)

, u ∈ (0, 1).

The implication of the quantile density function in statistics is discussed in Parzen (1979).

3.2 Some distributional results

Here we develop some results in distribution involving the GPHL distribution.

3.2.1 Simple connexions

There exist connexions between the GPHL distribution and standard distributions. Some of these
connexions are presented below.

Let U be a random variable following the uniform distribution over (0, 1). Then, using the
quantile function Q(u) given by (6), the random variable X defined by

X = Q(U) =

{
1

α
log
(

2eγ
−1
1 (δ,U) − 1

)}1/β

(7)

follows the GPHL distribution.
Now, we say that a random variable follows the gamma distribution Gam(1, δ) if it has the cdf

given by K(x) = γ1(δ, x), x > 0. If X is a random variable following the GPHL distribution, then
the random variable Y defined by

Y = − log

(
2

1 + eαXβ

)
follows the gamma distribution Gam(1, δ).

Also, if Y is a random variable following the gamma distribution Gam(1, δ), since γ(δ, Y ) follows
the uniform distribution on (0, 1), (7) implies that the random variable X defined by

X = Q(γ(δ, Y )) =

{
1

α
log
(
2eY − 1

)}1/β

follows the GPHL distribution.

3.2.2 Some log GPHL distributions

Some log transformations of the GPHL distributions are now investigated, extending those in
(Krishnarani, 2016, Subsection 5.1).

Let X be a random variable following the GPHL distribution.

• Let Y = eX . Then, the corresponding pdf is given by

f(y) =
2αβ{log(y)}β−1eα{log(y)}β

Γ(δ)y
(
1 + eα{log(y)}β

)2 [
− log

(
2

1 + eα{log(y)}β

)]δ−1
, y > 1.

The distribution of Y is called the log positive GPHL distribution.
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• Let Z = e−X . Then, the corresponding pdf is given by

f(z) =
2αβ{− log(z)}β−1eα{− log(z)}β

Γ(δ)z
(
1 + eα{− log(z)}β

)2 [
− log

(
2

1 + eα{− log(z)}β

)]δ−1
, z ∈ (0, 1).

The distribution of Z is called the log negative GPHL distribution.

Simple distributions derived to the GPHL distribution, with one parameter and different
supports, are presented below.

• Let Y = eαX
β
. Then, the pdf of Y is given by

f(y) =
1

Γ(δ) (1 + y)2

[
− log

(
2

1 + y

)]δ−1
, y > 1.

Let Z = e−αX
β
. Then, the pdf of Z is given by

f(z) =
1

Γ(δ) (1 + z)2

[
− log

(
2z

1 + z

)]δ−1
, z ∈ (0, 1).

3.3 Linear expansions for the pdf and cdf

The following result investigates useful expansions for F (x) and f(x) in terms of exponential

function of the form e−sαx
β
, where s denotes an integer.

Proposition 2 The cdf F (x) given by (4) can be expressed as

F (x) =
+∞∑
`,m=0

c`,me
−(`+m)αxβ , x > 0, (8)

where

c`,m =
1

Γ(δ − 1)

+∞∑
k=0

k∑
j=0

(
k + 1− δ

k

)(
k

j

)(
δ + k

`

)(
−`
m

)
(−1)j+k+`2`pj,k

(δ − 1− j)(δ + k)
,

(
b
a

)
denotes the (generalized) binomial coefficient, i.e.,

(
b
a

)
= b(b − 1) . . . (b − a + 1)/a! and pj,k is

calculated recursively by using pj,0 = 1 and, for strictly positive integer k,

pj,k =
1

k

k∑
i=1

[k − i(j + 1)]
(−1)i+1

i+ 1
pj,k−i.

Also, the pdf f(x) given by (5) can be expressed as

f(x) =
+∞∑

`,m=0 (`+m>0)

c∗`,m

[
(`+m)αβxβ−1e−(`+m)αxβ

]
, (9)

where c∗`,m = −c`,m .

Proof. It follows from a general result in (Nadarajah et al., 2015, Section 3) on the gamma-G
family of distributions, with Ḡ(x) as baseline sf, that

F (x) =

+∞∑
k=0

bk[1− Ḡ(x)]δ+k,
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where

bk =
1

(δ + k)Γ(δ − 1)

(
k + 1− δ

k

) k∑
j=0

(−1)j+k

δ − 1− j

(
k

j

)
pj,k.

On the other hand, by the generalized binomial formula and Ḡ(x) = 2/(1 + eαx
β
) = 2e−αx

β
/(1 +

e−αx
β
), we have

[1− Ḡ(x)]δ+k =
+∞∑
`=0

(
δ + k

`

)
(−1)`[Ḡ(x)]` =

+∞∑
`=0

(
δ + k

`

)
(−1)`2`e−`αx

β
[1 + e−αx

β
]−`

=
+∞∑
`,m=0

(
δ + k

`

)(
−`
m

)
(−1)`2`e−(`+m)αxβ .

By combining the equalities above, we obtain the desired expansion for F (x). The expansion for
f(x) follows by differentiation. This ends the proof of Proposition 2. �

One can remark that the expression of the GPHL pdf given by (9) is sums of pdfs of the Weibull

distribution with parameters (` + m)α and β, i.e., with pdf κ`,m(x) = (` + m)αβxβ−1e−(`+m)αxβ ,
x > 0. This expression is useful to have expression of several probabilistic measures. Some of them
are presented in the next subsections.

3.4 Moments and related measures

Hereafter, X denotes a random variable following the GPHL distribution, i.e., having the cdf given
by (4).

Let r be an integer. Then, the (raw) r-th moment of X is given by

µ′r = E(Xr) =

∫ +∞

−∞
xrf(x)dx =

∫ +∞

0
xr

2αβxβ−1eαx
β

Γ(δ)
(
1 + eαxβ

)2 [− log

(
2

1 + eαxβ

)]δ−1
dx.

Since, as x → 0, we have xrf(x) ∼ [1/(2δΓ(δ))]αδβxr+δβ−1 and, as x → +∞, we have xrf(x) ∼
(1/Γ(δ))2αδβxr+δβ−1e−αx

β
, µ′r always exists by using the criteria of the Riemann integrals.

Alternative expressions of this integral are possible via some change of variables, as the following
ones:

µ′r =

∫ +∞

0

{
1

α
log (2ey − 1)

}r/β 1

Γ(δ)
yδ−1e−ydy =

∫ 1

0

{
1

α
log
(

2eγ
−1
1 (δ,u) − 1

)}r/β
du.

This integral can be computed numerically by using any mathematical softwares.
Alternatively, we can use the expression of f(x) given by (9). Hence, we have

µ′r =
+∞∑

`,m=0 (`+m>0)

c∗`,m

∫ +∞

0
xr
[
(`+m)αβxβ−1e−(`+m)αxβ

]
dx

= Γ

(
r

β
+ 1

) +∞∑
`,m=0 (`+m>0)

c∗`,m[(`+m)α]−r/β .

Several quantities can be derived to µ′r. The most important of them are described below. The
mean of X is given by µ′1. Furthermore, the r-th central moment of X is given by

µr = E([X − µ′1]r) =
r∑

k=0

(
r

k

)
(−1)k(µ′1)

kµ′r−k. (10)
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The variance of X is given by µ2 = µ′2− (µ′1)
2. The r-th descending factorial moment of X is given

by

µ′(r) = E[X(X − 1) . . . (X − r + 1)] =
r∑

k=0

ssti(r, k)µ′k,

where ssti(r, k) denotes the Stirling number of the first kind defined by ssti(r, k) = (1/k!)[x(x −
1) . . . (x− r + 1)](k) |x=0.

Also, the cumulants of X can be calculated by the recursive formula given by

κr = µ′r −
r−1∑
k=1

(
r − 1

k − 1

)
µ′r−kκk,

where, as initial value, κ1 = µ′1.
In particular, we have κ2 = µ′2−(µ′1)

2, κ3 = µ′3−3µ′2µ
′
1+2(µ′1)

3 and κ4 = µ′4−4µ′3µ
′
1−3(µ′2)

2+

12µ′2(µ
′
1)

2 − 6(µ′1)
4. The skewness γ1 is given by γ1 = κ3/κ

3/2
2 , the normalized kurtosis γ2 is given

by κ4/κ
2
2 and the non normalized kurtosis is given by β2 = γ2 + 3.

The moment generating function of X is given by

M(t) =

∫ +∞

−∞
etxf(x)dx =

∫ +∞

0
etx

2αβxβ−1eαx
β

Γ(δ)
(
1 + eαxβ

)2 [− log

(
2

1 + eαxβ

)]δ−1
dx.

Since, as x → 0, we have etxf(x) ∼ (1/[2δΓ(δ)])αδβxδβ−1 and, as x → +∞, we have etxf(x) ∼
(1/Γ(δ))2αδβxδβ−1etx−αx

β
, M(t) exists if t ≤ 0 if β > 0 (without restriction, a priori), or t ≤ α

if β = 1, or t ∈ R if β > 1, by using criteria of the Riemann integrals. As for the raw moments,
we can investigate several changes of variables to have a more tractable expression of the integral.
Also, if the raw moments are available, we have

M(t) =

+∞∑
r=0

tr

r!
µ′r.

An alternative expression follows from the expansion of f(x) given by (9). Thus, we have

M(t) =
+∞∑

`,m=0 (`+m>0)

c∗`,m

∫ +∞

0
etx
[
(`+m)αβxβ−1e−(`+m)αxβ

]
dx

=
+∞∑

r,`,m=0 (`+m>0)

c∗`,m
tr

r!
[(`+m)α]−r/βΓ

(
r

β
+ 1

)
.

3.5 Incomplete moments

Let 1A be the indicator function of over an event A, i.e., 1A = 1 is A is satisfied and 1A = 0
elsewhere. Then, the r-th incomplete moment of X is defined by

µ∗r(t) = E
(
Xr1{X≤t}

)
=

∫ t

−∞
xrf(x)dx =

∫ t

0
xr

2αβxβ−1eαx
β

Γ(δ)
(
1 + eαxβ

)2 [− log

(
2

1 + eαxβ

)]δ−1
dx.

Other integral expressions can be given via some change of variables. As for the moments, we can
compute this integral numerically.
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On the other side, by virtue of the linear expansion of f(x) given by (9), we have

µ∗r(t) =
+∞∑

`,m=0 (`+m>0)

c∗`,m

∫ t

0
xr
[
(`+m)αβxβ−1e−(`+m)αxβ

]
dx

=
+∞∑

`,m=0 (`+m>0)

c∗`,m[(`+m)α]−r/βγ

(
r

β
+ 1, (`+m)αtβ

)
.

Some important quantities involving µ∗r(t) with r = 1 are described below. The mean deviation of
X about the mean µ′1 is given by

ξ1 = E(|X − µ′1|) = 2µ′1F (µ′1)− 2µ∗1(µ
′
1).

Similarly, the mean deviation of X about the median Med is given by

ξ2 = E(|X −Med|) = µ′1 − 2µ∗1(Med).

The Bonferroni curve is given by

B(u) =
1

uµ′1
µ∗1(Q(u)) =

1

uµ′1
µ∗1

({
1

α
log
(

2eγ
−1
1 (δ,u) − 1

)}1/β
)
, u ∈ (0, 1).

The Lorenz curve is given by L(u) = uB(u), u ∈ (0, 1). These curves are useful in many areas as
economics, insurance, reliability, demography and medicine.

3.6 Stochastic ordering

A result on the stochastic ordering involving the GPHL distribution with fixed parameters α and
β is presented below.

Proposition 3 Let X be a random variable having the pdf f1(x) given by (5) with parameters δ1,
α and β and Y be a random variable having the pdf f2(x) given by (5) with parameters δ2, α and
β. Then, if δ1 ≤ δ2, we have X ≤lr Y .

Proof. We have

f1(x)

f2(x)
=

Γ(δ2)

Γ(δ1)

[
− log

(
2

1 + eαxβ

)]δ1−δ2
.

Hence, by differentiation, since δ1 ≤ δ2, we have

∂

∂x

f1(x)

f2(x)
=

Γ(δ2)

Γ(δ1)
(δ1 − δ2)

[
− log

(
2

1 + eαxβ

)]δ1−δ2−1 αβxβ−1eαxβ
1 + eαxβ

≤ 0.

Therefore, the ratio function f1(x)/f2(x) is decreasing, implying that X ≤lr Y . This ends the
proof of Proposition 3. �
The complete theory on stochastic ordering can be found in Shaked (1994).

3.7 On a reliability parameter

Here, we investigate a reliability parameter related to the GPHL distribution with fixed parameter
β. This parameter is defined as follows. Let X be a random variable having the pdf f1(x) given by
(5) with parameters δ1, α1 and β and Y be a random variable having the cdf F2(x) given by (4)
with parameters δ2, α2 and β, independent of X. Then, we consider the reliability parameter of the
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GPHL distribution defined by R = P(Y < X). We refer to Kotz et al. (2003) for the implication
of this parameter in the setting of the reliability theory. In terms of integrals, R can be expressed
as

R =

∫ +∞

−∞
f1(x)F2(x)dx

=

∫ +∞

0

2α1βx
β−1eα1xβ

Γ(δ1)
(
1 + eα1xβ

)2 [− log

(
2

1 + eα1xβ

)]δ1−1
γ1

[
δ2,− log

(
2

1 + eα2xβ

)]
dx

=

∫ +∞

0

2α1e
α1y

Γ(δ1) (1 + eα1y)2

[
− log

(
2

1 + eα1y

)]δ1−1
γ1

[
δ2,− log

(
2

1 + eα2y

)]
dy.

This integral can be computed numerically. Also, remark that it is independent of β. A linear
expression can be given by using the linear expressions of F2(x) and f1(x), respectively given by
(8) and (9) with the appropriate notations for the coefficients cs and c∗s according to the definitions
of the parameters δ2, α2 and δ1, α1, i.e.,

F2(x) =
+∞∑
`,m=0

c`,m(δ2, α2)e
−(`+m)α2xβ , f1(x) =

+∞∑
s,t=0 (s+t>0)

c∗s,t(δ1, α1)
[
(s+ t)α1βx

β−1e−(s+t)α1xβ
]
.

Hence,

R =
+∞∑

`,m,s,t=0 (s+t>0)

c`,m(δ2, α2)c
∗
s,t(δ1, α1)

∫ +∞

0
(s+ t)α1βx

β−1e−[(`+m)α2+(s+t)α1]xβdx

=
+∞∑

`,m,s,t=0 (s+t>0)

c`,m(δ2, α2)c
∗
s,t(δ1, α1)

(s+ t)α1

(`+m)α2 + (s+ t)α1
.

Furthermore, if δ1 = δ2 and α1 = α2, X and Y becomes identically distributed and we rediscover
the value R = 1/2.

3.8 Order statistics

The order statistics are widely used in many statistical applications. Most of them are described
in David and Nagaraja (2003), for instance. This subsection is devoted to the order statistics of
the GPHL distribution. Let X1, . . . , Xn be a random sample from the GPHL distribution and Xi:n

be the i-th order statistic, i.e., the i-th random variable such that, by arranging X1, . . . , Xn in
increasing order, we have X1:n ≤ X2:n ≤ . . . ≤ Xn:n. In particular, the first order statistic is given
by X1:n = inf(X1, X2, . . . , Xn) and the last order statistic is given by Xn:n = sup(X1, X2, . . . , Xn).
Then, the cdf of Xi:n is given by

Fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
k=0

(−1)k

k + i

(
n− i
k

)
[F (x)]k+i

=
n!

(i− 1)!(n− i)!

n−i∑
k=0

(−1)k

k + i

(
n− i
k

){
γ1

[
δ,− log

(
2

1 + eαxβ

)]}k+i
, x > 0.
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The corresponding pdf is given by

fi:n(x) =
n!

(i− 1)!(n− i)!
f(x)[F (x)]i−1 [1− F (x)]n−i

=
n!

(i− 1)!(n− i)!
2αβxβ−1eαx

β

Γ(δ)
(
1 + eαxβ

)2 [− log

(
2

1 + eαxβ

)]δ−1{
γ1

[
δ,− log

(
2

1 + eαxβ

)]}i−1
×
{

1− γ1
[
δ,− log

(
2

1 + eαxβ

)]}n−i
.

In particular, the pdf corresponding to X1:n is given by

f1:n(x) = n
2αβxβ−1eαx

β

Γ(δ)
(
1 + eαxβ

)2 [− log

(
2

1 + eαxβ

)]δ−1{
1− γ1

[
δ,− log

(
2

1 + eαxβ

)]}n−1
and the pdf corresponding to Xn:n is given by

fn:n(x) = n
2αβxβ−1eαx

β

Γ(δ)
(
1 + eαxβ

)2 [− log

(
2

1 + eαxβ

)]δ−1{
γ1

[
δ,− log

(
2

1 + eαxβ

)]}n−1
.

The r-th moment of Xi:n is given by

µor = E(Xr
i:n) =

∫ +∞

−∞
xrfi:n(x)dx

=

∫ +∞

0
xr

n!

(i− 1)!(n− i)!
2αβxβ−1eαx

β

Γ(δ)
(
1 + eαxβ

)2 [− log

(
2

1 + eαxβ

)]δ−1
×
{
γ1

[
δ,− log

(
2

1 + eαxβ

)]}i−1{
1− γ1

[
δ,− log

(
2

1 + eαxβ

)]}n−i
dx

=
n!

(i− 1)!(n− i)!

∫ +∞

0

{
1

α
log (2ey − 1)

}r/β 1

Γ(δ)
yδ−1e−y[γ1(δ, y)]i−1[1− γ1(δ, y)]n−idy

=
n!

(i− 1)!(n− i)!

∫ 1

0

{
1

α
log
(

2eγ
−1
1 (δ,u) − 1

)}r/β
ui−1(1− u)n−idu.

This integral can be evaluated numerically.

3.9 Ideas of extensions

Following the spirit of (Krishnarani, 2016, Subsection 5.2), a prime idea of extension of the GPHL
distribution is to introduce a new parameter τ by considering the cdf

F (x) = γ1

[
δ,− log

(
1 + τ

1 + τeαxβ

)]
, δ, α, β, τ, x > 0.

The role of τ is to skew the tail of the distribution, by modulating the influence of the exponential
function eαx

β
. The related distribution is called the extended GPHL (EGPHL) distribution.

Another idea of extension is to define some general GPHL-G families of distributions. Two of
them are described below. Let G(x) be a cdf of an univariate continuous distribution. Then we
can define the two following GPHL-G families of distributions:

• the odd GPHL-G family of distributions characterized by the cdf given by

F (x) = γ1

[
δ,− log

(
2

1 + eα[G(x)]β/(1−G(x))β

)]
, δ, α, β > 0, x ∈ R.
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• the log GPHL-G family of distributions characterized by the cdf given by

F (x) = γ1

[
δ,− log

(
2

1 + eα{− log[1−G(x)]}β

)]
, δ, α, β > 0, x ∈ R.

New flexible statistical models based on these ideas can be elaborated. This needs however
further developments and validations, that we leave for a future work.

4 Estimation of parameters

4.1 Maximum likelihood estimation

We consider the estimation of the unknown parameters of the GPHL distribution by the method
of maximum likelihood. Let x1, . . . , xn be a sample of size n from the GPHL distribution (char-
acterized by the cdf given by (4) and with pdf (5)). The log-likelihood function for the vector of
parameters Θ = (δ, α, β)> can be expressed as

`(Θ) = n log

(
2αβ

Γ(δ)

)
+ (β − 1)

n∑
i=1

log(xi) + α

n∑
i=1

xβi − 2

n∑
i=1

log
(

1 + eαx
β
i

)
+ (δ − 1)

n∑
i=1

log

[
− log

(
2

1 + eαx
β
i

)]
.

The components of the score vector U(Θ) are given by

Uδ(Θ) =
∂`(Θ)

∂δ
= −nΓ′(δ)

Γ(δ)
+

n∑
i=1

log

[
− log

(
2

1 + eαx
β
i

)]
,

Uα(Θ) =
∂`(Θ)

∂α
=
n

α
+

n∑
i=1

xβi −
n∑
i=1

xβi e
αxβi

1 + eαx
β
i

+ (δ − 1)
n∑
i=1

xβi e
αxβi[

−
(

1 + eαx
β
i

)
log

(
2

1+eαx
β
i

)] ,
Uβ(Θ) =

∂`(Θ)

∂β
=
n

β
+

n∑
i=1

log(xi) + α

n∑
i=1

xβi log(xi)− 2α

n∑
i=1

xβi log(xi)e
αxβi

1 + eαx
β
i

+ α(δ − 1)

n∑
i=1

xβi log(xi)e
αxβi[

−
(

1 + eαx
β
i

)
log

(
2

1+eαx
β
i

)] .
Setting these equations equal to zero and solving them simultaneously also yields the maximum
likelihood estimates (MLEs) of the model parameters. They cannot be solved analytically but some
Newton-Raphson type algorithms can be applied to obtain numerical evaluations of these estimates.
Under some regularity conditions, it is well-known that the maximum likelihood estimators are
asymptotically unbiased, convergent and normal. These properties allow the construction of crucial
statistical objects as confidence intervals and statistical tests. All the related theory can be found
in Cox and Hinkley (1974). Some properties of the MLEs are illustrated in the next subsection via
a simulation study.

4.2 Monte Carlo simulation study

Here, we evaluate the precision of the MLEs in the estimation of the GPHL parameters by using
Monte Carlo simulations. The simulation study is repeated 5000 times each with sample sizes
n = 50, 100, 300. The following parameter scenarios are considered: I: δ = 0.5, α = 0.5 and β = 1,
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II: δ = 0.5, α = 1.5 β = 1, III: δ = 1.5, α = 0.5 and β = 1, IV: δ = 1.5, α = 1.5 and β = 1,V:
δ = 1.5, α = 2.5 and β = 0.5,VI: δ = 0.7, α = 0.3 and β = 2.5.

Table 1 gives the average biases (Bias) of the MLEs, mean square errors (MSE) and model-
based coverage probabilities (CPs) for the parameters δ, α and β under these scenarios and the
different sample sizes. Based on the simulation results, we conclude that the MLEs perform well in
estimating the parameters of the GPHL distribution. Furthermore, the CPs of the confidence in-
tervals are quite close to the 95% nominal levels. Therefore, the MLEs and their asymptotic results
can be adopted for estimating and constructing confidence intervals for the model parameters.

Table 1: Monte Carlo simulation results: Biases, MSEs and CPs.

I II III

Parameter n Bias MSE CP Bias MSE CP Bias MSE CP

δ 50 0.010 0.037 0.91 0.052 0.072 0.98 0.033 0.407 0.89
100 0.013 0.023 0.94 0.010 0.026 0.98 0.063 0.214 0.94
300 0.007 0.008 0.95 0.000 0.006 0.95 0.040 0.075 0.96

α 50 0.187 0.491 1.00 0.570 4.077 0.88 0.209 0.465 0.99
100 0.062 0.058 0.98 0.305 1.390 0.92 0.062 0.093 0.98
300 0.013 0.013 0.96 0.086 0.208 0.95 0.011 0.014 0.96

β 50 0.343 1.228 0.99 0.495 3.206 0.86 0.374 1.287 0.98
100 0.131 0.275 0.97 0.269 1.115 0.91 0.115 0.326 0.97
300 0.027 0.071 0.96 0.077 0.179 0.95 0.020 0.076 0.96

IV V VI

δ 50 0.271 0.938 0.99 0.358 1.035 1.00 −0.090 0.057 0.87
100 0.122 0.294 0.97 0.067 0.273 1.00 −0.075 0.032 0.90
300 0.022 0.059 0.95 0.002 0.056 0.99 −0.051 0.013 0.93

α 50 0.597 4.007 0.86 0.511 5.886 0.82 0.163 0.103 1.00
100 0.256 1.511 0.90 0.638 4.383 0.90 0.093 0.029 1.00
300 0.064 0.166 0.94 0.225 1.097 0.94 0.044 0.006 0.99

β 50 0.513 3.132 0.84 0.299 1.170 0.74 0.588 1.074 0.96
100 0.218 1.193 0.89 0.303 0.853 0.86 0.341 0.426 0.94
300 0.056 0.146 0.94 0.097 0.195 0.92 0.146 0.106 0.95

5 Illustrations with real data sets

In this section, the GPHL model is applied to model two real life data sets. We compare the fits of
the GPHL model with the exponentiated Nadarajah-Haghighi (ENH) model defined by Lemonte
(2013), the beta-exponential (BE) model introduced by Nadarajah and Kotz (2006) and the PHL
model proposed by Krishnarani (2016). We estimate the model parameters by using the maximum
likelihood method. We compare the goodness-of-fit of the models using Cramér–von Mises (W ∗)
and Anderson-Darling (A∗) statistics. Their mathematical definitions can be found in Chen and
Balakrishnan (1995). In addition, we consider the Kolmogorov-Smirnov (K-S) statistic. In general,
the smaller the values of these statistics, the better the fit to the data. The cdfs of the GPHL,
ENH, BE and PHL models are given by:
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Table 2: MLEs, their SEs (in parentheses) and goodness-of-fit measures for the strength data.

Distribution Estimates A∗ W ∗ K-S

GPHL(δ, α, β) 0.8514 5.5887 0.0813 0.9246 0.16780 0.1396
(0.2858) (1.3054) (0.0810)

ENH(β, α, λ) 9.3842 21.2951 0.0421 2.7858 0.5312 0.2107
(1.8948) (16.5962) (0.0342)

BE(a, b, λ) 16.7598 6.8285 0.8587 3.4713 0.6643 0.2265
(3.5990) (8.4755) (0.6948)

PHL(α, β) 5.0492 0.1252 0.9590 0.1974 0.1890
(0.5193) (0.0385)

FGPHL(x, δ, α, β) = γ1

[
δ,− log

(
2

1 + eαxβ

)]
, δ, α, β, x > 0,

FENH(x, β, α, λ) =
(

1− e1−(1+λx)α
)β
, β, α, λ, x > 0,

FBE(x, a, b, λ) =
1∫ 1

0 t
a−1(1− t)b−1dt

∫ 1−e−λx

0
ta−1(1− t)b−1dt, a, b, λ, x > 0,

FPHL(x, α, β) =
2

1 + eαxβ
, α, β, x > 0.

Strength data

The first data set is taken from Smith and Naylor (1987) which represents the strength of 1.5 cm
glass fibers, measured at National physical laboratory, England. The data are: 0.55, 0.93, 1.25,
1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61,
1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24,
0.81, 1.13, 1.29, 1.48, 1.50, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 1.24, 1.30, 1.48, 1.51, 1.55,
1.61, 1.63, 1.67, 1.70, 1.78, 1.89. The MLEs (with SEs in parenthesis), A∗, W ∗ and K-S statistics
are listed in Table 2. All three goodness-of-fit statistics indicate that the GPHL model provides
the best fit. For a visual comparison, the histogram of the data estimated pdf and cdf, P-P plot
and Q-Q plot are displayed in Figure 2. Clearly, the GPHL model fits the data more closely.

Breaking stress of carbon fibers (GPa)

The second data are taken from Nichols and Padgett (2006) on the breaking stress of carbon fibers
(in Gba). The data are: 0.39, 3.70, 4.42, 2.67, 1.25, 1.89, 2.35, 2.74, 2.41, 2.93, 4.38, 2.88, 2.55,
2.73, 3.19, 3.22, 1.84, 2.82, 2.59, 2.50, 3.22, 3.39, 2.05, 2.03, 3.60, 1.69, 2.81, 3.68, 3.65, 1.61, 3.11,
3.28, 4.20, 2.48, 3.75, 2.12, 3.27, 3.09, 3.33, 0.85, 2.43, 3.15, 2.87, 1.87, 2.55, 1.61, 2.95, 1.08, 1.47,
3.15, 3.31, 2.79, 2.97, 2.56, 3.11, 4.90, 3.31, 4.70, 3.39, 1.80, 3.56, 1.57, 2.85, 2.03, 2.96, 2.53.The
MLEs (with SEs in parenthesis), A∗, W ∗ and K-S statistics are listed in Table 3. Again, all
three goodness-of-fit statistics indicate that the GPHL model provides the best fit. For a visual
comparison, the histogram of the data estimated pdf and cdf, P-P plot and Q-Q plot are displayed
in Figure 3. We observe that the GPHL model fits well the data.
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Table 3: MLEs, their SEs (in parentheses) and goodness-of-fit measures for the breaking stress of
carbon fibers.

Distribution Estimates A∗ W ∗ K-S

GPHL(δ, α, β) 1.0482 2.8713 0.0621 0.4029 0.0663 0.0743
(0.3983) (0.7405) (0.0752)

ENH(β, α, λ) 4.5816 6.0911 0.0727 0.9009 0.1722 0.1143
(0.8390) (2.0535) (0.0280)

BE(a, b, λ) 7.4229 6.0563 0.3060 1.4260 0.2657 0.1371
(1.3408) (4.0672) (0.1577)

PHL(α, β) 2.9579 0.0537 1.4074 0.3665 0.1746
(0.2949) (0.0204)
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Figure 2: The fitted pdfs, cdfs, Q-Q and P-P plots for the strength data.
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Figure 3: The fitted pdfs, cdfs, Q-Q and P-P plots for the breaking stress of carbon fibers.

6 Concluding remarks

A new distribution on the positive real-line is constructed using the gamma-G family of distri-
butions introduced by Zografos and Balakrishnan (2009) and the power half-logistic distribution
introduced by Krishnarani (2016). It is called the gamma power half-logistic distribution (GPHL
for short). Among its advantages, the GPHL distribution possesses a hazard rate function with
very flexible behavior. We also investigate several of its analytical properties as quantiles, skew-
ness, kurtosis, moments, incomplete moments, mean deviations, Bonferroni and Lorenz curves,
stochastic ordering, reliability parameter and distribution of order statistics. Then, the estimation
of the GPHL model parameters are done by using the maximum likelihood function. Finally, the
GPHL model is used to analyze two real data sets in order to illustrate its usefulness. Also, some
possible extensions of the GPHL model are introduced, investigations on their applicability will be
conducted in a future work.
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