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Local light-activation of the Src oncoprotein in an
epithelial monolayer promotes collective extrusion

Sarah Moitrier!, Nastassia Pricoupenko’3, Adéle Kerjouan?3, Christiane Oddou??3, Olivier Destaing?3,

Aude Battistella!, Pascal Silberzan® ' & Isabelle Bonnet® '

Transformed isolated cells are usually extruded from normal epithelia and subsequently
eliminated. However, multicellular tumors outcompete healthy cells, highlighting the
importance of collective effects. Here, we investigate this situation in vitro by controlling in
space and time the activity of the Src oncoprotein within a normal Madin-Darby Canine
Kidney (MDCK) epithelial cell monolayer. Using an optogenetics approach with cells
expressing a synthetic light-sensitive version of Src (optoSrc), we reversibly trigger the
oncogenic activity by exposing monolayers to well-defined light patterns. We show that small
populations of activated optoSrc cells embedded in the non-transformed monolayer collec-
tively extrude as a tridimensional aggregate and remain alive, while the surrounding normal
cells migrate towards the exposed area. This phenomenon requires an interface between
normal and transformed cells and is partially reversible. Traction forces show that Src-
activated cells either actively extrude or are pushed out by the surrounding cells in a non-
autonomous way.
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resulting from the activation of oncoproteins and/or

inactivation of tumor suppressor proteins, occurs in iso-
lated cells!. Interactions between transformed cells and their
normal neighbors are known to be key regulators not only at the
early stage of carcinogenesis, but also later during the tumor
progression?. Several in vitro experiments have looked at the
competition between normal and transformed cells by studying
sparse transformed cells embedded in a monolayer of normal
cells3-8. In these experiments, normal cells are co-cultured with
cells expressing cancer-promoting mutations in an inducible
manner, such as a temperature shift or an addition of antibiotics.
When cells overexpressing an oncogene (H-RasV123 or v-Src?) or
the tumor suppressor-knockdown Scribble® are plated with nor-
mal Madin-Darby Canine Kidney (MDCK) cells, the isolated
transformed cells are either extruded from the monolayer (for Ras
or Src cells) or become apoptotic (for Scribble cells). The fate of
transformed cells in healthy tissues has been studied in vivo,
where genetic tools enable the creation of mosaic tissues of
transformed cells. In Drosophila, Vidal et al. showed that over-
activated Src cells were basally extruded and died by apoptosis
when they were surrounded by wild-type cells®. Similarly, Kajita
et al. showed that v-Src expressing cells are apically extruded in
zebrafish®. Such extrusions are also observed in Drosophila and
mammals when cells with different growth rates competel®. In
this case, cell fitness drives the elimination of the slower-growing
cells. These studies must be put in parallel with others high-
lighting the suppressive influence of the epithelium on pre-
malignant cells to ensure that suboptimal cells do not accumulate
during development!!.

Despite these advances, the above-mentioned experiments did
not control in space or time the transformed population pattern.
Powerful optogenetics tools have been used to control gene or
protein expression at the single cell level!%13 and even at the scale
of a group of cells'®1>. Here, we take advantage of this strategy to
locally tune the oncogenic activation - leading to transformation
- in a mammalian cell culture. We focus on Src, which is a
membrane-bound tyrosine kinase whose proto-oncogene activity
is tightly regulated in normal cells'®-!°. Src is central in many
cellular pathways that are involved in cellular growth, cell-cell
and cell-matrix adhesion, motility, and invasion?’. Increased
levels and activity of Src have been observed in several types of
human cancers, and Src has been proposed to induce tumor-
igenesis through cancer-related pathways?!-23 by promoting both
migration and invasion24. We have chosen to study competition
between normal and Src-transformed cells based on (i) Src
potential oncogenic activity, (ii) its invasive properties and (iii) its
essential role in single cell extrusion®.

In the present paper, we question whether collective effects would
emerge after a group of contacting cells embedded in a normal
monolayer has been transformed. We develop an innovative set-up
using optogenetics to control, in time and space, the pattern of
oncogenic Src cells, in order to study the competition between a
well-defined population of Src cells and their normal neighbors in a
monolayer. We show that this local transformation results in the
collective extrusion of the group of Src-activated cells from the
monolayer. The extruded cells remain alive and appear as a tridi-
mensional aggregate displaying some, but not all, hallmarks of the
epithelial-to-mesenchymal transition (EMT). This tissue deforma-
tion requires an interface between normal and Src cells and is
partially reversible when the light activation is stopped.

D uring the initial stage of cancer, cell transformation

Results
The MDCK optoSrc cells. The light-sensitive cryptochrome 2
(CRY2) has been extensively used for optogenetics applications

through blue light-dependent binding to its partner, the truncated
cryptochrome-interacting basic-helix-loop-helix (CIBN)2°26, We
used a stable MDCK cell line engineered to express a synthetic
light-sensitive version of the oncoprotein Src (“optoSrc”) based
on the CRY2-CIBN light-gated heterodimerizer system. The
optoSrc is a cytosolic potentially active Src mutant that is
deprived of membrane anchoring?’, this anchoring is required to
support the transforming activity of this oncogene. In darkness,
the optoSrc is thus inactive in the cytosol. Blue light induces
CRY2-CIBN dimerization resulting in the relocalization at the
membrane of optoSrc (Fig. 1a, Supplementary Fig. 1)—where it
can phosphorylate its physiological substrates and express its
oncogenic activity. When blue light is switched off, the CRY2-
CIBN dimer splits up: the optoSrc diffuses back to the cytoplasm
with a characteristic time of a few minutes?>2028, To limit the
photo-toxicity, MDCK optoSrc cells were exposed to short pulses
of blue light which results in efficient activation of the optoSrc. In
the following, “blue light” always refers to such pulses of light.

Collective behaviors of activated MDCK optoSrc cells. We first
checked that MDCK optoSrc cells, when not exposed to blue
light, developed normally into an epithelial monolayer, and had
the same phenotype as normal MDCK cells. Blue light did not
significantly change the proliferation rate of MDCK optoSrc cells
(Supplementary Table 1). This is consistent with the observation
that elevated Src is not associated with enhanced proliferation for
other cell lines?*30. We also studied the collective migration of
MDCK optoSrc cells with a barrier assay (Supplementary
Movie 1). In the absence of blue light, these cells migrated col-
lectively as MDCK wild-type with migration fingers preceded by
leader cells as previously reported3!:32. In contrast, if illuminated
with blue light, the MDCK optoSrc monolayer rapidly, within
minutes, displayed the characteristics of a migrating monolayer of
MDCK cells expressing the activated form of Src®3. The front
edge of the monolayer did not display leader cells and migrated
60% faster than a normal MDCK monolayer. Cells at the front
edge exhibited membrane ruffles, consistent with the role of Src
in adhesion remodeling: Src phosphorylation typically induces
actin ruffle formation while disrupting focal adhesions>*. We also
observed the detachment of individual cells at the front edge of
the monolayer. All of these characteristics disappeared when
blue-light illumination was stopped.

Effect of blue light on the single-cell extrusion rate. Single-cell
extrusion rate in a homogeneous monolayer of identical cells,
whether MDCK normal or optoSrc, was not significantly
impacted by a global exposition to blue light: the amount of blue
light used for photo-activation did not foster single cell extrusions
from homogeneous monolayers (Supplementary Fig. 2). In con-
trast, when we illuminated with blue light a monolayer of normal
MDCK cells containing isolated optoSrc cells, the activated
optoSrc cells were expelled 15 times more frequently than without
illumination (Supplementary Fig. 2). These results are consistent
with those previously reported for isolated transformed cells in a
normal MDCK monolayer®#. They also show that single-cell
extrusion is caused by the heterogeneity of the cell monolayer.

Local activation of Src results in a collective extrusion. To study
the competition between a group of Src cells and their sur-
rounding normal cells, we projected a well-defined pattern of blue
light on a homogeneous confluent monolayer of MDCK optoSrc
cells (Fig. 1b). We used a Digital Mirror Device (DMD) interfaced
with an inverted microscope to project the blue light pattern,
which directly defines the cell transformation pattern. Our stan-
dard conditions of illumination correspond to a circular pattern
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Fig. 1 Collective extrusion triggered by use of light-inducible Src. a We use cryptochrome 2 (CRY2) and the truncated cryptochrome-interacting basic-
helix-loop-helix (CIBN) light-gated heterodimerizer system to create the optoSrc. In response to blue light, the cytosolic optoSrc relocates to the
membrane where it can phosphorylate its substrates. Note that the endogenous Src is present in all the optoSrc cells. b By illuminating a monolayer of
optoSrc cells with patterned (blue disk) and intermittent (pulses separated by an interval At) blue light, we select in time and space the cells to transform.
¢, d A monolayer of Madin-Darby Canine Kidney (MDCK) optoSrc cells is intermittently exposed to blue light (=470 nm pulse of duration 200 ms every
At="5min) in a circular domain of diameter 70 pm. ¢ Only blue-light illuminated cells are displaying CIBN-GFP-Caax. d Phase contrast images of the
monolayer of MDCK optoSrc cells at different time-points during the blue-light illumination. Time after the start of illumination is indicated in hours and
blue circles delineate the region of illumination. At 30 h, the illuminated cells have started to collectively extrude from the monolayer. @ Number of 3D
aggregates formed, in percentage of attempt, depending on the optoSrc construct used, in presence or not of Src inhibitors (PP2 and Src inhibitor #5) for
the same conditions of blue-light illumination. The number of attempts n is indicated above each bar, coming from at least 3 different experiments for each
conditions, except for Src inhibitor #5 (1 experiment). The error bars represent the uncertainty as described in the Methods. f, g Confocal images acquired
after 60 h of blue-light stimulation. Green: membranes (CIBN-GFP-Caax). Blue: nuclei (Hoechst). f Reconstructed side view reveals that extruded cells
form a three-dimensional multi-cellular aggregate whose height reached 40 um. Shaded blue area indicates the original region of illumination. g Single
confocal slices at the level of the monolayer (left, orange dashed line in (f)) and 25 pm above (right, pink dashed line in (f)). Scale bars: 50 pm

of diameter 70 um (Fig. 1c), with a 200-ms pulse of light at
470 nm, every 5 min (Methods). Upon such exposure, cells from
the illuminated area extruded simultaneously from the monolayer
(Fig. 1d, Supplementary Movie 2). Importantly, these extruded
cells remained cohesive and formed an aggregate that grew in
size, fed by newly extruded cells as time went on. This phe-
nomenon of “collective extrusion” was observed in 95% of the
experiments for which the initial cell density was comprised
between 1700 and 3000 cells per mm?, and started to occur after
21+10 h (standard deviation (SD), n = 112) of illumination in our
standard conditions (Fig. le).

Contrary to single extruded cells, which readily detach from
the monolayer, the 3D cluster made of extruded cells remained
well attached to the monolayer, despite the hydrodynamic flows
generated by several washing steps. Confocal microscopy
confirmed that the extruded aggregate was budding on top of

the monolayer at the location of the blue-light stimulation, or in
its close neighborhood (Fig. 1f). Hoechst labeling of the nuclei did
not reveal condensed or fragmented chromatin (Fig. 1g),
indicating that collectively extruded cells are not apoptotic,
contrary to individually extruded cells. The height of the
aggregate was 40+10 um (standard error of the mean (SEM),
n=12) after 60h of blue-light stimulation, corresponding to
210430 extruded cells (SEM, n=6). Given that there were
initially about ten cells in the exposed area, and that the density of
non-exposed cells was only multiplied by a factor 3 within the 60
h of the experiment, we conclude that the growth of the aggregate
is mostly due to the arrival of new cells and not to proliferation.
Tracking of the nuclei during the collective extrusion confirmed
that cells extrude simultaneously (Supplementary Movie 3).
Such a collective extrusion was not observed in presence of Src
inhibitors (Fig. le, Supplementary Fig. 3) or for a homogeneous
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Fig. 2 Control in time and space of the collective extrusion. a Appearance time T, of the collective extrusion as a function of the region of illumination
(ROI) diameter when the blue-pulse period At is set to 5 min (n =10 samples from 1 experiment for each diameter). b Projected area Ap,q of the aggregate
as a function of the area of the ROI Agp; for At =5min (n =10 samples from 1 experiment for each diameter). The underlying size of the aggregate is
always larger than the ROI. The dashed line indicates y = x. ¢ Appearance time T, of the aggregate as a function of At for a ROl of diameter 70 pm. T, is
delayed as the period of blue-light pulses increases, suggesting that varying the amount of optoSrc at the membrane directly impacts the kinetics of the
collective extrusion (n = 20 for At =2 min; n=15 for At =5, 10, and 15 min; n =10 for At =20 min; n =19 for At =30 min and n =10 for At = 40 min, all
coming from at least 2 experiments). Horizontal pink lines correspond to mean values in (a-c). d Probability of observing a collective extrusion Py.q as a
function of At for a ROI of diameter 70 pm: the slowed-down kinetics of the collective extrusion when the frequency of blue-light pulses decreases is

accompanied with a decrease in collective extrusion events (n =20 for At =2 min; n=15 for At=5, 10, and 15 min; n =10 for At =20 min; n =19 for
At=30min and n =10 for At =40 min, all coming from at least 2 experiments). The error bars represent the uncertainty, as described in the Methods

monolayer of normal MDCK cells illuminated in the same
conditions. Moreover, when cell-cell junctions were disrupted
with egtazic acid (EGTA), the aggregate could not form. Since the
membrane recruitment of Src is essential for its transforming
activity3®, we also experimented with an optoSrc system deleted
of its CIBN component: the recruitment of optoSrc to the
membrane was thus not allowed (Supplementary Fig. 1). Upon
light-activation, we did not observe collective extrusion for this
construct (Fig. 1e), indicating that Src must be over-activated at
the membrane to trigger such a collective extrusion. This
observation is consistent with the role of Src in the regulation
of cell-cell adhesion: in tissue culture, activation of Src is
correlated with internalization of cadherin complexes®°. In that
sense, the collective extrusion could result from a localized
decrease of cell-cell adhesions for the group of activated cells
embedded in the monolayer.

Control, in time and space, of the collective extrusion. Our set-
up allows a good control of the transformed cells in space and
time. The DMD allows us to modify the geometry of blue-light
pattern projected, while maintaining a constant local light
intensity projected on the monolayer. In parallel, we can control
the amount of optoSrc at the membrane with the frequency of the
blue-light pulses: the less frequent the light pulses, the less time
the kinase remains at the membrane and can phosphorylate its
substrates2>28,

The area of the blue-light pattern affected the underneath area
of the aggregate but not its appearance time (Fig. 2a, b): we find
that the underlying area is about 20% larger than the region of

illumination. In contrast, the appearance time T, of the budding
structure, but not its size, was function of the frequency of the
pulses: T, is delayed as At increases (Fig. 2c). This reveals that
the level of Src at the cells membrane directly affects the kinetics
of the collective extrusion: the higher the level of Src activation,
the faster the formation of the budding structure. The appearance
time as a function of the period At of blue light was empirically

fitted with a saturation curve T, = Tmax(l - ke_%) We found

Tomax =47 £3h, k=0.9+0.1, and =9 + 3 min. This character-
istic time 7 is larger than the previously reported CIBN/CRY2
dissociation time of ~3 min?>28. We conclude that 7 is a time
constant of the integrated behavior of the cells, a cumulative effect
in time of the over-activation of Src, and possibly, its downstream
effectors. The plateau of Ty, (At) at long times logically coincides
with a decrease of the probability to observe collective extrusion
events (Fig. 2d). The value of Ty, around 50 h suggests that if
collective extrusion has not occurred during the first 50 h of blue-
light stimulation, it is unlikely to happen at all. Hence, the
frequency of the blue light is a key parameter controlling the
kinetics of the appearance of the aggregate.

Since we control in time and space the collective extrusion
process by tuning the area of illumination and the frequency of
stimulation, our optogenetics-based system is thus a powerful
in vitro tool to trigger, on-demand, the formation of a 3D
aggregate of transformed cells in a normal epithelial monolayer.

Molecular markers of the collective extrusion. Tissue crowding
has been shown to favor cell delamination in epithelial tissues37-40,
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To investigate the role of crowding in the collective extrusion
phenomenon, we measured the probability Py,4 of observing the
formation of a 3D aggregate during the first 60 h of stimulation,
as a function of the initial cell density (Supplementary Fig. 4). For
initial densities d; corresponding to confluent MDCK optoSrc
cells monolayer (1700 cells per mm? < d; <3000 cells per mm?),
Pyuq was high (95%, n=112). If the monolayer of MDCK
optoSrc cells was initially below confluence (700 cells per mm?® <
d; 1700 cells per mm?), Py,,q was reduced by half, suggesting that
a minimal amount of surrounding cells is needed. Surprisingly,
when density was too high at the beginning of blue-light stimu-
lation (d; =3000 cells per mm?), the probability of budding was
also reduced (Ppuq~0.7).

Since Py,q does not correlate directly with cell density, we
looked for molecular changes between MDCK optoSrc cells that
were stimulated or not. F-actin strongly accumulates in exposed
cells, as revealed by live-imaging of SiR-actin during collective
extrusion (Fig. 3a, b and Supplementary Fig. 5). This actin
recruitment suggests that a contractile mechanism is at play in the
collective extrusion process. However, the distribution of myosin
was diffuse in the budding structure (Supplementary Fig. 5),
ruling out the presence of a supracellular actomyosin cable that
would drive the extrusion. Logically, treatment with calyculin A
(resp. Y-27632) which increases (resp. decreases) cell contractility
accelerated (resp. delayed) the average appearance time (Fig. 3c).
In parallel, we performed immunostaining of monolayers of
MDCK optoSrc cells either fully exposed or not exposed. Upon
blue-light illumination, E-cadherin loses its localization at the
membrane and accumulates in the cytoplasm, in agreement with
previous observations showing that elevated expression of active
Src disrupts E-cadherin localization*!. Besides, vimentin was
enriched in the stimulated cells (Supplementary Fig. 6). Similar
trends were observed in collectively extruded aggregates (Fig. 3d, e).
Down-regulation of E-cadherin and expression of vimentin have
already been observed in other cell lines for which c-Src is
elevated*?. Furthermore, during single Src-transformed cell
extrusion, vimentin has been shown to accumulate at the
interface between normal and transformed cells*. A relocalization
of E-cadherin from the plasma membrane to the cytoplasm and
an increase of vimentin expression are both hallmarks of the
EMT. However, this transition from an epithelial phenotype to a
mesenchymal phenotype appears to be only partial, not least
because the level of E-cadherin at junctions remains high enough
to ensure a good adhesion between extruded cells.

Role of the surrounding non-activated cells. While cells in the
exposed pattern collectively extruded, the surrounding cells
converged towards the region of stimulation (Fig. 4a, Supple-
mentary Movie 4). We measured that a 70 um-diameter region of
illumination induced a convergent flow of non-exposed cells in a
150 pm-wide disk around the collective extrusion (Fig. 4b, c). The
presence of this convergent cell flow during illumination suggests
that the local activation triggers a long-range response mediated
by cell-cell interactions and these migrating cells feed the
extruded cluster. Turning off the illumination once the 3D
structure was formed reversed the flow of cells (from the extru-
sion site outwards) and the cells of the extruded cluster reinte-
grated the monolayer (Fig. 4a, Supplementary Movie 4). This
observation not only demonstrated that the process of collective
extrusion was partially reversible, but also confirmed that extru-
ded cells were still alive.

To test if collective extrusion results from interaction between
the two cell types, we shed blue light on optoSrc cells confined on
a circular adhesive pattern>#* that matched the area of light
stimulation. When the whole confined MDCK optoSrc

monolayer was fully illuminated with blue light, collective
extrusion events were observed in only 10% of the cases (Fig. 4d,
n =10 samples from 2 different experiments) instead of 95% for
non-confined monolayers, for an initial cell density comprised
between 1700 and 3000 cells per mm?2 in both cases. This
confirms our hypothesis that collective extrusion requires the
presence of wild-type cells surrounding the populations of
Src cells.

Traction forces point away from the activated Src cluster.
Regarding the mechanical contribution involved in collective
extrusion, we consider three possible scenarios compatible with
the observed convergent cell flow (Fig. 5a—c). In the first scenario,
the activated optoSrc cells collectively contract and “pull” the
surrounding monolayer inwards (Fig. 5a). The second scenario is
the opposite situation where the surrounding normal cells actively
“push” on the group of activated optoSrc cells (Fig. 5b). In the last
scenario, the group of activated optoSrc cells is actively escaping
from the monolayer (Fig. 5c), which prompts the surrounding
monolayer to migrate inwards to cover the surface released by
this process*. Some of these scenarios can be distinguished by
measuring the traction forces exerted by the cells on their sub-
strate during the collective extrusion®0. These forces were mea-
sured by Traction Force Microscopy (TFM)4748. For these
experiments, the MDCK optoSrc monolayer was grown on a
fibronectin-coated polyacrylamide gel of Young modulus
~ 10 kPa loaded with fluorescent beads. Note that the TFM
technique requires a soft substrate, while we generally carried out
experiments on glass. Although collective extrusion is slowed
down on a fibronectin-coated polyacrylamide gel of ~ 10 kPa, the
final outcome is globally unchanged. From the analysis of the
beads’ displacements, we concluded that the traction forces were
highest at the interface between the two populations, and directed
outwards (Fig. 5d-f). Two hypotheses are compatible with such a
force map. In the first one, the collective extrusion would be a
non-autonomous process in which the surrounding cells actively
migrate towards the exposed area and effectively push the Src
cells out of the monolayer (Fig. 5b). The second scenario would
correspond to an active extrusion of the Src cells that would
release new area for the surrounding normal cells to migrate on
(Fig. 5c). We note that the flow and traction force patterns
measured during collective extrusion are similar to those mea-
sured during single cell extrusion?’, but at a supra-cellular scale.

Discussion

Optogenetics enabled us to activate the oncoprotein Src in
mammalian tissue culture with a good control in space and time.
We created mosaic tissues by over-activating Src in well-defined
subpopulations in an epithelial monolayer, giving rise to two
interacting cell populations. We find that groups of activated
optoSrc cells collectively extrude from the monolayer giving rise
to 3D aggregates. These spheroid-like structures remained
strongly attached to the monolayer (resisting hydrodynamic
flows) and were not observed in presence of EGTA, which dis-
rupts cell-cell junctions. Altogether, these observations point to a
new phenomenon of “collective extrusion”. Collective extrusion
requires a surrounding monolayer and the recruitment of Src at
the membrane.

We note that the cells in the aggregate differ in the number of
pulses they received. The cells that have been more exposed to
blue light are more likely to be the first to extrude. They are
located at the top of the aggregate and exhibit a high expression of
vimentin. The cells that entered last into the region of illumina-
tion do not immediately extrude, and they still have sufficient
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projection of a Z-stack of 32 slices with 1 um slice interval with orthogonal views from the confocal stack. The blue circle delineates the region of blue-light
illumination. (r,8) are the polar coordinates used for averaging in (b). b Average radial profile of the gray value of the image depicted in (a). The blue
shaded area indicates the region of stimulation. ¢ Effect of drugs modifying contractility on the probability of budding Py,q and the appearance time T,
Calyculin A (1nM) decreases T,, (p = 0.021, Wilcoxon rank sum test) and increases Py,q, While Y27632 (10 pM) increases T,, (p = 0.013, Wilcoxon rank
sum test) and decreases Py,4. Horizontal black lines correspond to the mean values. The error bar of Py q is the uncertainty as described in the Methods
(Ncal = 28, npmso = 30, Ny27632 = 55 and ny,ater = 24, all coming from at least 3 different experiments). d, @ A monolayer of Madin-Darby Canine Kidney
(MDCK) optoSrc cells was subjected to the standard conditions of illumination for 60 h and fixed with paraformaldehyde. d Immunostaining for E-cadherin
(orange) in a monolayer displaying a budding aggregate reveals that E-cadherin is depleted from the membrane for Src-activated cells (black circle)
compared to non-illuminated cells (dashed white square). Cell nuclei were stained with Hoechst (purple). e Reconstructed side view of a confocal
acquisition after an immunostaining for vimentin (orange) in a monolayer of MDCK optoSrc cells displaying a budding aggregate. Vimentin is strongly
expressed in the cells at the top of the budding structure, compared to cells in the monolayer. Cell nuclei were stained with Hoechst (cyan). Scale
bars: 50 pm

level of E-cadherin at the membrane to ensure strong attachment
of the aggregate to the monolayer.

Previous work has evidenced the extrusion of individual Src-
expressing cells dispersed in a normal monolayer*: these
single-cell extrusions share common features with the collec-
tive extrusion we report here. First, in both single and collec-
tive extrusion, cells are extruded apically (towards the lumen).
Second, it occurs in an apoptosis-independent manner. Third,
it happens only when transformed cells are surrounded by

normal cells. However, there are two major differences between
collective and single extrusion processes. First, the collective
extrusion is reversible. Second, contrary to single-cell extru-
sion, where cells are weakly attached to the monolayer (and
often dissociate from it), the collectively extruded cells remain
alive and form a cohesive spheroid strongly attached to the
underlying substrate. We hypothesize that the collective
extrusion protects the extruded cells as a group and prevents
cell death.
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Fig. 4 Cell flow during the collective extrusion. a ON/OFF blue-light illumination of a monolayer of Madin-Darby Canine Kidney (MDCK) optoSrc cells in a
circular domain. Blue light is switched ON for 36 h inside the blue circle, then switched OFF from 36 h until 48 h. Phase contrast images at different time-
points and time-averaged velocity field (yellow arrows). When the blue light is ON, the collective extrusion occurs within 24 h and the corresponding
velocity field obtained by particle image velocimetry (PIV) analysis shows the convergent flow of cells during this period. From t = 36 h, the blue light was
turned OFF, and most of the cells forming the bud reintegrated the monolayer, showing that collective extrusion is partially reversible. The corresponding
velocity field is reversed. Scale bars: 50 pm. b Velocity field (yellow arrows) averaged between 26 h and 36 h (when the velocities in the monolayer are the
highest) after the start of illumination for a collective extrusion observed at low-magnification. For this experiment, the appearance time is T,, =28 £ 2 h.
The blue circle delineates the region of illumination (circle of diameter 70 pm). Scale bar: 100 pm. ¢ Angular average of the radial component of the velocity
field displayed in (b). The convergent flow extends about 150 pm away from the center of the region of illumination, indicated by the blue area. The error
bars indicate the standard deviation. d Phase contrast images of a monolayer of MDCK optoSrc cells confined in a circular domain that corresponds to the
region of illumination (blue circle) at different time-points after the start of illumination, time is indicated in hours. Scale bars: 50 pm

Cell density has been identified as the main parameter con- activation of optoSrc at the membrane. At very low density, blue
trolling single cell extrusion in various studies in epithelia3®4%0.  light stimulation of optoSrc cells did not result in extrusion but in
In our case, at high cell density, we measured a decrease of P,,gin  a completely different outcome: an islet of a few optoSrc cells
parallel with the apparition of clusters of optoSrc-CRY2 in the exposed to blue light quickly (within a couple of hours) spreads
cytoplasm (Supplementary Fig. 4). To account for this surprising out and breaks apart like mesenchymal cells (Supplementary
result, we propose that cell crowding favors the homo- Fig. 7), which is consistent with the fact that over-activation of Src
oligodimerization of CRY2 to the detriment of the CRY2/CIBN induces an EMT?3°2, In the 3D-aggregate of extruded cells, the
dimerization®!. This would limit the recruitment and over- relocalization of E-cadherin and up-regulation of vimentin
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Fig. 5 Traction forces during the collective extrusion. a-c Three scenarios for the mechanical contribution involved in collective extrusion. a The illuminated
optoSrc cells contract and pull the surrounding monolayer inwards. The resulting forces on the substrate would be directed inwards. b The non-exposed
monolayer is actively pushing on the group of activated optoSrc cells. In such non-autonomous extrusion, we expect the forces generated on the substrate
to be directed outwards. € The group of optoSrc cells is actively escaping the monolayer, which closes the resulting gap by migrating inwards. The forces
generated are also expected to be directed outwards. d-f Traction force microscopy experiment during the collective extrusion. d Traction forces (red
arrows) averaged between 35 h and 50 h after the start of illumination and overlayed with phase image. The region delineated with the black rectangle is
blown up on the right. Note the direction of the forces away from the region of stimulation (indicated by the blue circle). @ Magnitude of the traction force
field displayed in (d), color-coded (Pa) and overlaid on the phase image. f Angular average of the radial component, of the traction force field displayed in
(d). The blue area indicates the region of stimulation (diameter 70 pm). The error bars indicate the standard deviation. Scale bars: 50 pm

supports the idea that the extruded cells are likely undergoing an
EMT-like process, albeit maintaining a cohesive structure. In this
context, it would be of particular interest to confirm this analysis
by studying other EMT markers, such as snail or beta-catenin to
get a complete characterization of the Src-activated cells.
Collective extrusion requires a frontier between two popula-
tions which have different Src levels at the membrane. The tissue
deformation therefore results from the interactions between these

two populations. Recent studies have demonstrated the impor-
tance of mechanical forces in the competition that takes place
between normal and transformed epithelial cells37:°354, We
showed that the traction forces are pointing outwards at the
interface between the two cell populations, while the surrounding
normal cells converge towards the aggregate and eventually get
incorporated in it. A non-autonomous extrusion process for
which surrounding normal cells actively push the Src cells is
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compatible with such a force map. It is interesting to note that
pathological cyst formation in Drosophila imaginal discs has also
been proposed to be a non-autonomous process®”. However, in
that case, the tissue deformation is triggered by the interface
contractility between two distinct cell populations.

Very recently, Messal et al. analyzed how clusters of Kras-
transformed cells trigger morphological changes in tissue archi-
tecture of pancreatic ducts®®. Our results are consistent with their
observation of endophytic lesions made of transformed cells
growing inwards for ducts of large diameter. Although tumor
formation is a complex multifactorial process, we show here that
a group of contacting Src-activated cells is enough to create a
tumor-like aggregate. Since Src is known to be involved in tumor
cell dissemination®’, the ability to create clusters of Src-activated
cells on demand using an epithelial cell line is a valuable tool to
investigate the role of Src activity in tumor dissemination.

More generally, our results show how tridimensional cellular
aggregates can develop by collective extrusion from an epithelial
monolayer, based on the simultaneous transformation of a group
of neighboring cells, which are extruded but thrive as a collective.
Such photo-inducible models may also allow for the study of
biological processes that involve partial and reversible EMT, as it
has been observed in circulating tumor cell clusters (micro
metastases)—in which partial EMT of cancer cells has been
associated with increased metastatic properties®®°.

Methods

Cell culture. The optoSrc construct refers to the OptoSrc + CIBN-GFP-Caax
described in another of our publication?’. Madin-Darby Canine Kidney (MDCK)
and MDCK optoSrc cells were both cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM) supplemented with 1% Penicillin-Streptomycin and 10% (vol/
vol) fetal bovine serum (all from Gibco) at 37 °C, 5% vol CO, and 95% relative
humidity. Cells were seeded in 6-well glass bottom plates (IBL, Austria) at roughly
0.5 million cells per well, and left to incubate overnight. For time-lapse acquisition,
DMEM was replaced with FluoroBrite DMEM (Gibco) - to reduce medium
autofluorescence - similarly supplemented with Penicillin-Streptomycin and fetal
bovine serum, but not with GlutaMAX.

Population doubling time and single-cell extrusion rate. Cells were either not
exposed or exposed to blue light using our standard conditions of illumination in
complete DMEM. For the population doubling time T, cells were manually counted
at six different time-points between t =0 (seeding time) and ¢ =60 h over 5 fields
of view for each conditions (1 movie). T was estimated by fitting the number of
cells as a function of time ¢ with the equation 1,2/ "where 1, was the initial
number of cells (Supplementary Table 1). For homogeneous monolayers (made of
one cell type), extrusions were counted in a 150 x 150 um? region for six samples (2
movies) over 40 + 3 h after the confluence. For mixed monolayers, extrusion rate
was defined as the proportion of isolated cells that have been extruded in the span
of 60 h (Supplementary Fig. 2).

Microscopy. Time-lapse acquisitions were performed on an inverted microscope
(Zeiss Axiovert 200 M) equipped with a temperature, CO, and humidity regulation
(Life Imaging Services, Switzerland), a motorized stage for multipositioning
(Marzhauser, Germany) and a CCD camera (CoolSnap HQ2 from Photometrics,
USA or Retiga R6 from QImaging, Canada). A 40x/0,75NA/Ph2 objective
(Olympus, Japan) was used, and images were taken every 15 min for 60 h. Phase
and fluorescence light sources were, respectively, a pE-100 and a pE-300-white
(CoolLed, UK). Image acquisition was computer controlled with Metamorph
(Molecular Devices, USA). For confocal observation, the monolayers were observed
with a LSM880 NLO with a 40x/1.3 OIL/DIC II PL APO VIS-IR or a 63x/1.4 OIL/
DIC II PL APO objectives (Zeiss, Germany). For live imaging of F-actin, we used
SiR-Actin (Spirochrome) at 100 nM supplemented with verapamil (10 uM). For
live imaging of nuclei, we used SiR-DNA (Spirochrome) at 2 uM.

Blue-light activation. Blue-light patterned illumination was made using a Mosaic2
(Andor, UK) coupled to a X-Cite XLED (Lumen Dynamics, BDX LED module
450-495 nm) using the GFP filters (excitation filter BP 450-490 nm and dichroic
mirror FT 510) and controlled with the “Mosaic Targeted Illumination” Meta-
morph plugin. Unless otherwise mentioned, the illuminated region was a disk of
diameter 70 pm and the intermittent illumination consisted of a 200-ms pulse of
blue light every At =5 min. For these standard conditions of illumination, the light
power was measured to be 20 uW after the objective, with a PM30 optical power-
meter (Thorlabs, US). Given that the characteristic dissociation time of the

complex CRY2/CIBN is ~3 min?>28, setting At = 5 min ensures a moderate level of
CRY?2 at the membrane. The photo-activation parameters (region size, frequency
and pulse duration) were controlled using custom Metamorph journals. Three
pulse durations were tested (50, 200 and 400 ms): since the duration of the pulse
did not obviously change the apparition time of the collective extrusion (Supple-
mentary Fig. 8), we choose to set it to 200 ms, the lowest value that enables a
correct GFP imaging.

Drugs. PP2 (Sigma), Src inhibitor #5 (Biaffin GmbH) and calyculin A (Life
technologies) were dissolved in dimethyl sulfoxide (DMSO) and added to the
medium to reach a final concentration of 10 uM, 10 nM, and 1 nM, respectively.
The control wells were supplemented with equivalent volumes of DMSO. Y-27632
(Sigma) and egtazic acid (EGTA, Euromedex) were diluted in distilled water and
used at a final concentration of 10 uM and 2 mM, respectively. The drugs were
added when medium was changed, between 1 and 4 h preceding the beginning of
the photoactivation, and left for the duration of the experiment.

Preparation of the adhesive patterns. The detailed protocol for adhesive patterns
can be found in others of our publications*344. Briefly, plasma-cleaned glass slides
were first PEGylated with a robust surface treatment. Domains were defined by
photolithography directly on the cell-repellent coating in such a way that it
remained protected by the photoresist everywhere except at the desired location of
the adhesive domains. Using the photoresist as a mask, the polyethylene glycol
(PEG) coating was etched on the photoresist-free areas with a plasma cleaner,
revealing the underlying glass. The resist was then dissolved away leading to clean
glass domains surrounded by PEG-coated glass.

Image analysis. The appearance time T, of the bud was evaluated by eye on the
phase contrast images, with an uncertainty of + 2 h, as the moment in which the
first budding cell starts to emerge from the monolayer, in conjunction with an
apparent convergence of the monolayer towards the activated region. Single
extruded cells that did not subsequently belong to the 3D structure were not
considered. The initial density was determined by manually counting the number
of cells in the field of view for the first frame of the acquisition. Image processing
was performed with custom Image] macros®® and Matlab (MathWorks, US)
scripts. The number of cells in the bud were counted on 3D confocal images, by
automatic segmentation of cell nuclei using the surface tool in Imaris (Bitplane,
UK). Tracking of nuclei labelled with SiR-DNA was done manually with the cell
counter Image ] plugin.

Immunostaining. Cells were fixed for 10 min in 4% paraformaldehyde (Euro-
medex) and permeabilized for 4 min using 0.1% Triton X-100 in phosphate-
buffered saline (PBS) with 0.1% bovine serum albumin (BSA, all reactants from
Sigma). The cells were then blocked in a solution of 2.5% normal goat serum (NGS,
Santa Cruz) in PBS-BSA for 1h, incubated with the selected primary antibody
(references below) for 1 h and washed with PBS. They were then incubated with the
secondary antibody (references below) for 30 min at room temperature, washed
with PBS, Hoechst-labeled (NucBlue Live ready Probes, ThermoFisher) and
mounted on glass slides using ProLong Gold (Life technologies). Primary anti-
bodies: E-cadherin (BD Biosciences, 610181, mouse at a concentration of 1:100);
vimentin (Dako M0725 clone V9, mouse at a concentration of 1:300); p-MLC (Cell
signaling 3674, rabbit at a concentration of 1:100). Secondary antibodies: goat anti-
mouse A633 (Molecular Probes); goat anti-rabbit (Sigma, SAB4600141) both at a
concentration of 1:1000.

Particle image velocimetry (PIV). PIV was used to analyze the velocity fields in
the cell monolayers®1:62 using the MatPIV toolbox for Matlab (Mathworks, US).
The window size was set to 64 pixels (~23 um), with an overlap of 0.25. Sliding
average over 10 h was performed.

Traction force microscopy (TFM). The protocol for TEM was adapted from Tse
et al.93, Briefly, coverslips were plasma-cleaned for 10 min, treated with 3-
aminopropyltrimethoxysilane (2% vol/vol in isopropanol, Sigma) and glutar-
aldehyde (0.5% vol/vol in ddH,O, Sigma), then dried with compressed air. These
coverslips are referred to as “activated”. In parallel, microscope glass slides were
incubated with fibronectin bovine protein (Gibco) in phosphate-buffered saline
(PBS) at 25 ug per mL for 30 min at room temperature, then rinsed with PBS and
left to air dry. We then made a gel of Young’s modulus 10 kPa by mixing 40%
acrylamide solution, 2% bis-acrylamide solution (Bio-Rad) and 1% (vol/vol) of
fluorescent beads (FluoSpheres 0.2 um dark red fluorescent (660/680), Life tech-
nologies). Ammonium persulfate (1% vol/vol, Bio-Rad) and TEMED (1%o vol/vol,
Bio-Rad) were added to this mix to start the polymerization of the acrylamide gel.
Then 30 pL of the solution was applied on the fibronectin-coated glass slide
immediately after drying, and an “activated” coverslip was placed on top. During
the polymerization, the gel attaches covalently to the activated surface on one side,
and attaches to the fibronectin proteins on the other side. This step, inspired by the
deep-UV patterning technique®, allows to coat the surface of the gel with fibro-
nectin. When the polymerization was complete, the sandwiched gel was immersed
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in PBS, and the fibronectin-coated glass slide was carefully detached from the gel.
The gel was then thoroughly rinsed with PBS and incubated in culture medium for
45 min at 37 °C, before the cells were seeded on it, and left to adhere overnight. The
coverslip bearing the gel was then placed under the microscope in a POCmini-2

cell cultivation system (Pecon GmbH). At the end of the experiment, the cells were
carefully detached from the gel using trypsin (TrypLE, Gibco), to take the reference
image of the beads at rest. To compute the traction forces, we used the TFM Fiji
plugin available online®.

Probability of observing a collective extrusion. The probability of observing a
collective extrusion was defined as Py,q = X, where k is the number of occurrences
of the collective extrusion observed over n experiments. We consider the binomial

distribution with parameters n and p = Iig“g. The confidence interval for p was

estimated using ‘@.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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