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Abstract. New genetic diagnostic approaches have greatly aided efforts to document glo-
bal biodiversity and improve biosecurity. This is especially true for organismal groups in which
species diversity has been underestimated historically due to difficulties associated with sam-
pling, the lack of clear morphological characteristics, and/or limited availability of taxonomic
expertise. Among these methods, DNA sequence barcoding (also known as “DNA barcoding”)
and by extension, meta-barcoding for biological communities, has emerged as one of the most
frequently utilized methods for DNA-based species identifications. Unfortunately, the use of
DNA barcoding is limited by the availability of complete reference libraries (i.e., a collection of
DNA sequences from morphologically identified species), and by the fact that the vast major-
ity of species do not have sequences present in reference databases. Such conditions are critical
especially in tropical locations that are simultaneously biodiversity rich and suffer from a lack
of exploration and DNA characterization by trained taxonomic specialists. To facilitate efforts
to document biodiversity in regions lacking complete reference libraries, we developed a novel
statistical approach that categorizes unidentified species as being either likely native or likely
nonnative based solely on measures of nucleotide diversity. We demonstrate the utility of this
approach by categorizing a large sample of specimens of terrestrial insects and spiders (col-
lected as part of the Moorea BioCode project) using a generalized linear mixed model
(GLMM). Using a training data set of known endemic (n = 45) and known introduced species
(n = 102), we then estimated the likely native/nonnative status for 4,663 specimens representing
an estimated 1,288 species (412 identified species), including both those specimens that were
either unidentified or whose endemic/introduced status was uncertain. Using this approach, we
were able to increase the number of categorized specimens by a factor of 4.4 (from 794 to
3,497), and the number of categorized species by a factor of 4.8 from (147 to 707) at a rate
much greater than chance (77.6% accuracy). The study identifies phylogenetic signatures of
both native and nonnative species and suggests several practical applications for this approach
including monitoring biodiversity and facilitating biosecurity.

Key words: alien invasive species; biomonitoring; biosecurity; community barcoding; DNA barcoding;
metabarcoding; Moorea BioCode.

INTRODUCTION

The genomics revolution is transforming the studies
of conservation biology, ecology, and evolution (Hudson
2008, Allendorf et al. 2010). New affordable sequencing
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technologies, coupled with decreases in traditional
sequencing costs and in the time required to process
specimens (see, for example, Pomerantz et al. 2018) have
made it possible to sequence DNA from entire commu-
nities of individuals (Borisenko et al. 2008, Kress et al.
2009, Cristescu 2014) and allow for the production and
publication of genomic information from non-model
organisms from across the tree of life (Ekblom and
Galindo 2011). One approach for collecting and analyz-
ing sequence data that has become widely utilized is
known as DNA sequence barcoding (also known as
“DNA barcoding”; Hebert et al. 2003, Savolainen et al.
2005, Ratnasingham and Hebert 2007). This technique
has been used in many contexts; including biodiversity
inventories (Janzen et al. 2005), cryptic species discovery
(Hebert et al. 2004a), species identification (Hebert
et al. 2003, 2004b, Kress et al. 2005), species delimita-
tion (Pons et al. 2006), biomonitoring (Pilgrim et al.
2011), biosecurity (Saunders 2009, Collins et al. 2012,
Dejean et al. 2012, Porco et al. 2013, Ashfaq and Hebert
2016, Thomas et al. 2016), for phylogenetic and popula-
tion genetic studies (Hajibabaei et al. 2007), and for
observations of within-species genetic diversity (e.g.,
Johnson et al. 2002, Havill et al. 2018). While there are
numerous well documented limitations to the uses of
DNA barcoding, including when the technique is used
to reconstruct ancient evolutionary relationships, when
non-specific amplification is not accounted for, and
when fixed intra- and inter-interspecific thresholds are
utilized (Moritz and Cicero 2004, Thalmann et al. 2004,
DeSalle et al. 2005, Meyer and Paulay 2005, Rubinoff
et al. 2006, Buhay 2009, Moulton et al. 2010), one of
the core uses for DNA barcoding is the comparison of
query sequences to reference DNA sequences to deter-
mine the percentage of sequence similarity.
As such, the primary objective for most DNA barcod-

ing projects is to obtain species-level identifications from
specimens that for one reason or another lack a morpho-
logically derived species-level identification. In order to
do so, however, a researcher first requires access to a
well-curated reference library that includes DNA
sequences from previously identified species, ideally
including all potential species matches. While numerous
efforts to produce these reference libraries are currently
underway (e.g., Blagoev et al. 2015, 2016, Cardoni et al.
2015, Gwiazdowski et al. 2015, Oliveira et al. 2015,
2016, Park et al. 2015, Savage et al. 2015, Warne et al.
2015, Xu et al. 2015, Iftikhar et al. 2016, Lobo et al.
2016, Rimet et al. 2016, Yang et al. 2016, Bell et al. 2017,
Pennisi 2017), until complete reference libraries exist for
all taxonomic groups and for all geographic locations,
the comparison of a query sequence to sequences in pub-
lic reference libraries such as the Barcode of Life Data-
base (BOLD; Ratnasingham and Hebert 2007) or
GenBank (Benson et al. 2013), or a researcher’s private
database, will result in one of the following four out-
comes: (1) a high-percentage match to a specimen with a
species-level identification, (2) a low-percentage match

to a specimen with a species-level identification, (3) a
high-percentage match to a sequence from an unidenti-
fied specimen (usually noted as some variation of
“Undet sp”), or (4) a low-percentage match to a
sequence from an unidentified specimen. In the case of
the first outcome, the investigator can use the species-
level identification to inform their research/management
decisions, though one needs to be cautious when utiliz-
ing these identifications in public reference libraries due
to the many known misidentifications (Buhay 2009, Tix-
ier et al. 2011). In the case of the last three outcomes,
after the expenditure of time, money, and resources, the
specimen in question remains unidentified, and for most
research objectives provides little utility, though in some
instances higher level categorizations (i.e., genus, family,
order) may be obtained and be sufficient. While the col-
lection of DNA barcode sequences from unidentified
specimens provides useful genomic data, unfortunately
at the same time that DNA barcoding techniques are
being used with increasing frequency to guide manage-
ment decisions (e.g., Park et al. 2015), particularly for
the identification of alien invasive species (Saunders
2009, Dejean et al. 2012, Porco et al. 2013, Ashfaq and
Hebert 2016, Thomas et al. 2016), the taxonomists
needed to provide the foundational species-level identifi-
cations to create reference libraries are themselves
becoming endangered species (Gotelli 2004, Agnarsson
et al. 2007, W€agele 2011, Wheeler 2014)!
The Moorea BioCode project was established, in part,

to address the coupled needs for increased sampling of
underrepresented taxa in biodiverse tropical regions and
hands-on training for taxonomic specialists (Field and
Davies 2015). As such it represents the first comprehen-
sive inventory of all non-microbial life in a complex
tropical ecosystem (Meyer 2017). The Moorea BioCode
project has resulted in the DNA sequencing of both ter-
restrial and aquatic organisms from a variety of diverse
taxonomic groups (Nitta 2008, Nitta et al. 2011, Diaz
et al. 2013, Bonnet and Lotufo 2015, Leray et al. 2015,
Ramage et al. 2017). However, as for many other com-
munity sequencing projects, the effort collected speci-
mens (>20,000), and obtained DNA sequences (~5,000)
from our focal taxonomic groups (spiders and insects) at
a rate much faster than the specimens could be assigned
to morphologically based species-level identifications or
even species-level identifications through traditional
DNA barcoding approaches.
This challenge in identification prompted the question

as to whether one could apply basic concepts from inva-
sion biology to categorize unidentified specimens and/or
species whose biogeographic status (i.e., native or nonna-
tive) is unclear. For example, if one assumes that the
establishment of most introduced species into novel
habitats results in genetic bottlenecks (Dlugosch and
Parker 2008), then we might predict that DNA
sequences from nonnative species would have lower
levels of intraspecific diversity compared to those from
native species. Similarly, if nonnative species establish
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because they can utilize a novel niche (MacDougall
et al. 2009), avoid detection from native natural enemies
(Keane and Crawley 2002), are uniquely superb dis-
persers (Gillespie et al. 2012), and/or are more geneti-
cally distinct from native members of the community
(Strauss et al. 2006), it is likely that the genetic distance
to the nearest neighbor species in the collection might be
greater for nonnative species then for native species (i.e.,
phylogenetic distance; see review by Gallien and Car-
boni 2017). Because the native/nonnative status of a spe-
cies is often difficult to determine in natural
communities, here we propose to use a training data set
of known introduced and known endemic species with
the assumption that introduced and endemic species
might be at opposite ends of the native/nonnative spec-
trum and that if the above measures of genetic diversity
are distinct between native and nonnative species, that
they should be even more so between endemic and intro-
duced species. Thus, the objectives of the current study
were (1) to determine whether metrics of within species
similarities and between species distances differ between
known endemic and known introduced species in French
Polynesia, (2) to construct a statistical model based on
measures of genetic differences between, and genetic
variation within known endemic and known introduced
species, (3) to use the model to predict the likely native
or likely nonnative status of unidentified and uncatego-
rized specimens, and (4) to explore possible ecological
applications for the method.

METHODS

Field work, specimen sampling, and laboratory protocols

Specimens were collected in the field, assigned a pre-
liminary identification to the lowest possible taxonomic
level, and entered in the BioCode Field Information
Management System (FIMS; Deck et al. 2012). When
possible, taxonomic specialists then provided more
refined genus- or species-level identifications. Commu-
nity sampling, DNA extraction, and barcode sequencing
methods of specimens for a variety of taxonomic groups
as part of the Moorea BioCode project are described
elsewhere (Nitta 2008, Nitta et al. 2011, Diaz et al.
2013, Bonnet and Lotufo 2015), including methods
specific for insects (Ramage et al. 2017). For each speci-
men, a DNA barcode sequence (corresponding to the 50

region of cytochrome oI) was generated following stan-
dard protocols and recorded by the BioCode Laboratory
Information Management System (LIMS; Parker et al.
2012), a free plugin developed for the Geneious software
system (Kearse et al. 2012; available online).12 All Bio-
Code sequences and their associated metadata are avail-
able via The Genomic Observatories Metadatabase
(Deck et al. 2017; data available online).13

Data filtering

As a first filter, sequences of less than 300 base pairs
(b.p.) were removed from the data set to ensure that
included sequences had sufficient overlap to allow for
pairwise distance estimates in downstream analyses.
Each sequence was compared to published sequences in
the NCBI GenBank database using the blastn search
algorithm (Altschul et al. 1990) run locally using the
command-line interface and compared to the nt
sequence database (downloaded 11 July 2016) with all
default summary statistics retained in tab-delimited for-
mat for the top-match sequence, except that we also
retained the taxids number for the top-math accession.
The taxids number was then used to query the NCBI
Taxonomy Database to provide higher level taxonomic
information using a custom interactive python script
blast2taxoninfo.py (H. Krehenwinkel, G. de Kerdrel,
J.C. Andersen, and R. Gillespie, unpublished data). The
order-level morphological identification of each speci-
men was then compared to the order-level assignment
from the top-match sequence in the NCBI GenBank
Database, and any specimens for which there was dis-
agreement between morphological-based order assign-
ments and the order assignment for the top-match
sequence were considered as “contaminant” sequences
and removed from analyses. DNA sequences, locality
collection information, field collection identification,
and NCBI top-match information for each retained
specimen are provided in Data S1: CollectionInforma-
tion.csv.

Species delineation and categorization

For the spiders and for each order of insect, unique
alignments were generated using the nucleotide align-
ment software MUSCLE (Edgar 2004) as implemented
through the EMBL-EBI web service (Li et al. 2015).
Alignments were subsequently refined in Geneious using
the Translational Align sub-option for the Multiple
Alignment tool based on visual examinations of the
reading frame prior to refinement using the Invertebrate
Mitochondrial genetic code. Refined alignments were
inspected and edited by hand when necessary, and fur-
ther filtered to remove any sequences that did not have
>100 b.p. of sequence overlap with every other sequence
in the alignment. Specimens were then assigned to spe-
cies-groups using Automatic Barcode Gap Discovery
(ABGD; Puillandre et al. 2012) using the default values
with all partitions and tree files were output using the -a
setting. While these groups are technically operational
taxonomic units (OTUs), for simplification, we will refer
to these groups as “species,” though we acknowledge
that “species” may not be appropriate in all instances. To
determine the optimal delineation scheme from ABGD,
we then examined the slopes for the results of the num-
ber of species identified using the Recursive Partitions
and the Initial Partitions and the prior intraspecific

12 http://software.mooreabiocode.org/
13 https://geome-db.org/workbench/overview?projectId=75
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divergence, and for each order chose the value (P) that
represented the intercept of these two slopes.
Using the species-group assignments identified above,

we then updated specimen identifications using a two-step
approach. First, for any species from which one or more
specimens had a collections-based species-level identifica-
tion, that identification was applied to all other unidenti-
fied specimens assigned to the same species. Second, the
labels for the remaining species that lacked species-level
identifications were updated using the NCBI GenBank
best-match subject sequences as follows: for any species
for which a specimen had a ≥97% match to a published
sequence with a species-level identification, that species
was assigned the species-level identification from the pub-
lished sequence; for any species for which a specimen had
a ≥90 but <97% match to a published sequence with a
species- or genus-level identification, that species was
assigned the genus-level identification from the published
sequence; for any species for which a specimen had a
≥80% but <90% match to published sequence with a spe-
cies-, genus-, or family-level identification, that species
was assigned the family-level identification sequence from
the published sequence; the taxonomic IDs for all remain-
ing species were then updated to include the order name
followed by “sp.” (e.g., Diptera sp.). The original speci-
men identifications, the species-group to which they were
assigned by ABGD, the updated specimen identifications,
and whether those updates were based on morphological
or molecular methods are provided in Data S1: Collec-
tionInformation.csv.

Biogeographical status categorization

For each species for which we could obtain a species-
level identification, we then assigned that species the bio-
geographical categorizations presented for it by Ramage
(2017). The categorizations are provided in Data S1:
RamageChecklist.csv.

Model development

For each order, a distance matrix based on that
order’s nucleotide alignment was generated. Using a
custom script (provided in Data S1: CustomRscript.R)
written in the statistical language R v 3.1.3 (R Core
Team 2014), we then used the distance matrix to esti-
mate the average distance between individuals within a
species (i.e., average similarity) and average distance
between individuals of nearest-neighbor species (i.e.,
average distance). The data was then subset to include a
training data set that included the above statistics only
for species with species-level identifications and a bio-
geographical categorization of either endemic or intro-
duced in Ramage (2017), and the full data set that
included the statistics for all species regardless of
whether or not they had a species-level identification or
a known status of endemic/introduced. Preliminary anal-
yses based on Welch’s two-sample t test using the

training data set (Appendix S1: Fig. S1) indicated that
there were highly significant differences between ende-
mic and introduced species based on measures of aver-
age distance (t = 5.897, df = 114.1, P value < 0.0001),
while there were no significant differences based on mea-
sures average similarity (t = 0.958, df = 112.5,
P = 0.34). We then constructed four generalized linear
mixed models (GLMMs), using the R package lme4
(Bates et al. 2015) with species categorization as the
response variable coded as binomials (i.e., endemic = 1,
and introduced = 0), average similarity and/or average
distance as fixed effects, and we included order as a ran-
dom effect because we were concerned that the model
might have better fit for some orders than others. Mod-
els were then compared based on AICc scores using the
R package AICcmodavg (Mazerolle 2017) to determine
the model with the best fit for the data set. Using the
loadings from the best-fit GLMM calculated using the
training data set, we then assigned scores from 0 to 1 to
each species in the full data set using the predict com-
mand in R. Ninety-five percent confidence intervals (CI)
from the GLMM assignment scores for endemic and
introduced species in the training data set were then cal-
culated (mean � 1.96 9 SE). Any species in the full
data set with a predicted value ≤ the upper 95% CI for
introduced species was assigned the label “GLMM–
Nonnative,” any species in the full data set with a pre-
dicted value ≥ the lower 95% CI for endemic species was
assigned the label “GLMM–Native,” and any species in
the full data set with a predicted value that fell between
the two CIs was assigned the label “GLMM–Undet.”
Error rates were then calculated globally and for each
order by recording the percentage of species in the train-
ing data set that had a known endemic/introduced cate-
gorization but were incorrectly assigned the opposite
native or nonnative status based on the GLMM.

RESULTS

Specimen sampling and data filtering

After removal of sequences of <300 base pairs, and
the removal of sequences identified as “contaminants”
based on order-level mismatches between the morpho-
logical identifications and the order-level identification
for their best-match sequence in GenBank, the final data
set included cytochrome oxidase I (COI) sequences from
4,663 specimens. Species-level identifications were given
to 2,172 specimens using a combination of morphologi-
cally based identifications, identifications published in
Ramage et al. (2017), or identifications based on
matches of ≥97% similarity to a published sequence in
the NCBI GenBank database.

Species delimitation and categorization

Species delimitation based on ABGD estimated the
presence of 1,288 species (Araneae n = 52, Blattodea
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n = 8, Coleoptera n = 141, Diptera n = 312, Hemiptera
n = 204, Hymenoptera n = 191, Lepidoptera n = 328,
Neuroptera n = 5, Odonata n = 7, Psocoptera n = 34,
Thysanoptera n = 6). Of these, 280 species are present in
the checklist for French Polynesia published by Ramage
(2017), including 42 endemic species and 98 introduced
species.

Model development

AICc scores for the four GLMM models based on
between species distances are presented in Table 1. The
model with the lowest AICc score was determined to be

Classification � Average Similarity

þAverage Distanceþ ð1jOrderÞ

For introduced species in the training data set, the
mean GLMM value was 0.2582 with a 95% confidence
interval of 0.2291–0.2873. For endemic species in the
training data set, the mean value was 0.3839 with a 95%
confidence interval of 0.3444–0.4233. Mean values and
95% confidence intervals for individual orders are pre-
sented in Table 2.

GLMM-based biogeographical categorizations and
error-rates

Using the GLMM value thresholds described above,
specimens in the full data set were assigned labels of
either GLMM–Nonnative (n = 2,040), GLMM–Native
(n = 1,457), or GLMM–Undet (n = 639). For an addi-
tional 509 specimens, we were unable to calculate a
GLMM value as they were the only representatives of
their respective species. Two-hundred and seventy-
three species were predicted to be likely native, 393 spe-
cies were predicted to be likely nonnative, 100 species
were unassigned as their GLMM values fell between

the 95% confidence intervals for known introduced
and endemic species. Among endemic species, 24 spe-
cies were predicted to be likely native, 10 species were
predicted to be likely nonnative, five species fell
between the 95% CIs for endemic and introduced spe-
cies, and six species were assigned “NA,” as they were
singleton species (total unassigned, 22.2%). Among
introduced species, 49 species were predicted to be
likely nonnative, 23 species were assigned as likely
native, eight species fell between the 95% CIs for ende-
mic and introduced species, and 22 species were
assigned “NA” as they were singleton species (total
unassigned 22.6%). GLMM scores for all species are
presented in Data S1: SummaryGeneticInforma-
tion.csv and summarized for each order including error
rates in Table 3 and presented graphically in Fig. 1.

Within and between species variation

Based on GLMM classifications, the method provides
estimates of a phylogenetic signature of both native and
nonnative species (Data S1: SummaryGeneticInforma-
tion.csv). The mean values predicted by the GLMM for
within species variation (i.e., average similarity) for
native species was 0.0076 � 0.0006 and for nonnative
species was 0.0095 � 0.0010, and for between species
variation (i.e., average distance) for native species was
0.0531 � 0.0015 and for nonnative species was
0.1788 � 0.0025. GLMM estimates are presented in
Data S1: SummaryGeneticInformation.csv.

DISCUSSION

DNA sequences are increasingly being used for the
rapid quantification of biodiversity (Smith and Fisher
2009), and for some taxonomic groups may provide a
more accurate overview of species diversity than tradi-
tional (i.e., morphological) methods (Teasdale et al.

TABLE 1. Model choice.

Model LL K AICc ΔAICc w

Average similarity
+ average distance
+ (1|order)

�63.90 4 136.15 0.71

Average similarity
9 average distance
+ (1|order)

�63.89 5 138.30 2.16 0.24

Average distance
+ (1|order)

�67.58 3 141.38 5.23 0.05

Average similarity
+ (1|order)

�74.80 3 155.77 19.62 0

Note: Akaike information criterion corrected for sample size
(AICc) scores for GLMM models including log-likelihood (LL)
values, number of parameters (K), AICc score, change in AICc
scores from one model to the next (ΔAICc), and the models
weight (w).

TABLE 2. GLMM scores for known introduced and endemic
species.

Order Introduced Endemic

Araneae 0.5695 (0.5601,0.5788) 0.5624 (0.5477,0.5772)
Blattodea
Coleoptera 0.1341 (0.1001,0.1681) 0.1824 (0.1639,0.2009)
Diptera 0.3267 (0.2887,0.3647) 0.3518 (0.3138,0.3899)
Hemiptera 0.1941 (0.1360,0.2522) 0.2210 (0.0791,0.3629)
Hymenoptera 0.1959 (0.1601,0.2317) 0.2305 (0.0257,0.4352)
Lepidoptera 0.3546 (0.3148,0.3945) 0.3845 (0.3439,0.4250)
Odonata 0.3841 (0.3350,0.4331)
Psocoptera
Thysanoptera 0.0511 (0.0465,0.0557)
Grand total 0.2582 (0.2291,0.2873) 0.3839 (0.3444,0.4233)

Note: Values are reported as the mean value for species in
each order followed by the lower 99% CI and the upper 99% CI
in parentheses.
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2013, Stein et al. 2014). While these approaches can be
used to highlight biogeographic regions that are at risk
due to anthropogenic disturbances (Bilgin et al. 2016)
and have great potential for use by ecologists, evolution-
ary, and conservation biologists (Valentini et al. 2009,
Kress et al. 2015), frequently the utility of these methods
are constrained by the presence of incomplete reference
libraries (Elias et al. 2007, Gonzalez et al. 2009). Here
we have presented a technique that can be utilized by
any community DNA sequencing project to rapidly cate-
gorize unidentified specimens or specimens from species
whose biogeographic status is unknown as representing
either likely native or nonnative species. For example,
using a traditional reference library approach (i.e., com-
bining morphological identifications with matches to
sequences in public databases with species-level identifi-
cations), we were able to categorize 794 of the 4,663
sequenced specimens (n = 147 species) as being either
endemic or introduced species. In contrast, using our
GLMM approach, 3,497 of the 4,663 sequenced speci-
mens (n = 707 species) could be categorized as either
likely native or likely nonnative. We discuss several pos-
sible applications for this approach below.

Applicability for biosecurity and quarantine monitoring

Biosecurity, particularly in regards to the identifica-
tion of specimens in quarantine situations, has benefited
greatly from the use of DNA sequencing approaches to
identify known pests (Armstrong and Ball 2005, Ball
and Armstrong 2006) and exotic species (Pejovic et al.
2016, Ardura and Planes 2017), and in some locations
national, and even international, programs are being
established to integrate DNA sequencing and biosecu-
rity efforts (e.g., Hodgetts et al. 2016). Yet, DNA
approaches fail to identify potential quarantine species
when previously sequenced individuals of that species
are missing from the reference library. While previous
research has shown that the utility of DNA sequences to
improve biosecurity monitoring can further be increased
through the integration of multiple forms of analysis
(Collins et al. 2012), other approaches that might
improve the identification of these “known-unknown”
and “unknown-unknown” specimens that are absent
from reference libraries includes the use of multi-species
multi-locus coalescent (Dowton et al. 2014, though see
Collins and Cruickshank 2014 for a critique) or methods
that utilize molecular clocks coupled with population
genetics to determine whether a species arrived in a loca-
tion prior to human colonization (Pisa et al. 2015).
While our approach cannot provide species identifica-
tions for specimens absent from the reference library, it
can be used to prioritize which specimens are examined
by trained taxonomists. Under our approach, the time
required to provide a morphological identification could
be streamlined by reducing the number of specimens and
prioritizing those specimens (based on their GLMM
scores, for example) that a trained taxonomist examinesT
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in a given day. In addition, by working in concert with
trained specialists, when species-level assignments are
provided by the taxonomist, the sequence data for the
specimen and its associated metadata could then be used
to update the reference library and the GLMM model to
improve future predictions. However, further validation
of the approach and explorations of what are acceptable
error rates is required, preferably from multiple localities
and from multiple taxonomic groups.

Limitations and future directions

While we are hopeful that our approach can be
broadly applied to both biodiversity and biosecurity
issues, we need to highlight several limitations that must
be addressed before it can be used more widely. The
greatest limitation to our approach is the requirement
for community-wide sampling, preferably obtained
using standardized collection methods from random
localities: methods that might miss rare or cryptic spe-
cies and result in the collection of large numbers of
“common” specimens. A second challenge for tropical
ecosystems comes from the lack of endemic species in
existing reference libraries. Because it is more likely that
cosmopolitan species will have DNA sequences in pub-
lic reference libraries, our model (and others generated

for different study regions) might be inherently biased
towards the categorization of introduced species. In cer-
tain circumstances, however, species-level identifications
might not be necessary for endemic lineages where all
members of a genus (or higher taxonomic categoriza-
tion) are endemic to the focal locality, and thus the gen-
eric (or higher) assignments could be utilized to assign
those specimens as endemic when building the GLMM.
A third limitation comes in regards to picking a biologi-
cally meaningful cutoff for the GLMM scores to differ-
entiate endemic and introduced species. Here, we
adopted a conservative approach, and only assigned
species as likely native or likely nonnative based on
95% CIs from known endemic and known introduced
species. This resulted in a large number of specimens
(n = 639) and species (n = 113) being uncategorized as
their GLMM scores fell between the upper 95% CI for
introduced species and the lower 95% CI for endemic
species. One possible solution for determining biologi-
cally meaningful cutoffs is the use of machine learning,
an approach we are currently exploring. A fourth
potential limitation of our model is in regards to the
effects of multiple introductions. Certain taxonomic
groups are likely to be introduced repeatedly, and often
from multiple locations, thus resulting in additive
genetic variation and or presenting short branching
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patterns similar to endemic species that might influence
our predictive model. A fifth potential limitation of our
model is that it requires multiple samples from each
species. In our sample, 509 specimens represented the
only examples of their respective species, and thus we
were unable to calculate within species diversity. A sixth
potential limitation of our model is that it may work
better for certain orders than for others. For example,
while unclassified species from most orders were
assigned to a mix of both native and nonnative cate-
gories, for several orders all species were classified as
either native or nonnative. Whether this is the result of
uneven sampling, too few species in the training data
set, and/or different rates of evolution, is unknown, but
we expect that in the future order-specific analyses will
likely improve the overall predictive power of the
model. Finally, and perhaps the greatest limitation of
the approach, it is unclear to which ecosystems our
approach can most appropriately be applied. Evolution-
ary biologists have long focused on island ecosystems
due to their isolation, their high rates of endemism, and
their suitability for observing the effects of evolution
(Darwin 1859, Wallace 1880, Gillespie and Roderick
2014, Cressey 2015). However, whether our approach is
transferable to continental systems, where species mix-
ing occurs at higher rates and phylogenetic patterns
may be more diffuse, is unclear, though we enthusiasti-
cally encourage the testing of our method for categoriz-
ing community barcode sequences collected in
additional settings.
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