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Light Driven Control of an Aromatic Oligoamide Foldamer 

Conformational Switch 

 Bappaditya Gole,[a] Brice Kauffmann,[b] Victor Maurizot,[a] Ivan Huc,*[c] and Yann Ferrand*[a] 

 

Abstract: We have investigated the conformation control of a 

foldamer switch by light. An aromatic oligoamide sequence composed 

of a light responsive diazaanthracene-based aromatic -sheet flanked 

by two variable diameter helical segments was prepared. Structural 

investigations revealed that such oligomers adopt two distinct 

conformations: a canonical symmetrical conformation with the two 

helices stacked above and below the sheet, and an unanticipated 

unsymmetrical conformation in which one helix has flipped to directly 

stack with the first helix. Photo-irradiation of the foldamer led to the 

quantitative, and thermally reversible, formation of a single photo-

product resulting from the [4+4] cycloaddition of two 

diazaanthracenes within the aromatic -sheet. NMR and 

crystallographic studies revealed a parallel (i.e. head-to-head) 

arrangement of the diazaanthracene photoproduct and a complete 

conversion to a symmetrical conformation requiring a rearrangement 

of all unsymmetrical conformers. These results highlight the potential 

of foldamers with structures more complex that isolated helices for the 

design of photo-switches showing nontrivial nanometer scale shape 

changes. 

Molecular folding constitutes a formidable tool to implement 

switching, controlled motion and response to external stimuli at 

the nanometer scale. As best exemplified by the folded 

conformations of proteins, complex arrays of intramolecular 

interactions and a hierarchical structure composed of several 

sheet, turn, loop and helix sub-units, may give rise to 

sophisticated allosteric behavior;[1] signal transduction across e.g. 

bilayer membranes through subtle conformational changes 

mediated by guest binding or by a simple phosphorylation, as in 

G-protein coupled receptors;[2] or large scale controlled molecular 

motions coupled to the consumption of chemical energy as 

performed by kinesin[3] or myosin.[4] 

Likewise, synthetic foldamers[5] show promise in the design 

and fabrication of artificial systems endowed with comparable 

properties and constitute an underexplored approach to artificial 

molecular switches and motors.[6,7] Until now, most investigations 

have concerned isolated helically folded oligomers or polymers.  

Helices may undergo handedness reversal upon interacting 

with chiral guests, thus leading to chiral amplification and, 

eventually, kinetic trapping of chiral helical states,[8] or to the 

transfer of chiral information from one end of the helix to the 

other.[9] They may also undergo equilibria between folded and 

unfolded states triggered by light,[10] and spring-like extensions 

and contractions mediated by metal ion binding,[11] or a change of 

redox state.[12] In addition, guest binding to, or release from, a 

helical host may be associated to single helix-double helix 

equilibrium,[13] to a light stimulus,[14] or to the ring contraction of a 

main chain aromatic unit.[15] 

Beyond isolated helices, one major challenge in foldamer 

science is the design of abiotic tertiary structures. Early attempts 

consisted in simply connecting several secondary folded modules 

with limited interactions between them.[16] Recent progress 

includes the consistent spatial arrangement of several abiotic 

helices,[17] as well as aromatic helix and sheet combinations.[18] 

The increasing size and sophistication of these structures provide 

opportunities for enhancing the amplitude and complexity of 

conformational responses to various stimuli. For instance, rotation 

about a single bond in a large folded object may give rise to a 

considerable and nontrivial change of molecular shape. Along this 

line, we now report the reversible, light-induced, switching 

between different conformations within a helix-sheet-helix 

aromatic amide foldamer. Specifically, we discovered a foldamer 

sequence that undergoes unexpected conformation dynamics 

leading to a non-canonical fold, and that these dynamics can be 

reversibly controlled by means of an intramolecular photoreaction 

between two anthracene subunits. 

The dimerization of anthracenes under irradiation by light is 

one of the most studied photochemical reactions. The reversible 

[4+4] cycloaddition of two anthracene molecules results in a 

photodimer connected by covalent bonds.[19] For substituted 

anthracenes, syn/anti and parallel/antiparallel (i.e. head-to-head 

and head-to-tail) isomeric products may form. Products with 

opposite dipole orientations are generally favored unless 

molecular or supramolecular constraints guide the reaction.[20,21] 

Thus, related 1,8-diazaanthracenes (i.e. pyrido-[3,2-g]quinolines) 

undergo quantitative antiparallel photodimerization in solution 

(Figure 1a and S1).[22] Recently, we have shown that, when 

incorporated in aromatic oligoamide -sheet foldamers, 1,8-

diazaanthracene units formed parallel stacks favored by a better 

- overlap (Figure 1b).[18] This observation led us to consider the 

production of parallel photo-products guided by folding (Figure 

1c). Model compound 1 was prepared to test this hypothesis (see 

the supporting information for details, Scheme S1). It comprises 

two 1,8-diazaanthracenes[23] AH separated by a dinitro-diamino-

benzene turn24 T. Upon irradiation under anaerobic conditions at 

320<  < 390 nm using a 50W lamp and appropriate cutoff filters, 
1H NMR monitoring showed the quantitative conversion of 1 into 

a single new product having the same mass in 20 min (Figure S1). 

New signals of the former anthracene H10 and H9 protons were 

found as singlets at 5.35 and 5.70 ppm (Figure S1). These 
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chemical values are consistent with a [4+4] photoreaction and the 

lack of H9*-H10* scalar coupling indicates that the parallel 

photoproduct 2 has formed (Figure 1c and S1-S2).[25] Such a 

quantitative parallel photoreaction guided by folding is 

remarkable. It reflects not only that the anti-parallel aromatic -

sheet is disfavored, but also that its conformation is not conducive 

of a photoreaction (Figure S16). As expected, the reaction was 

shown to be thermally reversible: in C2D2Cl4, 2 was stable at 328K 

but quantitatively converted back into 1 upon heating at 393K for 

15h (Figure S3-S4).  

  

Figure 1. Cartoon representations of: (a) an antiparallel diazaanthracene 

photodimer; (b) a parallel arrangement of strands in a diazaanthracene -sheet 

and (c) a parallel diazaanthracene photo-product in an aromatic -sheet. In 

(a,b,c) white arrows indicate local dipole orientation and blue spheres indicate 

nitrogen atoms. (d) Color coded formula and associated letters corresponding 

to amino acid, diamine, and diacid monomers. (e) Oligoamide sequences 14. 

Note that 2 and 4 are the photo-products of 1 and 3, respectively. The terminal 

AH and Q units of these sequences have a methyl ester group and an 8-nitro 

group (instead of an 8-amino function), respectively. 

We then planned to test this photoreaction within a larger 

foldamer structure. Sequence 3 comprising two conical Q3PN2 

helical hexameric segments attached on both sides of a central 

AHTAH sheet was designed and synthesized (Scheme S2-S3). We 

have previously observed that a related sequence having a 

longer, three-stranded ATATA sheet folds in a canonical manner 

with its two helical segments stacked on each side of the central 

aromatic -sheet.[18] With only two strands, as in 3, a -sheet is 

expected to mediate a helix handedness reversal leading to a 

plane symmetrical conformation noted (M,P)-s3 (see energy 

minimized models in Figure 2e and S17). In line with earlier 

observations,[18] the 1H NMR spectrum of 3 in d6-acetone shows 

one set of sharp lines whose multiplicity is consistent with an 

overall symmetrical (M,P)-s3 structure (Figures 2a and S6). 

However, the 1H NMR spectrum of 3 in CDCl3 revealed a more 

complex situation. The symmetrical species that prevails in d6-

acetone is also present but a second set of broad signals 

indicates coexistence with an other species in slow exchange on 

the NMR time scale (Figure 2b). Upon cooling in CDCl3 down to 

233K, the proportion of this species increased to exceed 50% and 

signals remained somewhat broad (Figure 2c and S7-S8). In 

CD2Cl2, the signals sharpened at 243K and below (Figure S10) 

and revealed a number of amide resonances compatible with a 

dissymmetrical structure (Figure 2d and S10). 

  

Figure 2. Part of the 700 MHz 1H NMR spectra of 3 (1 mM) at: (a) 298K in d6-

acetone; (b) 298K in CDCl3; (c) 233K in CDCl3 and (d) 213K in CD2Cl2. Signals 

assigned to symmetrical (M,P)-s3 and unsymmetrical (M,P)-u3 are marked with 

black () and empty () circles, respectively. The black and empty squares 

denote the amino protons of the turn unit for (M,P)-s3 and (M,P)-u3; 

respectively.  (e) Side view of the energy-minimized molecular model using 

Merck Molecular Force Field static (MMFFs) of plane symmetrical (M,P)-s3. (f) 

Front view of the structure in the solid state of unsymmetrical (M,P)-u3. The 

zoom highlights the rotation of a helical segment about an amide-naphthyridine 

bond. A red double-headed arrow denotes a local electrostatic repulsion. (g,h) 

Zoom on the diazaanthracene -sheet turn unit in (M,P)-s3 (from e) and (M,P)-

u3 (from f), respectively. The model and X-ray structures are shown in tube 

representation with color coded monomers as in Fig. 1. Blue balls indicate 

endocyclic nitrogens atoms. Transparent yellow isosurfaces represent the 

volume of the foldamer. Hydrogen atoms, side chains and solvent molecules 

are not shown for clarity. 

Solid state investigations shed light on the conformational 

behavior of 3. X-ray quality single crystals were grown by slow 

diffusion of hexane into a chloroform solution. The solid-state 

structure revealed an unanticipated unsymmetrical conformation 

in which a helical domain has undergone a large flip to stack 

underneath the other helix (Figure 2e), and to which the 

dissymmetrical species observed in solution may tentatively be 

assigned. This conformer, which we named u3, is accessible from 

(M,P)-s3 through a 180° rotation about a single aryl-amide bond 

between two N units. Apart from that, both helical segments and 

the parallel aromatic -sheet fold as expected. The single bond 



         

 

 

 

 

rotation results in a repulsive electrostatic interaction between an 

amide oxygen atom and an adjacent naphthyridine endocyclic 

nitrogen atom (Figure 2e). This is apparently compensated by 

favorable contacts including through the antiparallel stacking of 

the second quinoline of one helix and a naphthyridine of the other 

helix and through the filling of the cavity of one helix by an 

isobutoxy side chain of the other helix (Figure S14). These 

contacts would not occur for -sheets with three or more aromatic 

strands, hence the absence of unsymmetrical conformer for 

longer parent sequences.[18] Conformation u3 in principle exists 

as a mixture of two degenerate (M,P) and (P,M) states. The 

mechanism of their interconversion is unclear, and in particular 

whether or not it must transit through s3 (equilibria 1 & 2 in Figure 

3).  

 

Figure 3. Schematic representation of the equilibria involved in the switching 

process. Equilibria 1 and 2 do not require helix handedness inversion. Yet the 

ensemble of u3 and s3 species is at slow equilibrium with another mirror-imaged 

(thus degenerate) ensemble obtained through handedness reversal of both 

helical segments. The thermally reversible photoreaction of the two parallel AH 

units (equi. 3) locks the conformation in a plane symmetrical state. P and M 

helices are shown as blue and red tubes, respectively. The diazaanthracene -

sheet and its photo-product are color-coded in orange/grey and green/grey, 

respectively. 

In both the crystal structure of u3 and the energy minimized 

model of s3, the two AH units have a parallel orientation but are 

significantly offset (Figure 2f,g) and not ideally preorganized for a 

[4+4] cycloaddition. Photoirradiation of 3 in CDCl3 was 

nonetheless performed. Thus, a 1 mM solution was irradiated 

under an argon atmosphere and a photoreaction took place, albeit 

at a slower rate than with 1. As followed by 1H NMR, 80% of the 

starting oligomer 3 was converted into its photoproduct 4 after 1h 

of irradiation (Figure 4b). Complete conversion was reached 

within 4h (Figure 4c,e). The slower kinetics may be assigned to 

the not-ideal conformation mentioned above and to favorable 

interactions within u3 and s3 that must be disrupted for the 

reaction to take place. The parallel arrangement of the 

photoproduct was again ascertained by the emergence of two 

singlets at 4.8 and 5.5 ppm assigned to H10* and H9*, 

respectively. In addition, the 1H NMR spectrum of 4 shows a 

single set of signals and indicates a symmetrical structure.  

The symmetrical conformation with a P and an M helices, 

and the parallel arrangement of the photoproduct were confirmed 

by a solid state structure of 4. Crystals grew upon slowly diffusing 

methanol in a chloroform solution. The structure was solved in the 

P-1 space group and revealed that the helices remain above and 

below the butterfly-shaped photoreacted -sheet in a canonical 

structure even though proper stacking onto the AH units is no 

longer possible. Thus, the photoreacted turn is fully embedded in-

between the two helices, with H9* protons pointing towards the 

concave side of the sheet whereas H10* protons point towards to 

convex side of the sheet (Figure 4f-h). 

  

Figure 4. Part of the 700 MHz 1H NMR spectra of at 298K of 3 (1 mM in CDCl3) 

under photoirradiation after (a) 0 min; (b) 60 min.; (c) 4 h. (d) Evolution after 

incubating sample (c) at 328K for 40 h. Signals of s3 and u3 are denoted with 

black () and white () circles, respectively. Black triangles indicate signals of 

photo-product 4. (e) Kinetic monitoring (1H NMR) of: (left) the photoreaction of 

3 yielding 4 and (right) the thermolysis of 4 back into 3. f) Crystal structure of 4. 

(g,h) Front and side views of the photoreacted -sheet highlighting the parallel 

arrangement. The structure is shown in tube representation and the monomers 

are color coded as in Fig. 1. Blue balls denote endocyclic nitrogen atoms. Side 

chains, solvent molecules and hydrogen atoms are not shown for clarity. 

Starting from the equilibrating mixture of u3 and s3 

conformers, light thus allows one to lock the molecule in a plane-

symmetrical conformation that has been expanded by the 

photoreaction, and thus to remove unsymmetrical conformers 

(Figure 3), as when longer sheets are present. The reaction 

between the two AH units is selective: cross-reaction with other 

heterocycles in the structure is avoided.[26] Furthermore, the 

photoproduct can be thermally reverted to the mixture of u3 and 



         

 

 

 

 

s3. Heating 4 in CDCl3 at 328K led to ~50% of conversion after 

16 hours. Quantitative recovery of 3 required almost two days. 

One should note that, despite being slow, this reverse reaction is 

perfectly clean and anyway much faster than for photo-product 2 

which is stable at this temperature. The lower stability of 4 

possibly reflects a higher strain imposed by folding. 

In summary, we have discovered an unanticipated 

unsymmetrical conformer in helix-sheet-helix foldamers, and 

found that the quantitative parallel photoreaction of diaza-

anthracenes within aromatic -sheets exclusively and reversibly 

produces symmetrical conformers. The cleanness of the 

photoreaction suggests that it could be implemented multiple 

times within a given aromatic foldamer sequence, thus leading to 

a global stiffening and length extension of the molecule, or that it 

could be reliably used to control guest binding and release. Efforts 

toward these objectives are currently in progress and will be 

reported in due course. 
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