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A global analysis recently showed that seabird breeding phenology (as the
timing of egg-laying and hatching) does not, on average, respond to tempera-
ture changes or advance with time (Keogan et al. 2018 Nat. Clim. Change 8,
313–318). This group, the most threatened of all birds, is therefore prone to
spatio-temporal mismatches with their food resources. Yet, other aspects of
the breeding phenology may also have a marked influence on breeding suc-
cess, such as the arrival date of adults at the breeding site following winter
migration. Here, we used a large tracking dataset of two congeneric seabirds
breeding in 14 colonies across 18° latitudes, to show that arrival date at the
colony was highly variable between colonies and species (ranging 80 days)
and advanced 1.4 days/yearwhile timing of egg-laying remained unchanged,
resulting in an increasing pre-laying duration between 2009 and 2018. Thus,
we demonstrate that potentially not all components of seabird breeding
phenology are insensitive to changing environmental conditions.
1. Introduction
Timing of life-history events such as reproduction is predicted to have evolved
to optimally use temporally favourable conditions in seasonal systems [1].
Breeding phenology is a key adaptation with direct consequences on reproduc-
tive success and population dynamics [2,3]. Rapid climate change has led to an
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Figure 1. (a) The colony locations of COGU (red) and BRGU (blue) included in the study. (b) The relationship between mean arrival date and latitude, while (c)
shows the correlation of mean pre-laying duration and colony size. Colonies with less certain pre-laying duration estimates are indicated as open circles. Bands in (b)
and (c) indicate 95% CIs for predicted values.
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advancement of the annual cycle in many organisms in tem-
perate and polar regions, while species that have not adjusted
to climate change seem to be more prone to population
declines [4,5]. In seabirds, the timing of egg-laying has been
shown to be insensitive to changing climatic conditions
globally, highlighting the vulnerability of this group to
mismatches with lower-trophic-level resources [6]. Yet,
spring arrival at the colony, and the pre-laying period—the
time between arrival at the colony and egg-laying—are also
important and rarely considered components affecting breed-
ing success. This period allows birds to establish and defend
nest sites [7], build up body condition [8,9] and mate [10],
which often starts months before egg-laying [11,12].

Here, we took advantage of a large tracking dataset,
enabling us to determine arrival dates in two seabird species,
across 9 years (2009–2018) and 14 colonies across a large
latitudinal gradient (62°N–79° N), to test if arrival date does
not exhibit any trend across years, similar to timing of egg-
laying [6]. These data were available for two colonial,
congeneric species, the common (hereafter COGU, Uria aalge)
and Brünnich’s guillemot (hereafter BRGU, Uria lomvia).
These species are long-distance migrants [13–15], have similar
morphology and life history [16,17], and exhibit no trend in
breeding phenology [18], but contrasting population trends
[19–21]. Their arrival date is hypothesized to be driven by the
timing of food availability in the vicinity of the colony
[22,23], which can be roughly approximated by latitude [24],
or by colony size through increasing pressure on nest site
defence displayedas longerpre-layingperiods in larger colonies
[11,25,26].We tested the hypothesis that the arrival date is with-
out trend across years, similar to the egg-laying date.
Furthermore, we examined if arrival date is delayed with
latitude, similar to the timing of egg-laying [24], or
determined by colony size due to pressure on nest site defence.
2. Material and methods
(a) Data acquisition
The date of first arrival at the colony for each colony and species
was estimated using salt water immersion data recorded by
light-level geolocators deployed on adult breeders. The arrival
datewas here defined as the datewhen the pre-laying period com-
mences. It was identified as the date when the majority of tracked
individuals attended the colony for the first time after the non-
breeding period, using the assumption that first arrival back at
the colony is synchronized and independent of sex in guillemots
[26–28] (details in the electronic supplementary material). Using
a colony-wide first arrival date rather than individual arrival
dates resulted in more robust results due to limitations in logger
data resolution and accuracy. Tracking data were available from
14 colonies (figure 1a), for 1–8 years (in the period 2009–2018)
[29]. BRGU and COGU breed sympatrically at five of these colo-
nies. Three instances of estimated arrival dates could be
validated with available time-lapse camera data at two colonies
(electronic supplementary material, figure S1). To estimate pre-
laying duration as well as temporal changes in phenology, we
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gathered annual measures of breeding timing which were avail-
able as population-level mean hatching dates at 12 colonies
(details in the electronic supplementary material) for 1–7 years
(in the period 2009–2018) [24,30–37]. To assess the potential con-
sequences of variable arrival dates on reproductive success, we
used annual breeding success for which data were available
from five colonies (details in the electronic supplementary
material) for 4–6 years (in the period 2010–2017) [30–37].

(b) Data analysis
(i) Temporal trends in breeding phenology and their

consequences
Colony- and species-specific inter-annual variation in arrival
dates was quantified as standard deviation (SD) from mean arri-
val timing. To test if arrival date changes with year, we applied a
linear mixed-effect model (LME, package lme4) with relative
arrival dates (mean = 0) as response variable (n = 79), year and
species as fixed effects and id (as combination of colony and
species) as random intercept. The same model was applied on
a subset of data for which mean hatching date data were avail-
able (n = 40). Using this subset, we applied the same fixed and
random effects to relative pre-laying duration as well as relative
mean hatching date as response variables in order to assess if
guillemot hatching timing and pre-laying duration have changed
over time. Most parsimonious models were selected using the
Akaike information criterion [38], resulting in all instances in
removal of species and its interaction with year as predictor
variables. We calculated the percentage of variance explained
by the fixed effects (marginal R2) and fixed and random effects
(conditional R2; [39]). In order to assess if a large-scale factor is
driving temporal trends in arrival date, we assessed temporal
synchrony as mean correlation of relative arrival dates between
colonies using the msynch function (package ncf [40]). To test
if potential temporal trends in arrival date had an effect on repro-
ductive output, we applied an LME with standardized breeding
success (SD = 1, mean = 0) as response variable, relative arrival
date as fixed effect and id as random intercept (n = 33).

(ii) Effect of latitude and colony size on arrival date
To test for the effect of latitude on arrival date at the colony, we
applied a linearmodelwithmean species- and colony-specific arri-
val date as the response variable (n = 19) and latitude and species
and their interaction as predictors. Furthermore, if latitude drives
arrival date, we would expect that colonies close to each other
would exhibit similar arrival timing. Hence, we used aMantel cor-
relation test with 1000 permutations (package ade4) to test if
spatial proximity can explain the mean arrival date in either
species. Alternatively, to test if arrival date and consequently
pre-laying duration can be instead linked to colony size, we
applied a linear model with mean species- and colony-specific
pre-laying duration as the response variable (n = 15) and colony
size on the log-scale and species as predictors. Population counts
are taken from a similar time period to account for the contrasting
population trends (electronic supplementary material, table S1).
To account for collinearity, we also tested latitude against
colony size, but found no overall latitudinal trend (linear model,
βlatitude=−0.10 with standard error (SE) = 0.10, adj. R2≤−0.01).
R (v. 3.5.1, [41]) was used for all statistical analyses.
3. Results
(a) Timing of colony arrival
Annual arrival dates varied between 28 January and 18 April
with considerable variation across the Northeast Atlantic
(figure 1b). Most of this variation is found among colonies
(SD = 21.6 and 16.2 days for COGU and BRGU, respectively,
electronic supplementary material, figure S1) and species
(SD= 12.8 days across sympatric colonies), while colony- and
species-specific inter-annual variation was significantly smaller
(meanSD= 7.8 and4.9days forCOGUandBRGU, respectively).

(b) Temporal variability in breeding phenology and its
consequences

Timing of hatching in guillemots showed no trend over time
(βyear =−0.17 with SE = 0.23, marg. R2 = 0.01, cond. R2 = 0.01;
figure 2c). By contrast, arrival date at the colony advanced by
1.4 days/year irrespective of species (full dataset: βyear =−1.4
with SE = 0.28, marg. R2 = 0.24, cond. R2 = 0.24; subset with
available mean hatching data: βyear =−1.7 with SE = 0.35,
marg. R2 = 0.39, cond. R2 = 0.39; figure 2a). This was also vis-
ible as prolonged pre-laying duration (βyear = 1.4 with SE =
0.40, marg. R2 = 0.23, cond. R2 = 0.23; figure 2b) as arrival
date and pre-laying duration were highly and negatively cor-
related (−0.86). Colony arrival dates did not display
synchrony among each other for either species (COGU:
mean correlation = 0.15 with 95% confidence interval
(CI) =−0.34–0.55 and BRGU: 0.09 with CI =−0.56–0.71).
No consequence of an advancing arrival date was
detectable in exhibited breeding success for either species
(βstd. arrival =−0.005 with SE = 0.02, marg. R2 = <0.01, cond.
R2 = <0.01; figure 2d ).

(c) Does latitude or colony size predict the arrival date?
Mean arrival date at the colony could not be explained by lati-
tude and the two species exhibited opposite trends (βlatitude
BRGU= 1.63 with SE = 1.24 and βlatitude * COGU=−2.73 with SE =
2.19, adj.R2 = 0.23; figure 1b). Similarly, therewasweak evidence
for an effect of proximity on arrival dates for COGUs (Mantel
correlation= 0.19, p= 0.14), but somewhat stronger evidence in
BRGUs (Mantel correlation = 0.29, p = 0.034). Contrastingly,
pre-laying duration showed substantial variability among colo-
nies (mean = 75 days, SD= 19, range = 49–102) and was highly
correlated with colony size (βlog(size) = 6.96 with SE = 0.97, adj.
R2 = 0.82; figure 1c).
4. Discussion
The main findings of our study are that timing of first arrival at
the colony of both guillemot species and all colonies was highly
variable and advanced through time despite no visible trend in
mean hatching date. This advancement had apparently no effect
on guillemot average breeding success. Furthermore, the dur-
ation of the pre-laying period and hence timing of arrival is
not determined by latitude, but is better explained by the size
of the colony, being longer in large colonies.

Theoretically, the minimum pre-laying duration required
in guillemots is 5 days, as females undertake a 4 day long
pre-laying exodus away from the colony [42]. Yolk formation
(usually 14–15 days [42]) could also occur away from the
colony and fertilization occurs very soon after ovulation,
which in turn occurs 24 h before the egg is laid [10]. So, copu-
lation right before the pre-laying exodus should be sufficient.
Nonetheless, here we identified extensive pre-laying periods
of more than one and up to several months with large varia-
bility between colonies and species. In an extreme case of a
population further south, most breeding birds arrive back
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Figure 2. Temporal trends in arrival dates at the colony (a), pre-laying duration
(b) and mean hatching date (c). The dashed line in (a) represents linear mixed-
effect model predictions for the subset of data for which hatching timing infor-
mation was available (squares), while the solid line in (a) illustrates the same
model prediction for arrival date using the entire dataset (squares and dots).
(d ) The relationship between advancing arrival date and breeding success.
Bands in all panels indicate bootstrapped 95% CIs for predicted values calcu-
lated using the bootMer function with 1000 simulations (package lme4). Red
and blue symbols represent COGU and BRGU, respectively.
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at the colony already in the autumn and in at least some years
birds attend the breeding sites throughout the winter [11,43].
This variability may have costs and benefits associated with
it. During the pre-laying period prospective breeders attend
the colonies at regular intervals [26–28] which restricts them
to quasi-central place foraging. This, in turn, limits their avail-
able prey options and could even lead to local depletion of
food resources before spring bloom at large colonies [44],
decreasing their body condition and potentially breeding
probability prior to breeding. Alternatively, early return to
the breeding sites might help secure nesting sites, mating
partners and facilitate courtship [23], or it might be a
response to unfavourable conditions experienced by these
migrants during the end of their non-breeding period,
resulting in an earlier return to the colony.

We showed that colony arrival date advanced in both the
Brünnich’s and common guillemot across the study area,
while their timing of hatching did not display any trend as
shown previously in seabirds globally [6] and for alcids in
the Atlantic and Pacific [18]. Contrary to these previous
studies, concluding that breeding phenology is insensitive
to short-term climatic change, we identified a clear trend in
arrival dates across both species studied. This advancement
resulted in an increasing pre-laying duration as mean hatch-
ing date did not advance, suggesting that part of breeding in
these seabirds is indeed sensitive to changing conditions,
although we cannot derive conclusions regarding the process
driving this phenomenon or if it is an adaption to a changing
environment. A potential explanation could be that the cue
used to time arrival across the North Atlantic is changing
as has been shown in some passerine species [45], but
could not be demonstrated in others [46,47].

Although overall timing in both species exhibits the same
trend, arrival time series were not synchronized between
species and colonies. This indicates that short-term fluctu-
ations in arrival date were not parallel through time among
species and/or colonies, which suggests the interaction
between large-scale environmental trends acting on the
entire species combined with more local features. However,
environmental conditions, although exhibiting the same
trend, do not change homogeneously across the genus’ range
[48], which encompasses most of the North Atlantic for these
species breeding within the study area [13–15]. Hence, syn-
chrony is not necessarily expected. As of now, we could not
detect any immediate consequences of advancing arrival
dates on population-wide reproductive success. As we used
adult breeders to estimate arrival times, we cannot make any
inference of the potential effect of advancing arrival dates on
breeding propensity. Not all birds breed every year [49,50]
and the egg laying and hatching dates as well as the recorded
breeding success may reflect only individuals with sufficient
body condition, i.e. the ones that managed to get enough
energy during the pre-laying period in order to breed [8].

Pre-laying duration and hence arrival timing at the colony
could be linked with colony size [11,25,26] rather than
latitude. This could explain the displayed large-scale variabil-
ity in arrival timings between colonies as well as the lack of
synchronicity between time series. Although guillemots typi-
cally show high nest site fidelity, site changes are documented
which usually increase nest site quality for the usurper and
decrease it for the usurped [51] underlining the importance
of nest site defence as a potential driver of arrival date result-
ing in the pressure to arrive earlier in larger colonies
[11,25,26]. But, the influence of environmental conditions on
arrival timing cannot be ruled out, as unfavourable weather
has already been shown to affect pre-laying colony attend-
ance in BRGU [27] although the same could not yet be
shown for arrival timing.
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Our large-scale approach highlights the extent and impor-
tance of the pre-laying period in contributing to the
challenges faced by colonial breeders in a changing environ-
ment. The advancing trend in arrival dates elucidates that not
all parts of breeding phenology in seabirds are insensitive to
change across years, although we cannot make inferences if
this change is adaptive or not.
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