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Abstract—Indoor localization has gained an increase in interest
recently because of the wide range of services it may provide
by using data from the Internet of Things. Notwithstanding the
large variety of techniques available, indoor localization methods
usually show insufficient accuracy and robustness performance
because of the noisy nature of the raw data used. In this paper,
we investigate ways to work explicitly with range of data, i.e.,
interval data, instead of point data in the localization algorithms,
thus providing a set-theoretic method that needs no probabilistic
assumption. We will review state-of-the-art infrastructure-based
localization methods that work with interval data. Then, we will
show how to extend the existing infrastructure-less localization
techniques to allow explicit computation with interval data. The
preliminary evaluation of our new method shows that it provides
smoother and more consistent localization estimates than state-
of-the-art methods.

Index Terms—Indoor, Location, Interval Analysis, Modeling.

I. INTRODUCTION

The omni-present availability of sensor-rich smartphones
along with the fact that people spend 80-90% of their time in
indoor environments has recently boosted an interest around
the so called Internet-based Indoor Navigation (IIN) [1].
These comprise of indoor models, such as floor-maps and
points-of-interest, along with Internet of Things (IoT)-based
raw data, such as wireless, light and magnetic signals, used
to localize and track mobile users and targets. There is
a large variety of localisation methods that exhibit diverse
quality performance levels regarding precision, accuracy, cost,
reliability, scalability, energy efficiency and robustness [2],
[3]. One reason behind low performance usually observed in
localization accuracy or robustness is the noisy nature of the
IoT raw data used. For instance, the WiFi received signal
strength (RSS), which is most commonly used by indoor
localisation techniques, is in fact susceptible to multipath
effects and interference, hence shows high variability over
time. These variations may naturally introduce errors and
jolts in reconstructed locations. To smoothen the location
estimates and improve consistency, state-of-the-art localisation
techniques work either with averaged signal data, or rely on
more advanced probabilistic or Bayesian approaches [4], [5].
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Other approaches use as well hybrid approaches combining
RSSi-fingerprinting with inertial tracking systems as in [6]
where the WiFi-based and the IMU-based location estimates,
along with the associated uncertainties are provided as inputs
to a data fusion module that implements the hybridization
scheme by means of a particle filter. In practice however,
the true probability distribution to use as Likelihood or a
priori in the Bayesian methods are often unknown hence need
be approximated using Gauss or uniform distributions. It is
therefore appealing to consider an alternative description of
the errors and disturbances acting on the measurements.

In this paper we will carry out a preliminary investigation
on alternative methods to deal with the uncertainty in the
measured signals by working directly with interval data, i.e.
data ranges or data sets computed from the raw data with no
assumption of the probability distribution within the interval.
These interval data are feasible domains for measurements
that take into account all the errors or disturbances acting
on the data. This is known as the Unknown But Bounded
Error (UBBE) framework: the errors are assumed to re-
volve in a bounded set with known bounds, but no other
assumption is made on the probability distribution inside the
set. Such description of the errors gathers both systematic
and probabilistic errors, provided that the support domain of
the probability distribution is bounded (see e.g. [7], and the
references therein).

Let us discuss a simple example first. Let us assume that,
in a 2D planar case, one performs multilateration and uses
RSS data to compute the distance of a mobile target to
beacons with known position by exploiting a path-loss model.
Then, instead of using an average value for RSS one uses
the range of RSS values obtained over a short time window.
The uncertainty in the RSS data will lead to uncertainty in
the distance measurement, which means that to be consistent
with one distance measurement, the mobile target no longer
lays on a circle, but can be on a ring. Using several beacons,
one ends up with the mobile target located in several rings,
hence in the intersection of them. With such range data, one
no longer aims to compute a single point position for the
mobile target, but rather computes a set of feasible positions
for the mobile target. The size and the shape of the feasible
domain then gives quantitative information about the precision
of the reconstructed position. Besides, the computed set can be



regarded as an uncertainty set, i.e., a 100% confidence set for
the mobile position. The above example clearly demonstrates
that the interval nature of the measurement data requires
the use of dedicated set-theoretic methods as will be intro-
duced later on. Set-theoretic methods combines complete and
exhaustive-search solving algorithms with validated numerical
implementations, that eventually provide guaranteed results in
the sense that the existence or absence of a solution can be
proven, and if it exists no solution is lost.

In the sequel, we will discuss the potential of such an
approach for indoor location and more specifically IIN.

The core technology for IIN services is undoubtedly the type
of hardware enabling the localization process. The taxonomy
proposed in [8] focuses on whether new specialized hardware
is needed to offer the location primitive, as opposed to
either exploiting existing infrastructure (e.g., Wi-Fi network
for the purpose of wireless connectivity) or no infrastructure
whatsoever (e.g., inertial sensor systems). Infrastructure-free
techniques exploit location-dependent measurements from ex-
isting wireless communication infrastructures, such as Wi-Fi
access points and cellular base stations, without intervening
on these systems. To the contrary, infrastructure-based tech-
nique explicitly exploit known position of beacons, anchors or
features existing in the environment.

Infrastructure-based localization methods computing explic-
itly with interval signal data have already been developed in
the literature. These techniques work in the UBBE framework
and the feasible domains for the location estimates are ob-
tained using guaranteed solving methods based on interval
analysis [9] and solving techniques for constraint satisfaction
problems [10]. Interval GPS pseudodistance were used to
develop robust and intelligent vehicle navigation [11]. Interval
data from range and goniometric measurements of given
landmarks were used for underwater robot localisation [12].
Interval analysis and satisfiability checkers were used in [13]
for tracking the position of several targets moving indoor using
a network of error-prone binary sensors. All these methods
are able to detect and identify erroneous measurements in real
time simultaneously with the computation of the positioning
domain using bounded-error measurements. They all rely
on an explicit model mapping the spatial position of the
target, the known position of the landmark and the measured
data. For instance, [11] performs multilateration, while [12]
uses also multitriangulation. These methods can easily exploit
dead reckoning via data fusion as in [12]. Besides, they can
naturally track multihypothesis [14].

To the best of our knowledge there is no RSS fingerprints-
based localisation data that exploits interval data.

In this paper, we will first review state-of-the-art
infrastructure-based localisation techniques that use interval
data in Sect. II, along with the the required solving algorithms
in Sect. III. Then introduce the preliminary blocks of our main
contribution which is an infrastructure-free localisation tech-
nique that works explicitly with interval data. The technique
is introduced in Sect. V, the required theoretical material is
introduced in Sect. VI, and the experimental evaluation given

in Sect. VII.

II. INFRASTRUCTURE-BASED LOCALISATION TECHNIQUES

In this section we are interested in localisation techniques
based on signal metrics that can be mapped to the actual
mobile target position using some parametric model. This
holds for instance for techniques using Angle of Arrival, Time
of Flight, Time Difference of Arrival, or RSS with path-loss
propagation models [5].

A. System modelling

Without of generality, let us consider as a case study, the
signal metrics Time of Flight (ToF) (also known as Time
of Arrival), and Time Difference of Arrival (TDoA), in a
planar indoor area I. ToF exploits the signal propagation
time to calculate the distance between the transmitter, radio
beacon with known position, and the receiver. TDoA exploits
the difference in signals propagation times from different
transmitters measured at the receiver.

Let us consider N beacons at position ~bi = (xi, yi), and
denote ~m = (x, y) the unknown position of the mobile target.
The ToF measurements t(i) from transmitters i is converted
into physical distance values d(i) = c · t(i), where c is the
speed of light. The receiver ~m is now located on the circle
given by

d(~m, i) =
√
(x− xi)2 + (y − yi)2 (1)

The TDoA measurements δt(i, j) from transmitters i and j are
converted into physical distance values δd(i, j) = c · δt(i, j).
The receiver ~m is now located on the hyperbola given by

δd(~m, i, j) = d(~m, i)− d(~m, j) (2)

Several sources of uncertainty in measuring the timings t(i)
and δt(i, j) will eventually lead to uncertainty in the physical
distance value. We assume an upper bound on the error is
known, thus cast the estimation in the UBBE. Using the no-
tations introduced in Sect. III, the measurement data obtained
are now interval data, denoted [di] for the distance to a beacon
as in eq. (1), and [δdi,j ] for the distance difference between
two beacons as in eq. (2).

B. Robust localisation using interval data

Consider the case of multilateration with n beacons located
at known positions. In the UBBE, and using the notations
and definitions of Sec. III, the set of feasible positions ~m =
(x, y) of a mobile target consistent with index i ToF-based
measurement (1) is given by

SToF(i) = {(x, y) | d(~m, i) ∈ [di]}. (3)

The solution set using all the measurement available is then
given by

SToF =
⋂

i∈{1,..,n}

SToF(i). (4)

The validity of solution set (4) depends solely on (i) the
correctness of the modelling assumptions, (ii) the validity of
the measurement data, and (iii) the correctness of the bound



considered for the measurement error. If one of the latter
assumptions are violated, the solution set (4) may be empty.
If one has confidence in the modelling, then the issue lays
with the measurement data and the error bounds. Such data
are known as outliers: either the sensors are faulty, are subject
to large bias or disturbance noise of magnitude larger the error
bound. Robustness to outliers can be achieved by relaxing the
intersection (4) to let aside up to q outliers, hence up to q sets
(3), as follows

SToF =
q⋂

i∈{1,..,n}

SToF(i). (5)

Similarly, when TDoA-based measurement data are used,
the feasible sets are as follows. The solution set consistent
with one datum is defined as

STDoA(k) = {(x, y) | δd(~m, i, j) ∈ [δdi,j ]}, (6)

where k ∈ K = {k = i+nj, | i ∈ {1, .., n}, j ∈ {i+1, .., n}}.
The feasible domain for the mobile location is then given by
the set

STDoA =
q⋂

k∈K

STDoA(k). (7)

Here again, using the relaxed intersection, we will be able to
deal with outliers.

Solution sets such as (5) and (7) can be characterized in
a reliable and guaranteed way using Constraint Satisfaction
Problems (CSP) solving methods based on interval arithmetics,
interval analysis, constraint propagation and branching [15],
[10].

III. INTERVAL ANALYSIS

Interval analysis was initially developed to account for the
quantification errors introduced by the rational representation
of real numbers with computers, then was extended to vali-
dated numerics [9], [15].

A scalar (real) interval [a] = [a, a] is a closed and connected
subset of R, where a represents the lower bound and a
represents the upper bound. The width of [a] is defined by
wid([a]) = a− a. An interval vector (interval box, or hyper-
rectangle) [x] is a subset of Rn which is the Cartesian product
of scalar intervals [x] = [x1]× [x2]×· · ·× [xn], where the ith
component is the projection of [x] onto the ith axis. The maxi-
mal width of [x] is wid([x]) = max(wid([x1], . . . , wid([xn]).
The set of the real interval vectors of dimension n is denoted
I(Rn). Real arithmetic operations are extended to intervals.
Consider an operator ◦ ∈ {+,−,×,÷} and [a] and [b] two
intervals. Then: [a] ◦ [b] = [{u ◦ v |u ∈ [a], v ∈ [b]}].

Consider g : Rn → Rm; the range of this function over an
interval vector [a] is given by: g([a]) = {g(a) | a ∈ [a]}. An
interval extension [g] of function g can be obtained by replac-
ing each occurrence of a real variable by the corresponding
interval and each standard function by its interval counterpart.
The resulting function is called the natural interval extension.
We can now state the following theorem:

Theorem 1 (The Fondamental Theorem of Interval Anal-
ysis. [9]): Any interval extension [g] of function g that is
inclusion isotonic, i.e., satisfies the property [a] ⊆ [b] ⇒
[g]([a]) ⊆ [g]([b]), is an inclusion function for g, i.e., ∀[a] ∈
IRn, g([a]) ⊆ [g]([a]).
The performance of the inclusion function depend on the
formal expression of g.

IV. MULTILATERATION WITH INTERVAL DATA

Let us now illustrate infrastructure-based robust localisation
of a mobile target via multilateration with interval data. Let
us consider the case of multilateration with n = 4 beacons
located at positions (0, 0), (10, 0), (10, 10), and (0, 10)
respectively.

First let us consider TDoA-based multilateration. Fig. 1
shows on the left, the n(n− 1)/2 = 6 hyperbola (6) obtained
when computing Eq. (2) between the four beacons while
considering bounded error on signal metrics. On the right, one
can see the solution set (7) obtained (with q = 0). The black
thick dots represent the beacons with known position. The red
areas (boxes) correspond to the inner approximation of the
solution set : the mobile target is certainly located within the
set. The blue boxes correspond to non-solution areas : it is
proven that the mobile target is not there. Besides, note that
same algorithm is used to depict the solution set (7) on On
Fig. 1-(b), and each hyperbola (6) on Fig. 1-(a).

In presence of outliers, e.g. induced by faulty time syn-
chronization within one beacon, the 6 hyperbola are no longer
consistent, i.e., the set (7) becomes empty. To provide robust-
ness w.r.t such a case, one uses the q−relaxed intersection as
in (7) to compute the solution set consistent with all but q
data. Because TDoA computes time differences, the presence
of synchronization errors in one beacon will impact the three
TDoA where the beacon is involved. Fig. 2 shows a TDoA-
based multilateration with q = 3. Localisation boils down to
computing the intersection of 3 hyperbola out of 6. Fig. 2
shows that the solution set is composed of 4 disconnected
subsets. Notice that the true position is included in the one
of the subsets. The other subsets are there because it is
still possible to find non-empty intersection between other
combinations of 3 hyperbola. The spurious subsets may be
eliminated by using extra beacons or exploiting other data
modalities.

The presence of outliers does not always lead to dis-
connected subsets. For instance, Fig. 3 shows a ToF-based
multilateration. On Fig. 3-(a), one can see the n = 4 rings (3)
obtained when computing Eq. (1) with each beacon, while
considering bounded error on signal metrics and one data
outlier. On Fig. 3-(b), one can see the solution sets (5) obtained
using the q−relaxed intersection with q = 1.

The computations are made using state-of-the-art solver
pyIBex1. This is a set of python modules for solving nonlinear
problems using Interval Arithmetic tools. Initially based on the
core part of Ibex-lib2, it aims at combining the flexibility of

1benensta.github.io/pyIbex
2www.ibex-lib.org



(a) The measurement data. (b) Solution set (7), q = 0.

Fig. 1. TDoA-based Multilateration with no outlier.

(a) The measurement data. (b) q-relaxed solution set.

Fig. 2. TDoA-based Multilateration with outliers. q−relaxed solution set (7)
for q = 3.

(a) The measurement data. (b) q = 1

Fig. 3. ToF-based Multilateration with one outlier. The q−relaxed solution
set (5).

python with the speed of C++ algorithms. The figures were
built via the visualisation system VIBes3.

V. INFRASTRUCTURE-FREE LOCALISATION TECHNIQUES

In this section we investigate ways to exploit the interval
measurements data in Wi-Fi Radiomap-based indoor localiza-
tion techniques such as the ones implemented in Anyplace
software [1].

A. Anyplace software

Anyplace uses Wi-Fi Radiomap-based indoor localization,
which stores radio signals from Wi-Fi APs in a database at a
high density. The localization subsystem of Anyplace utilizes
the following routine:
• In an offline phase, a logging application records the so

called Wi-Fi fingerprints, which comprise of Received

3enstabretagnerobotics.github.io/VIBES

Signal Strength (RSS) indicators of Wi-Fi Access Points
(APs) at certain locations (x, y) pin-pointed on a building
floor map (e.g., every few meters).

• Subsequently, in a second offline phase, the Wi-Fi fin-
gerprints are joint into a N ×M matrix, coined the Wi-
Fi RadioMap, where N is the number of unique (x, y)
fingerprints and M the total number of APs.

• Finally, in the online phase, a user can compare its
currently observed RSS fingerprint against the RadioMap
in order to find the best match, using known algorithms
such as K-nearest neighbour (KNN) or weighted KNN
(WKNN) [4].

A similar methodology can be applied to other types of signals,
for instance, magnetic fingerprints [16]. Both are considered
infrastructure-free approaches, as Wi-Fi APs are ubiquitously
available in urban and indoor spaces [17].

B. System model: Interval fingerprints

We assume a planar indoor area I containing a finite set
of locations that are partially covered by a set of Wi-Fi APs
{ap1, ap2, · · · , apM}. Each api has a unique ID (i.e., MAC
address) that is publicly broadcast and passively received by
anyone moving in the coverage of api. The signal intensity
vi, i = 1, ...,M , at which the ID of api is received at location
~pl = (xl, yl), l = 1, ..., N is termed the Received Signal
Strength (RSS) of api at ~pl, where −110 indicates when an api
is out of reach. The set of RSS values measured and the ap-
IDs read at a location l is termed fingerprint ~vl = (v1, ..., vM )
of location l. During the online phase, the currently observed
RSS fingerprint, denoted vo, is used to provide an estimation
of the actual position and the sought location ~po. We further
assume an indoor positioning server s that has constructed
beforehand a RadioMap (RM ), which is a database of offline
fingerprint ~vl measured at various locations ~pl ∈ I.

Contrariwise to standard approaches, we further assume that
at each unique location l, l = 1, ..., N , the range of variation
of the signal intensity is captured, e.g. by sampling data
during short time windows. Using the notations introduced
in Sect. III, the RM now contains interval fingerprint [~vl]
measured at location l. Fig. 4 shows for instance one interval
vector [~vl] available in the RM (there are M = 206 AP). Note
that the RSS interval range includes −110 which emphasises
well the very noisy nature of RSS measurements. The actual
coordinates of location l may also be subject to bounded
uncertainty, i.e. ~pl ∈ [~pl] = ([xl], [yl]). The thus obtained
interval-RM is stored in a database, where each entry Tl has
the form

Tl = ([~pl]; [~vl]) (8)

Finally, the observed RSS fingerprint during online phase
is taken an interval vector [~vo].

C. WKNN with interval data

Since both the radiomap data and the signal measured by the
mobile unit are interval data, we need to extend the WKNN
approach to measure dissimilarities between interval vectors.



Fig. 4. Example of one interval fingerprint extracted from the radiomap.

This idea is not new. A KNN classification method using
interval data is proposed in [18], where the method mainly
relies on identifying possible and necessary neighbours using
the partial orders induced by some distance metrics computed
with intervals. By construction, the method yields ambiguous
decisions. To the contrary, other authors addressed the issue
using total orders, for clustering interval data in [19], [20] and
also in the framework of fuzzy sets in [21]. In these works, the
distance metric used for comparing two interval vectors was
the Hausdorff distance, a notion to be defined in Sect. VI,
associated with the Chebyshev metric as it seems explicit for-
mulas were readily available for online computation. However,
when other metrics were used, the distance used was not the
most appropriate to interval data. The reason it seems, is that
the authors of these works did not find explicit formulas for
computing the Hausdorff distance associated with the other
metrics.

As it will be shown in the sequel, Jahn [22] gives explicit
formulas that allow online computation of the Hausdorff dis-
tance hp associated with the Minkowski norms (11). Classical
WKNN can then be used to estimate the location of the mobile
unit using the k nearest neighbours

[~̂po] =

∑k
i=1 [~pi]/di∑k
i=1 1/di

,

where the distance are given by

di = hp([~vl], [~vo]).

VI. MEASURING DISTANCE BETWEEN INTERVAL DATA

Computing the similarity between interval boxes requires
specific metrics. A mere extension of standard point metrics
to sets provides only a partial order. To obtain a total order
on I(Rn), we need specific metrics, as shown below.

A. Hausdorff distance
A metric on a set X induces a natural metric on the set of

subsets of X known as the Hausdorff distance.

Definition 1 (Hausdorff Distance): Let X1 and X2 be two
subsets of X. The directed Hausdorff distance associated to
the metric d is defined by

h→d (X1,X2) = sup
x∈X1

inf
y∈X2

d(x, y).

The Hausdorff distance associated to the metric d is then

hd(X1,X2) = max (h→d (X1,X2), h
→
d (X2,X1)) . (9)

In the sequel, we consider the particular class of sets of
Rn described on each variable xi by an interval range, as
described in Sect. III.

B. Computing Hausdorff distance with interval vectors

When working with interval vectors and targeting on-line
implementation, explicit formulas should be derived for com-
puting the Hausdorff distance (9). These formulas have been
established by Jahn [22] for Hausdorff distances hd associated
with metrics d for which the following property holds

for x, y, u, v ∈ Rn, ∀i ∈ {1, . . . , n},
|xi − yi| ≤ |ui − vi| =⇒ d(x, y) ≤ d(u, v). (10)

This property holds also for the Minkowski metric dp

dp(x, y) =

(∑
i

|xi − yi|p
)1/p

, (11)

as well as its weighted version. Finally, we can rely on explicit
formulas for the Manhattan (p = 1), the Euclidian (p = 2)
and the Chebyshev (p → ∞) metrics, although for the latter,
the computation of the Hausdorff distance is straightforward.
In the sequel, we will denote by hp the Hausdorff distance
associated with metric dp, in particular h1 associated with the
Manhattan (p = 1), h2 with the Euclidian (p = 2), and h∞
with the Chebyshev (p→∞) metrics.

As known, the Hausdorff distance h∞ associated with
metric d∞ can be computed as

h∞([a], [b]) = max(max
i
|ai − bi|,max

i
|ai − bi|)

We can introduce the mapping ψ : I(Rn) → R2n defined
by π([x]) = (x1, . . . , xn, x1, . . . , xn). Then for any interval
vectors [a], [b] in I(Rn), the equality

h∞([a], [b]) = d∞(π([a]), π([b])) (12)

holds. The sought explicit formulas should then be of the form
of (12). They are given in [22].

VII. EXPERIMENTAL EVALUATION OF THE LOCALISATION
METHOD USING INTERVAL FINGERPRINTS

Le us illustrate indoor localisation using a RM database that
contains interval fingerprints as explained in Sect. V-B.

The interval-RM contains N = 52 interval fingerprints
obtained at positions covered by M = 206 unique AP. At each
position, several RSS measurements were made over a short
time interval. The range of RSS values obtained were used to
compute the interval fingerprint, along with an averaged value,



Fig. 5. RMS position error using interval data query with interval fingerprints
vs point data query with averaged fingerprints. (a) p = 1, (b) p = 2, (c)
p→ inf .

in order to compare the two approaches, i.e., the interval data
approach proposed in this paper with the standard approach
using averaged values.

Fig. 5 shows the position RMS error at a given location.
The position is reconstructed using the RM. On the one hand,
we use a range of RSS measured over a short time interval and
search for similarities in the interval-RM, the RMS errors are
denoted interval query. On the other hand, we use each of the
single measurements and search similarities in the averaged-
RM. The RMS errors are denoted point query. This is done
for the three metrics obtained using Hausdorff distance hp
versus standard metric dp, when p = 1, i.e., Manhattan metric,
when p = 2, i.e., Euclidian metric, and when p → ∞, i.e.,
Chebyshev metric. It is clear that the point query method
exhibits large variations in the reconstructed position.

Therefore, the interval fingerprint method advocated in this
paper may be used as a standalone technique to smoothen the
location estimates and improve the consistency, whereas state-
of-the-art localisation techniques need to alter the measure-
ments by averaging or need to rely on other external modalities
hence using extra hardware.

VIII. CONCLUDING REMARKS

We have shown that there exist effective algorithms that
make it possible to use interval data within indoor localisation
techniques. With infrastructure-based techniques, interval data
may be used to provide uncertainty bounds for the recon-
structed localisation, thus ensuring more reliable navigation in
noisy environment without the need of probabilistic assump-
tions. With infrastructure-less techniques, the new method
we propose for RSS fingerprint-based localisation works di-
rectly with interval RSS data to provide smoother and more
consistent localisation estimates. Future work will consider
further experimental evaluation of the new method and its
implementation into the Anyplace software.
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