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Abstract 

The chemical preparation, crystal structure, magnetic study and spectroscopic 

characterization of the new Cu(II) complex with the monodentate ligand 2-amino-4-

methylpyrimidine [Cu2(CH3COO)4(C5N3H7)2] are reported. The copper atoms are surrounded 

by one nitrogen atom from one 2-amino-4-methylpyrimidine ligand and four oxygen atoms of 

CH3COO− groups yielding to a penta-coordination of the metal ion. In the structural 

arrangement, the amino group and the pyrimidine nitrogen atom of neighboring molecules are 

linked together through a pair of N-H…N hydrogen bonds forming a 1-D corrugated chain 



running along the [111] direction wherein the complex molecules are located parallel to the (a, 

c) plane at z = ½. Intermolecular interactions were investigated by Hirshfeld surfaces and 

contact enrichment tools. Mulliken charge distribution, molecular electrostatic potential (MEP) 

maps and HOMO and LUMO energy gaps have been computed. The vibrational absorption 

bands were identified by infrared spectroscopy. Magnetic properties were also studied to 

characterize the complex.  

Keywords: Copper(II) complex; X-ray structure; Hirshfeld surface; contact enrichment ratio; 

DFT calculations; magnetic properties. 

1. Introduction 

The design and construction of metal–organic coordination polymers are of current interest in 

the fields of supramolecular chemistry and crystal engineering. This interest stems from their 

huge variety of topologies and structural diversity and from their potential applications as 

functional materials, such as gas storage, ion-exchange, catalysis, magnetism, and molecular 

sensing [1-3]. The presence of more than one hetero atom in pyrimidine plays an important role 

in its coordination chemistry compared to that of pyridine bases [4-7]. Moreover, pyrimidine 

derived metal ion complexes have been extensively studied in recent years owing to their great 

variety of biological activity ranging from antimalarial, antibacterial, antitumoral, antiviral 

activities, etc. [8-17]. The chemistry of transition metal complexes with ligands of biological 

relevance in which the metal centers are in close proximity is one of the central themes of 

current research. This is especially true for copper complexes [18, 19], due to their versatile 

structural chemistry, their electrochemical and magnetic properties [20] and also because of 

their relevance as synthetic models [21, 22] for active sites of several metallo-enzymes [23]. 

The structural diversity of copper(II) complexes is largely related to the fact that a Cu(II) with 

d9 configuration is Jahn-Teller active: a single unpaired d-electron occupies one of the d 

orbitals, which gives rise to structural flexibility and often highly distorted ligand coordination 



geometries [3]. Polynuclear metal clusters have been widely used. Among them, poly-nuclear 

copper clusters are of especial interest due to their attracting structures as well as their potential 

applications in molecule-based magnets, multi-electron redox processes, and catalysis [2]. In 

this paper, we report the synthesis and the physicochemical characterization of a new Cu(II) 

dinuclear complex with the monodentate ligand 2-amino-4-methylpyrimidine which their 

binding characterized by low-energy delocalized π*-orbitals increases the possibility of 

modification in their optical, physico-chemical and electrochemical properties as well as the 

structural characteristics. The Hirshfeld surface analysis was conducted to fully characterize the 

intermolecular interactions and explain the crystalline architecture. Moreover, the complex was 

studied by spectroscopic study and DFT calculations were used for the interpretation of the 

vibration results. The magnetic susceptibility measurements are also presented. 

2. Experimental 

2. 1. Chemical preparation 

A solution of Cu(CH3COO)2 (0.1 mmol) in water (5 mL) was added dropwise to a 

solution of 2-amino-4-methylpyrimidine (0.1 mmol) in water (10 mL). After stirring for 30 min, 

the mixture was filtered. Crystals suitable for X-ray analysis were obtained after a week by 

evaporating the filtrate at room temperature (yield = 76%).  

 

2.2. Investigation techniques 

The characterization of the investigated compounds was performed using X-ray 

diffraction, magnetic measurements and IR spectroscopy. 

2. 2. 1. X-ray single crystal structural analysis 

 A purple prism, measuring 0.27 x 0.20 x 0.10 mm3 was mounted on a loop with oil.  

Data were collected at -173oC on a Bruker APEX II single crystal X-ray diffractometer, Mo-

radiation. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares. 



The drawings were made with Diamond [24] Crystal data and experimental parameters used 

for the intensity data collection are summarized in Table 1. 

2. 2. 2. Magnetic measurements 

 Magnetic measurements were carried out on microcrystalline samples with a SQUID 

magnetometer (Quantum Design XL-7). The dc magnetic measurements were carried out under 

500 Oe in the 2–300 K temperature range. The raw data were corrected for diamagnetism 

estimated by the Pascal rule, and the molar paramagnetic susceptibilities were calculated. 

2. 2.3.  IR measurements 

 The IR spectra were recorded in the range 4000–400 cm-1 with a ‘‘Perkin–Elmer FTIR’’ 

spectrophotometer 1000 using samples dispersed in spectroscopically pure KBr and pressed 

into a pellet. 

3. Results and discussion 

3.1. X-ray diffraction study 

X-ray crystal structure analysis reveals that the complex crystallizes in the triclinic space 

group P1ത (Table 1). Each molecule in the unit cell is a dimer having four bidentate CH3COO− 

groups binding two copper ions in a bridging bidentate fashion, resulting in a paddlewheel 

structure (Fig. 1). The Cu–Cu distance within the dinuclear unit is 2.6479 (3) Å which is 

comparable to similar bonds found in other coordination compounds [25, 26]. The copper atoms 

are coordinated by one nitrogen atom from one 2-amino-4-methylpyrimidine ligand and four 

oxygen atoms of CH3COO− groups to yield a penta-coordination for the metal ion.  

The degree of distortion from a regular trigonal bipyramid can be quantified by the 

structural index , namely the Addison parameter  = (β – )/60 with β and  being the two 

largest angles [27] (where  = 0 and 1 for the perfect square pyramidal and trigonal bipyramidal 

geometries, respectively). The calculated  value of the title compound is (Cu) = 0.0003 (β and 

 values are 167.64(4)° and 167.62(4) °, respectively), indicating a quite small distortion from 



the regular square pyramid. This value is observed in other similar compounds [28]. The cis 

angles around the Cu atom which range from 88.47 (5)° to 90.71 (5)° also show that the CuO4N 

species has a slightly distorted square pyramidal geometry (Fig. 1, Table 2). Basal Cu–O bond 

distances (Table 2) vary in the range 1.9625 (11) – 1.9747 (15) Å and are somewhat shorter 

than the apical Cu–N1 bond distance (Cu– N1 = 2.2224 (11) Å). This fact may be ascribed to a 

Jahn-Teller distortion. These bond distances around the Cu atom are comparable to similar 

bonds found in other coordination compounds [25, 29]. 

In the structural arrangement, the amino group and the pyrimidine nitrogen of 

neighboring molecules are linked together through a pair of N-H…N hydrogen bonds (Table 3) 

forming a cyclic hydrogen bonded motif with graph set notation, R2
2(8) (Fig. 2). These 

hydrogen bonds stabilize the dimeric structure and stack at top one another to form a 1-D 

corrugated chain running along the [111] direction (Fig. 2 and Fig. S1) wherein the complex 

molecules are located parallel to the (a, c) plane at y = ½ (Fig. S1). 

The intramolecular hydrogen bond N3—HꞏꞏꞏO3 (Table 3) does also contribute to the 

robustness of the structure of this compound. Within the organic ligand 4-amino-6-

methylpyrimidine, an examination of the C-N bond distance of the NH2 group shows that C5-

N3 [1.330 (2) Å] is short for a C-N single bond, but still not quite as contracted as one would 

expect for a fully established C=N double bond. This bond length feature is consistent with an 

imino resonance form as it is commonly found for C-N single bond involving sp2 hybridized C 

and N atoms [30, 31]. 

3.2. Hirshfeld surface analysis 

Analysis of intermolecular interactions using the Hirshfeld surface represents a major 

tool in enabling supramolecular chemists and crystal engineers to gain insight into 

understanding the crystal packing. These surfaces are constructed based on the electron 

distribution calculated as the sum of spherical atom electron densities. In order to visualize and 



explore all intermolecular contacts in the molecular structure, the MoProViewer software [32] 

was used to carry out Hirshfeld surface analysis and compute contact types and their 

enrichment. The enrichment ratio EXY for a pair of elements (X,Y) is defined as the ratio 

between the proportion of actual contacts in the crystal (CXY) and the theoretical proportion of 

equidistributed random contacts RXY. 

EXY = CXY / RXY (1) 

An enrichment ratio larger than unity reveals that a pair of elements has a high propensity to 

form contacts in the crystal, while pairs which tend to avoid contacts with each other should 

yield an E value lower than unity. 

A large range of properties can be visualized on the Hirshfeld surface with Crystal 

Explorer [33] including the distance of atoms external, de, and internal, di, to the surface. The 

intermolecular distance information on the surface can be condensed into a two-dimensional 

histogram of de and di, which is a unique fingerprint for molecules in a crystal structure. The 

fingerprint plots of the main interactions are shown in Fig. 3. The spikes at short distances are 

due to the H…O hydrogen bonds and Cu…O ionic bridges.  

The nature of the intermolecular contacts in the crystal structure is shown in Table 4. The 

enrichment ratios [34, 35] of contacts between the different chemical species were computed in 

order to highlight which interactions are over-represented with respect to equiprobable contacts 

computed from the surface composition. The Hirshfeld surfaces are shown in Fig. 4.    

Globally, hydrogen occupies the largest proportion of the Hirshfeld surface, reaching 

44.7%, most of which is constituted by the hydrophobic Hc type. Consequently, the 

hydrophobic contacts Hc…Hc and Hc…C represent, with the Cu…O ionic bridges, the most 

represented contacts in the crystal packing. The occurrence of these hydrophobic contacts is 



slightly enriched at E = 1.1 and 1.4, respectively. The hydrophobic C…C contact are rare but 

more enriched at E=1.8 due to … stacking between aromatic pyrimidine cycles. Globally, 

hydrophobic contacts involving C and Hc atoms of the organic molecule and the acetate anions 

represent as much as 40% of the contact surface.  

The complexation of the Cu(II) cation by two carboxylate groups results in the strongest 

enrichment E(O,Cu)=3.5 while the copper…nitrogen interaction is also over-represented. The 

Hn hydrogen atoms have a significant partial charge and have the ability to form strong 

hydrogen bonds with the nitrogen and oxygen atoms. There are only one N-H…O and one N-

H…N strong H-bonds in the crystal structure (Table 3). The Hn…N contacts are indeed quite 

enriched (E = 2.6), while Hn…O hydrogen bonds do also occur but are less favored, due to 

competition with Cu++…O- which constitutes the strongest electrostatic interaction in the title 

compound crystal. All the self-contacts between charged atom types (Cu++, Hn, O, N) are 

unfavorable from an electrostatic point of view and are avoided with enrichment ratios close to 

zero or lower than 0.5. 

3.3. DFT calculations 

 DFT calculations were undertaken on the new Cu(II) complex 

[Cu2(CH3COO)4(C5N3H7)2] with the Gaussian 09 program [36]. The calculations were made 

on one isolated complex in gaseous phase. The coordinates of all atoms except protons were 

taken from the X-ray structure while those of hydrogen atoms were optimized by using the 

B3LYP/6-31+G* method. Both the singlet and triplet states were studied. The triplet state was 

found to be more stable by ca. 30 kcal.mol-1 than the singlet one and so only this state was 

studied in the following.  

HOMO-LUMO analysis. 



The frontier molecular orbitals determine the way a molecule interacts with other 

entities and helps to determine its kinetic stability and chemical reactivity of molecules. The 

HOMO-LUMO orbitals are displayed in Fig. 5. 

The highest occupied molecular orbital (HOMO) is located mainly on the two organic 

molecules (calculated energy of -6.271 eV) while the lowest unoccupied molecular is also 

localized on both molecules but on different atoms than the HOMO orbital (calculated energy 

of LUMO is -1.123 eV). The large energy gap between the HOMO and LUMO orbitals in the 

title compound is 5.148 eV and characterizes a high kinetic stability and a high chemical 

hardness [37, 38]. Indeed, it is energetically unfavorable to add electron to a high-lying LUMO 

or to extract electrons from a low-lying HOMO [39]. The energy distribution of the different 

orbitals is given in Fig. 6. 

Molecular Electrostatic Potential Analysis 

The molecular electrostatic potential of [Cu2(CH3COO)4(C5N3H7)2] has also been 

computed and is shown in Fig. 7. As it can be seen from this figure, the electrostatic potential 

maps are color-coded and are subdivided into many regions where those various colors are used 

to identify different potentials. Blue and red colors indicate the positive and negative potentials, 

respectively. Intermediate potentials are assigned to colors according to the following color 

spectrum: red < orange < yellow< green < blue. The MEP surface calculated for the title 

compound shows that the potential energy is positive over the organic cation and around the 

nitrogen atoms while the negative MEP described by red region around the oxygen atoms of 

the acetate groups. According to these results, we can say that there is a global electrostatic 

attraction between the 2-amino-4-methylpyrimidine ligands and the oxygen atoms of CH3COO− 

groups to yield a penta-coordination for the metal ion.  

Mulliken population analysis 



The Mulliken charge distribution [40, 41] of all atoms in the title compound is given in Table 

5. All atoms in the asymmetric unit are listed and for the acetate groups two values are given 

as there are two different molecules. The atoms of the organic molecule are numbered as 

follows: 

 

The atomic charge distribution shows that the oxygen atoms have negative charges of 

(-0.274461 & -0.428773) and (-0.231182 &-0.293471) respectively and that the copper ion has 

also a negative charge (-0.217248). When summing the charges on the atoms of the acetate 

groups values of -0.12 and -0.20 are obtained, showing that an electronic transfer occurred 

between the acetate groups and copper. In contrast the charge on the organic molecule is 

positive, due to a transfer of electrons from nitrogen to copper. 

3.4. Magnetic susceptibility measurements 

Fig. 8 shows the temperature dependence of the paramagnetic susceptibility p per 1 

mol of Cu in (this compound). The p value decreased with a decrease in temperature down to 

approximately 50 K. This observation suggests that an antiferromagnetic interaction between 

the copper ions works in the dimer and that (this compound) has a diamagnetic ground state. 

The p value increased with a further decrease in temperature. This is due to contribution of 

impurities or lattice defects. The magnetic behavior is very similar to that of Cu(CH3CO2)2.H2O 

[42]. Based on the structure, we interpreted the magnetic data using the following equation, 

p 
Ng2B

2

kBT

1

3 exp
2J
kBT











N 
Cimp

T
     (1) 



wherer N is the Avogadro constant, g is g-factor, B is the Bohr magneton, kB is the Boltzmann 

constant, J is the intra-dimer magnetic coupling constant, N is contribution of temperature-

independent paramagnetism, and Cimp is the Curie constant. In eq. (1), the first term is the 

Bleaney-Bowers model [43] for 1 mole of copper atoms and expresses the paramagnetic 

contribution of the copper dimers. The third term corresponds to contribution of impurities and 

so on in the low temperature region, assuming the Curie behavior [44]. The solid curve in Fig.9 

is the theoretical best-fit with the parameters; g = 2.11, 2J/kB= –496 K, 55 x 10-6 emu mol-1, 

and 0.0010 emu K mol-1. These value are consistent with those of Cu(CH3CO2)2.H2O [42]. 

3.5. IR spectroscopy 

The IR spectrum of the dimeric Cu(II) complex is shown in Fig. 9. The asymmetric and 

symmetric COO stretching vibrations of carboxylate give bands at 1558 and 1405 cm-1, 

respectively. These bands are characteristic of dicopper tetracarboxylate complexes [45]. The 

attachment of carboxylate to Cu(II) ion through oxygen was further supported by the 

appearance of the absorption band at 415 cm-1, corresponding to Cu–O. The value of Δν 

={νasym(OCO)- νsym(OCO)} calculated for the complex was 178 cm-1, indicating a bridging 

bidentate coordination for carboxylate in the complex [46, 47]. The C=N stretching bands were 

observed at 1625 cm-1. The large band spreading between 3600 and 2400 cm-1 corresponds to 

the asymmetric and symmetric stretching vibrations of the methyl and N-H groups. 

DFT calculations of the infrared spectrum was made on the geometry obtained after 

optimization of the protons. The resulting IR spectrum between 4000 and 500 cm-1, shown on 

Fig. 10, is very similar to the experimental one. A close agreement between the experimental 

and theoretical wave numbers is mostly achieved in the finger print region as shown in Fig. 11. 

Thus, the precision is well-sufficient to assign the experimental frequencies and to confirm the 

attributions proposed above. 

4. Conclusion 



In summary, a novel organic–inorganic hybrid compound, [Cu2(CH3COO)4(C5N3H7)2], 

has been synthesized at room temperature by slow evaporation. This compound belongs to the 

triclinic system with the space group P-1. The crystal packing is driven by the complexation of 

Cu(II) cation by two carboxylates groups and two nitrogen atoms; the remaining favorable 

interactions are mainly a N-H…O and N-H…N hydrogen and hydrophobic contacts between 

Hc and C atoms. As for the calculated DFT, it allowed to complete the experimental results and 

to propose a rigorous assignment for the observed IR bands of the title compound. In fact, the 

vibrational spectrum calculated by DFT/B3LYP/LanL2DZ method is in good agreement with 

the experimental results. Moreover, the HOMO-LUMO energy gap suggests a good stability of 

this compound. 
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Fig. 1  ORTEP of the title compound with displacement ellipsoids drawn at the 40% 

probability 

 

 

 

  



 

 

 

 

 

 

Fig. 2   Crystal packing arrangement of [Cu2(CH3COO)4(C5N3H7)2] viewed along a-axis. 

Dotted lines indicate hydrogen bonds. 

 

 

 

 

 

 



 

 

Fig. 3   Hirshfeld surface around the organic moiety, the Cu(II) cation and the two acetate 

anions. In order to have integral surfaces, moieties not in contact with each other were selected 

in the crystal packing. (a) The colors are according to the interior atom contributing most to the 

electron density. Oxygen: red, nitrogen: blue, hydrogen Hc: grey, Hydrogen Hn: light blue, 

carbon: grey, copper: green. (b) coloring according to the major contact types.  

  

 

  



 

   

 

       

 

Fig. 4  2D Fingerprint plot of the main interactions (reciprocal interactions are merged). 

  

 

 

 

 

 

 

 

 

 



 

Fig. 5  HOMO-LUMO orbitals of [Cu2(CH3COO)4(C5N3H7)2]. 

 

 

 

 

Fig. 6 Molecular Electrostatic Potential maps of the title compound. 

 

 



 

Fig. 7   The energy distribution of the different orbitals for the title compound. 

 

Fig. 8  Temperature dependence of the paramagnetic susceptibility, p, of 

[Cu2(CH3COO)4(C5N3H7)2]. The solid line shows the theoretical best-fit of the equation 

including the three terms of the Bleaney-Bowers model, diamagnetic susceptibility and Curie 

impurities.  



 

Fig. 9  Infrared absorption spectrum of [Cu2(CH3COO)4(C5N3H7)2] 

 

 

 

 

 

 

 

 

 

 



 

Fig. 10   Calculated IR absorption spectrum of the title compound. 

 

 

 

Fig. 11  Comparison between experimental and calculated IR frequencies. 
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Table 1. Experimental details of [Cu2(CH3COO)4(C5N3H7)2]. 

Crystal data 
Chemical formula C18H26Cu2N6O8 
Mr 581.53 
Crystal system, space group Triclinic, P-1 
Temperature (K) 100 
a, b, c (Å) 7.3184 (3), 8.3106 (3), 10.2559 (4) 
α, β, γ (°) 90.243 (2), 97.481 (2), 113.329 (2) 
V (Å3) 566.83 (4) 
Z 1 
Radiation type Mo Kα 
µ (mm−1) 1.93 
Crystal size (mm) 0.27 × 0.2 × 0.1 
Data collection 
Diffractometer Bruker APEX II 
Absorption correction: multi-scan
No. of measured, independent and 
observed [I > 2σ(I)] reflections 

20708, 2848, 2722 

Rint 0.020 
(sin θ/λ)max (Å−1) 0.670 
Refinement 
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.054, 1.10 
No. of reflections 2848 
No. of parameters 163 
Δρmax, Δρmin (e Å−3) 0.40, −0.36 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Selected bond distances and angles (Å, º) in the title complex. 

Symmetry code: (i) −x+1, −y+1, −z+1 

N1—Cu1 2.2224 (11) O2—Cu1—O1 90.71 (5) 

O1—Cu1 1.9726 (10) O4—Cu1—O3 88.47 (5) 

O2—Cu1 1.9639 (11) O2—Cu1—O3 88.58 (5) 

O3—Cu1 1.9747 (10) O1—Cu1—O3 167.62 (4) 

O4—Cu1 1.9625 (11) O4—Cu1— N1 99.29 (4) 

Cu1—Cu1 i 2.6479 (3) O2—Cu1— N1 93.06 (4) 

O4—Cu1—O2 167.64 (4) O1—Cu1— N1 92.48 (4) 

O4—Cu1—O1 89.61 (5) O3—Cu1— N1 99.88 (4) 

 

 

Table 3. Hydrogen-bond geometry (Å, °) in the title complex in the title complex 

D—HꞏꞏꞏA D—H HꞏꞏꞏA DꞏꞏꞏA D—HꞏꞏꞏA 
N3—H3OꞏꞏꞏN2ii 0.84 (1) 2.18 (1) 3.0233 (16) 177 (2) 
N3—H3PꞏꞏꞏO3 0.85 (1) 2.07 (1) 2.8682 (15) 158 (1) 

Symmetry code: (ii) −x, −y, −z. 

 

 

  



Table 4. Chemical proportions on the Hirshfeld surface around the organic moiety, the Cu(II) cation 
and the two acetate anions. Hc and Hn represent the hydrogen atoms bound to carbon and nitrogen, 
respectively. Actual contact types and their enrichment in the crystal packing of the title compound are 
then given. The major contacts and the most enriched are highlighted in bold. 

atom Hn C N O Cu Hc 

% surf. 6.9 19.7 8.0 17.4 10.3 37.8 

Hn 0.2           

C 1.0 5.9  Contacts (%)  

N 2.8 1.3 0.0     

O 2.4 0.8 0.0 0.0    

Cu 1.1 2.7 4.5 17.5 1.2   

Hc 6.3 18.5 6.3 9.3 3.0 15.2 

Hn 0.4           

C 0.4 1.8   Enrichment 

N 2.7 0.5 0.00     

O 1.2 0.16 0.00 0.01    

Cu 0.5 0.5 1.9 3.5 0.5   

Hc 1.2 1.4 1.1 0.8 0.26 1.1 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5. Mulliken charge transfer in the title complex. 

Atom Charge 
Cu -0.217248  

Acetate 
C(O) 1.115979 1.186813 

O -0.274461 
-0.428773 

-0.231182 
-0.293471 

C(H) -1.317243 -1.477594 
H 0.236834 

0.231583 
0.231618 

0.227513 
0.228611 
0.231228 

Organic molecule  
N1 -0.206884  
N2 -0.276158  
N3 -0.911644  

H(N3) 0.422814 
0.521420 

 

C1 0.570691  
C2 -0.065855  

H(C2) 0.228217  
C3 -0.030284  

H(C3) 0.185603  
C4 0.273518  
C5 -0.827291  

H(C5) 0.232086 
0.203364 
0.230023 

 

 

 

 

 

 

 

 

 

 

   



Supplement 

 
Sup X-ray single crystal structural analysis 

The crystal-to-detector distance was 40 mm and the exposure time was 10 seconds per 

frame for all sets. The scan width was 0.5o. Data collection was 99.8% complete to 25o in . A 

total of 20708 reflections were collected covering the indices, -9h9, -11k11, -13l13.  

2848 reflections were symmetry independent and the Rint = 0.0197 indicated that the data was 

brilliant. Indexing and unit cell refinement indicated a triclinic lattice.  The space group was 

found to be P1 (No. 2). The data were integrated and scaled using SAINT, SADABS within 

the APEX2 software package by Bruker [S1]. Solution by direct methods (SHELXS, SIR97) 

[S2] produced a complete heavy atom phasing model consistent with the proposed structure. 

The structure was completed by difference Fourier synthesis with SHELXL97 [S3, S4]. 

Scattering factors are from Waasmair and Kirfel [S5]. Hydrogen atoms were placed in 

geometrically idealized positions and constrained to ride on their parent atoms with C-H 

distances in the range 0.95-1.00  Å. Isotropic thermal parameters Uiso were fixed such that they 

were 1.2Ueq of their parent atom for CH's and 1.5Ueq of their parent atom in case of methyl 

groups. 
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Sup Chemical preparation 

Anal. Calc.: C, 37.14; H, 4.47; N, 14.44 %. Found: C, 37.53; H, 4.22; N, 14.37 %. 

 

 

Fig. S1. Crystal packing arrangement of [Cu2(CH3COO)4(C5N3H7)2] viewed along c-axis. 

Dotted lines indicate hydrogen bonds.  

 

 


