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Abstract 

Interest in sleep has been growing in the last decades, 
considering its benefits for well-being, but also to diagnose 
sleep troubles. The gold standard to monitor sleep consists of 
recording the course of many physiological parameters during 
a whole night. The human interpretation of resulting curves is 
time consuming. We propose an automatic knowledge-based 
decision system to support sleep staging. This system handles 
temporal data, such as events, to combine and aggregate 
atomic data, so as to obtain high-abstraction-levels contextual 
decisions. The proposed system relies on a semantic 
reprentation of observations, and on contextual knowledge 
base obtained by formalizing clinical practice guidelines. 
Evaluated on a dataset composed of 131 full night 
polysomnographies, results are encouraging, but point out that 
further knowledge need to be integrated. 
Keywords:  
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Introduction 

In the last decades, sleep has been considered more and more 
seriously either for wellness reasons, or for diagnosing sleep 
troubles. Its impact on quality of life and on health is henceforth 
well known. To diagnose a sleep trouble, the gold standard 
sleep exam is the polysomnography, which  consists in 
recording, during sleep, the course of a set of physiological 
signals and then observe the brain activity, recorded by 
electroencephalography (EEG), the eye movements, recorded 
using electrooculography (EOG), and the muscle tone recorded 
using electromyography (EMG). 
Sleep staging is a fundamental preliminary step to the diagnosis 
of sleep troubles. During this task, a sleep expert visually 
browses the polysomnographic curves in 30-second epochs, to 
assign one of the five sleep stages defined, since 2007, by the 
American Academy of Sleep Medicine in their international 
guidelines [1]. A sleep stage is assigned by considering 
different criteria observed on EEG, EOG, and EMG curves, and 
by considering the dynamics of sleep. Guidelines for visual 
scoring of sleep staging define, firstly, for each sleep stage, a 
set of criteria that need to be met for a sleep stage to start to be 
scored (“transition rules”). Secondly, another set of criteria is 
defined for a sleep stage to continue to be scored (“continuity 
rules”). Five sleep stages are defined: W (Wakefulness), N1 
(Non-REM 1), N2 (Non-REM 2), N3 (Non-REM3) and R 
(REM). N1 and N2 correspond to light sleep; N3 corresponds 
to deep sleep; REM stands for Rapid Eye Movements. Even if 
software dedicated to sleep scoring include automatic scoring 

functionalities, they are not used in routine practice, since sleep 
physicians are not satisfied by their results [2]. 
Common approaches found in litterature for automatic sleep 
stages are based on machine learning techniques. Features, 
extracted from the acquired signals, are used to feed a classifier, 
that will be able, after a learning step, to make a decision on 
new samples. Many of these approaches use a single channel – 
generally a single EEG channel – to make the decision. Using 
an open dataset, they might not be compliant with the current 
guidelines, but with older ones, defined by Retschaffen & Kales 
in 1968 [3]. Machine learning approaches mainly ignore the 
domain of knowledge; moreover, sleep dynamics are 
unsufficiently integrated into the decision, since epochs are 
considered independantly from each other (through the 
segmentation of the analysis and decision).  
Alternatively, semantic approaches are seen as satisfactory 
solutions to have a formal description of knowledge on a 
domain without ambiguity. Based on a formal modelisation of 
concepts and relationships of the field, they allow reasoning. 
This formalization results in semantic networks, conceptual 
graphs or, more often, in ontologies. They might be seen as a 
description of a state of the universe at one time, focusing on 
one interest domain, listing concepts and specifying 
relationships between them. However, the dynamic aspects that 
make the universe change from one state to another remain an 
issue to be modelised. From one time to another time, the world 
changes; thus concepts and relationships between them change 
also. The description of the universe at one time is different to 
the description of the universe at another time. 
Expert systems are decision support systems composed of an 
observations base and a knowledge base. The observations base 
contains facts and events observed in the current state of the 
universe. Knowledge base contains inference rules allowing the 
system to make sense or assemble existing observations and 
facts and generate new events or new facts that will then be 
added to the observations base. Expert systems are knowledge-
based systems and can be designed without any data. In the 
medical field, we benefit from existing knowledge that needs to 
be formalized into compliant inference rules.   
In this paper, we present a dynamic expert system, using a 
formal representation of obervations using conceptual graphs 
and formalizing rules governing sleep-stages transitions and 
sleep events occurrences. The next section will focus on 
methods. Then, results will be presented and be followed by a 
discussion. Finally, we will give our conclusions in the last 
section. 
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Methods 

An expert system with four modules 

Our expert system is composed of four different modules: 
(1) the events vector, a time vector containing all events 
observed during sleep; (2) the sleep stages vector, a time vector 
containig all sleep stages assigned to each epoch during sleep; 
(3) the events fusion knowledge base, a knowledge base 
containing fusion strategies to fuse events (4) five contextual 
sleep stage assignment knowledge bases, five knowledge bases 
containing inference rules to apply in five different sleep 
contexts. 
All these modules can be considered as an expert system. The 
observation base is composed of the events vector and sleep 
stages vector, composed each of facts of, respectively, low and 
high abstraction level. The knowledge base is composed of the 
events fusion knowledge base, and of the five contextual sleep 
stages assignment knowledge bases. 
Events vector 

All events observed during sleep are gathered in a time vector, 
where each event is identified by an identifier and a label. The 
vector captures the semantic type of each event, given by the 
identifier, but also its start and end. If necessary, other useful 
information can be added to the event; for instance, the lowest 
value of the saturation can be specified and attached to a 
desaturation. Each event is then formalized as a conceptual 
graph, giving its label, its start, its end and all other information 
that might be useful for the final decision.  
Each event is represented by a conceptual graph. Conceptual 
graphs are a formalism that was introduced by John F. Sowa in 
1984 [4]. Semantic concepts are linked by labelled 
relationships. Fusion algorithms have been defined to combine 
several conceptual graphs that share concepts. 
For example, Figure 1 shows an event vector with all events 
occurring during the epoch. Representations of event 1 and 
event 2 are given on Figure 2.  
 

 
Figure 1 – Events vector 

Figure 2- Conceptual graphs of Event 1 and Event 2 

Sleep Stages vector 

All sleep stages assigned by the expert system are stored in a 
sleep stages vector. Sleep stages are considered as high-
abstraction-level information, obtained by combining and 
fusionning atomic information observed on other channels. 
This vector is initialized by specifying that, just before the start 
of the exam, i.e. the last epoch before the start of the exam, the 
patient was awake. Thus, we initialize the sleep stages vector 

with the W sleep stage assigned to the last epoch preceding the 
start of the exam. 
An example sleep stages vector is given in Figure 3. Each cell 
represents a 30-s epoch. The vector starts with seven epochs of 
N2, followed by 15 epochs of N3, followed by eight epochs of 
R, followed by 2 epochs of W and ends with 2 epochs of N1. 

 
Figure 3 – Sleep stages vector 

Events fusion knowledge base 

Considered separately, events observed on each acquired 
channel may not be sufficient to asisgn a sleep stage. However, 
they may be different observations of the same physiological 
event. To be combined, it is hence necessary to fuse conceptual 
graphs to get a new conceptual graph representing a higher-
abstraction-level event. Initially, they are separated; it is 
necessary to formalize the causal relationships that link them. 
Abstraction rules, combining all linked events to generate the 
physiological fact, can be applied to add the physiological fact 
to the observation base (the events vector). 
Each rule of the events fusion knowledge base is formalized as 
a conceptual graphs fusion strategy. Fusion strategies follow 
the principles of the maximal join operator. Criteria required to 
fuse two conceptual graphs are defined. The resulting 
conceptual graph is entirely defined, on the basis of the 
concepts – and their values – of the fused conceptual graphs.  
Figure 4 illustrates an example of fusion rules using conceptual 
graphs. Event 1 and event 2 are fused into Event 12, starting at 
starting date of Event 1, and ending at ending date of Event 2. 
Criteria to fuse these two events could be defined on start dates, 
end dates, or on the lowest value of event 2. 
 

 
Figure 4 – Example of events fusion 

Five contextual sleep-stage assignment knowledge bases 

Depending on the current sleep stage in the previous epoch 
beeing considered as a sleep context, rules to assign a sleep 
stage to the current epoch are different, when applying the 
guidelines of the AASM. As a consequence, five different 
knowledge bases were defined, each containing the rules to 
apply in a given sleep stage. Depending on the current stage, 
each knowledge base contains rules to start a new sleep stage 
and rules to apply to continue scoring the current sleep stage. 
For each knowledge base, sleep stages are ordered. The 
inference step evaluates whether rules of a given sleep stage are 
met or not, testing all sleep stages successfully until one given 
sleep stage can be assigned. Ordering sleep stages allows to 
formalize priority rules, defined in the guidelines. 
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Rules to assign a sleep stage are based on binary criteria. Each 
criterion is met whether a high-abstraction-level event is met, 
or not.  
Figure 5 illustrates an example of the five contextual 
knowledge bases. Depending on the sleep stage assigned to the 
previous epoch, a knowledge base is selected. Then, criteria are 
evaluated until one is met. It allows to assign a sleep stage to 
the current epoch. 
 

 
Figure 5 – Contextual Decision knowledge bases 

Decision algorithm 

Previously of the decision process, it is required that following 
steps have been done : (1) split the recording into 30-second 
epochs, (2) extration and recognition of low-abstraction-level 
atomic events, (3) representation of all extracted events by 
conceptual graphs, consistantly to a defined terminology. 
Figures 6 shows a flowchart of decision process. It is composed 
of four steps. 

1 - Move to the next epoch 

A decision is made for each epoch of the recording, starting 
from the first to the last, moving from one epoch forward at 
each step, once a decision has been made and a sleep stage has 
been assigned to the epoch. At each step of the decision process, 
a “reading head” is moving to the next epoch. 
 

 
Figure 6– Flowchart of decision process 

2 – Fuse events 

We assume that events extracted previously to the decision 
process are low-abstraction-level events. To be able to make a 
decision, we need high-abstraction-level events. These events 

are obtained by events fusion using fusion strategies [5,6]. 
Fusion strategies used to fuse events are defined and formalized 
into the events fusion knowledge base. Representing events by 
conceptual graphs allows to fuse delayed events observed in 
different channels, which is necessary in physiological 
processes. Using events fusion, it is possible to abstract events 
from a given abstraction level to a higher abstraction level; it is 
also possible to integrate literal data to get a semantic event; it 
is finally possible to aggregate, or combine, events. This step is 
based on an expert system. 

3 – Select contextual knowledge base 

Depending on the sleep stage assigned to the previous epoch, 
we know the sleep context of the subject at the start of the 
current epoch. Regarding this context, the right knowledge base 
can be chosen, in order to select the right rules to apply to make 
the decision and assign the sleep stage.  

4 – Assign a sleep stage 

Having identified which knowledge base to use, and regarding 
events of the low- and high- abstraction levels oberved and 
inferred on the events vector, the system is able to assign a sleep 
stage to the current epoch. To achieve this task, ordered criteria 
are evaluated. Each criterion is defined as a logical combination 
of high-abstraction-level events observed. Rules are evaluated 
following a predefined order until a criterion is met. This allows 
to assign a sleep stage. Criteria are ordered according to priority 
rules. 

Example 

According to the guidelines, the N2 sleep stage should be 
assigned to an epoch, if a K-Complex, not associated to an 
arousal, is the first half of the current epoch.  
Firstly, K-complexes and arousals need to be scored (manually 
or automatically). Then, K-complexes and arousals are fused, 
to classify K-Complexes into 2 categories: K-complexes 
associated to an arousal, and K-Complexes not associated to an 
arousal. In the next step, given an epoch, the right time period 
is observed to check whether a “K-complex non associated to 
an arrousal” was observed. For those epochs where this 
criterion is met, the N2 sleep stage is assigned. Otherwise, the 
criteria of other sleep stages are tested. 

Results 

Description of the dataset 

The dataset used for evaluating our method was already used in 
[7]; Gathering 131 full night polysomnographies, it is 
composed of 148,407 epochs (1,237 hours). The first subset is 
composed of 101 polysomnographic recordings of patients 
suspected of suffering from Sleep Apnea Syndrome; the second 
subset is composed of polysomnographic recordings of ten 
control subjects having spent three consecutive nights at the 
hospital. Polysomnographic recordings were performed in the 
sleep pathologies unit of La Pitié-Salpêtriére Hospital (AP-HP, 
Paris, France) using the Grael HD- PSG TM device which is 
produced by Compumedics Limited® from Australia. All 
recordings have been fully scored by a sleep expert in 
accordance with AASM guidelines [1] using Profusion Sleep 
TM Software from Compumedics®. All 131 recordings were 
visually scored by two experienced sleep experts, in accordance 
with the clinical practice guidelines defined by the AASM, 
without using the automatic pre-analysis functionality. This 
scoring is used as gold-standard for our work.  
Each recording is composed of more than 30 channels for the 
full-night polysomnography. In this study, we only need some 
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channels to be compliant with the clinical practice guidelines 
defined by the AASM: the EEG, the EOG and the submental 
EMG. Six EEG channels were recorded, following the 
international 10–20 system with a sampling rate of 256Hz: O1, 
C3, C4, Fp1, A1, A2. 2 EOG were recorded with a sampling 
rate of 256Hz: Left EOG and Right EOG; One channel of the 
submental EMG was recorded with a sampling rate of 256Hz. 
As recommended in the clinical practice guidelines defined by 
the AASM, EEG and EOG channels were filtered using a 0.3–
35 Hz bandpass filter; EMG submental channel was filtered 
using a 10–100 Hz bandpass filter.  
This study was approved by The Committee for the Protection 
of Human Research Participants, Paris VI (Comité de 
Protection des Personnes Ile-de-France VI, Paris, France).  
Control subjects were received by a physician to be informed 
in detail about the purpose and the procedure of the research 
study. Informed consent was provided and signed by all 
subjects. A sleep physician performed a physical examination 
and a questionnaire to validate that they had no suspicion of a 
sleep disorder.  
All subjects signed an informed consent form. All individuals 
included in our database followed instructions to refrain from 
alcohol and caffeine ingestion and to avoid engaging in 
prolonged and/or strenuous exercise before sleeping. All 
polysomnographies were recorded in a quiet, darkened room.  

Measures 

To evaluate the performance of our automatic sleep slating tool, 
we used different measures.  
Agreement rate is a measure used to assess the results of the 
automatic analysis globall, i.e. including all sleep stages. It is  
defined as the ratio of epochs scored with the same sleep stage 
by the expert and the automatic analysis for each recording.  

 

Because sleep stages have an unbalanced number of epochs, 
Cohen’s kappa was also used. This measure takes into account 
that some epochs are scored identically by the automatic 
analysis and by the expert by chance 

 

Where  is the relative observed agreement among raters 
(identical to agreement rate); and  is the hypothetical 
probability of chance agreement. 
Other measures are defined  to assess results obtained for each 
sleep stage. These measures are defined for binary 
classifications. All of them are defined considering the 
following confusion matrix 

Table 1 – Confusion Matrix 

 Automatic analysis 
C Not C 

Expert 
analysis 

C TP FN 

Not C FP TN 

 
TP refers to True Positive elements. Both expert and automatic 
analysis have classified these events in the class of interest C. 
TN refers to True Negative elements. Both expert and 
automatic analysis classified these events as not belonging to 
the class of interest C. 

FP refers to False Positive elements. Classified as belonging to 
the class of interest C by the automatic analysis, they were 
classified as not belonging  by the expert.  
FN refers to False Negative elements. These events were 
classified as not belonging to the class of interest by the 
automatic analysis, whereas they were classified as belonging 
by experts. 
Recall and precision are widely used in the field of machine 
learning. Recall is the ratio of elements belonging to the class 
of interest, that were correctly identified by the automatic 
analysis. Precision is the ratio of elements belonging effectively 
to the class of interest among all elements that were considered 
as belonging to the class of interest by the automatic analysis. 
Recall and precision are defined by following formulas: 

 

Sensitivity and specificity are used in the medical field to 
evaluate a diagnosis test. Sensitivity allows to know the 
performance of the test to identify sick individuals (=positive 
elements). It is equal to the predefined recall. Specificity allows 
to know the performance of the test to identify healthy 
individuals (=negative elements). Sensitivity and specificity are 
defined by following formulas: 

 

To balance recall and precision, the F Mesure was proposed, 
defined by the following formula: 

 

To give more weight to recall than to precision, the F2-Measure 
was proposed as an extension of the F-Measure, with the 
following formula: 

 

Results 

On the dataset of 101 polysomnographic recordings of patients 
suspected to suffer from sleep apnea syndrome, the obtained 
average agreement rate was 51.5; the average kappa was 0.36. 
All measures for all sleep stages are detailed in Table 2. 
Considering the control subjects, we obtained an average 
agreement rate of 56.55 and an average κ of 0.43 (see Table 3). 

Table 2 – Measures obtained on Sleep Apnea Syndrome 
patients dataset 

Measure W N1 N2 N3 R MVT 
Recall / 
Sensitivity 

54.3 30.3 58.6 44.4 54.4 0.0 

Precision 75.3 21.1 54.0 51.6 53.4 0.0 
Specificity 92.64 86.26 73.86 91.4 91.6 99.5 
F Measure 58.8 22.3 53.4 42.9 50.3 0.0 
F2 
Measure 

54.5 25.3 55.8 42.5 51.6 0.0 
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Table 3 – Measures obtained on control subjects dataset 

Measure W N1 N2 N3 R MVT 
Recall / 
Sensitivity 

54.9 32.7 63.2 54.4 61.8 0.0 

Precision 72.8 24.1 59.9 50.4 69.5 0.0 
Specificity 92.7 86.4 74.9 86.1 91.6 96.7 
F Measure 60.4 25.1 60.5 49.0 63.7 0 
F2 Measure 56.6 28.1 61.9 51.4 62.2 0 

As we can see, there are some differences between results 
obtained on the patients dataset and on the subjects dataset. This 
can be explained by the quality of the signals to process. 
Because of sleep troubles, signals from patients are very noisy, 
which make signal processing methods less efficient. 
Moreover, sleep troubles generated a highly disturbed sleep 
with many transitions; and as discussed by Thomas Penzel [8], 
transitions between sleep stages present the biggest source of 
differences between human sleep scorers. 

Discussion 

Our results may appear to be less performant than other results 
published in recent literature. All these works are mainly based 
on machine learning algorithms, and ignore, during the 
evaluation step, the intra- and inter-raters concordance. It was 
assessed by Danker-Hopfe et al. in 2009 [9]. Inter-raters rates 
are given by sleep stage in Table 4.  

Table 4 – Inter-rater agreement rate (kappa) 

W R N1 N2 z N3 
0.8608 0.9054 0.4608 0.7188  0.7285 

As we see, most of results given in recent published works 
claim to have a higher concordance that what another human 
sleep expert would obtain. It means that their results are 
obtained by overfitting, which is not suitable. 
On the contrary, our approach follows rules of practice 
guidelines. Our results show that these rules still need to be 
improved and expanded. Knowledge base might be enriched 
with transitions rules or experience knowledge.  
The performance of identifying atomic events remains also to 
be evaluated. 
Weaknesses of our approach include a relaince on the need to 
formalizing a complete knowledge base of rules to be applied 
to score sleep stages; medical knowledge is often incomplete, 
and knowledge acquired from experience is hard to formalize.  
Strengths of this approach include its robustness, its flexibility, 
and its upgradeability. Its ability to use easy time-based rules 
helps contextualize decisions. Semantic reasonning is fully 
understandable and customizable by experts. Furthermore, in 
absence of formalized knowledge it can be hybridized with 
machine learning approaches. 

Conclusion 

In this paper, we present an approach representing  information 
by semantic concepts. Temporal aspects are taken into account 
by reasonning on a dedicated framework, inspired by the Turing 
machine. Sleep stages are assigned by using different expert 
systems, one for each sleep context considered. 
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