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We study the diffusion of a tracer particle driven out of equilibrium by an external force and traveling in
a dense environment of arbitrary density. The system evolves on a discrete lattice and its stochastic
dynamics is described by a master equation. Relying on a decoupling approximation that goes beyond
the naive mean-field treatment of the problem, we calculate the fluctuations of the position of the tracer
around its mean value on a lattice of arbitrary dimension, and with different boundary conditions. We reveal
intrinsically nonequilibrium effects, such as enhanced diffusivity of the tracer induced by both the
crowding interactions and the external driving. We finally consider the high-density and low-density limits
of the model and show that our approximation scheme becomes exact in these limits.
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Introduction.—Biased diffusion in crowded media is
ubiquitous in living systems. At the molecular level,
biological motors are able to overcome thermal fluctuations
to achieve directed motion and perform highly precise
functions. At the cellular level, bacteria are able to self-
propel within densely packed biofilms. Both examples
involve a biased, or more generally persistent particle that
moves in a directed manner, and a crowded environment.
The description of such systems constitutes a key problem
of modern statistical physics [1,2]. Beyond fundamental
interests, understanding the transport and diffusion proper-
ties of biased particles in complex environments finds
applications in the field of artificial active matter [3,4] and
in active microrheology [5–7]. The interplay between the
dynamics of the active agents and their passive surround-
ings can trigger self-assembly, through effective inter-
actions mediated by the quiescent medium [8–11].
Recently, from an analytical perspective, the question of

the diffusion of a biased particle, i.e., the limit case of an
active particle with infinite persistence, which interacts
with a bath of passive particles, has received growing
interest through different approaches [12,13]. Here, we
focus on the case where the particles interact via hard-core
interactions and evolve on a lattice. This model is a
variation on exclusion processes, which are paradigmatic
models of nonequilibrium statistical mechanics [2,14]. In
the generic situation where the lattice dimension is greater
than one and where the density of particles is arbitrary,
results are essentially limited to the mean displacement of

the tracer [15–18]. The fluctuations of the tracer position
around its mean value received less interest, and results are
limited to the case of fixed obstacles at low density [19], or
for mobile obstacles at high density [20]. Crucially, the
fluctuations of the tracer position actually contain infor-
mation about the environment of the system and its non-
equilibrium dynamics, as illustrated by the studies of the
diffusion of driven particles in supercooled liquids close to
the glass transition [21,22], in biased periodic potentials
[23–25], disordered systems [26], or for active particles
[27]. Actually, the problem where the tracer is not biased is
already highly complex and does not admit an exact
solution, although an approximate yet very accurate
expression of the diffusion coefficient as a function of
the bath density in 2D was found by Nakazato and
Kitahara [28].
In this Letter, we calculate the fluctuations of the position

of the driven tracer around its mean value in the generic
case of a bath of arbitrary density and on lattices of
dimension 2 and 3, which constitute the most physically
relevant situations. Our analytical approximations are valid
both when the system is infinite in every direction and
when it is confined in directions perpendicular to the
applied bias. Monte Carlo simulations of the master
equation confirm the accuracy of our closure scheme.
Remarkably, our approach reveals that the diffusion of
the tracer can be maximized, either as a function of the
driving force or as a function of the density of bath
particles. We emphasize that these effects cannot be
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predicted within a linear-response description. We finally
show that our approximate expression becomes exact in the
high- and low-density limits, which highlights the consis-
tency and relevance of our closure scheme.
Model.—We consider the general problem of a biased

tracer in a dynamic environment, i.e., with mobile obstacles
of density ρ. The bath particles and the tracer evolve on a
cubic lattice, of spacing σ and of arbitrary dimension d, that
can be infinite in every direction or finite with periodic
boundary conditions in the directions perpendicular to the
bias. The bath particles perform symmetric random walks,
and jump on adjacent sites with rate 1=ð2dτ�Þ. The tracer
performs a biased random walk, and jumps in direction ν
with rate pν=τ. We assume hard-core (exclusion) inter-
actions between all the particles present on the lattice. The
set of jump probabilities fpνg is a priori arbitrary.
However, it can be convenient to assume that the bias is
controlled by an external force F ¼ Fe1, and that
pν ¼ expðF · eν=2Þ=Z, where Z ¼ P

μ expðF · eμ=2Þ is a
normalization constant and eμ are the base vectors of
the lattice (sums on greek letter indices run implicitly
on f�1;…;�dg).
Analytical approximation.—The state of the system at a

given time is described by the position of the tracer X and
the configuration of the lattice η ¼ fηrg, where ηr ¼ 1 if
site r is occupied by a bath particle and 0 otherwise.
Enumerating the possible configurations of the system, one
can write the master equation satisfied by the probability
distribution PðX; η; tÞ under the form

∂tPðX; η; tÞ ¼ LbathPþ LTPP; ð1Þ

where the terms in the rhs describe, respectively, the
symmetric diffusion of bath particles and the biased
diffusion of the tracer particle (TP) constrained by hard-
core interactions. The expression of these operators is given
in the Supplemental Material (SM) [29]. The evolution
equation for the mean displacement of the tracer can be
deduced from the master equation [Eq. (1)], and was
described in previous publications [18,30]. We recall it
in the SM [29]. We focus here on the variance of the tracer
position in the direction of the bias, defined as

σ2XðtÞ≡ h½Xt − hXti�2i ¼ hXt
2i − hXti2; ð2Þ

and whose evolution equation is obtained straightforwardly
by multiplying Eq. (1) by ðX · e1Þ and ðX · e1Þ2 and
summing over all configurations X and η:

d
dt

σ2XðtÞ ¼ −
2σ

τ
½p1g̃e1ðtÞ − p−1g̃e−1ðtÞ�

þ σ2

τ
fp1½1 − ke1ðtÞ� þ p−1½1 − ke−1ðtÞ�g; ð3Þ

which holds in dimensions greater than 1, and where we
define the density profiles kr ≡ hηri and the correlation
functions g̃r ≡ hðXt − hXtiÞðηr − hηriÞi that couple the
dynamics of the tracer with that of the bath of particles,
and where r is evaluated in the frame of reference of the
tracer. The diffusion coefficient of the tracer particle,
defined asD≡ ð1=2dÞlimt→∞ðd=dtÞσ2XðtÞ, can be deduced
straightforwardly from Eq. (3).
The evolution equations of the density profiles kr

and of the cross-correlation functions g̃r involve higher-
order cross-correlation functions, and the infinite hierarchy
of equations yielded by the master equation can be
closed by the following mean-field-type decoupling
approximations:

hηrηr0 i ≃ hηrihηr0 i; ð4Þ
hδXtηrηr0 i ≃ hηrihδXtηr0 i þ hηr0 ihδXtηri; ð5Þ

obtained by writing each random variable x as x¼hxiþδx
and neglecting terms of order Oðδx2Þ [Eq. (4)] and Oðδx3Þ
[Eq. (5)]. We emphasize here that these approximations go
beyond naive mean field, as the density profiles hηri are not
replaced by their spatial average ρ. This closure scheme
yields closed evolution equations for the density profiles
and cross-correlation functions [31]. Noticing that
limjrj→∞kr ¼ ρ, i.e., the density profiles relax to their
spatial average far from the tracer, we define the quantities
hr ¼ kr − ρ and will use the notation hμ ≡ heμ .
Using discrete Fourier transforms [29], we find that, in

the stationary limit t → ∞, the density profiles hr and the
cross-correlation functions g̃r obey the equations

Ahr ¼
X
ν

Aνhν∇−νF r − ρðA1 − A−1Þð∇1 −∇−1ÞF r; ð6Þ

g̃r ¼
1

A

�X
μ

�
Aμ −

2dτ�

τ
pμhμ

�
g̃μ∇−μ þ

2dτ�

τ

�
ρ
X
ϵ¼�1

ϵpϵg̃ϵð∇1 −∇−1Þ − σ
X
ϵ¼�1

ϵpϵð1 − ρ − hϵÞ½ρð∇ϵ þ 1Þ þ hϵ�
��

F r

−
2dτ�

τ

1

A2

�X
μ

Aμhμ∇−μ − ρðA1 − A−1Þð∇1 −∇−1Þ
��X

μ

pμg̃μ∇μ − σ
X
ϵ¼�1

ϵpϵð1 − ρ − hϵÞ∇ϵ

�
Gr; ð7Þ
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where we define the discrete gradient operators
∇μfr ≡ frþeμ − fr, the coefficients

Aν ≡ 1þ 2dτ�
τ pνð1 − ρ − hνÞP

μ½1þ 2dτ�
τ pμð1 − ρ − hμÞ�

; ð8Þ

and their sum A ¼ P
μAμ. The functions F r are defined as

the limits F r ¼ limξ→1P̂ðrj0; ξÞ, where P̂ðrj0; ξÞ is the
generating function associated with the propagator of a
random walk starting from 0 and arriving at site r on a
d-dimensional lattice with the following evolution rules:
the random walk goes in direction −1 with probability
A1=A, in direction 1 with probability A−1=A, and in any
other direction with probability A2=A. In what follows, we
will consider two types of lattices: (i) d-dimensional lattices
infinite in every direction and (ii) generalized capillarylike
lattices, infinite in the direction of the applied bias and
finite (of size L) with periodic boundary conditions in all
the other directions. The Fourier transform of P̂ðrj0; ξÞ is
simply given by ˜̂Pðq; ξÞ ¼ ½1 − ξλðqÞ�−1, where λ is the
structure function of this random walk [29,32]. We finally
define Gr ¼ limξ→1ð∂=∂λÞP̂ðrj0; ξÞ. We emphasize the
generality of Eqs. (6) and (7), that hold for different lattice
geometries (infinite or bounded), which only affect the
expression of the generating functions P̂ [29].
The determination of D requires the knowledge of h�1

and g̃�1 [see Eq. (3)]. Although Eqs. (6) and (7) cannot be
solved explicitly, h�1 and g̃�1 can be determined using a
numerical procedure that we sketch here, with further
details to be found in the SM [29]. The first step consists
in noticing that Eq. (6) evaluated for r ¼ e1; e−1 and e2
yields a closed set of three equations for h1, h−1, and h2,
where we have used that hμ ¼ h2 for μ ¼ �2;…;�d for
symmetry reasons, and the explicit expressions of Aν

[Eq. (8)] and F r [Eq. (S24) of SM [29]]. This system is
solved numerically for any set of parameters. Next, Eq. (7)
is written for r ¼ e1; e−1 and e2, which, now that h1, h−1,
and h2 are known, provides a closed set of three equations
for g̃1, g̃−1, and g̃2. Using the explicit expression of Gr
[Eq. (S25) of SM [29]], this set of equations can be solved
numerically. Finally, this determines h�1 and g̃�1, and
allows us to plot the diffusion coefficient D against the
different variables (density, force).
Equations (6) and (7), together with the evolution

equation of the variance σ2XðtÞ [Eq. (3)], constitute the
central result of this Letter. Using exact Monte Carlo
samplings of the master equation, the approximations
obtained from our decoupling scheme are shown to be
extremely accurate for a wide range of parameters.
Moreover, we show below that our equations yield the
exact expressions of the fluctuations of the tracer position
in the high- and low-density limits. We also note that, in the
absence of bias, our expression reduces to that obtained by
Nakazato and Kitahara [28]. From this point of view, our

approach constitutes a nonequilibrium extension of that
key result. It allows us to unveil typically nonequilibrium
effects with respect to both the density and the bias
experienced by the tracer.
Crowding-induced enhanced diffusion.—Using Eqs. (6)

and (7), we first study the behavior ofD as a function of the
particle density ρ, at fixed external force F. As shown in
Fig. 1, which confronts our analytical approximation with
Monte Carlo simulations of the master equation, a non-
monotonic behavior is observed for large enough forces.
This means that, counterintuitively, the diffusivity of the
biased tracer can actually be enhanced by the addition of
passive particles on the lattice. To gain insight into this
nontrivial behavior, we consider separately the different
contributions in the expression of the fluctuations of the
tracer position [Eq. (3)]. While the contribution to the
diffusion coefficient involving the density profiles [defined as
K ≡ ðσ2=4τÞ½p1ð1 − ke1Þ þ p−1ð1 − ke−1Þ�] and the contri-
bution involving the function g̃e−1 are systematically mono-
tonic (decreasing) functions of the density [Fig. 1(e)], the
contribution involving the cross-correlation g̃e1 becomes
nonmonotonic for large enough forces [Fig. 1(f)]. This shows
that crowding-induced enhanced diffusion originates from
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FIG. 1. (a)–(d) Comparison between analytical approximations
(lines) for DðρÞ and numerical simulations (symbols). (a) 2D
infinite lattice, τ ¼ τ� ¼ 1. (b) 2D infinite lattice, τ ¼ 1, τ� ¼ 10.
(c) Quasi-1D striplike lattice of width L ¼ 3, with τ ¼ τ� ¼ 1.
(d) 3D infinite lattice, τ ¼ τ� ¼ 1. The approximation is very
accurate in a wide range of parameters. In each plot, the inset
shows the velocity of the tracer particle as a function of the density.
(e),(f) Contributions (analytical approximations) to DðρÞ on a 2D
lattice that involve the cross-correlation function g̃1 (e), g̃−1 (f) and
the density profiles [inset of (e)] for the values of F given in (a).
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cross-correlations between the position of the tracer and the
occupation of the site located immediately ahead in the
direction of the force, which become more pronounced for
an increasing driving force.
Force-induced enhanced diffusion.—We also study the

dependence of D on the external force, keeping the total
density ρ fixed. In this case, for large enough values of τ�
(the typical waiting time of bath particles between two
moves), a nonmonotonic behavior of the diffusion coeffi-
cient as a function of F is found (Fig. 2). This means that
there exists an optimal value of the external force which
produces the maximum of diffusivity. This kind of behavior
is similar to the negative differential mobility observed in
analogous models [17,18,30,34] (see inset of Fig. 2).
Although increasing the driving force reduces the travel
time of the tracer between consecutive obstacles, it will
increase the time the tracers spends trapped by bath particles
if they are slow enough. The trade-off between these two
competing effects results in a nonmonotonic dependence of
the diffusion coefficient as a function of the driving force,
and to the existence of an optimum diffusivity. Force-
induced enhanced diffusion and negative mobility are found
to be related, although the effect is more pronounced for the
velocity. For all tested values of parameters, the velocity
VðFÞ and the diffusion coefficient DðFÞ have the same
monotonicity as a function of F. Note that, on the contrary,
crowding-induced enhanced diffusion occurs while the
velocity is always decreasing with the density.
High-density limit.—The high-density limit of the prob-

lem can be studied exactly by relating the statistical
properties of the tracer position to the first-passage den-
sities of the vacancies (empty sites on the lattice) [35–37].
At linear order in (1 − ρ), i.e., when the vacancies have
independent dynamics, explicit expressions for the fluctu-
ations of the tracer position have been obtained [20]. In
confined systems, this analysis revealed the existence of a
transient regime in which the fluctuations of the tracer
position are superdiffusive, growing as t3=2 on generalized
capillaries and as t ln t on an infinite two-dimensional
lattice. The tracer ultimately reaches a regular diffusive
regime, after a crossover time that scales as 1=ð1 − ρÞ2, in
such a way that the superdiffusive fluctuations can be long-

lived for crowded systems. Importantly, these results can be
retrieved using Eqs. (6) and (7).
First, the transient regime can be obtained by taking the

limit ρ → 1 and then the long-time limit t → ∞ of the
evolution equations for kr and g̃r [29]. Using generic
relations for propagators on lattice random walks to
simplify the combinations of F r [29,32], we obtain the
asymptotic expression for the fluctuations of the tracer,
which coincides with the exact expressions [20]:

σ2XðtÞ ∼ σ2ð1 − ρÞ
8<
:

8a02

3Ld−1

ffiffiffiffi
d
2π

q
t3=2 d capillaries

2a02

π t ln t 2D lattice;
ð9Þ

where we define a0 ¼ ðp1 − p−1Þ=½1þ 2dαðp1 þ p−1Þ=
ð2d − αÞ�. Note that we considered for simplicity the case
where τ ¼ τ�, which corresponds to the discrete vacancy-
mediated dynamics described above. The coefficient α
depends on the geometry of the lattice through the relation
α ¼ limξ→1½P̂ð0j0; ξÞ − P̂ð2e1j0; ξÞ�, where P̂ðrjr0; ξÞ is the
generating function of a symmetric random walk starting
from r0 and arriving at r on the considered lattice.
The ultimate diffusive regime is obtained by taking

t → ∞ first and ultimately ρ → 1. In the high-density limit,
Eqs. (6) and (7) reduce to linear systems that can be solved
explicitly [29]. We finally obtain

σ2XðtÞ ∼
8<
:

2σ2

Ld−1

h
1
a0
þ 4d2

Ld−1ð2d−αÞ
i
−1
t d capillaries

4σ2a02

π ð1 − ρÞ lnð 1
1−ρÞt 2D lattice:

ð10Þ

The asymptotic expressions of the fluctuations of the tracer
position presented in Eqs. (9) and (10) then coincide with
the results obtained from the exact approach [20]. This
shows that the decoupling approximation [Eqs. (4) and (5)]
we propose to treat the master equation of the problem is
exact in the high-density limit.
Low-density limit.—Finally, we consider the low-

density limit of our decoupling approximation. In this
limit, the rescaled density profiles can be expanded as
hν ¼ vνρþOðρ2Þ, where the coefficients vν (for
ν ¼ �1; 2) are the solution of a linear set of three equations
[30]. By taking the limit of ρ → 0 of Eq. (7), we extend this
result to the cross-correlation functions g̃ that read
g̃ν ¼ uνρþOðρ2Þ, where the coefficients uν are the sol-
ution of another set of linear equations [29]. The asymptotic
expression of the diffusion coefficientD in two dimensions
coincides numerically with the exact analytical solutions
in the limit of fixed obstacles (τ� → ∞), that reveal a
nonanalytic behavior at small forces and an exponential
divergence at large forces [see Eqs. (16) and (17) in
Ref. [19]]. We find an excellent agreement between
our result from the decoupling approximation and the
exact expression, as shown in Fig. 3. This additional
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FIG. 2. Comparison between analytical approximations (lines)
and numerical simulations (symbols) for DðFÞ and VðFÞ (inset),
for τ ¼ τ� ¼ 1 (a) and τ ¼ 1 and τ� ¼ 10 (b), for different values
of ρ in a 2D infinite lattice. Note the nonmonotonic behavior of
DðFÞ for τ� ¼ 10 [33].
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comparison strongly suggests that our decoupling
approximation is exact in both the high- and low-density
limit. We expect this result to hold when the obstacles can
move (τ� < ∞), as the decoupling approximation works
best when the environment of the tracer is mobile. As a
by-product of our approach, we thus obtained an exact
expression for the diffusion coefficient of the tracer in the
low-density limit.
Conclusion.—In this Letter, we studied the statistical

properties of a biased random walker traveling in a passive
bath of particles on a lattice of dimension 2 or more. The
master equation of the problem is solved through a
decoupling scheme that goes beyond a naive mean-field
approximation, and we calculate the fluctuations of the
position of the tracer particle for an arbitrary set of
parameters. We reveal striking counterintuitive and intrinsi-
cally nonequilibrium effects, namely crowding-induced
and force-induced enhanced diffusion. The force-enhanced
diffusion is related to the phenomenon of negative differ-
ential mobility [18,30]: although increasing the applied
force on the tracer can reduce its travel time between
different obstacles, it will increase the time it spends
trapped by the bath particles if they move sufficiently
slowly. The competition between these two effects is at the
origin of the nonmonotonic behavior of the diffusion
coefficient of the tracer particle. The effect of density-
enhanced diffusion is more subtle and relies on nontrivial
cross-correlations between the tracer and the bath particles.
By studying the different contributions to the diffusion
coefficient that are unveiled by our analytical approach, we
show that crowding-induced enhanced diffusion originates
from the cross-correlations between the tracer position and
the occupation of the site ahead, whose contribution
becomes dominant when the bias experienced by the tracer
is large enough. We finally show that our decoupling
scheme becomes exact in both the high- and low-density
limits, which validates its relevance.
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