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Improved dynamic object detection within evidential grids framework

Abderraouf HADJ HENNI1, Angel SORIANO2, Rafael LOPEZ2, Nacim RAMDANI1

Abstract— The deployment of autonomous robots/vehicles is
increasing in several domains. To perform tasks properly, a
robot must have a good perception about its environment
while detecting dynamic obstacles. Recently, evidential grids
have attracted more interest for environment perception since
they permit more effective uncertainty handling. The latest
studies on evidential grids relied on the use of thresholds for
information management e.g. the use of a threshold, for the
conflict characterized by the mass of empty set, in order to
detect dynamic objects. Nevertheless, the mass of empty set
alone is not consistent in some cases. Also, the thresholds
used were chosen either arbitrary or tuned manually without
any computational method. In this paper, first the conflict is
composed of two parameters instead of mass of empty set
alone, and dynamic objects detection is performed using a
threshold on the evolution of this conflict pair. Secondly, the
paper introduces a general threshold along with a mathematical
demonstration to compute it which can be used in different
dynamic object detection cases. A real-time experiment is
performed using the RB1-BASE robot equipped with a RGB-D
camera and a laser scanner.

I. INTRODUCTION

Mobile robots are more and more used to accomplish tasks

autonomously even in environment with distinct moving

obstacles. Such robots can perform tasks in outdoor envi-

ronment e.g. autonomous vehicles, or in indoor environment

for logistic tasks in warehouses, for health-care in hospitals,

and for user’s comfort in smart-buildings. To accomplish

the missions safely, the robot must perceive its environment

properly in order to avoid collision with the surrounding

static and moving obstacles. Occupancy grid [1] is a common

technique used for environment perception where the envi-

ronment area is represented by a grid of several cells. Each

cell represents a portion of the navigation area for which

we need to estimate its state. The latter can be estimated by

computing an occupancy percentage obtained by combining

several sources of information using Bayesian methods [1],

fuzzy methods [2] or evidential methods [3]. In recent years,

evidential methods have received more interests due to the

advantages of evidence theory (also known as Dempster-

Shafer Theory DST [4]) especially for handling uncertainty,

ignorance, and for modeling conflict between sources.

Moras et al used evidential grids in several vehicle

environment perception works [5] [6] [7] where mobile

This project has received funding from the European Union’s Horizon
2020 research and innovation program under the Marie Skłodowska-Curie
grant agreement No 823887. A partial support of the first author was
provided by the French CoCaPs project issued from FUI No 20.

1Univ. Orleans, INSA-CVL, PRISME, EA 4229, F45072,
Orleans, FRANCE. (abderraouf.hadj-henni,
nacim.ramdani)@univ-orleans.fr

2R&D Department Robotnik Automation, SLL 46988 Valencia,
SPAIN (asoriano, rlopez)@robotnik.es

objects detection relied on analyzing a conflict based on

the mass of the empty set and obtained from temporal

fusion. Unfortunately, such conflict may also occur even

if there is no moving object in case where faulty data

from Lidar scanner are provided [8]. Therefore, relying on

conflict measurement with only one sensing modality to

detect moving obstacles is not consistent since such conflict

can be obtained if the sensor is faulty. Consequently, adding

other sensing modalities is essential for consistent conflict

analysis in dynamic objects detection.

Indeed, recent evidential grid studies have raised the

interest of multi-mode sensing for environment perception

applications [9] [10] [11]. In [9] authors evoked that in [5]

[6] the laser scanner is used only to increase accuracy of

the navigation without taking into account the mission of

the robot, therefore, they have considered a multi-modal

sensing (RGB-D and audio) to better consider the robot’s

mission. In [10] authors used a stereo-camera to enhance the

laser’s detection highlighting that mapping is not the only

robot’s/vehicle’s task but other complementary tasks could

be considered using evidential grids. Nevertheless, either in

multi-sensing evidential grids works [9] [10] or in Moras

et al [5] [6] mono-sensing works, the dynamic/static object

distinction relied on thresholds which are taken arbitrary or

set by manual tuning and no demonstration of evaluating

them was provided.

In this paper, the conflict is composed of a pair of

parameters which are the mass of empty set and the distance

between betting commitment as defined in [12]. We introduce

then the notions of the evolution of the conflict pair and

the evolution of the mass of empty set, and we show

through an example that the evolution of the conflict pair can

discern between some cases where the evolution of mass of

empty set alone cannot. The dynamic objects are detected by

analyzing the evolution of the conflict pair w.r.t to a threshold

supported by a mathematical proof. The evolution exploits

the conflict pair obtained between two sensing modalities

before temporal fusion, and the conflict pair obtained after

temporal fusion.

The paper is organized as follows. The concept of eviden-

tial grids is explained in II and the construction of these grids

is illustrated in III. Section IV details the new conflict based

environment perception algorithm. The real-time experiments

are shown in V while section VI concludes this paper.

II. BELIEF FUNCTIONS AND EVIDENTIAL GRIDS

A. Belief functions and evidence theory

Overview: Evidence theory [4] (or Dempster Shafer The-

ory DST) is a theory that uses belief functions to model the



knowledge about a hypothesis and/or uncertain hypothesis

(i.e. union of hypothesis). This theory was further extended

by Smets [13] within the transferable belief model TBM

framework. The main common aspects between evidence

theory DST and TBM are the frame of discernment (FoD)

Ω = {h1, h2, ..., hn} which contains a set of hypothesis, and

the corresponding power set 2Ω = {φ, h1, h2, ..., hn, {h1 ∪
h2}, ...,Ω} which contains uncertainties and ignorance (i.e.

union of hypotheses and Ω respectively), in addition to the

initial single hypotheses of Ω. Finally, the mass function

m(A) where A ∈ 2Ω represents the belief over an element

of the power set 2Ω. The mass functions take values in [0, 1]
and should satisfy

∑

A∈2Ω
m(A) = 1.

Fusion: The TBM offers several combination rules in

addition to the DS combination rule of evidence theory.

Nevertheless, in this paper we will focus only on the DS rule.

Two mass functions from different sources can be combined

using the DS rule as follows:

m1⊕2(A) = m1(A)⊕m2(A) =
m1∩2(A)

1−m1∩2(φ)
(1)

With: m1⊕2(φ) = 0. m1∩2(φ) =
∑

A∩B=φ

m1(A)×m2(B)

m1∩2(A) =
∑

B∩C=A 6=φ

m1(C)×m2(B). ∀A,B,C ∈ 2Ω/φ

Discounting: The discounting allows to weight an infor-

mation source w.r.t to other source(s). Shafer’s discounting

[4] consists in reducing the mass functions of the correspond-

ing source (except the mass over Ω) as follows:

{
αm(A) = (1− α)×m(A) ∀A ∈ 2Ω/Ω.
αm(Ω) = (1− α)×m(Ω) + α

(2)

Where αm is the discounted mass and α is the discounting

factor and (1− α) is the confidence in the source.

Pignistic transform: In contrary to evidence theory, within

the TBM framework we can construct a probability function

from mass functions using the pignistic transform as follows:

BetP (D) =
1

1−m(φ)

∑

D∈C⊆Ω

m(C)

| C |
(3)

Where: | C | is the cardinal of C i.e. is the number of

elements in C. D is a singleton i.e. | D | = 1.

Distance between betting commitments and conflict pair:

In evidence theory DST, the mass of empty set m1∩2(φ)
is considered as a measure of conflict. Nevertheless, several

studies e.g. [12] have shown that this mass of empty set

alone cannot represent a consistent measure of conflict in

some cases. Therefore, the author of [12] presented then

an alternative measure of the conflict by using a pair of

parameters as follows:

〈m1∩2(φ), DifBetP 〉 (4)

Where DifBet is the distance between betting commit-

ments with: DifBet = max(|BetP1(D)−BetP2(D)|).

D is a singleton of Ω. BetP1 and BetP2 correspond to the

pignistic probability from source 1 and source 2 respectively.

Note that in our case, the pair (4) is not used to represent

only the conflict, but it is further used to get a more consistent

analysis of the evolution of conflict.

B. Evidential grid

An occupancy grid consists in dividing the environment

perception into several cells. The state of each cell can be

represented by a set of hypothesis e.g. free or occupied.

Nevertheless, when the state of a cell is not certain, it can

be represented by an uncertain state corresponding to the

union of several hypothesis e.g. free ∪ occupied thanks to

the evidence theory DST or its extensions such as TBM.

Hence, in evidential grid each cell can be represented by

the following FoD: Ω = {F,O} leading to the power set

2Ω = {φ, F,O,Ω}. Where F,O and Ω corresponds to free,

occupied and unknown respectively. A mass function can be

assigned then to each element of 2Ω.

III. PERCEPTION AND PREDICTION EVIDENTIAL GRIDS

In our case, two sensing modalities are used which are

a laser scanner and a RGB-D camera. After building an

evidential grid from each sensor, the two grids are combined

to get a perception grid. This latter is combined further with

the prediction grid during temporal fusion.

A. From sensors data to evidential grids

The RB1-base robot we use is compatible with the robot

operating system ROS. Therefore, we exploit some existing

ROS packages to get an occupancy grid map from each

sensor (we use gmapping1 to get the map from the laser

scanner and both pointcloud to laserscan2 and gmapping
to get map from the RGB-D camera). The parameters of

gmapping are the same for both sensors in order to obtain

identical grid size and resolution.

Each occupancy grid map is converted to an evidential

grid as follows:

For each cell, construct the following mass functions:

αmsi(D) = 1− αsi
αmsi(D) = 0

αmsi(φ) = 0 αmsi(Ω) = αsi

(5)

With:D =

{
O if cell is occupied.

F if cell is free.

si represents the considered sensor (i.e. s1 or s2) and αsi

is the discounting on the considered sensor.

B. Perception grid

The perception grid is obtained by fusing the two sensor’s

evidential grids, cell by cell, using the DS combination rule:

mperc(A) = αms1(A)⊕
αms2(A). ∀A ∈ 2Ω/φ (6)

mperc(φ) = ms1⊕s2(φ) = 0

1http : //wiki.ros.org/gmapping
2http : //wiki.ros.org/pointcloud to laserscan



A perception conflict pair is computed then to asses the

disagreement between the two sensors:

〈ms1∩s2(φ), DifBetPperc(D)〉. D ∈ {F,O} (7)

DifBetPperc = max(|BetPs1(D)−BetPs2(D)|).

IV. OUR ENVIRONMENT PERCEPTION ALGORITHM

A. Temporal fusion

As in previous related works [5] [9] [10], no evolution

model of a cell is considered. Therefore, the grid map

obtained at t − 1 is discounted using (2) with αpred = 0.2
in order to get the prediction mpred as follows:







mpred(D) = (1− αpred)×mt−1(D) ∀D ∈ Ω.

mpred(Ω) = (1− αpred)×mt−1(Ω) + αpred

mpred(D) = 0.

(8)

Where mt−1 is the a posteriori mass function ma post

defined in (9) and obtained at the previous step t − 1.

mpred(D) = 0 since if the state of the cell was D at t − 1
then mt−1(D) = 0.

A temporal fusion is performed then by merging the

perception grid with the prediction grid, cell by cell, using

DS combination rule leading to the following a posteriori:

ma post(A) = mperc(A)⊕mpred(A). ∀A ∈ 2Ω/φ (9)

ma post(φ) = mperc⊕pred(φ) = 0

Again, a conflict pair is computed to asses the conflict

obtained between the perception and the prediction during

the temporal fusion as follow:

〈mtemp(φ), DifBetPa post〉 (10)

Where |D| = 1 and:

mtemp(φ) = mperc∩ pred(φ).
DifBetPa post = max(|BetPperc(D)−BetPpred(D)|).

B. Evolution of the conflict pair

In order to detect dynamic objects, we analyze the evolu-

tion of the conflict pair. Indeed, when an object enters (resp

leaves) a celli at time t, and when sensors agree on the same

state occupied (resp free), hence, the perception conflict pair

(7) will be the smallest. Nevertheless, if the celli was free

(resp occupied) a t−1, the a posteriori conflict pair (9) will

be the highest. In such a case, the evolution of the conflict

pair will be significant. Therefore, we define the evolution

of the conflict pair:

Evol(〈m(φ), DifBetP 〉) =

〈ms1∩s2(φ)−mtemp(φ), DifBetPperc −DifBetPa post〉
(11)

This evolution is further compared to a threshold in order

to detect dynamic objects.

C. Environment perception and dynamic object detection

The environment perception consists in choosing for each

cell a state A ∈ 2Ω/φ after the temporal fusion. This choice

depends on the quality of the temporal fusion along with the

obtained mass functions.

Indeed, if the perception and prediction disagree during

temporal fusion, then we should drop the a posteriori mass

functions. In such a case, two possible ways are derived:

1) the sensors agree on same state A, then we trust the

perception. 2) the sensors do not agree on A then we do

not take any risk and we put ma post(Ω) = 1.

Now, we have to fix the three thresholds corresponding to

the following: the threshold for conflict between perception

and prediction (ε1, ε2), the threshold for agreement between

the two sensors (η1, η2), and finally the threshold on the

evolution of the conflict pair from which we detect dynamic

obstacles (δ1, δ2).
For the threshold (ε1, ε2), we use the computational ap-

proach presented in [14] to define the value of a posteriori

conflict from which we drop the temporal fusion results.

We consider that the a posteriori conflict occurs when

mperc(D) > 0.5 and mpred(D) > 0.5. According to (5),

(6) and (8) we get for D ∈ {F,O}:

mperc(D) > 0.5 ⇒ mperc(D) = 0 and mperc(Ω) 6 0.5
mpred(D) > 0.5 ⇒ mpred(D) = 0 and mpred(Ω) 6 0.5

This leads to (ε1, ε2) = (0.25, 0.25) according to compu-

tation method of [14].

Following a similar reasoning, we define the threshold

(η1, η2) representing the highest value that perception con-

flict pair is allowed to take when sensors are considered

agree. The computation led to (η1, η2) = (0, 0.25) as shown

in (14) in appendix VI.

The issue now is how to define the threshold (δ1, δ2)
on the evolution of the conflict pair since the computation

approach in [14] concerns rather the conflict pair and not the

evolution of conflict pair. Therefore, a novel mathematical

proof is provided in appendix VI that illustrates how we

have obtained (δ1, δ2) = (−0.375,−0.625 +
αpred

2 ). In our

case, since αpred = 0.2, the threshold for conflict evolution

become then (δ1, δ2) = (−0.375,−0.525).
Finally, when a dynamic object is detected, it can impact

the considered cell in two ways by either rending the cell

recently occupied or recently free. The whole environment

perception algorithm is summarized in Algorithm 1.

D. Interest of the conflict pair evolution and its threshold:

Interest of the conflict pair:

case Sensor 1 Sensor 2 Pred Evol(mφ, DifBet)

I
m(O)= 0.95

m(Ω)= 0.05
m(Ω) = 1

m(F)= 0.8

m(Ω)= 0.2
( - 0.76, - 0.4 )

II
m(O)= 0.95

m(Ω)= 0.05

m(O)= 0.95

m(Ω)= 0.05

m(F)= 0.8

m(Ω)= 0.2
( - 0.79, - 0.89 )

TABLE I: Interest of the pair Evol(m(φ), DifBet)



Algorithm 1 Environ. perception & dynamic object detection

For each cell of the grid do:

Construct: ms1(A), ms2(A), mpred(A). ∀A ∈ 2Ω/φ
1) Fuse the sensors evidential grids and get:

mperc(A), ms1∩s2(φ), DifBetperc. ∀A ∈ 2Ω/φ
2) Perform temporal fusion and get:

ma post(A), mtemp(φ), DifBeta post. ∀A ∈ 2Ω/φ
3) Compare the a post conflict to the threshold (ε1, ε2) :
if (mtemp(φ), DifBeta post) < (ε1, ε2) then

Keep: ma post(A) = mPerc(A)⊕mPred(A)
else

if (mperc(φ), DifBetperc) ≤ (η1, η2) then

ma post(A) = mPerc(A)
else

ma post(Ω) = 1
end if

4) Deduce the state of the cell:

if ma post(D) > 0.5 then

State of the cell is D with D ∈ {O,F}
ma post(D) = 1

if Evol(m(φ), DifBet) ≤ (δ1, δ2) then

Dyn object ⇒ cell is recently D. D ∈ {O,F}
endif

else

State of the cell is unknown i.e. ma post(Ω) = 1
end if

The advantage of using the evolution of the conflict pair

instead of the evolution of m(φ) alone is because that the

latter may not discern between some cases. Indeed, let’s

consider the example with the two cases shown in TableI.

We can see that in case I, the sensors do not agree since

ms1(O) > 0.5 but ms2(O) = 0 < 0.5 in contrary to case II

where sensors agree. Since a dynamic obstacle is considered

when both sensors agree and when the prediction disagree

with perception, hence, only case II corresponds to a dynamic

obstacle case while case I corresponds to an uncertain case.

If we rely only on the evolution of m(φ) alone, there

will be no difference between the two cases I and II

since in both cases Evol(m(φ)) < (δ1 = −0.37). How-

ever, when we consider the evolution of the pair we have

Evol(〈m(φ), DifBetP 〉) < (δ1, δ2) only in the case II.

Therefore, the two cases I and II are distinguished only

when using the evolution of the conflict pair, and for such

a reason we should use the evolution of the pair instead of

the evolution of m(φ) alone.

Interest of the threshold (δ1, δ2):

Note that the threshold on the evolution of conflict pair

(δ1, δ2) is based on the two following conditions: a) both

sensors agree i.e. ms1(D) > 0.5 et ms2(D) > 0.5. And b)

the perception and the prediction disagree i.e. mperc(D) >
0.5 and mPred(D) > 0.5 (as shown in step 4 of the

appendix) where D ∈ {O,F} and s1, s2 correspond to

sensor 1, sensor 2 respectively. Hence, one can say that we

can use these two conditions directly in order to detect the

dynamic obstacles.

Unfortunately, relying on these two conditions is not a

good manner for some applications. Indeed, if the robot

has to detect different moving obstacles Oi with Θ =
{O1, ..., On, F} (e.g. detect dynamic obstacles with Θ =
{Human,Robot,Other, F} using two different vision sen-

sors s1 and s2). In such case, one have to: a) cite all

cases when sensors agree i.e. all cases when ms1(H) >
0.5, ms2(H) > 0.5 with H = Oi or F . And b) cite

all cases when the perception disagree with prediction i.e.

cases of mperc(F ) > 0.5, mpred(Oi) > 0.5 and cases of

mperc(Oi) > 0.5, mpred(F ) > 0.5 for all Oi ∈ Θ/F in

order to detect the moving objects. Therefore, it is clear that

relying on the two conditions become exponentially complex

w.r.t the cardinal of Θ. Moreover, the conditions have to be

adapted when the number of considered obstacles Oi change.

Fortunately, the threshold on the evolution of the conflict

pair (δ1, δ2) can be used with any number of obstacles by

comparing the conflict pair evolution Evol(m(φ), DifBet)
of each obstacle w.r.t to the same threshold (δ1, δ2). There-

fore, using this threshold is more easier and more general

for different dynamic objects detection applications.

V. REAL-TIME EXPERIMENTS

We should note that since our algorithm relies on temporal

fusion, the evidential grids obtained at t−1 and at time t must

be in the same coordinate framework. This condition can be

satisfied relying on one of the two following hypotheses. The

first hypothesis assumes that the robot’s position and orienta-

tion at time t are well estimated using existing Simultaneous

Localization and Mapping (SLAM) algorithms as assumed in

[10] or by using precise positioning systems (e.g. Applanix

data as in [5]). The second hypothesis consists in performing

tests with non-moving robot as in [9]. Since we are rather

focused on environment perception and grids fusion in this

paper, we perform the tests without moving the robot as in

[9]. Nevertheless, the algorithm could be used with a moving

robot if the grids at t − 1 and at time t are adjusted to the

same framework relying on a good robot’s localization.

A. Setup:

In order to test our algorithm, we have implemented it on

the RB1-base3 robot using a ROS package. The RB1-base

shown in Fig.1.a) is equipped with the HOKUYO UTM-

30lx laser scanner and the Orbbec Astra RGB-D camera.

The ROS package contains two gmapping launch files to

get the grid maps from the laser data and from the RGB-D

camera’s converted data, along with a third file containing

our algorithm. Both sensor grid maps have same size of 160×
160 cells and resolution of 0.15(m)/cell’s edge. Fig.1.(a)

shows the RB1-base robot and its surrounding environment.

The HOKUYO laser has a horizontal Field of View FoV

of 270o (a part of this FoV is masked in our robot) while

the horizontal FoV of the RGB-D camera is about 60o.

Nevertheless, note that in addition to the horizontal FoV,

3https://www.robotnik.eu/logistics/portfolio/rb-1-base/



(a) RB1-base and its environment (b) Grid map from the RGB-D (c) Grid map from the laser

Fig. 1: Robot’s environment and the corresponding grid maps from each sensor. Grey, purple and black colors represent

unknown, occupied and free respectively. The yellow circle represents the landmark i.e. the robot.

(a) Environment at time t (b) Fused grid map at step t

(c) Environment at time t+ 1 (d) Fused grid map at step t+ 1

Fig. 2: Experiment results. Blue cyan color corresponds to recently occupied cell by moving object.

the RGB-D camera has a vertical FoV which can reach 50o

which is not the case for the laser scanner. Consequently, the

RGB-D camera can detect objects which are not within the

laser’s vertical FoV.

We discount both sensors with 0.05 i.e. αsi = 0.05 in (5)

since we consider that both sensors are highly and equally

reliable. The prediction is discounted with 0.2 i.e. αpred =
0.2 in (8). Note that the values of the discounting factors are

taken arbitrary, and may change depending on the reliability

of each source, in contrary to the values of the thresholds on

the conflict which are computed with a mathematical proof.

B. Scenario, results, and discussion

Scenario: For the experiment scenario, we have considered

a moving person carrying a wooden panel. The advantage of

the latter is that when it is carried, it will be visible only by

the RGB-D and not by the laser scanner since the panel’s

position will be out of the laser’s vertical FoV which makes

the panel a different moving object compared to the moving

person. At time t, the moving person is in the FoV of both

sensors (precisely at the left limit of the RGB-D’s FoV),

however, the wooden panel is only visible for the RGB-D

since its position is higher than the vertical FoV of the laser

which corresponds to the case of Fig.2.(a). At the next step

t + 1, the person stopped moving and started approaching



the wooden panel to the ground which made the panel in the

FoV of both sensors as shown in Fig.2.(c).

Results: From Fig.2.(b), we can see that at time t, the

moving person is detected in cell 1 which is colored with blue

cyan i.e. recently occupied since both sensors have detected

the entrance of the person inside cell 1. Nevertheless, the

neighbor cells (cell 2 and 3) are colored with grey i.e.

unknown because the wooden panel is not within the laser’s

FoV which led to disagreement between sensors. Therefore,

cells 2 and 3 are grey instead of blue cyan, nevertheless,

these two cells are not navigable since they are not free.

From Fig.2.(d), we can see that at t + 1 the cell 1 has

became purple (i.e. occupied instead of recently occupied)

since it was already occupied by the person at time t. Also,

the cell 3 has became purple since the wooden panel is now

within the FoV of both sensors, however, it is not considered

recently occupied since it was not free at the previous time

t. For cell 2, we notice that it stayed grey because it was

not occupied yet in the laser’s map which may be caused

by a gmapping limit due to low laser intensity in this cell

2 at t + 1. Finally, we can see that a new cell (cell 4) has

became blue cyan i.e. recently occupied because when the

person bent to approach the panel to the ground, she moved

the panel to the left and the panel entered cell 4 leading to

a recently detected object by both sensors in cell 4.

Discussion: Based on these results, it is clear that the

thresholds used in this paper are consistent since several

cases have been distinguished. For example, we could discern

between cell 1 and cells 2 and 3 at time t thanks to the

perception conflict threshold (η1, η2). Moreover, we could

identify the moving object i.e. recently occupied cell and

already occupied cell (e.g. the case of cell 1 and cell 4 at

time t+1) thanks to the threshold on the evolution of conflict

pair (δ1, δ2). Keep in mind that at time t+1, both cell 1 and

cell 4 are not navigable since none of them is black i.e. free,

nevertheless, differentiating the state of these cells may help

the robot to make decisions depending on its mission.

Finally, note that the prediction was discounted more than

the perception since the prediction is obtained by a simple

discounting of the previous results. Nevertheless, a more

consistent prediction can be inspired from the one used in

[15] if the motion model of the dynamic obstacles is known.

VI. CONCLUSION

In this paper, we have shown the advantage of using a pair

of parameters to represent the conflict since the evolution of

this pair can discern between some cases where the evolution

of empty set alone cannot. Also, we have defined a threshold

on the evolution of the conflict pair for mobile objects

detection. This threshold is computed mathematically instead

of choosing it arbitrary or tuning it manually. Moreover, we

have emphasized that this threshold could be more easier and

general for different dynamic object detection applications.

Finally, a real-time experiment showed the consistency of

using the threshold on the evolution of the conflict pair and

the presented algorithm for dynamic object detection.

APPENDIX

This appendix shows how the threshold on the evolution

of the conflict pair is computed trough the 6 steps below

1) Let us consider the following mass functions obtained

from the sensors s1, s2 for all D ∈ {F,O} as follows:

ms1(D) = a1. ms1(D) = b1. ms1(Ω) = 1− a1 − b1
ms2(D) = a2. ms2(D) = b2. ms2(Ω) = 1− a2 − b2

We consider that two sensors agree on a state D if

ms1(D) > 0.5 and ms2(D) > 0.5 which leads to:

a1, a2 ∈ [0.5, 1] ⇒ b1, b2 < 0.5.

Note that the sensors can provide only one state for each

cell as shown in (5). Hence, if we consider that both sensors

agree on D, the mass over D will be null which leads to the

following mass functions:

ms1(D) = a1 ms1(D) = 0. ms1(Ω) = 1− a1
ms2(D) = a2. ms2(D) = 0. ms2(Ω) = 1− a2

Hence, it is clear that when sensors agree we get:

ms1∩s2(φ) = 0 ∀ a1, a2 ∈ [0.5, 1] (12)

2) Now let us compute the DifBetPerc. We have:

Bets1(D) = a1 +
1−a1

2 = 1+a1

2
Bets2(D) = a2 +

1−a2

2 = 1+a2

2

DifBetPerc = max|Bets1(D) − Bets2(D)| =
|a1−a2

2 | ∀ a1, a2 ∈ [0.5, 1]. ⇒ It is clear that:

0 ≤ DifBetperc ≤ 0.25 (13)

Since: max(DifBetperc) = |max(a1)−min(a2)
2 | =

|min(a1)−max(a2)
2 | = 0.5

2 = 0.25. This leads to:

(0, 0) ≤ (ms1∩s2(φ), DifBetperc)
︸ ︷︷ ︸

(η1,η2)

≤ (0, 0.25) (14)

3) Also, when the sensors agree we have:

mperc(D) = ms1⊕s2(D) = (a1 × a2) + (a1 ×
ms2(Ω)) + (a2 × ms1(Ω)) = a1(a2 + ms2(Ω)) + (a2 ×

ms1(Ω)) = a1 + a2 − a1a2. Note that:
∂mperc(D)

∂a1

=

1 − a2 ≥ 0 and
∂m(D)
∂a2

= 1 − a1 ≥ 0 ∀a1, a2 ∈
[0.5, 1]. ⇒ mperc(A) is increasing in sense of a1 and a2.

Hence, min(mperc(D)) = mperc(D)a1=0.5=a2
= 0.75 and

max(mperc(D)) = mperc(D)a1=1=a2
= 1. We get then:

0.75 ≤ mperc(D) ≤ 1 (15)

Moreover, mperc(Ω) = ms1⊕s2(Ω) = (1−a1)× (1−a2).

⇒ Betperc(D) = mperc(D) +
mperc(Ω)

2 = a1 + a2 −

a1a2 +
(1−a1)×(1−a2)

2 = a1+a2−a1a2+1
2 =

mperc(D)+1
2 .

From (15) we have: 0.75 ≤ mperc(D) ≤ 1 ⇒ 0.75+1
2 ≤

mperc(D)+1
2 = Betperc(D) ≤ 1+1

2 . Consequently:

0.875 ≤ Betperc(D) ≤ 1 (16)

4) The prediction is obtained by discounting the previous

results (i.e. previous cell’s state) with αpred ∈ ]0, 1[ .



If the cell was D at t − 1, the prediction will be then:

mpred(D) = 1− αpred and mpred(Ω) = αpred

The conflict between prediction and perception is con-

sidered when perception supports a state D and when the

prediction supports the opposite state D i.e. when:

mperc(D) > 0.5 and mpred(D) > 0.5 D ∈ {F,O}.

Indeed, a state is considered when its mass is geater than

0.5 since as evoked in [7], this ensures to chose the most

likely level without considering the part of unknown.

However, from (15) we have: 0.75 ≤ mperc(D) ≤ 1.

Hence, the conflict between perception and prediction can

be considered in our case when:

0.75 ≤ mperc(D) ≤ 1 and 0.5 < mpred(D) ≤ 1− αpred

Since: mtemp(φ) = mperc∩Pred(φ). We obtain:

0.375 < mtemp(φ) ≤ 1− αpred (17)

5) Also, since in such a case we have (mpred(D) = 1 −
αpred) > 0.5, we get then:

mpred(D) = 0 and mpred(Ω) = αpred < 0.5.

This implies that αpred ∈]0, 0.5[ in order to consider that

prediction is in conflict with the agreed sensors. Therefore:

Betpred(D) = mpred(D)+
mpred(Ω)

2 = 0+
αpred

2 =
αpred

2 .

⇒ Betpred(D) =
αpred

2
withαpred ∈ ]0, 0.5[ (18)

From (16) and (18) we conclude that when perception

is in conflict with the agreed sensors for, DifBeta post =
max|Betperc(D)−Betpred(D)| become:

(0.875−
αpred

2
) ≤ DifBeta post(D) ≤ (1−

αpred

2
) (19)

From (17) and (19) we get:

(0.375, 0.875−
αpred

2
) ≤ (mtemp(φ), DifBet(D)a post) ≤

(1− αpred, 1−
αpred

2
)

(20)

6) Now, since we have from (14) the range of the

perception conflict (ms1∩s2(φ), DifBetperc) when the

sensors agree, and we have from (20) the range of

(mtemp(φ), DifBeta post) when prediction is in conflict

with the agreed sensors, hence, let’s find ranges of

Evol(m⊕(φ), DifBet ) for this case. The evolution of

the conflict pair corresponds to the evolution of each

parameter of the pair i.e. Evol(m⊕(φ), DifBet(D) ) =
(Evol(m(φ)), Evol(DifBet) ) where:

Evol(m(φ)) = ms1∩s2(φ)−mtemp(φ).
Evol(DifBet) = DifBetperc −DifBeta post

From (12) and (17) the Evol(m(φ)) is then:

−(1− αpred) ≤ Evol(m(φ)) ≤ −0.375 (21)

Also, we have from (13) and (19) :

0 ≤ DifBetperc ≤ 0.25 and (0.875 −
αpred

2 ) ≤
DifBeta post ≤ (1−

αpred

2 ) with αpred ∈]0, 0.5[.
This implies max(Evol(DifBet)) = −0.625+

αpred

2 and

min(Evol(DifBet)) = 0− (1−
αpred

2 ) =
αpred

2 − 1 .

⇒
αpred

2
− 1 ≤ Evol(DifBet) ≤ −0.625 +

αpred

2
(22)

Consequently, from (21) and (22) we obtain:

(αpred − 1,
αpred

2
− 1) ≤Evol(m(φ), DifBet) ≤

(−0.375,−0.625 +
αpred

2
)

(23)

The range in (23) corresponds to the values that

Evol(m⊕(φ), DifBet) can have when sensors agree on a

state D and when prediction is in conflict by supporting the

opposite state D. Consequently, (−0.375,−0.625 +
αpred

2 )
represents the threshold for dynamic obstacle detection.

REFERENCES

[1] A. Elfes. Using occupancy grids for mobile robot perception and
navigation. Computer, 22(6):46–57, jun 1989.

[2] G. Oriolo, G. Ulivi, and M. Vendittelli. Fuzzy maps: A new tool for
mobile robot perception and planning. Journal of Robotic Systems,
14:179–197, 1997.

[3] D. Pagac, E.M. Nebot, and H. Durrant-Whyte. An evidential approach
to map-building for autonomous vehicles. IEEE Transactions on

Robotics and Automation, 14(4):623–629, 1998.
[4] Glenn Shafer. A Mathematical Theory of Evidence. Princeton

University Press, 1976.
[5] J. Moras, V. Cherfaoui, and P. Bonnifait. Credibilist occupancy grids

for vehicle perception in dynamic environments. In 2011 IEEE

International Conference on Robotics and Automation. IEEE, may
2011.

[6] M Kurdej, J Moras, V Cherfaoui, and P Bonnifait. Map-aided fusion
using evidential grids for mobile perception in urban environment. In
Belief Functions: Theory and Applications, pages 343–350, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[7] J. Moras, V. Cherfaoui, and P. Bonnifait. Evidential grids information
management in dynamic environments. In 17th International Confer-

ence on Information Fusion (FUSION), pages 1–7, July 2014.
[8] G. Tanzmeister and D. Wollherr. Evidential grid-based tracking and

mapping. IEEE Transactions on Intelligent Transportation Systems,
18(6):1454–1467, 2017.

[9] Q Labourey, O Aycard, D Pellerin, M Rombaut, and C Garbay. An
evidential filter for indoor navigation of a mobile robot in dynamic en-
vironment. In Information Processing and Management of Uncertainty

in Knowledge-Based Systems, pages 286–298, Cham, 2016. Springer
International Publishing.

[10] M. Valente, C. Joly, and A. de La Fortelle. Fusing laser scanner and
stereo camera in evidential grid maps. CoRR, abs/1805.10046, 2018.

[11] E Capellier, F Davoine, V Frémont, J Ibañez-Guzmán, and Y Li.
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