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Abstract 

1. When they visit and revisit specific areas, animals may reveal what they need from their home 

range and how they acquire information. The temporal dimension of such movement recursions, 

i.e., periodicity, is however rarely studied, yet potentially bears a species, population, or 

individual-specific signature.  

2. A recent method allows estimating the contribution of periodic patterns to the variance in a 

movement path. We applied it to 709 individuals from 5 ungulate species, looking for species 

signatures in the form of seasonal variation in the intensity of circadian patterns.  

3. Circadian patterns were commonplace in the movement tracks, but the amount of variance they 

explained was highly variable among individuals. It increased in intensity during spring and 

summer, when key resources were spatially segregated, and decreased during winter, when 

food availability was more uniformly low. Other periodicity-inducing mechanisms supported by 

our comparison of species- and sex-specific patterns involve young anti-predator behavior, 

territoriality, and behavioral thermoregulation. 

4. Model-based continuous-time movement metrics represent a new avenue for researchers 

interested in finding individual-, population-, or species-specific signatures in heterogeneous 

movement databases featuring various study designs and sampling resolutions. However, we 

observed large amounts of individual variation, so comparative analyses should ideally use both 

GPS and animal-borne loggers to augment the discriminatory power; and be based on large 

samples. We briefly outline potential uses of the intensity of circadian patterns as a metric for 

the study of animal personality and community ecology.    
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Introduction 

Animals rarely use space in a homogeneous manner, they stay longer in some locations than others, 

or return more frequently. This has motivated a wide array of studies into “movement recursion” 

(reviewed by Berger-Tal & Bar-David 2015). Movement recursions are a characteristic feature of 

home-range bounded animals, which by definition repeatedly use the same locations (Bastille-

Rousseau et al., 2016; Riotte-Lambert et al., 2017). Movement recursions are furthermore significant 

to ecologists because the characteristics of revisited places offer insights into the animals’ motives 

and cognition (Nathan et al., 2008).  For example, the recursion analysis of the movements of 

colonial birds would highlight their central-place foraging behavior during the breeding season and 

their ability to find and return to their colony each breeding season.  

Another, less studied aspect of movement recursion is the temporal dimension (Bar-

David et al., 2009; Li et al., 2011; Riotte-Lambert et al., 2013; Péron et al., 2016, 2017). Animals may 

or may not maintain a constant time period between recursions, i.e., a fixed movement schedule. 

For a home-range-bounded animal, the question of when to use a location is at least as important as 

the question of whether to use it or not. For example, many species shift to nocturnal schedules 

when persecuted by humans during the day (Kitchen et al., 2000; Di Bitetti et al., 2008; Tolon et al., 

2009). This example highlights how the match between the periodicity in space use and the 

periodicity in abiotic factors such as daylight does not compulsorily indicate a direct causal relation 

but can instead be mediated by biotic interactions. It can be difficult to decipher the two pathways. 

For example, animals can move periodically to avoid heat, an abiotic factor (Long et al., 2014; 

Marchand et al., 2014) or to avoid predation, a biotic factor (Laundré et al., 2001; Marchand et al., 

2014; Tolon et al., 2009). Both mechanisms would in many situations yield the same pattern of 

periodic preference for cover vs. open habitat. Periodic patterns of space use may furthermore also 

originate from the sequential exploitation of segregated resources, i.e., cases where animals follow 

the same optimal path between different resources patches every day. The most striking example of 
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this mechanism is perhaps the diel vertical migration of many marine invertebrates (Lampert, 1989), 

which has a major influence on foraging patterns at upper trophic levels (Mukhin et al., 2009; Cruz et 

al., 2013; Péron et al., 2016). There are many other examples of species that alternate between 

feeding areas and breeding areas (e.g., Rothstein, Verner & Steven 1984; Péron et al. 2016). Lastly, 

periodic patterns of space use may also be self-generating. The most intuitive example is the cycle of 

sleep and wake periods (Panda et al., 2002; Merrow et al., 2005), which constrains space use in 

almost every species and can be represented as an intrinsic accumulating process . Other self-

generating mechanisms involve resource depletion/recovery cycles (Bar-David et al., 2009; Ohashi & 

Thomson, 2009). “Trap-lining” by some hummingbirds and bumblebees is an example of such a 

process: individuals establish a circuit of nectar-producing flowers that they periodically revisit in 

sequence, allowing time for the replenishment of nectar stocks between two visits to a same flower 

(Ohashi & Thomson, 2009).  

We thus have a large array of mechanisms known or suspected to yield periodic patterns 

of space use. Some mechanisms involve a direct response to periodicity in abiotic factors, in link with 

intrinsic needs (sleep, thermoregulation). Some entail a mediation by biotic interactions (predation, 

competition). A minority of proposed mechanisms involve no link with periodic abiotic factors 

(resource depletion/recovery cycles). We currently have little insights into how frequently these 

different mechanisms occur and how significant they are relative to other movement processes. To 

address that, we leveraged a recent method to extract the amount of variance explained by periodic 

patterns in a movement path. The method is relatively robust to variation in sampling design, 

allowing us to compare periodic patterns across species, habitats, and seasons.  

Ungulates are particularly suited to perform a comparative analysis of periodic patterns 

of space use because they have been repeatedly documented to alternate between exposed feeding 

grounds with high predation risk, high thermoregulation costs, or both, and concealed roosting spots 

with low predation risk, low thermoregulation costs, or both (Brown et al., 1999; Lima & Bednekoff, 
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1999; Laundré et al., 2001; Di Bitetti et al., 2008; Tolon et al., 2009; Riotte-Lambert et al., 2013; Long 

et al., 2014; P. Marchand et al., 2014; Pascal Marchand et al., 2014; De Groeve et al., 2016). We 

collated a large long-term database of movement data from five species of ungulates in France: roe 

deer (Capreolus capreolus, 298 individuals), red deer (Cervus elaphus, 92 individuals), Mediterranean 

mouflon (Ovis gmelini musimon x Ovis sp., 159 individuals), Alpine chamois (Rupicapra rupicapra, 

112 individuals), and Alpine ibex (Capra ibex, 48 individuals). We looked for the archetypal way in 

which circadian patterns of space use varied throughout the year in each species and whether 

differences in life history or habitat are associated with specific periodic patterns of space use.  

Since daylight influences both predation risk and thermoregulation costs, the most intense 

periodicity was expected to be the circadian one, i.e., a daily repetition of space use routines. 

However, well-documented differences in ungulate life history traits (Table 1) were expected to 

influence the season during which this periodicity would occur and how much variance it would 

explain. We formulated the following predictions pertaining to seasonal variation in circadian 

patterns (Table 2): 

(1) Circadian patterns should be dampened in winter, when the resources are uniformly of 

poor quality, compared to spring and summer, when the environment is more heterogeneous. 

(2) Neonatal anti-predator behavior (hiding or following; Lent 1974) was expected to 

influence the landscape of fear. We expected a peak in the intensity of circadian patterns of space 

use during the parturition period (May-June) for “hider” species (red deer and roe deer), but not for 

“follower” species (mouflon, chamois and ibex). The young of hider species remains motionless in a 

concealed spot, meaning the mother needs to periodically visit them to suckle, whereas the young 

of follower species start to follow their mother shortly after birth. 

(3) Among follower species, some species exhibit a more flexible pattern of association 

between mother and young than others. In chamois and ibex, females may temporarily leave their 

kids under the supervision of group mates, a behavior known as crèche or nursery formation 
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(Ruckstuhl & Ingold, 1998). If it occurred, this behavior would yield the same type of periodic 

patterns as the hiding behavior, except in June-July, not May-June, because crèches form when 

young are already quite large.  

(4) Regarding the role of thermal constraints, we expected a contrast between mouflon and 

other species. Mouflon are known to thermoregulate behaviorally during the summer in our study 

population (Bourgoin et al., 2011; P. Marchand et al., 2014). The other species either have access to 

widespread shaded forage all year long (roe deer, red deer) or live in alpine environments (chamois, 

ibex). Chamois and ibex have elsewhere been documented to move upwards in summer which 

allows them to avoid both thermal stress and competition with livestock (Mason et al., 2014, 2017). 

Although this type of movement was not studied in our populations, we assumed nevertheless that 

chamois and ibex were less exposed to thermal stress than mouflon in their respective summer 

ranges. We therefore predicted that only mouflon would exhibit an increase in circadian patterns 

during the summer.   

Some ungulates are also territorial. Territorial animals ‘patrol’ territory borders to deposit 

olfactory marks, advertise ownership vocally, or to physically chase intruders (Moorcroft et al., 2006; 

Giuggioli et al., 2011; Mahoney & Young, 2017). These behaviors are strongly suspected to yield 

periodic patterns (Péron et al., 2016, 2017). In our study, only roe deer males are territorial (Liberg 

et al., 1998). 

(5) In roe deer, assuming that territories were small enough to patrol the entire border within 

a single day, or otherwise that territory defense was ritually performed every day, we expected that 

space use by male roe deer would be more circadian between March and October (territorial 

season) than during the rest of the year, that males would be more circadian than females, and that 

males from forest would be more circadian than males from cultivated land. The latter prediction 

stems from the fact that the social organization of roe deer changes with habitat in the study area. In 

forest, habitat is more homogeneous, home ranges are smaller, and population is denser than in 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

cultivated habitat (A. J. Mark Hewison et al., 2007). The species is also more gregarious in open than 

closed habitat. 

Lastly, we will use our results to highlight the potential of the method to extract 

individual-, population-, and species-specific signatures from noisy movement data. Indeed, spectral 

analysis methodologies are relatively robust to variation in sampling design (cf. Method section), and 

the above list of mechanisms involves defining aspects of an animal’s ecology, which looked 

promising for those needing to extract standardized metrics from heterogeneous animal tracking 

databases. 

Material and methods 

MEASURING THE INTENSITY OF CIRCADIAN PATTERNS OF SPACE USE IN ANIMAL 

TRACKING DATA 

The method is a type of spectral analysis: we fit sinusoids to the movement data and look for the 

sinusoids that contribute the most to the variance in the movement data. Our analyses are based on 

the “periodic-mean model” from Péron et al. (2017) in which temporal autocorrelation is taken into 

account when fitting the sinusoids by way of a Kalman filter to compute the model likelihood 

(Fleming et al., 2017). In this model, the focal animal is attracted to a location that oscillates through 

time, while simultaneously being driven away from that location by random deviations and 

maintaining continuity in its speed and direction. This model generalizes the Ornstein-Uhlenbeck 

model (OU a.k.a. mean-reverting random walk; Dunn & Gipson 1977; Blackwell 1997) by replacing 

the constant mean term of the OU model by a periodic function (Péron et al., 2017) and by 

considering temporal autocorrelation in both the position and the velocity (Fleming et al., 2014). We 

fixed the period to one day (circadian period) after preliminary analyses and following the biology of 

the study species (cf. list of hypotheses in the introduction). 
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For each individual and month, we computed the intensity of circadian patterns of space 

use, denoted    (Eq. 1; Péron et al. 2017).    is analogous to the percentage of the variance in the 

movement path that was explained by the periodic pattern. It is reported in % points. 

Eq. 1 

   
 

   
     

       
      

 

 

   

        

  

K is the number of harmonics in the preferred model,    and    are the amplitudes of the cosine 

and sine waves, and    is the variance-covariance matrix of the non-periodic stochastic component 

of the movement.  

We used the R-package ctmm (Calabrese, Fleming & Gurarie, 2016; Fleming & Calabrese, 

2016) to fit the model to the tracking data and estimate   . We fit the model separately for each 

individual*month combination. We used the Akaike Information Criterion corrected for finite sample 

size (AICc) to decide whether any circadian signal was present, and how many harmonics of this 

periodicity were detectable (Péron et al. 2017). The AICc was also used to select other features of 

the model, as described by Calabrese, Fleming & Gurarie (2016).  

NOTE ON PERIODS GREATER THAN ONE DAY 

The framework allows exploration of periods other than one day, either by following the same 

process as above but with another period (e.g., one week, one lunar month, one year) which may 

superimpose on the circadian period or act in isolation, or by fitting a ‘circulation model’ of which 

the period would be estimated as a model parameter (Péron et al. 2017). Preliminary analyses 

indicated that periods longer than a day were rare in our study individuals. 

FIELD METHODS AND STUDY SITES 

Each dataset was collected as part of long-term research programs into the biology of each species; 

only a subset of the authors were involved in each program; the “we” in this section is colloquial. 
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We monitored adult roe deer of both sexes in Aurignac from 2003 onwards. The Aurignac study site 

is a 12,000-ha rural and hilly region in southwest France (N 43°17, E 0°53; 350-450 m.a.s.l.) with two 

large forest patches (672 and 463 ha) and numerous smaller ones. We distinguished two types of 

habitat depending on the extent of forest in a deer’s home range: mostly forest or mostly open 

mosaic habitat. Roe deer are subject to hunting in Aurignac (drive hunts in fall-winter, stalking in 

summer). We captured roe deer in winter using a well-tested drive-netting method, with 30-100 

beaters and up to 4 km of nets. We equipped deer with GPS collars (Lotek 3300 GPS, Lotek 3300GSM 

or VECTRONIC Aerospace GmbH GPS Plus). We only analyzed data from adults (>1 year old) in this 

study. Collars were programmed to obtain one GPS fix every 4 hours (2003-2004) or every 6 hours 

(subsequent years). In some individuals, we also programmed specific days during which we 

recorded one location every 10 min. A few collars were also programmed to record one GPS fix 

every hour. The monitoring period (including individuals that were fitted multiple times) lasted on 

average 372 days per individual (± standard error 338). Further details about the field methods can 

be found in Morellet et al. (2011). 

We monitored adult Mediterranean mouflon of both sexes with GPS collars from 2010 onwards in 

the Caroux-Espinouse massif, a 17,000-ha hilly region in southern France (N 43°38, E 2°58; 390-1124 

m.a.s.l.), where mouflon are distributed in and outside of a hunting-free reserve. Preliminary 

analyses indicated that hunting did not have a major influence on periodic patterns (Fig. 1). We 

distinguished mouflon whose home range is mostly in the reserve and those whose home range is 

mostly out of the reserve. We captured mouflon in spring and fitted them with GPS collars (Lotek 

3300S revision 2). Collars were programmed to record locations on even hours on one day and odd 

hours on the other day (12 locations per day). The monitoring period lasted on average 411 days per 

individual (± standard error 297). Further details about the field methods for the mouflon study can 

be found in Marchand et al. (2014a). 
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We monitored adult female red deer in La Petite Pierre National Hunting and Wildlife Reserve. This 

is a 2,760-ha forest in northeastern France (N48°49, E7°20; 250-320 m.a.s.l.). Red deer are hunted in 

autumn. From 2002 onwards, we captured  red deer using drive-netting or traps and fitted them with 

GPS collars Lotek 3300S, 3300L, 7000 and 4400M. Collars were programmed to obtain the location 

of the red deer with a schedule of 1 GPS fix every 4 or 6 hours. For one day each year, additional GPS 

fixes were recorded every 15 or 30 min. The monitoring period lasted on average 317 days per 

individual (± standard error 281). Further details about the field methods for the red deer study can 

be found in Richard et al. (2013). 

We monitored adult female Alpine chamois with GPS-collars from 2003 onwards in the Bauges 

hunting reserve (N45°41, E6°08; 800-2217 m.a.s.l.), a 5200-ha mountainous area with a mosaic of 

forest and alpine meadows. Guided hunts are organized in autumn. We captured chamois in 

summer and fitted them with GPS collars (Lotek 3300S or Vectronics VERTEX Plus). Collars were 

programmed to records locations every 10 minutes, 20 minutes, or 4 hours, depending on the year 

and period of the year. The monitoring period lasted on average 406 days per individual (± standard 

error 212). For this study, we only analyzed the data from females (because too few males were 

fitted). Further details about the field methods for the chamois study can be found in Darmon et al. 

(2014). 

We monitored adult Alpine ibex of both sexes with GPS-collars from 2013 onwards in the Bargy 

mountain range (N46°1', E6°29'; 1380-2230 m.a.s.l.), a mountain area with alpine vegetation. The 

Bargy ibex population was recently partially culled following an epidemy of brucellosis; culling 

operations were conducted in October 2013 and 2015 (respectively 233 and 70 ibexes were culled). 

Otherwise the species is strictly protected (not hunted). We captured most ibexes in spring and a 

few in autumn. We fitted them with VECTRONIC Aerospace GmbH GPS Plus collars. Collars were 

programmed to records locations every hour during one year (females) or two years (males). The 
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monitoring period lasted on average 406 days per individual (± standard error 212). Further details 

about the field methods for the Alpine ibex study can be found in Marchand et al. (2017). 

DATA SELECTION 

For each month, we selected the individuals that had a median sampling interval below 4 hours 

during the focal month, and that were monitored for at least 14 days of the focal month. This 

procedure yielded an ensemble of 2799 individual*month datasets for roe deer in Aurignac, 945 

individual*month datasets for red deer in La Petite-Pierre, 1717 individual*month datasets for 

mouflon in the Caroux, 1184 individual*month datasets for chamois in the Bauges, and 343 

individual*month datasets for ibex in the Bargy. For each individual*month dataset, we discarded 

location records more than four standard deviations from the centroid (roe deer) or more that 6 

standard deviations (other species) (0-3% of records depending on individual; up to 8% in a few 

tracks when collars kept recording data after the end of the deployment). We visually checked that 

we did not remove biologically significant excursions and that all discarded locations were indeed 

spurious. We assumed that the telemetry noise was negligible once these outliers were removed. 

POST-HOC REGRESSIONS 

Separately for each species, we used cyclic penalized cubic regression splines (function gam from R-

package mgcv with option “cc” in the smoother) to regress the intensity of circadian patterns of 

space use    against the month of the year, assuming a zero-inflated quasi-Poisson distribution. The 

zero-inflation accommodated the fact that    was estimated to zero if the circadian periodicity was 

not selected during the model selection procedure. We chose the minimum possible number of 

knots (k = 4) instead of optimizing k using the built-in generalized cross-validation routine, because 

the gam.check diagnosis revealed that the amount of missed features (k-index metric; Wood, 

2017) did not improve with the number of knots, while the statistical power declined and over-

fitting behavior (wiggliness) increased with the number of parameters. 
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As part of the test of our prediction about the role of territoriality, when both sexes were monitored 

(roe deer, mouflon, ibex) we considered the two-way interaction between month and sex. When 

two habitat types were identified (roe deer: forest/mosaic; mouflon: reserve/not reserve) we also 

considered the two-way interaction between month and habitat. To account for individual variation, 

we also considered the random effect of individual identity on the intercept and on the fixed effect 

of month (linear, quadratic and cubic), implemented through the analogy between a penalized 

spline with a ridge penalty and a Gaussian random effect (option “re”). Finally, to control for the 

fact that coarser sampling resolutions make it less likely that periodic patterns of space use are 

detected (Péron et al. 2017; Table S2 in Appendix S1), we included the fixed effect of the sampling 

interval (continuous variable), both on the intercept and in interaction with the fixed effect of 

month. Figures were drawn for a sampling resolution of one hour. Finally, we weighed all the 

regressions by the inverse of the sampling variance of the    estimates. The full details of the 

combinations of model features that we considered is given in Appendix S1. We used the Akaike 

Information Criterion to select the preferred combination (Table S1 in Appendix S1).  

In addition to the sex- and habitat-effects in the regressions, we tested our predictions using the 

presence or absence of seasonal peaks in the intensity of circadian patterns of space use. These 

seasonal peaks were detected visually on plots of model predictions of the species- and month-

specific expected intensity of circadian patterns of space use. 

Results 

Depending on species, between 25% and 50% of the variance in the intensity of circadian patterns of 

space use was accounted for by individual and temporal factors (Table S2 in Appendix S1).  

SEASONAL PATTERNS  

All species exhibited the least amount of periodicity in January-February (Fig. 2), as predicted. As a 

side note, lighter species (roe deer and mouflon; Table 1) exhibited the most winter periodicity, 
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however mouflon experienced much harsher winters than roe deer yet exhibited similar levels of 

winter periodicity. 

YOUNG ANTI-PREDATOR BEHAVIOR 

Red deer met our prediction that hider species should exhibit a peak in circadian patterns after 

parturition (Fig. 2b). Roe deer did not meet the prediction: the intensity of circadian patterns was 

not higher in spring than the rest of the year, nor were females more circadian than males in spring 

(Fig. 2a). Both mouflon (whose peak was later in the year and extended into summer; Fig. 2d) and 

ibex (which exhibited relatively constant periodicity outside of the winter; Fig. 2e) met our 

prediction that follower species should not exhibit a peak after parturition. Chamois exhibited a peak 

in June-July that could be explained by crèche formation (Fig. 2c). Therefore, the support for young 

anti-predator behavior as a driver of circadian patterns of space use was mixed. We did not find a 

clear-cut contrast between hider and follower species, because of the roe deer results and because 

crèche formation had to be invoked to explain the chamois patterns.  

TERRITORIALITY  

Roe deer males were more circadian than females between March and September, especially in the 

forest habitat (Fig. 2a; Table S2), as predicted. Conversely, in mouflon and ibex, which are not 

territorial, male patterns were parallel to female patterns (Fig. 2d, e).  

BEHAVIORAL THERMOREGULATION 

As predicted, only mouflon exhibited a peak in the intensity of circadian patterns in summer (June-

August; Fig. 2d). The much weaker and wider peak in periodicity exhibited by ibex (Fig. 2e) could not 

entirely be ascribed to behavioral thermoregulation. In chamois the intensity dropped sharply in 

August (Fig. 2c), which is as warm as July, indicating that thermoregulation was not the cause of the 

peak in chamois. Similarly, in roe deer and red deer, the timing of the peak in the intensity of 

circadian patterns of space use contradicted the hypothesis that they were caused by rising 

temperature (Fig. 2a, b). In all species but especially mouflon, summer periodicity was more intense 
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in males than females, as predicted because males are larger thus have more thermoregulation 

constraints, and thus bringing additional support to the behavioral thermoregulation hypothesis. In 

summary, we found support for the behavioral thermoregulation hypothesis in the form of a 

summer increase in circadian patterns in mouflon, and the lack of such an increase in other species.  

Discussion 

In five species of ungulates living in contrasted environments, there was a species-specific signature 

in the way that the intensity of circadian patterns of space use, defined as the proportion of the 

variance in the movement path explained by circadian periodicity (i.e., fitted sine waves), varied 

throughout the year. This species-specific signature clearly came out amidst a large amount of 

individual variation, some explained by individual factors (sex and habitat), some remaining to be 

explained. We could relate the species-specific signatures to seasonal variation in resource 

distribution (Laundré et al., 2001), to young anti-predator behavior (Lent, 1974; Byers & Byers, 

1983), to territoriality (Liberg et al., 1998), and to behavioral thermoregulation (Long et al., 2014; 

Marchand et al., 2014). So, our conclusions regarding the potential of the intensity of circadian 

patterns of space use as a generic movement metric are mixed. On the one hand, there was a 

species-specific signature that matched most of our biological expectations. But on the other hand, 

this signature appeared in the seasonal variation, not in the average value of the metric; and 

detecting it amidst a large amount of individual heterogeneity required larger-than-usual datasets in 

terms of numbers of individuals.  

 To go further into the study of periodic patterns of space use by ungulates, we envision 

insights from individual-level habitat heterogeneity quantifications. All of our predictions assumed a 

role for habitat heterogeneity, notably because it influenced the possibility and need to alternate 

between different habitats (Laundré et al., 2001; Martin et al., 2015). Quantifying heterogeneity at 

both the population and home range levels therefore appears as a natural next step to further 

support or inform the conclusions we drew from seasonal patterns. Other individual determinants of 
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periodic patterns, most notably reproductive status and weather anomalies, also offer avenues for 

further tests.  

 Several recent studies identified repeated sequences in animal tracking data using pattern 

recognition techniques, after annotating the tracks with habitat categories or with user-defined 

zones  (De Groeve et al., 2016; Riotte-Lambert et al., 2017). We stress that our method is, 

fundamentally, complementary to these approaches. Movement sequences may be repeated 

without periodicity, and periodicity may be detected even if the stochastic component of the model 

conceals the repeated sequences. We envision that our method will be relevant to the analysis of 

large heterogeneous databases, while pattern recognition techniques will be relevant to focused 

analyses of individual home ranges. 

Indeed, we believe that we pave the way for more integrated multi-traits comparative 

analyses of movement ecology. Effort to compare the movement ecology of species and populations 

are still limited by the restricted array of metrics available to characterize movement paths, and the 

sensitivity of most of these metrics to the sampling design (Fryxell et al., 2008; Abrahms et al., 2017; 

Tucker et al., 2018). To apply the available metrics, authors typically subsampled their datasets, but 

the effect of these data manipulations on inference is not compulsorily negligible: for example, 

estimated turn angles depend on the interaction between sampling design and the intrinsic sinuosity 

of the focal movement path (Fryxell et al., 2008). The η metric that we used in the present study is 

an example of a new type of model-based continuous-time movement metric, still general enough 

to be computed in most species and environments but specific enough to capture features that 

would evade a more superficial examination. An important aspect of the η metric that we employed 

is its relative robustness to variation in sampling design, allowing the comparison of datasets 

collected under varying conditions without leaving out most of the data collected. There are other 

such metrics, for example autocorrelation times and asymptotic variances (Fleming et al., 2014), 

which have to our knowledge never been employed for comparative purposes. Of course, 
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movement metrics only represent coarse summaries of complex movement paths, in an attempt to 

assign each movement path to a movement type (Bastille-Rousseau et al., 2016; Abrahms et al., 

2017). Combining several metrics should in the future make it possible to augment the number of 

movement types one can consider and the ability to discriminate among them (Bastille-Rousseau et 

al., 2016; Abrahms et al., 2017). But the biological inference will still come from confronting 

variation in movement metrics to variation in other quantities based on predictions from behavior 

ecology, i.e., from combining multiple approaches to movement ecology. 

As a side note and to open a few perspectives, our study species actually occur in 

sympatry, at least for some of them, even if we studied them separately. Periodicity in space use is 

one way for species to coexist through partition of time (Kronfeld-Schor & Dayan, 2003; Darmon et 

al., 2014).  The intrinsic drivers of periodic patterns of space use that we report might therefore 

promote coexistence between species and individuals that have different periodic patterns. Periodic 

patterns may also be modified as a direct response to competition. In addition, by analyzing multi-

year datasets and correcting for individual factors such as sex and age, we could potentially 

investigate whether some individuals consistently use space in a more periodic manner than others 

and thus how the gradient of animal personalities, which is mostly documented from experiments in 

captivity, translates into space use patterns in the wild (Spiegel et al., 2017). For example, risk-taking 

personalities are expected to respond less strongly to predation risk and thus exhibit less periodic 

movements than shy personalities in the same landscape. 

In conclusion, the species-specific signatures in the circannual variation in the intensity of 

circadian patterns of space use came out amidst a large amount of individual variation, but still 

allowed us to test the role of resource heterogeneity, young anti-predator behavior, territoriality, 

and thermoregulation as periodicity-inducing mechanisms. To go beyond patterns in seasonal 

variation, our hypotheses could be further tested within each population using between-year and 

between-individual variation, by adding covariates such as home range heterogeneity, reproductive 
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status, and thermal exposure. More generally, we provide one of the first instances of a comparative 

analysis based on a model-based continuous-time movement metric, opening a new avenue for 

comparative movement ecology.  
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Tables 

Table 1: Species traits, timing of important events in the annual cycle, and sampling design. For foraging specialization, we use “+” signs to indicate 
proximity to the “obligate browser” or “obligate grazer” ends of the gradient (i.e., nuancing the usual “intermediate feeder” terminology, based on 
collective knowledge from the long-term programs).  For sociality, we use “+” signs to indicate proximity to the “always solitary” or “always in large groups” 
ends of the gradient. Female body mass was measured at capture, except in ibex (body mass data was sourced from another population: Belledonne).  

Species Female body 
mass (80% 
confidence 
interval; kg) 

Young anti-
predator 
behavior 

Sociality Foraging 
specialization 

Parturition  Mating  Hunting  Median 
sampling 
interval (h) 

Median 
sampling 
duration 
(day) 

Roe deer 20-25 Hider (1,2) Solitary+ (3) Browser++ (4) May-Jun Jul-Aug year-round 
(technique 
varies) 

1 315 

Red deer 80-110 Hider (2) Gregarious+ 
(5) 

Browser+ (4) May-Jun Sep-Oct Oct.-Jan. 0.25 267 

Alpine 
chamois 

25-34 Follower (2) 
(can form 
crèches)  

Gregarious++ 
(6) 

Intermediate (4) Mid May-Jun Mid Nov-
Dec 

Sep.-Feb. 0.33 383 

Alpine ibex 37-51 Follower (2) 
(can form 
crèches) 

Gregarious++ 
(7) 

Grazer+ (8) Jun Dec Culling only  1 253 

Mediterranean 
mouflon 

21-30 Follower (2) Gregarious++ 
(9)  

Grazer++ (4) end Mar- 
May 

end Oct- 
Dec 

Sep.-Feb. 2 359 

 
(1) Linnell et al., 1998 
(2) Fisher et al., 2002 
(3) Hewison et al., 1998 
(4) Redjadj et al., 2014 
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(5) Clutton-Brock et al., 1982 
(6) Loison et al., 1999 
(7) Toigo et al., 1995 
(8) Hofmann, 1989 
(9) Cransac et al., 1998 
 
 
Table 2: Summary of the predictions about the circannual variation in the intensity of circadian patterns of space use. Predictions that were met in this 
study are highlighted in bold font. A hyphen indicates cases where the prediction could not be tested (lack of male data). 

Species\Hypothesis Seasonality Young anti-predator behavior Territoriality Behavioral thermoregulation 

Roe deer Moderate drop in winter Peak after parturition 

More periodicity in males than 
females and forest than mosaic 
habitat, and drop between Oct 
and Feb 

No increase in summer 

Red deer Sharp drop in winter Peak after parturition - No increase in summer 

Chamois Sharp drop in winter 
No peak after parturition, 
potentially a peak during the 
late rearing period 

- Moderate increase in summer 

Ibex Sharp drop in winter 
No peak after parturition, 
potentially a peak during the 
late rearing period 

No difference between males 
and females 

Moderate increase in summer 

Mouflon Moderate drop in winter No peak after parturition 
No difference between males 
and females 

Sharp increase in summer 
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Figures 

Fig. 1: Visual representation of periodic patterns of space use with periodograms from a male 

mouflon monitored in a hunted area from July 2011 to July 2012. The black periodograms are from 

the location time series. The peaks (indicated by arrows) correspond to the circadian periodicity and 

a harmonic associated to it. The grey periodograms are from the timestamps only and serve to verify 

that the peaks in the black periodograms are not artefactual (Péron et al., 2016).  

 

Fig. 2: Circannual variation in the intensity of circadian patterns of space use in five species of 

ungulates. Each symbol corresponds to one individual*month combination, with males in light grey 

and females in dark grey. The shaded areas represent the 95% confidence intervals of the preferred 

spline models (males in light grey and females in dark grey). For roe deer and mouflon, results are 

presented separately in two habitats (roe deer: forest mosaic or pure forest; mouflon: mostly inside 

or mostly outside the hunting-free reserve).  
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