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Abstract

The PhoPR two-component system is essential for virulence in Mycobacterium tuberculosis where it controls expression of
approximately 2% of the genes, including those for the ESX-1 secretion apparatus, a major virulence determinant. Mutations
in phoP lead to compromised production of pathogen-specific cell wall components and attenuation both ex vivo and in
vivo. Using antibodies against the native protein in ChIP-seq experiments (chromatin immunoprecipitation followed by
high-throughput sequencing) we demonstrated that PhoP binds to at least 35 loci on the M. tuberculosis genome. The PhoP
regulon comprises several transcriptional regulators as well as genes for polyketide synthases and PE/PPE proteins.
Integration of ChIP-seq results with high-resolution transcriptomic analysis (RNA-seq) revealed that PhoP controls 30 genes
directly, whilst regulatory cascades are responsible for signal amplification and downstream effects through proteins like
EspR, which controls Esx1 function, via regulation of the espACD operon. The most prominent site of PhoP regulation was
located in the intergenic region between rv2395 and PE_PGRS41, where the mcr7 gene codes for a small non-coding RNA
(ncRNA). Northern blot experiments confirmed the absence of Mcr7 in an M. tuberculosis phoP mutant as well as low-level
expression of the ncRNA in M. tuberculosis complex members other than M. tuberculosis. By means of genetic and proteomic
analyses we demonstrated that Mcr7 modulates translation of the tatC mRNA thereby impacting the activity of the Twin
Arginine Translocation (Tat) protein secretion apparatus. As a result, secretion of the immunodominant Ag85 complex and
the beta-lactamase BlaC is affected, among others. Mcr7, the first ncRNA of M. tuberculosis whose function has been
established, therefore represents a missing link between the PhoPR two-component system and the downstream functions
necessary for successful infection of the host.
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Introduction

Mycobacterium tuberculosis, the etiologic agent of tuberculosis in

humans, is arguably the world’s most important intracellular

pathogen. The bacterium disseminates via the aerosol route from

open pulmonary lesions of an infectious case and on reaching the

alveoli of a susceptible individual is phagocytosed by resident

macrophages. After infection, the tubercle bacillus resides asymp-

tomatically for years in 95% of the infected persons. This latent

state can be life-long but disease develops when the immune

system weakens as a consequence of HIV co-infection, aging or

malnutrition [1]. M. tuberculosis encounters a variety of environ-

mental conditions and has to adapt to both the extracellular milieu

and to the intracellular niche in order to survive [2]. Improved

understanding of how this pathogen fine-tunes gene expression to

support active growth and non-replicating persistence, and of how

it copes with stresses encountered within the host would not only

shed light on bacterial pathogenesis and biology but also aid the

design of novel intervention strategies.

Well-known adaptation mechanisms in bacteria include two-

component signal transduction systems (TCSS). These consist of a

sensor protein that, upon reception of specific signal(s), activates its

cognate transcription factor resulting in transcriptional regulation

of a defined set of genes. The number of TCSS in M. tuberculosis is

lower than typically found in bacteria of similar genome size,

possibly reflecting the evolution of the bacillus as a human

pathogen adapted to a predominantly intracellular environment

[3]. Of the 11 TCSS present in M. tuberculosis H37Rv, the PhoPR

TCSS is essential for virulence [4], as demonstrated in ex vivo and

in vivo infection models, where inactivation of phoP led to greatly

impaired growth [4,5]. Consistent with these observations, a single

nucleotide polymorphism (S219L) in the DNA binding domain of
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PhoP, which affected the ability of the regulator to control gene

expression of the ESX-1 secretion system, was responsible for the

reduced virulence of the attenuated strain H37Ra [6,7].

Biochemical analyses conducted on the phoP mutant revealed that

the synthesis of the cell wall components diacyltrehaloses,

polyacyltrehaloses and sulfolipids, specific to pathogenic myco-

bacterial species, was also diminished as compared to wild type M.

tuberculosis, thus providing an additional mechanism for attenuation

[8]. Loss of these phenotypes is the basis of candidate vaccine

strains carrying deletions in phoP, such as the recently developed

MTBVAC, which showed great promise upon preclinical evalu-

ation [9].

The PhoP protein is part of the PhoB/OmpR subfamily of

transcription factors, characterized by an N-terminal regulatory

domain and a DNA binding domain at the C-terminus. The

crystal structure revealed the dimeric nature of the regulator and

predicted PhoP to bind to direct repeats [10], in agreement with in

vitro investigations of the PhoP-DNA interactions at a few operator

regions [11,12,13].

Microarray-based transcriptomic studies of wild type and phoP

mutant strains have been performed to identify the regulon

controlled by PhoP. Genes belonging to lipid and intermediary

metabolism, to the PE, PPE and PE_PRGS families and to the

transcriptional regulator categories were found to be deregulated

in phoP-deficient bacteria [5,14], while a very recent publication

[15] identified the genes under direct control of PhoP by means of

ChIP-seq experiments on a PhoP-overexpressing strain.

Despite this body of knowledge, several questions remain

unanswered. These include defining the external stimulus sensed

by the PhoPR TCSS, performing ChIP-seq experiments in

physiological conditions, obtaining a single-nucleotide resolution

transcriptomic map, and identifying transcriptional regulators

acting downstream of PhoP.

In this study, we used a systems biology approach, combining

ChIP-seq, RNA-seq and in-depth proteomics, to thoroughly

investigate the role of PhoP in the biology of M. tuberculosis. We

identified a ncRNA, encoded by the mcr7 gene, as a major target of

PhoP and showed its involvement in controlling secretion of Twin

Arginine Translocation (Tat) substrates.

Results

Genome-wide identification of PhoP binding sites in M.
tuberculosis by ChIP-seq

The PhoP regulon has been characterized previously by

transcription profiling using microarrays in both the H37Rv [5]

and MT103 strains [14] of M. tuberculosis. Those studies indicated

that approximately 2% of genes are regulated by PhoP at the

transcriptional level. However, little is known about the biophys-

ical interactions between PhoP and the promoter regions of the

genes controlled with the exception of a few well-characterized

promoters [13]. Here, we applied ChIP-seq (chromatin immuno-

precipitation with anti-PhoP antibodies followed by ultra-high

throughput DNA sequencing) to locate PhoP binding sites across

the M. tuberculosis H37Rv [16] chromosome. To avoid false

positive signals we included an isogenic phoP mutant [11], which

served as a control and reference sample in all experiments.

ChIP-seq analysis of cultures grown to exponential phase led to

the identification of 35 significantly enriched (p,0.0001, FDR

0.00%) regions in H37Rv compared to the phoP mutant (Table 1).

Several of these peaks were localized between divergently

transcribed open reading frames (ORF) or upstream of validated

or predicted operons [17,18,19], thus increasing the number of

genes potentially affected by PhoP binding directly. These targets

were randomly distributed along the M. tuberculosis genome

(Figure 1A) and predominantly located upstream of ORF

(Figure 1B). However, we also observed PhoP binding sites in

the 39-end of ORF, as shown for the hddA-ldtA genes (Figure 1B).

All of the functional categories in which the M. tuberculosis ORFs

have been grouped were represented in the ChIP-seq results,

although clear prevalence of regulatory proteins was observed

(12% of the total number of signals as compared to 5%

representation in the genome). Remarkably, of the 35 regions

detected by ChIP-seq, a number of them had not been described

previously [5] as being associated with PhoP-regulated genes (i.e.

mcr7, PE27, PPE43, PE31, Rv3778c, lpdA).

The distance between the PhoP peak and the ORF start site was

calculated for each gene and plotted as reported in Figure 1C. The

majority (83%) of the PhoP peaks were between 0 and 200 bp

upstream of the ORF start site, with 50% of them within the first

100 bp. Two binding sites were considerably further away from

the closer ORF: these were the cases of lipF (.500 bp) and rv1535

(472 bp). Only one case was observed with the PhoP peak lying

within the ORF: rv2137c, where the summit was located 97 bp

downstream of the ATG start codon.

To gain insight into the interplay between PhoP and the

transcriptional complex, we compared previous ChIP-seq data of

RNA polymerase (RNApol) [17] with the PhoP profile obtained

here. We observed that PhoP distribution mirrored that of

RNApol at the putative promoter regions (Figure 1B). Closer

examination indicated that PhoP binding sites precede those of

RNApol. Additional confirmation came from calculation of the

distance between the PhoP and RNApol signals, which was

between 0 and 100 bp for most of the genes (Figure 1D). This

might indicate a role of PhoP in positioning RNApol as a

prerequisite for transcriptional control. Exceptionally, the PhoP

binding region upstream of PE8 lies downstream of the RNApol

binding site (Figure 1B). Curiously, we noticed that some strong

PhoP peaks lacked a concomitant RNApol signal as illustrated by

mihF (Figure 1B).

Author Summary

One of the best characterized two-component systems in
Mycobacterium tuberculosis is represented by the PhoPR
pair, with PhoR being the transmembrane sensor kinase
and PhoP playing an essential part in controlling expres-
sion of virulence-associated genes, such as those encoding
the ESX-1 secretion apparatus. Previous studies showed
that mutations in phoP resulted in attenuation in the
mouse model of infection, thus providing the basis for the
development of a novel live attenuated Mycobacterium
tuberculosis vaccine carrying a deletion in phoP which is
today in clinical trials. To thoroughly investigate the role of
PhoP in M. tuberculosis, we undertook a systems biology
approach comprising ChIP-seq and RNA-seq technologies.
We demonstrated binding of PhoP to at least 35 targets on
the M. tuberculosis chromosome and direct impact on
expression of 30 genes, while further amplification of the
signal is provided by regulators acting downstream. The
strongest binding site was located between rv2395 and
PE_PGRS41, where transcription of the non-coding RNA
(ncRNA) Mcr7 was demonstrated. Expression of Mcr7 was
found to be restricted to M. tuberculosis species and totally
silenced in a phoP mutant. Genetics and proteomics
approaches proved that Mcr7 controls activity of the Twin
Arginine (Tat) secretion system, thus modulating secretion
of the immunodominant antigen Ag85 complex and the
BlaC beta-lactamase.

A PhoP-Regulated ncRNA Involved in Protein Secretion
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Table 1. Summary of ChIP-seq results showing localization of PhoP binding sites in the M. tuberculosis genome.

Rv number Gene name
ChIP-seq fold
enrichment a,b

RNA-seq fold
change (H37Rv/DphoP)

Deregulated operons [17,18,19] (H37Rv/
DphoP)c

MTB000067 mcr7 162.13 380.48

Rv1388 mihF 68.48 1.09

Rv1179c1 Rv1179c 45.07 9.81

Rv11801 pks3 68.01 pks3-pks4-papA3-mmpL10

Rv3487c1 lipF 39.05 151.59

Rv34881 Rv3488 1.35

Rv3622c1 PE32 34.48 1.08

Rv36231 lpqG 21.19

Rv2329c1 narK1 34.15 83.24

Rv2330c1 lppP 34.15 21.11

Rv23311 Rv2331 55.72

Rv3312A Rv3312A 29.14 165.71

Rv2633c Rv2633c 27.02 16.55 Rv2633c-Rv2632c

Rv1185c fadD21 26.09 8.16

Rv1040c PE8 24.85 216.40 PE8-PPE15

Rv2769c PE27 24.35 1.13

Rv0756c1 Rv0756c 21.78 21.24

Rv07571 phoP ND

Rv3686c Rv3686c 20.32 24.52

Rv0115£ hdda 19.68 2.25

Rv2137c1 Rv2137 14.71 2.01

Rv21381 lppL 21.46

Rv3849 espR 14.25 1.43

Rv2376c cfp2 13.79 6.84

Rv1535 Rv1535 13.43 1.35

Rv2768c PPE43 12.87 1.28

Rv3134c1 Rv3134c 12.19 2.84

Rv31351 PPE50 14.72

Rv1184c Rv1184c 11.33 59.20

Rv3825c1 pks2 11.12 72.86 pks2-papA1-mmpL8

Rv38261 fadD23 1.83

Rv3476c1 kgtP 10.89 2.18

Rv34771 PE31 20.01 PE31-PPE60

Rv2588c1 yajC 9.82 1.32

Rv25891 gabT 1.00

Rv3778c1 Rv3778c 9.81 2.26

Rv37791 Rv3779 21.46

Rv3501c yrbE4A 9.70 1.22

Rv2920c amt 9.25 21.30

Rv0251c1 hsp 8.14 23.16

Rv02521 nirB 17.29 nirB-nirD

Rv3303c1 lpdA 7.98 1.76

Rv33041 Rv3304 1.35

Rv3862c1 whiB6 7.76 24.31

Rv38631 Rv3863 21.18

Rv3767c1 Rv3767c 7.19 10.16

Rv37681 Rv3768 22.47

Rv3415c1 Rv3415c 7.00 21.00

Rv34161 whiB3 6.05

A PhoP-Regulated ncRNA Involved in Protein Secretion
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In order to confirm the ChIP-seq data independently, we

quantified a selection of PhoP binding sites from the immunopre-

cipitated DNA of H37Rv, its phoP mutant and a control

experiment performed without antibody, obtained from biological

replicates. The results validated those obtained in ChIP-seq

experiments (Figure S1).

Identification of the PhoP consensus sequence
We used the MEME suite to identify the PhoP consensus

sequence from ChIP-seq signals. Two hundred bp surrounding the

summit of the peaks were scanned and a motif was found in 83%

of the instances (p-value between 5.88e-09 and 4.40e-05, Figure 1E

and Worksheet 1 in Table S1). Additional, though more divergent,

copies of the same consensus sequence were found in 11 peaks

(31%) (Worksheet 1 in Table S1). Overall, six ChIP-seq signals

(rv1535, PPE43, lpdA, rv3767, whiB1 and the region between yajC

and gabT) were not found to be associated with the identified motif,

suggesting either higher divergence of the sequences or indirect

PhoP binding, i.e. mediated by other proteins. While the 59 to 39

orientation of the motif generally corresponded to the orientation

of the gene associated with the ChIP-seq signal (22 out of 29 cases),

we observed 7 exceptions, the most notable being the well-known

PhoP-regulated gene pks3 [13,14]. In this case the motif was

localized on the opposite strand as compared to the direction of

transcription of pks3.

Correlation between PhoP binding and transcriptional
regulation

To explore the relationship between binding of PhoP and

transcriptional control on the target genes, we performed deep

transcriptomic analysis by RNA-seq under the same in vitro

conditions employed for ChIP-seq. We compared exponentially

growing H37Rv wild type to the isogenic phoP mutant and

quantified gene expression according to the functional categories

in the TubercuList database (http://tuberculist.epfl.ch), generat-

ing results reported in Worksheet 1 in Table S2. An arbitrary 3-

fold threshold was applied to the dataset for further analysis.

Integration of the ChIP-seq and RNA-seq data revealed that 19

PhoP binding sites were associated with altered expression of the

flanking gene(s) (Table 1). Since some of these ORFs are part of

predicted operons [17,18,19], the total number of genes under

direct control of PhoP was found to be at least 30 in the

experimental conditions tested (Table 1). The region showing the

most remarkable affinity for PhoP (162-fold enrichment in

ChIP-seq) lay between rv2395 and PE_PGRS41. This signal

correlated with the expression of a small transcript (Mcr7) in the

intergenic region that was severely affected by deletion of PhoP.

This small transcript is further characterized later in this work.

Other examples are represented by the operons composed of pks3-

pks4-papA3-mmpL10 and rv2633c-rv2632c, which were more

expressed in the wild type strain, whereas the PE8-PPE15

transcriptional unit was induced upon deletion of phoP, thus

demonstrating the dual role of the regulator. On the contrary, 15

ChIP-seq peaks did not correlate with the presence of deregulated

transcripts in their vicinity. The most striking signal in this group

was the one upstream of mihF.

Deeper inspection of the RNA-seq results uncovered 140

transcripts whose expression underwent changes in the phoP

mutant (Worksheet 1 in Table S2). Since 30 of these were part of

the aforementioned operons, the remaining 110 were likely to be

indirectly controlled by PhoP through regulatory cascades. It is

worth recalling that PhoP binds upstream of genes encoding

several transcriptional regulators (espR, whiB1, whiB3, whiB6) that

may act downstream. Interestingly, an almost equal proportion of

genes was found to be activated (68) or repressed (72) as a

consequence of the mutation. Upon clustering these transcripts

into functional categories, we observed significant enrichment for

the ‘‘lipid metabolism’’ group among the up-regulated genes

(p = 0.0016, Fisher’s Exact test) and for the ‘‘PE/PPE’’ category

among the down-regulated genes (p = 0.0024, Fisher’s Exact test).

Further discussion of the PhoP regulon will be presented

elsewhere.

Independent validation of the RNA-seq data was obtained for a

subset of genes by quantitative reverse transcription PCR (qRT-

PCR), which confirmed the excellent correlation between high-

throughput results and targeted quantification (Figure S1).

Identification of a small ncRNA as the major
PhoP-regulated target

The most prominent PhoP binding site in the genome lay

between genes rv2395 and PE_PGRS41 (Figure 2A) but, surpris-

ingly, transcription of neither gene differed between strain H37Rv

and its phoP mutant (Worksheet 1 in Table S2). However, in a

previous study of ncRNA in M. bovis BCG, the mcr7 gene encoding

a 350 nt transcript, was located within this region [20].

Northern blot analysis was performed on RNA extracted from

wild type M. tuberculosis, phoP mutants and complemented strains in

two different genetic backgrounds: the H37Rv laboratory strain

Table 1. Cont.

Rv number Gene name
ChIP-seq fold
enrichment a,b

RNA-seq fold
change (H37Rv/DphoP)

Deregulated operons [17,18,19] (H37Rv/
DphoP)c

Rv3219 whiB1 6.64 21.00

Rv2904c1 rplS 6.61 21.10

Rv29051 lppW 2.01

The table lists regions enriched in immunoprecipitated PhoP-DNA complexes from the H37Rv wild type strain as compared to the phoP mutant. Fold change expression
values as determined by RNA-seq experiments are also reported for the flanking genes. Predicted or validated operons found to be deregulated in the phoP mutant are
indicated.
ap value ,0.0001.
bFDR 0.00%.
cThis column lists the predicted operons (according to [17,18,19]), located downstream of PhoP binding sites, that were found to be deregulated in the phoP mutant
compared to the wild type strain.
1Region detected is between two genes transcribed in opposite direction.
£Region located in 39-end of the gene.
ND: fold change expression levels of phoP were not quantified since the gene carries a deletion in the mutant strain.
doi:10.1371/journal.ppat.1004183.t001

A PhoP-Regulated ncRNA Involved in Protein Secretion
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and GC1237, a clinical isolate belonging to the Beijing family [21].

We detected an RNA of approximately 350 nt in length in wild

type and complemented strains (Figure 2B), whose 59-end could be

mapped from the RNA-seq profile to coordinate 2,692,165 in the

H37Rv genome. In contrast, we were unable to identify this RNA

in the phoP mutants even when 10-times more RNA was used in

Northern blot experiments (Figure S2). These results were also

confirmed by qRT-PCR showing barely detectable levels of Mcr7

in the M. tuberculosis phoP mutant (Figure S2). The complete lack

of expression of this ncRNA in the M. tuberculosis phoP mutant

validates the findings obtained by ChIP-seq and RNA-seq

and confirms the phoP mutant as an Mcr7-deficient strain as

well. Next, we sought to establish whether Mcr7 is a primary

transcript or conversely processed from a longer RNA. Detection

of an mcr7 transcript of approximately 350 nt in length in the

primary transcriptome of H37Rv (Figure 2B) ruled out the latter

possibility and indicated that Mcr7 is a primary, unprocessed

RNA.

We then investigated the presence of mcr7 in the Mycobacterium

genus by bioinformatic analysis and found that it is predicted to be

restricted to the M. tuberculosis complex. We therefore obtained

expression data for mcr7 in five representative species. Surprisingly,

the Mcr7 ncRNA is only weakly expressed in M. africanum, M.

bovis, M. caprae and M. microti as compared to the high expression

levels in M. tuberculosis (Figure 2C).

Biological function of the Mcr7 ncRNA
After demonstrating the strict PhoP regulation and

the predominant expression of mcr7 in M. tuberculosis species, we

tried to assign a biological role to this ncRNA. Most trans-

acting ncRNA act by limited complementarity with their

target mRNA, which results in post-transcriptional

regulatory mechanisms [22]. A highly structured fold of Mcr7

with a 33-nt free loop (Figure S3) was predicted using the

RNAfold server. A bioinformatic search for putative targets of

Mcr7 resulted in 18 candidates with complementarity in their

59-end portion (Figure S3). Given that some ncRNA exert their

regulatory function through interaction with their loop struc-

tures [23], we focused on mRNAs that annealed with the 33-nt

loop. As our previous unpublished results suggested that

secretion of Tat-dependent substrates was affected in the phoP

mutant strain, we focused on the predicted interaction between

tatC and Mcr7. Interestingly, the 59-end of the tatC mRNA is

predicted to base pair with the major loop of Mcr7 (Figure 2D).

The interacting region includes the putative ribosome binding

site (RBS) and the first 6 codons of the tatC mRNA, suggesting

that Mcr7 probably prevents ribosome loading and, conse-

quently, translation of tatC mRNA. The tatC gene is essential for

M. tuberculosis [24], and encodes a transmembrane protein that is

part of the TatABC general secretory apparatus required for

export of proteins with a twin arginine motif (RR) in their signal

peptide [25] (Figure 2E). TatC recognizes the RR motif

prior to protein translocation through the TatA channel

(Figure 2E).

Proteomic analysis shows enrichment of Tat-dependent
substrates in the secretome of M. tuberculosis phoP
mutant lacking mcr7

Our prediction suggested that Mcr7 might regulate tatC at the

post-transcriptional level by occlusion of the RBS and the

consequent translational down-regulation (Figure 2D). Conse-

quently, we studied the secretome from exponentially grown

cultures of strain H37Rv, its phoP mutant and a phoP comple-

mented mutant by in-depth proteomics. The enrichment ratio for

each protein in the secreted fraction was calculated as the log2 of

normalized peptide abundance between the desired strains.

Results are presented in Worksheet 1 in Table S3. Upon applying

a cutoff based on the Significance B value (B,0.05), 37 proteins

were found to be more secreted in the phoP mutant compared to

the wild type strain. Sixteen of these (43.24%) exhibited an RR

motif within the first 50 aminoacids. On the contrary, 6 out of 35

proteins, that were more abundant in the wild type displayed the

RR motif (17.14%).

These encouraging findings prompted us to compare the

abundance of previously predicted Tat substrates [24,26,27] in

our secretome experiments. Results indicated that these were

significantly more present in the secreted fraction of the phoP

mutant relative to wild type and complemented strains (Figure 3A).

In addition, we compared the relative secretion levels of EsxA

(ESAT-6), EsxB (CFP-10), EspA and EspC since these proteins are

well-known PhoP-dependent ESX-1 secretion substrates [7] and

thus serve as controls. As expected, the secretome of the phoP

mutant contained very low amounts of EsxA, EsxB, EspA and

EspC, thus showing the opposite trend to Tat-dependent

substrates (Figure 3A). Next, we validated these results by Western

blot analysis of Ag85C [26] and Rv2525c [24] as known Tat-

dependent substrates and EsxA as a PhoP-dependent ESX-1

substrate. The results corroborated the proteomic studies: the

secreted fraction of the phoP mutant showed higher levels of

Ag85C and Rv2525c proteins compared to the wild type and

complemented mutant strains. On the contrary, EsxA secretion

was undetectable in the phoP mutant compared to the strains

harboring a wild type phoP allele (Figure 3B). Taken together, these

results are consistent with a regulatory model involving PhoP,

Mcr7 and tatC mRNA since the absence of Mcr7 in the phoP

mutant would result in more efficient TatC translation and

therefore increased secretion (Figure 3C).

Reintroduction of mcr7 in an M. tuberculosis phoP mutant
restores secretion of Tat-dependent proteins to wild type
levels

In order to confirm that mcr7, but no other PhoP-dependent

genes, influenced secretion of Tat substrates via post-transcrip-

tional regulation of tatC mRNA, we restored Mcr7 production in

the M. tuberculosis phoP mutant that we have previously demon-

strated to be mcr7 deficient (Figure 2). The mcr7 gene was cloned

downstream of the promoter for the 16S rRNA gene and the

resultant construct was integrated into the chromosome of the

H37Rv phoP mutant, thereby obtaining the mcr7-complemented

Figure 1. Mapping of PhoP binding sites in the M. tuberculosis chromosome by ChIP-seq. A. UCSC genome browser view showing PhoP
binding regions across the M. tuberculosis genome. Peak height correlates with sequence reads and consequently with PhoP binding affinity. The use
of a phoP mutant in this experiment (bottom panel) allows identification of false positive signals. B. PhoP and RNA polymerase (RNApol) ChIP-seq
profiles for selected genes. Note that the PhoP binding site lies upstream that of RNApol for lipF, narK1, pks2 and pks3, known to be transcriptionally
activated by PhoP. The position of the PhoP binding region lies downstream that of RNApol for the PE8 gene. PhoP binding at the 39-end of hddA is
shown as an example of non-canonical target. C. Bar diagram showing distance (in bp) between the PhoP binding sites and the start codon of
adjacent ORFs. D. Bar diagram showing distance between the position of the PhoP binding site and the summit of the RNApol peak calculated from
ChIP-seq data. E. Sequence logo showing the consensus sequence derived from the PhoP binding sites identified by ChIP-seq.
doi:10.1371/journal.ppat.1004183.g001
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Figure 2. Characterization of mcr7 as the major PhoP-regulated target. A. Diagram showing chromosomal location of mcr7 in the rv2395-
PE_PGRS41 intergenic region. ChIP-seq and RNA-seq profiles of the mcr7 locus showing PhoP binding and transcriptional signals. Note the absence of
transcription in the phoP mutant that correlates with lack of PhoP-binding in this strain. B. Northern blot analysis using a mcr7 antisense probe in wild
type, phoP mutant and phoP-complemented strains in H37Rv and Beijing GC1237 genetic backgrounds. Detection of the Mcr7 transcript in the
primary, unprocessed transcriptome from H37Rv is also shown. Expression of the 5S rRNA is used as a control of RNA loaded in each lane. C. Northern
blot analysis of Mcr7 in representative species of the M. tuberculosis complex. Note the higher expression level of this non-coding RNA in M.
tuberculosis H37Rv relative to other members of the M. tuberculosis complex. Expression of the 5S rRNA is used as a control of RNA loaded in each
lane. D. Complementarity between Mcr7 and the 59-end of the tatC mRNA. The predicted ribosome binding site (RBS) and positions of the first 6
codons of tatC are indicated. E. Schematic representation of the Tat system involved in protein translocation from the cytoplasm to the extracellular
environment. TatC is involved in recognition of Arg-Arg (RR) motifs within the signal peptide of secreted proteins.
doi:10.1371/journal.ppat.1004183.g002
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Figure 3. Analysis of the M. tuberculosis secretome identifies a high proportion of Tat substrates enriched in the M. tuberculosis phoP
mutant. A. Heat map displaying values from in-depth proteomic quantifications of the secreted protein fraction. Values for EsxA, EsxB, EspA and
EspC are displayed as internal controls since these proteins are barely detectable in the M. tuberculosis phoP mutant. The other proteins are
representative examples of putative Tat-secreted substrates according to [24,26,27]. Note the opposite trend between EsxA/EsxB/EspA/EspC and Tat-
secreted proteins. B. Western blot analysis of Ag85C, Rv2525c and EsxA in M. tuberculosis wild type, phoP mutant and complemented strains. Results
are representative of three independent experiments. C. Proposed regulatory network involving PhoP, Mcr7 and tatC. PhoP controls transcription of
Mcr7 (red transcript), which anneals to the 59-end of the tatC mRNA (blue transcript) occluding the RBS (boxed) and consequently impairing
translation of TatC. D. Northern blot analysis of Mcr7 in wild type, phoP mutant and mcr7-complemented strains of M. tuberculosis. Introduction of
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strain. Northern blot experiments confirmed the authenticity and

length of the mcr7 transcript (Figure 3D and Figure S4). Detection

of TatC in whole-cell lysates of H37Rv, its phoP mutant, the phoP-

complemented mutant and the mcr7-complemented strain dem-

onstrated increased production of this protein in the phoP mutant

in agreement with our proposed model (Figure 3E). Reintroduc-

tion of phoP complemented this phenotype as expected. Ectopic

expression of mcr7 in the phoP mutant was sufficient to restore

TatC levels to the wild type condition (Figure 3E), indicating that

mcr7 per se was able to modulate expression of TatC, presumably

by regulating translation of tatC mRNA.

To examine the phenotypic effect caused by reintroducing mcr7,

we first showed by qRT-PCR that expression of the ncRNA from

the surrogate promoter was only about 6-fold higher in the

complemented mutant relative to the wild type strain (Figure 4A).

Furthermore, we demonstrated that reintroduction of mcr7 in a

phoP mutant did not influence the expression of the PhoP regulon

that remained at undetectable levels in both the phoP mutant and

mcr7-complemented strains (Figure 4A). Additionally, we proved

that transcription of the tatC mRNA in the phoP mutant and in the

mcr7-complemented strains showed no significant difference as

compared to H37Rv (Figure 4A). Overall, these data ruled out a

transcriptional impact of mcr7 on gene expression and supported

the notion of a post-transcriptional effect exerted by the ncRNA

on tatC.

We then investigated whether reintroduction of mcr7 in the phoP

mutant restored secretion of Tat-dependent substrates to wild type

levels. Western blot analysis of Ag85C in the whole-cell lysate and

secreted fractions showed that while Ag85C is produced at very

similar levels in all strains, secretion of this protein was more

pronounced in the phoP mutant compared to the wild type and

mcr7 complemented strains (Figure 4B). By contrast, inspection of

ESX-1 substrates showed no detectable secretion of EsxA and

EspD in either the phoP mutant or the mcr7-complemented mutant

strains (Figure 4B). Therefore, the Mcr7 ncRNA did not impact

the activity of the ESX-1 secretion apparatus whereas it did affect

protein secretion through the Tat system.

Finally, we measured the enzymatic activity of a Tat-dependent

substrate, the well-characterized BlaC [28] beta-lactamase using

the chromogenic cephalosporin substrate nitrocefin. The results

indicated faster reaction kinetics in the phoP mutant relative to wild

type (Figure 4C), a finding correlated with the protein secretion

levels observed in proteomic studies. Again, complementation with

mcr7 was sufficient to successfully restore BlaC activity to wild type

levels (Figure 4C). Since no deregulation of blaC transcription was

observed in the phoP mutant (Worksheet 1 in Table S2) and in the

mcr7-complemented strain (Figure 4A), we attributed this effect to

post-transcriptional regulation of TatC by Mcr7.

Discussion

High-resolution systems biology is helping greatly to unravel the

complexities of the M. tuberculosis ‘‘regulome’’. Recent works have

uncovered a plethora of ncRNA [29] and reconstructed the

hypoxia regulatory network [15] in this pathogen. In this study we

integrated data from complementary high-throughput sequencing

technologies and obtained extensive knowledge on PhoP-depen-

dent transcriptional regulation in the tubercle bacillus. Specifically,

ChIP-seq identified the PhoP binding sites along the M. tuberculosis

chromosome (Figure 1), whereas strand-specific, single-nucleotide

resolution transcriptomic analyses revealed previously unknown

features of the PhoP regulatory network in vitro. Although good

overlap was observed between RNA-seq data and published

transcriptomic analyses ([5], see Worksheet 2 in Table S2 for

comparison), major progress has been made as compared to

traditional microarray-based approaches as indirect regulatory

effects present in former studies [5,14] have been unmasked.

Importantly, we found many genes that were deregulated in the

phoP mutant despite the absence of a PhoP binding signal in the

respective promoter regions. In this regard, PhoP was found to

control expression of several other regulatory proteins (e.g. EspR,

WhiB1, WhiB3, WhiB6), which act in downstream regulatory

cascades [30,31]. Independent confirmation for this conclusion

was presented recently in a regulatory model predicting produc-

tion of acyltrehalose-derived lipids to be coordinated by a PhoP-

WhiB3 network via regulation of pks2 and pks3 [15]. Additional

proof was obtained upon comparing the transcriptome of the phoP

mutant with the predicted binding sites of WhiB1, WhiB3 and

WhiB6 (information available at http://www.tbdb.org/). Indeed,

the overlap was found to include rv0996, rv1004c, rv1040c, rv2274c

and rv3289c for WhiB1, rv1040c for WhiB3, and rv2396 for WhiB6.

Concerning EspR, deregulation of the espACD operon was

reported in an espR knockout strain [32], where a binding site

for EspR was demonstrated [30]. Interestingly, PhoP was shown to

bind upstream of lipF and of lppL, where EspR is also present [30],

thereby increasing the complexity of the regulatory machinery at

these loci. The small ncRNA Mcr7 can also be considered as an

intermediate regulator in the PhoP global network, although it

likely exerts its function at the post-transcriptional level. We will

come back to Mcr7 later in the discussion.

Comparison of ChIP-seq and RNA-seq profiles uncovered

several genes associated with a PhoP binding site but whose

expression was not altered in a PhoP-deficient strain. We

hypothesize that these genes may be subjected to additional layers

of regulation or may respond to yet unexplored environmental

conditions. This is exemplified by the mihF gene, which, despite its

upstream PhoP binding site, was not found to be deregulated.

Since the signal sensed and the downstream components of the

PhoPR two-component system have not yet been completely

elucidated, it is conceivable that signal transduction originating

from PhoR may involve other factors than PhoP, thereby fine-

tuning gene expression in M. tuberculosis in different conditions.

Galagan and colleagues recently mapped the binding sites of 50

transcription factors, including PhoP, in M. tuberculosis [15] by

exploiting a tetracycline-inducible promoter system to overexpress

the FLAG-tagged version of the protein of interest and using anti-

FLAG antibodies in ChIP-seq experiments. Contrary to their

approach, we worked in physiological conditions and performed

immunoprecipitation assays using antibodies directed against

native PhoP, thus avoiding artifacts due to abnormal expression

levels or to biased protein-antibody interaction. In addition, use of

the phoP mutant allowed false positive signals to be avoided.

Interestingly, the number of peaks pinpointed in our work (35) was

considerably smaller than that reported in Galagan et al. [15],

where several signals were detected in intergenic as well as in

mcr7 under the 16S rRNA promoter in a phoP mutant efficiently restores production of this molecule. Expression of the 5S rRNA is used as a control of
RNA loaded in each lane. E. Analysis of TatC expression by Western blot in wild type, phoP mutant, phoP-complemented mutant and mcr7-
complemented strains of M. tuberculosis. Note the higher expression levels of TatC in the phoP mutant compared to the wild type. Complementation
of a phoP mutant with phoP or mcr7 restored wild type levels of TatC. GroEL2 is used as a control of protein loaded in each lane. Signal intensity was
quantified from three independent experiments and plotted in the graphs below the Western blot images.
doi:10.1371/journal.ppat.1004183.g003
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intragenic regions. This could reflect the different methods

employed, since artificial expression of PhoP may have increased

binding to low affinity sites. Head-to-head comparison revealed

that all but two of the peaks (yajC-gabT and lpdA-rv3304) identified

here were also present in the other study (see Worksheet 2 in Table

S1 and Worksheet 3 in Table S1 for detailed comparison).

The position of the PhoP peak with respect to the ORF start site

merits discussion. We noticed that in the case of lipF and rv1535,

the binding site was located .400 bp upstream of the translation

start codon. This is consistent with previous results of footprinting

assays for lipF [13] and with the presence of long 59-UTRs, with

presumptive regulatory roles, for lipF and rv1535 in the respective

RNA-seq profiles. Interesting observations were made upon

alignment of the PhoP and RNApol ChIP-seq profiles. PhoP

was located upstream of the enzyme in most cases, suggesting a

role as a positive regulator, later confirmed by RNA-seq data. On

the contrary, PE8 was the only gene associated with a PhoP signal

downstream of the RNApol peak, indicating potential steric

hindrance and thus prevention of RNApol progression throughout

the coding sequence. ChIP-seq analysis can therefore provide clues

as to the role fulfilled by a transcription factor depending on the

position of its binding site with respect to RNApol.

Figure 4. Reintroduction of mcr7 in an M. tuberculosis phoP mutant restores secretion of Tat-dependent substrates to wild type
levels. A. qRT-PCR analysis of tatC, mcr7 and other genes from the PhoP regulon (lipF, pks2, pks3, narK1 and fadD21). Bars represent fold changes in
the expression levels in the phoP mutant and mcr7-complemented strains relative to M. tuberculosis wild type grown exponentially in 7H9 medium.
Expression of the tatC mRNA is independent of phoP mutation and mcr7 expression. Note that complementation with mcr7 does not affect
expression of the PhoP regulon. Results are representative of three independent experiments and error bars are the standard deviation of the mean.
B. Western blot experiments of GroEL2, Ag85C, EspD and EsxA in the whole cell and secreted fractions of M. tuberculosis wild type, its phoP mutant
and the mcr7-complemented strains. Equal protein amounts were loaded per well. GroEL2 is used as a control of bacterial integrity in each sample.
Signal intensity was quantified and plotted in the graphs below the Western blot images. Results are representative of three independent
experiments. C. Measure of b-lactamase activity of the BlaC protein by nitrocefin chromogenic assay. Activity is calculated relative to the CFU/ml in
each strain.
doi:10.1371/journal.ppat.1004183.g004
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Inspection of the PhoP targets uncovered unusual binding sites

in the 39-end of ORF such as the one between hddA and ldtA. Since

this peak is at the end of two convergent genes, it likely

corresponds to an unmapped small RNA. Closer inspection of

this intergenic region revealed the presence of a novel small

transcript downregulated in the phoP mutant. Another case is

represented by rv2137c, where the PhoP interacting region was

mapped within the ORF, suggesting an alternative, PhoP-

dependent start codon. Indeed, a polypeptide starting at the

ATG codon at nucleotide 106, in frame with the currently

annotated start site, shows more than 85% identity with the

corresponding proteins in all other mycobacteria whose genomes

have been sequenced.

The bipartite PhoP consensus sequence derived from ChIP-seq

analysis is consistent with the crystal structure of the dimeric PhoP

regulator that is predicted to bind to direct repeats [10]. It also

agrees with previous footprinting experiments demonstrating

binding of PhoP upstream of its own gene [11,13] and in the

promoter regions of lipF, fadD21, pks2 [13]. On the other hand, the

divergent orientation of the PhoP binding motif relative to the pks3

gene can be subjected to different interpretations. It could be that

the adjacent rv1179c is the gene directly controlled by PhoP while

pks3 undergoes indirect regulation. Alternatively, transcriptional

regulation in that locus might be independent of directional

positioning of the transcription factor.

The last years have witnessed increased attention to ncRNA in

prokaryotic organisms, including Salmonella enterica [33], Legionella

pneumophila [34], Listeria monocytogenes [35] and M. tuberculosis [29].

These molecules have been predicted to exert their function at the

post-transcriptional level by modulating translation of RNAs [36].

This process has important implications when bacteria face

environmental stresses since it allows faster responses than classical

transcriptional regulation. In this study we disclose the

Mcr7 ncRNA encoded by the mcr7 gene, located between

rv2395 and PE_PGRS41 (Figure 2). The latter was described as

highly repressed in a phoP mutant from microarray experiments by

Walters and co-workers [5]. Thanks to the increased resolution

provided by RNA-seq, we can now identify the heavily deregu-

lated gene as mcr7 rather than PE_PGRS41. The position of the

probes in the microarray assay probably did not allow such

precision. A similar observation can be made for a study that

characterized the transcriptional differences between the avirulent

strain H37Ra and H37Rv [6]. The gene encoding PE_PGRS41

(and likely the associated intergenic region carrying mcr7) was

found to be the most highly deregulated. Importantly, H37Ra is a

natural mutant in the phoP gene since it carries a polymorphism in

the DNA binding domain [7,11], thus indicating that reduced

virulence is associated with lack of PhoP activity and impaired

expression of the locus encoding mcr7. We confirmed this

prediction by measuring the expression levels of mcr7 in H37Ra

by qRT-PCR. The ncRNA was found to be poorly detectable as

compared to H37Rv (Figure S5).

In the same genomic region of the CDC1551 strain,

Abramovitch and colleagues postulated the existence of the

aprABC locus with aprC corresponding to PE_PGRS41 and aprA

and aprB corresponding to ORFs MT2466 and MT2467 [37].

These ORFs were not predicted in strain H37Rv as neither their

codon usage nor positional base composition are typical of true

protein coding sequences [16,38]. The mcr7 gene completely

overlaps the hypothetical aprA. A major PhoP binding site precedes

the mcr7 gene but there is none immediately upstream of

PE_PGRS41. Our results from Northern blot experiments clearly

showed one prominent band of approximately 350 nt in length

corresponding to Mcr7, that was first described in M. bovis BCG

[20]. This genomic locus is restricted to species belonging to the

M. tuberculosis complex, including M. canettii, and was not identified

in M. kansasii and in M. marinum, although expression of mcr7 was

found to be particularly prominent in M. tuberculosis only. The

expression pattern of mcr7 tallies with the proposed evolutionary

pathway of the tubercle bacilli [39]. Indeed, those lineages that

evolved from a common M. tuberculosis-like ancestor by multiple

deletions (M. africanum, M. microti, M. caprae and M. bovis) express

low-levels of the ncRNA as compared to the M. tuberculosis strain.

In light of our findings, it is tempting to speculate that modulation

of the activity of the Tat secretion system by means of a small

RNA has played a role in shaping the adaptation of tubercle bacilli

and/or in restricting their host spectrum. We investigated the

potential role played by Mcr7 in virulence by performing ex vivo

and in vivo infections. Complementation of the phoP mutant with

mcr7 alone did not restore the wild type virulence and the strain

was more attenuated than the phoP mutant (Figure S6). This

phenotype may be related to the ectopic overexpression of Mcr7,

which was indeed associated with small colony size (data not

shown).

The predicted folding model of Mcr7 revealed the presence of a

33-nt loop with the potential to anneal to three candidate mRNAs:

rv2767c, rv2053c and tatC (Figure S3). Since our results provided

convincing evidence for increased secretion of the Tat substrates,

Ag85A and Ag85C, in phoP mutants, we prioritized the study of

Tat-dependent secretion. However, we cannot exclude a post-

transcriptional impact of Mcr7 on expression of the hypothetical

membrane proteins Rv2767c and Rv2053c, although their role in

M. tuberculosis physiology is questionable since previous proteomic

experiments failed to detect them in the total proteome or in

cellular subfractions [40,41,42,43]). Proteomic analysis demon-

strated that proteins secreted through the Tat system are more

abundant in the extracellular fraction of the PhoP-deficient strain

(Figure 3). A genetic approach relying on complementation of the

phoP mutant with mcr7 proved the involvement of the ncRNA in

the regulation of Tat-dependent secretion at the post-transcrip-

tional level while no impact on the amount of mRNA was

observed (Figures 3 and 4). This is the first report describing the

function of a ncRNA in M. tuberculosis. Notably, M. tuberculosis phoP

mutants display pleiotropic phenotypic effects including impaired

secretion of ESX-1 substrates [7], compromised production of

sulphatides (SL), diacyltrehaloses (DAT) and polyacyltrehaloses

(PAT) [8] and reduced virulence in the macrophage and mouse

models of infection [4,5]. Mcr7 was found to be sufficient to re-

establish the wild type phenotype with respect to secretion of Tat

substrates whereas ESX-1 substrates were unaffected, thus evoking

a specific regulatory cascade where Mcr7 acts downstream of

PhoP.

Overall, this work refined the role played by PhoP in control of

gene expression in M. tuberculosis. A previous study reported that

PhoP is involved in the regulation of the ESX-1 secretion system

[7] but no direct evidence had been provided so far. Here we

uncovered the existence of a novel regulatory cascade composed of

at least two regulatory factors, PhoP and EspR, that ultimately

controls ESX-1 functions, such as secretion of EsxA, via regulation

of the espACD locus [7,30]. In addition, we demonstrated a role for

the PhoP-dependent ncRNA Mcr7 in Tat-dependent secretion of

well-known M. tuberculosis antigens, namely the immunodominant

Ag85 complex. PhoP could therefore also mediate antigenicity and

pathogenesis via the Ag85 complex itself and/or through trehalose

6,6-dimycolate, an abundant glycolipid in the mycobacterial cell

wall whose biosynthesis is catalyzed by Ag85 proteins. The Ag85

complex is also involved in binding to human fibronectin,

important for cell adhesion and invasion [44,45]. Mcr7 could
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therefore represent the missing link between PhoP and the

downstream processes required for successful infection of the host.

Finally, our findings provided a new molecular basis to explain the

better protection against tuberculosis conferred by the candidate

vaccine strain MTBVAC, which carries a deletion in phoP [9].

While the reduced virulence results mainly from abrogation of the

ESX-1 secretion system and possibly from lack of complex lipids,

its efficacy may be ascribed to improved antigenicity properties

following silencing of Mcr7 and the ensuing increase in secretion

of Tat substrates such as the Ag85 proteins.

Materials and Methods

Ethics statement
All animal work has been conducted according to the national

and international guidelines. The protocols for animal handling

were previously approved by University of Zaragoza Animal

Ethics Committee (protocol number PI43/10).

Bacterial strains and culture conditions
Mycobacterium tuberculosis H37Rv [16], GC1237 [21] wild type

strains and their isogenic phoP mutants were previously described

[11]. The growth rate of the wild type and of the mutant strains

were similar (Figure S7). M. bovis AF2122/97 [46], M. caprae M57

[39], M. microti 15496 and M. africanum MAF419 [47] were used as

representative strains of the M. tuberculosis complex. Mycobacterial

strains were grown at 37uC in 7H9 medium (Difco) supplemented

with 0.05% Tween 80 and 10% albumin-dextrose-catalase (ADC,

Middlebrook) or on 7H10 plates supplemented with 10% ADC.

For M. tuberculosis complex strains different from M. tuberculosis,

40 mM sodium pyruvate was added to the medium. Escherichia coli

DH5a used for cloning procedures was grown at 37uC in LB broth

or on LB agar plates. Kanamycin (20 mg/ml) and hygromycin

(20 mg/ml) were used as appropriate.

Chemicals, antibodies and oligonucleotides used in this
study

All chemicals were purchased from Sigma-Aldrich, unless

otherwise stated. Immunoblotting was performed with mouse

monoclonal anti-EsxA antibodies (Hyb 076-08, Abcam), mouse

monoclonal anti-Ag85C antibodies (HYT27, Abcam), mouse

monoclonal anti-GroEL2 antibodies (BDI578, Abcam), rabbit

polyclonal anti-Rv2525c antibodies [24], rat polyclonal anti-EspD

antibodies (kindly provided by Jeffrey Chen) and rabbit polyclonal

anti-TatC (Eurogentec) antibodies. Polyclonal antibodies to the

transcriptional regulator PhoP of M. tuberculosis were obtained from

rabbits that received five doses of PhoP (0.5 mg), at weeks 0, 4, 8,

12 and 16, respectively. These anti-PhoP antibodies were validated

by ELISA (ZEU-Immunotec Zaragoza, Spain). Sequences of the

oligonucleotides used in this study will be provided upon request.

Plasmid construction
The pAZ31 plasmid was kindly provided by Ainhoa Arbues.

The pWM222 plasmid was used for phoPR complementation in

northern blot experiments and was constructed as follows. A

2.7 kbp region spanning the phoPR operon was amplified by PCR

using primers (59-ATACTAGTGGCATCACCCAACGCTTGT

T-39) and (59-ATACTAGTGGTGAGCCAGCTGATCGG-39).

This PCR product was digested with SpeI and subsequently

transferred into a pMV361 [48] derivative deleted from the

phsp60 promoter. In this construct, the phoPR operon is expressed

from its native promoter. Plasmid pLZ11 used for mcr7 expression

was constructed by inserting a transcriptional fusion of the rrs (16S

rRNA) promoter with the mcr7 transcript following a similar

strategy to that described in [29]. This transcriptional fusion was

accomplished using an overlapping two-step PCR strategy. Briefly,

the rrs promoter was PCR amplified using primers rrsOV Fw:

GACGTCCCGCAGCTGTCGAGCGCT and rrsOV Rv:

GGGCCGCCGGCCCTGCCAGTCTAATACAAATCC. The

mcr7 region was amplified using primers mcr7Ov Fw: GACTGG-

CAGGGCCGGCGGCCCGACACA and mcr7Ov Rv: AAGCT

TCCACCTTCTCGTTACCCGCCTCTG. Both PCR products

overlap in 21 bp (underlined nucleotides) and were used as self-

templates in a PCR reaction. The entire transcriptional fusion was

amplified by PCR using the flanking primers rrsOV Fw and mcr7Ov

Rv, digested with HindIII and EcoRI and introduced between the

HindIII and EcoRI sites of pMV361. The resulting construct was

introduced in mycobacteria by electroporation and colonies carrying

a chromosome-integrated vector were checked by PCR.

Chromatin immunoprecipitation experiments
Chromatin immunoprecipitation experiments were performed

as previously described [49] with the following modifications. We

performed two independent ChIP-seq experiments with the wild

type strain H37Rv and one experiment with the control phoP

mutant. Briefly, M. tuberculosis cultures were grown to exponential

phase (optical density at 600 nm of 0.4) and cross-linked with 1%

formaldehyde for ten minutes at 37uC. Cross-linking was

quenched by addition of glycine (125 mM). Cells were then

washed twice with Tris-buffered saline (TBS, 20 mM Tris-HCl

pH 7.5, 150 mM NaCl), resuspended in 4 ml immunoprecipita-

tion (IP) buffer (50 mM Hepes-KOH pH 7.5, 150 mM NaCl,

1 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate,

0.1% SDS, protease inhibitor cocktail from Roche) and sonicated

to shear DNA using Bioruptor (Diagenode). Cell debris was

removed by centrifugation and the supernatant used in IP

experiments. Nucleo-protein extracts were incubated with 50 ml

of rabbit polyclonal anti-PhoP antibodies at 4uC for 2 days on a

rotating wheel. Complexes were subsequently precipitated with

Dynabeads (Dynal, anti-rabbit, Invitrogen) for three hours at 4uC.

Beads were washed twice with IP buffer, once with IP buffer plus

500 mM NaCl, once with buffer III (10 mM Tris-HCl pH 8,

250 mM LiCl, 1 mM EDTA, 0.5% Nonidet-P40, 0.5% sodium

deoxycholate), once with Tris-EDTA buffer pH 7.5. Elution was

performed in 50 mM Tris-HCl pH 7.5, 10 mM EDTA, 1% SDS

for 40 minutes at 65uC. Samples were finally treated with RNAse

A for one hour at 37uC and cross-links were reversed by

incubation for two hours at 50uC and for eight hours at 65uC in

0.56 elution buffer with 50 mg Proteinase K (Eurogentec). DNA

was purified by phenol-chloroform extraction and quantified by

Nanodrop and Qubit fluorometer according to the manufacturer’s

recommendations (Invitrogen).

Library preparation for ChIP-seq analysis and Illumina
high-throughput sequencing

DNA fragments obtained from the immunoprecipitation

procedure were used for library construction and sequencing with

the ChIP-Seq Sample Preparation Kit (Illumina), according to the

protocol provided by the manufacturer. One lane per library was

sequenced on the Illumina Genome Analyzer IIx at the Lausanne

Genomics Technologies Facility using the SR Cluster Generation

Kit v2 and SBS 36 Cycle Kit v2. Data were processed with the

Illumina Pipeline Software v1.40.

Genome annotation
All analyses in this study were carried out using the M.

tuberculosis H37Rv annotation from the TubercuList database
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(http://tuberculist.epfl.ch/), which includes 4019 protein coding

sequences (CDS), 73 genes encoding for stable RNAs, small RNAs

and tRNAs. In order to quantify protein occupancy and

transcription across the entire genome, 3080 intergenic regions

(regions flanked by two non-overlapping CDS) were included,

resulting in a total of 7172 features.

ChIP-seq data analysis
ChIP-seq analysis was performed using the HTSstation pipeline

at EPFL (http://htsstation.epfl.ch/). Briefly, the single-ended

sequence reads generated from ChIP-seq experiments were

aligned to the M. tuberculosis H37Rv genome (NCBI accession

NC_000962.2) using Bowtie [50] with options ‘‘-l 28 -best -strata’’.

Peaks were analysed using MACS v.1.4 [51] with parameters ‘‘-bw

200 -m 10100’’. Alignment files were converted to bigWig format

for visualization in the UCSC genome browser Mycobacterium

tuberculosis H37Rv 06/20/1998 Assembly [52]. To determine the

level of ChIP-seq enrichment for each feature, an enrichment ratio

(ER) was calculated by dividing the read count for the ChIP-seq

sample in the wild type strain by the read count for the mutant

(control) sample.

PhoP binding site motifs were searched using the MEME Suite

(http://meme.nbcr.net/meme/) in sequence regions encompass-

ing 100 bp upstream and 100 bp downstream of the predicted

peak summit. Motif sequence logo was obtained using WebLogo3

(http://weblogo.threeplusone.com/).

RNA extraction
Mycobacterial cultures (one for the wild type strain and one for

the phoP mutant) were grown to exponential phase (OD600 = 0.5-

0.6) and pelleted by centrifugation. To minimize RNA degrada-

tion bacteria were resuspended in 1 ml RNA Protect Bacteria

Reagent (Qiagen), incubated for 5 min at room temperature and

then centrifuged. Bacterial pellets were resuspended in 0.4 ml lysis

buffer (0.5% SDS, 20 mM NaAc, 0.1 mM EDTA) and 1 ml

phenol:chloroform (pH = 4.5) 1:1. Suspensions were transferred to

tubes containing glass beads (Qbiogene) and lysed using a ribolyser

(Fast-prep instrument) with a three-cycle program (15 sec at speed

6.5 m) including cooling the samples on ice for 5 min between

pulses. Samples were then centrifuged and the homogenate was

removed from the beads and transferred to a tube containing

chloroform:isoamylalcohol 24:1. Tubes were inverted carefully

before centrifugation and the upper (aqueous) phase was then

transferred to a fresh tube containing 0.3 M Na-acetate (pH = 5.5)

and isopropanol. Precipitated nucleic acids were collected by

centrifugation. The pellets were rinsed with 70% ethanol and air

dried before being re-dissolved in RNase-free water. DNA was

removed from RNA samples using Turbo DNA free (Ambion) by

incubation at 37uC for 1 h. RNA integrity was assessed by agarose

gel electrophoresis and absence of contaminating DNA was

checked by lack of amplification products after 30 PCR cycles.

Primary, unprocessed RNA from H37Rv was prepared as

indicated in [53]. Briefly, 10 mg total RNA were treated with 10 U

of Terminal 59-phosphate dependent Exonuclease (Epicentre) for

24 h at 30uC followed by phenol extraction and isopropanol

precipitation. Successful preparation of primary transcriptome was

confirmed by lack of 23S/16S rRNA bands in agarose gels.

Library preparation for RNA-seq analysis and Illumina
high-throughput sequencing

100 ng of total RNA were mixed with 56Fragmentation buffer

(Applied Biosystems), incubated for 4 minutes at 70uC and then

transferred immediately on ice. RNA was purified using

RNAClean XP beads (Beckman Coulter), according to the

manufacturer’s recommendations, and subsequently treated with

Antarctic phosphatase (New England Biolabs). RNA was then re-

phosphorylated at the 59-end with polynucleotide kinase (New

England Biolabs) and purified with Qiagen RNeasy MinElute

columns. In order to ensure strand-specificity, v1.5 sRNA adapters

(Illumina) were ligated at the 59- and 39-ends using RNA ligase.

Reverse transcription was carried out using SuperScript III

Reverse Transcriptase (Invitrogen) and SRA RT primer (Illu-

mina). Twelve cycles of PCR amplification using Phusion DNA

polymerase were then performed and the library was finally

purified with AMPure beads (Beckman Coulter) as per the

manufacturer’s instructions. A small aliquot (2.5 ml) was analyzed

on Invitrogen Qubit and Agilent Bioanalyzer prior to sequencing

on Illumina HiSeq 2000 using the TruSeq SR Cluster Generation

Kit v3 and TruSeq SBS Kit v3. Data were processed with the

Illumina Pipeline Software v1.82.

RNA-seq data analysis
The single-ended sequence reads generated from RNA-seq

experiments were aligned to the M. tuberculosis H37Rv genome

(NCBI accession NC_000962.2) using Bowtie2 with default

parameters [54]. Read counts for all annotated features were

obtained with htseq-count program (http://www-huber.embl.de/

users/anders/HTSeq/doc/count.html). Regions where genes

overlapped were excluded from counting. Reads spanning more

than one feature were counted for each feature. Since the RNA

library was strand-specific, the orientation of sequence reads had

to correspond to the orientation of annotated features to be

counted. Analysis of differential gene expression was carried out

using the DESeq package [55].

Quantitative PCR (qRT-PCR) for ChIP-seq and RNA-seq
data validation

One microgram of M. tuberculosis RNA was converted to cDNA

using SuperScript III Reverse Transcriptase (Invitrogen) according

to the manufacturer’s recommendations. All PCR primers were

designed using Primer Express software (Applied Biosystems). The

10 ml PCR reaction consisted of 16Sybr Green PCR Master Mix

(Applied Biosystems), 0.25 mM of each primer and 1 ml of 1:10

diluted cDNA or IP DNA from immunoprecipitation reactions.

Reactions were carried out in triplicate in an Applied Biosystems

StepOnePlus Sequence Detection System (Applied Biosystems)

according to the manufacturer’s instructions. Melting curves were

constructed to ensure that only one amplification product was

obtained. In the case of qRT-PCR for RNA-seq data confirma-

tion, normalization was obtained to the number of sigA molecules

in each sample. Regarding the qPCR for ChIP-seq data

validation, the number of target molecules was normalized to

the mutant (control) sample, after subtraction of the background

represented by the mock-IP (no antibody control).

Northern blot
Northern blot was performed using the DIG Northern starter

kit (Roche) following the manufacturer’s recommendations.

Briefly, total RNA was separated using denaturing 1% agarose

gels in 16MOPS buffer containing 2% formaldehyde. RNA was

transferred by capillary blotting to Hybond-N+ nylon membranes

(Amersham) and UV-crosslinked prior to incubation with the

desired probe. Digoxigenin (DIG)-labelled probes were synthe-

sized to detect rrf (5S rRNA) and mcr7 transcripts using the primer

pairs NB-5S-rRNA-fw (ttacggcggccacagcgg)/NB-T7-5S-rRNA-rv

(taatacgactcactatagggtgtcctacttttccacccggagggg), NB-mcr7-fw
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(ccggcggcccgacacatg)/NB-T7-mcr7-rv (taatacgactcactatagg-

gacccgctcaagcaggtcg) respectively. The T7 promoter used for in

vitro transcription and labeling of RNA is underlined. RNA

transcripts complementary to each probe were detected by

Western-blot using an anti-DIG antibody conjugated to alkaline

phosphatase and the chemiluminescent substrate CDP-Star.

Prediction of Mcr7 interactors
The secondary structure fold of mcr7 was predicted using the

RNAfold web server (http://rna.tbi.univie.ac.at/cgi-bin/

RNAfold.cgi). Prediction of mcr7 putative targets was performed

using TargetRNA (http://cs.wellesley.edu/,btjaden/

TargetRNA2/index.html) allowing antisense complementarity

from -80 to +20 relative to ORF translation start sites of M.

tuberculosis H37Rv. A minimum hybridization seed of 7 nt and a p-

value threshold of 0.05 were required for target transcripts.

Preparation of protein samples
In order to avoid albumin contamination in the secreted protein

fraction, cultures were grown in 7H9 (Difco) 0.05% Tween 80

supplemented with 0.2% dextrose, 0.085% NaCl. After 2-3 weeks

incubation at 37uC, cultures were pelleted by centrifugation. The

supernatant containing secreted proteins was incubated with 10%

trichloroacetic acid (TCA) for one hour in ice and then centrifuged

at 4uC for 30 min. Pelleted proteins were rinsed with cold acetone

and then resuspended in 150 mM TrisHCl pH 8. Protein integrity

and absence of albumin contamination was checked by SDS-

PAGE and Coomassie staining. The pelleted fraction of bacterial

cultures was used for extraction of whole-cell proteins. The pellet

was resuspended in PBS containing 1% triton6100 and a cocktail

of protease inhibitors (Roche) and sonicated for 30 minutes at 4uC
using a Bioruptor (Diagenode). Samples were then centrifuged and

the upper phase containing whole-cell lysate was used in

downstream experiments. To prepare whole-cell extracts for

detection of TatC by Western blot, proteins were further

solubilized with 9 M urea, 70 mM DTT and 2% Triton X-100

followed by TCA precipitation and final resuspension in 150 mM

TrisHCl pH 8.

Dimethyl labeling and SAX fractionation
Each sample (8 mg) was reconstituted in 50 ml of 4 M Urea,

10% acetonitrile and buffered with Tris-HCl pH 8.5 to a final

concentration of 30 mM. Proteins were reduced using 10 mM

dithioerythritol (DTE) at 37uC for 60 min. Cooled samples were

subsequently incubated in 40 mM iodoacetamide at 37uC for

45 min in a light-protected environment. Reaction was quenched

by addition of DTE to a final concentration of 10 mM. A two-step

digestion was performed using Lys-C (1:50 enzyme: protein) for

2 hours at 37uC. The lysates were first diluted 5-fold and samples

were again digested overnight at 37uC using Mass Spectrometry

grade trypsin gold (1:50 enzyme: protein) and 10 mM CaCl2.

Reaction was stopped by addition of 2 ml of pure formic acid (FA)

and peptides were concentrated by vacuum centrifugation to a

final volume of 70 ml. Samples were dimethyl-labeled as previously

described [56]. The sample H37Rv phoP- was labeled with light

dimethyl reactants (CH2O + NaBH3CN), the sample H37Rv was

labeled with medium reactants (CD2O + NaBH3CN) and the

sample H37Rv phoP- complemented was labeled with heavy

methyl reactants (13CD2O + NABD3CN). As a final step of

labeling procedure, samples were mixed in a 1:1:1 [(Light:

Medium: Heavy) ratio and extensively lyophilized. Technical

replicates were obtained. SAX fractionation was performed as

previously described [57]. The eluted fractions were dried by

vacuum centrifugation and used for LC-MS analysis.

Mass spectrometry and data analysis
Each SAX fraction was resuspended in 2% acetonitrile, 0.1%

FA for LC-MS/MS injections and then loaded on a homemade

capillary pre-column (Magic AQ C18; 3 mm by 200 Å;

2 cm6100 mm ID) and separated on a C18 tip-capillary column

(Nikkyo Technos Co; Magic AQ C18; 3 mm by 100 Å;

15 cm675 mm). MS/MS data was acquired in data-dependent

mode (over a 4 hr acetonitrile 2–42% gradient) on an Orbitrap Q

exactive Mass spectrometer equipped with a Dionex Ultimate

3000 RSLC nano UPLC system and homemade nanoESI source.

Acquired RAW files were processed using MaxQuant version

1.3.0.5 [58] and its internal search engine Andromeda [59]. MS/

Ms spectra were searched against M. tuberculosis strain H37Rv

database R23 (http://tuberculist.epfl.ch/) [60]. MaxQuant default

identification settings were used in combination with dimethyl-

labeling parameters. Search results were filtered with a false-

discovery rate of 0.01. Known contaminants and reverse hits were

removed before statistical analysis. Relative quantification within

different conditions was obtained by calculating the significance B

values for each of the identified proteins using Perseus [58].

Western blotting
Protein samples were quantified using the RC DC protein assay

(BioRad) and equal amounts of protein preparations were loaded

per well. Proteins were separated on SDS-PAGE 12–15% gels and

transferred onto PVDF membranes using a semidry electropho-

resis transfer apparatus (Bio-Rad). Membranes were incubated in

TBS-T blocking buffer (25 mM Tris pH 7.5, 150 mM NaCl,

0.05% Tween 20) with 5% w/v skimmed milk powder for 30 min

prior to overnight incubation with primary antibodies at the

dilution indicated below. Membranes were washed in TBS-T

three times, and then incubated with secondary antibodies for 1 h

before washing. Antibodies were used at the following dilutions:

1:2,000 for anti-EsxA, 1:5,000 for anti-Ag85C, 1:500 for anti-

GroEL2, 1:1,000 for anti-Rv2525, 1:1,000 for anti-EspD and

1:1,000 for anti-TatC. Horseradish peroxidase (HRP) conjugated

IgG secondary antibodies (Sigma-Aldrich) were used at a 1:20,000

dilution. Signals were detected using chemiluminescent substrates

(GE Healthcare).

Beta-lactamase assay
Bacterial cultures were grown to OD 600 nm 0.6–0.8 and

pelleted. Nitrocefin was added to culture supernatants at 50 mM

final concentration and absorbance was measured at 486 nm

(Synergy HT BioTEK) every 10 minutes for 3h. Slope of linear

range was measured and normalized against total CFUs of the

culture.

J774A.1 infection
Virulence of the different M. tuberculosis strains was evaluated in

J774A.1 murine macrophages according to a previously published

procedure [61,62]. Briefly, cells were grown in DMEM medium

containing 10% fetal bovine serum at 37uC under 5% CO2.

10,000 macrophages per well were seeded into a 384-well plate in

a total volume of 45 ml and incubated at 37uC for 30 minutes

before infection. Cells were infected at an MOI of 10 with titrated

stocks of H37Rv, phoP mutant, phoP-complemented and mcr7-

complemented strains. On day 3, macrophage survival was

measured by exposing the infected cells to PrestoBlue Cell

Viability Reagent (Life Technologies) for 1 hour. Fluorescence

was read using a TECAN Infinite M200 microplate reader and

statistical analysis was performed with the unpaired T-test

method.
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Mouse infection
C57BL/6 mice were infected intranasally with an inoculum of

2.56104 cfu/ml (6 mice per group). Four weeks post-infection

mice were euthanized and lungs were plated on 7H11 plates

supplemented with 0.5% glycerol, 10% albumin-dextrose-catalase

(ADC, Middlebrook), polymixin B 50 U/ml, trimethoprim

0.02 mg/ml and amphotericin B 0.01 mg/ml. Unpaired T-test

was used for statistical analysis. The protocols for animal handling

were previously approved by University of Zaragoza Animal

Ethics Committee (protocol number PI43/10).

Data access
The ChIP-seq and RNA-seq datasets have been deposited in

NCBI’s Gene Expression Omnibus [63] under accession number

GSE54241.

The mass spectrometry proteomics data have been deposited to

the ProteomeXchange Consortium (http://www.

proteomexchange.org) via the PRIDE (Proteomics Identification

Database) partner repository [64] with the dataset identifier

PXD000698.

Supporting Information

Figure S1 Validation of ChIP-seq and RNA-seq by qRT-
PCR. A. Representative genes from Table 1 showing a significant

enrichment (p,0.0001, FDR 0.00%) in H37Rv relative to its phoP

mutant were independently validated by qRT-PCR. The figure

shows absolute quantification using equal amounts of immuno-

precipitated material from a control sample without antibody, the

H37Rv wild type and its phoP mutant. Note the enrichment for the

selected regions in the wild type strain compared to the phoP

mutant and to the sample which was not subjected to incubation

with the antibody. B. qPCR validation of the peaks detected by

ChIP-seq experiments between hddA and ldtA, upstream of lipF and

of rv1535 and within the rv2137 ORF. Enrichment ratios in the

wild type strain as compared to the phoP mutant are reported in

the graph. C. Representative genes showing significant expression

differences in RNA-seq (fold change .2 and p,0.05) between

H37Rv and the phoP mutant were selected for independent

validation using qRT-PCR. Figure shows fold change in gene

expression in bacteria grown in 7H9 medium. Results are the

average of three independent RNA extractions. Error bars

indicate the standard deviation of the mean. The sigA gene was

used as an invariant endogenous control for normalization

purposes.

(PDF)

Figure S2 Detection of the Mcr7 ncRNA by Northern-
blot and qRT-PCR. A. Northern blot of the Mcr7 transcript

using different RNA amounts of M. tuberculosis H37Rv and its phoP

mutant. Note the absence of transcription of Mcr7 in the mutant

even when we used 10 mg RNA/lane. Expression of the 5S rRNA

transcript is used as a loading control in each lane. B. Fold change

in Mcr7 expression in wild type H37Rv relative to the phoP mutant

calculated by qRT-PCR. Results are the average of three

independent RNA extractions. Error bars indicate the standard

deviation of the mean. The sigA gene was used as an invariant

endogenous control for normalization purposes.

(PDF)

Figure S3 Identification of putative targets of Mcr7. A.
Predicted secondary structure of Mcr7. Note the highly structured

folding of this non-coding RNA. This secondary structure contains

a 33 nt unstructured loop. B. Sequence of mcr7. The 33 nt loop is

labeled in red. C. Bioinformatic prediction of putative Mcr7

targets. Annealing position within the mcr7 sequence is also given.

Note that tatC and rv2053c are the only putative targets that anneal

with the unstructured loop of Mcr7.

(PDF)

Figure S4 Complementation of a M. tuberculosis phoP
mutant with mcr7. A. Northern blot analysis using a mcr7

antisense probe in H37Rv wild type, its phoP mutant, the phoP-

complemented strain and the H37Rv phoP mutant complemented

with mcr7. Expression of the 5S rRNA is used as a control of RNA

loaded in each lane. B. Quantification of Mcr7 by qRT-PCR.

Figure shows fold change in Mcr7 expression relative to the

H37Rv phoP mutant. The sigA gene was used as an invariant

endogenous control for normalization purposes. Note that

reintroduction of mcr7 in the H37Rv phoP mutant results in

transcript length and amount equivalent to those observed in the

wild type strain.

(PDF)

Figure S5 Expression of mcr7 in H37Ra. Relative expres-

sion values for mcr7 in H37Rv, phoP mutant and H37Ra were

obtained by qRT-PCR. Results are the average of three

independent RNA extractions and shown as relative to H37Rv.

Error bars indicate the standard deviation of the mean. The sigA

gene was used as an invariant endogenous control for normali-

zation purposes.

(PDF)

Figure S6 A. Macrophage infection. J774A.1 murine

macrophages were infected with the strains indicated in the figure

at an MOI of 10. Cytotoxicity of the bacterial strains was

quantified by measuring fluorescence upon addition of PrestoBlue

Cell Viability Reagent (Life Technologies) on day 3 post-infection.

(** p,0.0064, *** p,0.0001) B. Infection of C57BL/6 mice.

Mice were infected via the intranasal route with an inoculum of

2.56104 cfu/ml (6 mice per group). Four weeks post-infection

mice were euthanized and lungs were plated on 7H11 plates

supplemented with 0.5% glycerol, 10% albumin-dextrose-catalase

(ADC, Middlebrook), polymixin B 50 U/ml, trimetroprim

0.02 mg/ml and amphotericin B 0.01 mg/ml. (** p,0.001, ***

p,0.0001).

(PDF)

Figure S7 In vitro growth curves of the wild type strain
H37Rv and of the phoP mutant. The growth rates of the wild

type strain H37Rv and of the isogenic phoP mutant were assessed

in 7H9 complete medium at 37uC. Optical density at 600 nm

(OD) was recorded and growth curves compiled.

(PDF)

Table S1 ChIP-seq analysis of the PhoP binding sites in
M. tuberculosis H37Rv. Worksheet 1 in Table S1. List of

PhoP binding sites detected by ChIP-seq experiments on the wild

type strain H37Rv. The phoP mutant strain was used as a negative

control to exclude false positive signals. For each peak we provide

the following details: peak coordinates (columns B and C), peak

length (D), summit coordinate (F), sequence coverage (G), fold

enrichment (I), overlap with [15] (L), peak annotation (O). In

addition, the summit coordinate for RNApol ChIP-seq [17] is

detailed in column M. The motifs identified within each binding

site are reported together with the distance from peak summit and

the motif orientation. Worksheet 2 in Table S1 and Work-
sheet 3 in Table S1. They include the lists of signals obtained by

Galagan and co-workers [15] as they can be downloaded from the

TBDB database (http://www.tbdb.org/).

(XLSX)
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Table S2 Differential gene expression analysis between
M. tuberculosis H37Rv phoP isogenic mutant and the
wild type. Worksheet 1 in Table S2. This worksheet includes

the results obtained upon performing RNA-seq experiments in the

wild type strain H37Rv vs. the phoP mutant. Sequence coverage is

provided in columns B and C for both of the strains for all of the

open reading frames (ORF) in the TubercuList database.

FoldChange and log2(FoldChange) expression levels are detailed

in columns G and H. Worksheet 2 in Table S2. This includes

the head-to-head comparison between RNA-seq data presented in

this manuscript and previous microarray-based transcriptomic

analyses by Walters and colleagues [5].

(XLSX)

Table S3 In-depth proteomic analysis of the secretome
of M. tuberculosis H37Rv wild type, phoP mutant and
complemented strains. Worksheet 1 in Table S3. This

includes the results obtained upon performing in-depth proteomic

analysis of the secreted protein fractions from the wild type strain

H37Rv, the phoP mutant and the complemented strains. Proteins

were identified and labeled according to the annotation in the

TubercuList database. Significance B values are detailed in

columns I, J, K and L. Details of labeling are provided in the

Materials and Methods section and in the Excel workbook.

(XLSX)
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