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ARTICLE

Disruptive mutations in TANC2 define
a neurodevelopmental syndrome associated
with psychiatric disorders
Hui Guo et al.#

Postsynaptic density (PSD) proteins have been implicated in the pathophysiology of neuro-

developmental and psychiatric disorders. Here, we present detailed clinical and genetic data

for 20 patients with likely gene-disrupting mutations in TANC2—whose protein product

interacts with multiple PSD proteins. Pediatric patients with disruptive mutations present

with autism, intellectual disability, and delayed language and motor development. In addition

to a variable degree of epilepsy and facial dysmorphism, we observe a pattern of more

complex psychiatric dysfunction or behavioral problems in adult probands or carrier parents.

Although this observation requires replication to establish statistical significance, it also

suggests that mutations in this gene are associated with a variety of neuropsychiatric dis-

orders consistent with its postsynaptic function. We find that TANC2 is expressed broadly in

the human developing brain, especially in excitatory neurons and glial cells, but shows a more

restricted pattern in Drosophila glial cells where its disruption affects behavioral outcomes.

https://doi.org/10.1038/s41467-019-12435-8 OPEN
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Neurodevelopmental disorders (NDDs) are a group of
clinically and genetically heterogeneous conditions char-
acterized by comorbidity of intellectual disability (ID),

autism spectrum disorder (ASD), developmental delay (DD),
language communication disorders, attention-deficit hyper-
activity disorder (ADHD), motor abnormalities, and/or epilepsy1.
NDDs show a wide range of overlapping clinical features, which
pose serious challenges for diagnoses based exclusively on clinical
criteria. Despite the exponential increase in the number of asso-
ciated genes, the genetic basis for more than half of cases remains
unknown, in large part, due to the rarity of particular genetic
subtypes and more complex genetic patterns of inheritance (e.g.,
multifactorial).

Over the last decade, next-generation sequencing and micro-
array technologies have identified thousands of potentially
pathogenic single-nucleotide variants (SNVs) or copy number
variants (CNVs) and made it possible to expand the number of
ASD/NDD high-risk genes into the hundreds. This research has
benefited from the establishment of well-organized cohorts2–6

and networks of investigators, such as the Simons Simplex Col-
lection (SSC) cohort7 and the Deciphering Developmental Dis-
orders (DDD) network8. A recent integrated meta-analysis of
whole-exome sequence (WES) data from 10,927 NDD families,
for example, identified 253 NDD high-risk genes that showed an
excess of likely gene-disrupting (LGD) or missense de novo
mutations9. Nevertheless, the clinical significance of even those
genes remains uncertain because in most cases the genes are
represented by only a handful of cases often with limited clinical
information.

The recent development of web-based platforms such as
GeneMatcher10 has facilitated international collaboration
between clinical and research groups allowing individual genes to
be explored in detail by coordinating the investigation of dozens
of families and establishing detailed genotype–phenotype corre-
lations11–13. Here, by prioritizing ASD candidate genes with
subsequent targeted sequencing and international collaboration,
we report genetic and clinical data for 20 individuals with dis-
ruptive mutations in TANC2, a gene encoding a synaptic scaffold
protein interacting with multiple ASD and other neuropsychiatric
disorder-related postsynaptic density (PSD) proteins in den-
drites14,15. We define the NDD syndrome as attributed to the loss
of TANC2; in addition, our data show that adult patients and
carrier parents can present with a more complex series of psy-
chiatric and behavioral disorders. The homolog of TANC2 in
Drosophila, rols, is expressed in larva and adult glial cells where its
loss affects mating behavior raising the possibility that TANC2
may also contribute to glial function.

Results
Prioritizing ASD candidate genes. We reanalyzed WES data
from 1902 SSC simplex quad families with matched unaffected
siblings as controls7. We investigated whether there is significant
LGD mutation burden in probands compared to unaffected sib-
lings after excluding genes with genome-wide de novo sig-
nificance in a recent large-scale meta-analysis9. After removing
common LGD mutations (minor allele frequency (MAF) > 0.1%
present in the Exome Aggregation Consortium (ExAC) non-
psychiatric subset)16,17 and recurrent sites with low confidence,
we annotated 307 de novo LGD mutations in probands (0.16 per
individual) and 174 de novo LGD mutations in siblings (0.09 per
individual) (Methods, Supplementary Data 1). As expected,
probands showed a significant excess of de novo LGD mutations
when compared to siblings (P= 2.6 × 10−9, ANOVA) (Methods
and Fig. 1a). We repeated the analysis excluding variants in genes
where genome-wide de novo significance had already been

established9. The filtered burden analysis revealed about one-
third of the de novo LGD burden remained unaccounted (i.e.,
0.13 LGD mutations per proband vs. 0.09 per sibling) (P= 4.9 ×
10−4, ANOVA) (Fig. 1a).

Because ASD genes are significantly enriched as targets for
FMRP and RBFOX binding2,4, we further refined the filtered set
of LGD candidates. We observed significant enrichment in FMRP
(P= 9.7 × 10−9; OR= 2.2, Fisher’s exact test) and RBFOX targets
(P= 2.2 × 10−5; OR= 1.6, Fisher’s exact test) (Fig. 1b) among
probands but not siblings. We next assessed the distribution of
each genome-wide significant gene’s intolerance to mutation
using the probability of being loss-of-function intolerant (pLI)
score16 and the residual variation intolerance score (RVIS)18 as
metrics (Supplementary Fig. 1). Based on these distributions, we
excluded LGD mutations in genes with pLI score <0.84 and RVIS
percentiles >32. Under such restrictions, the proband (1902 SSC
probands) burden for de novo LGD mutations became more
significant (0.040 vs. 0.019; P= 2.5 × 10−4, ANOVA) (Fig. 1a).

To prioritize ASD candidate genes, we combined de novo LGD
mutations from two main ASD family-based WES studies:
namely, the SSC WES study and the Autism Sequencing
Consortium (ASC) WES study4 (Methods). These two combined
datasets represent 3953 families. Based on the SSC family
analysis, we applied three criteria to prioritize the candidate
genes: (i) mutation intolerance (pLI score > 0.84 and RVIS% <
32); (ii) FMRP and RBFOX target enrichment; and (iii) variants
in genes where genome-wide de novo significance had not been
established in the recent meta-analysis9. The procedure prior-
itized 58 ASD candidate genes for further consideration (Table 1,
Fig. 1c, Supplementary Data 2).

Targeted sequencing identified TANC2 de novo mutations in
ASD. Using single-molecule molecular inversion probes
(smMIPs)19,20, we targeted 14 genes from the 58 candidate gene
set for sequencing among 2154 Chinese ASD probands from the
Autism Clinical and Genetic Resources in China (ACGC) cohort.
We detected three LGD mutations: a de novo splice-site mutation
in TANC2 (NM_025185.3: c.1219+1G>A) and two maternally
inherited variants in SPTBN1—a frameshift mutation (p.S8fs*8)
and a splice-site variant (c.567-2A>C) (Supplementary Data 3). In
addition, we analyzed all rare TANC2 (ExAC nonpsychiatric
subset MAF<1%) missense mutations (n= 20) and identified a de
novo missense variant (c.2264 G > A; p.R755H). Combining the
de novo mutations in TANC2 identified in the SSC cohort (1 LGD
and 1 missense), we observed a trend for an excess of LGD
mutations in probands, although this observation did not remain
significant after genome-wide multiple-test correction.

Recruitment of a cohort of patients with TANC2 mutations.
TANC2 was recently reported to encode a synapse scaffolding
protein interacting with multiple PSD proteins to regulate den-
dritic spines and excitatory synapse formation14,15. Our initial
genetic findings and the strong functional implication warranted
the investigation of more individuals with TANC2 mutations.
Using a network of international collaborators and GeneMatcher,
a freely accessible website designed to enable connections between
clinicians and researchers with a shared interest in a particular
gene10, we were able to identify an additional 17 families (17
probands and 3 affected siblings) with TANC2 putative disruptive
variants and a comorbid diagnosis of DD, ID, or ASD. These
additional mutations included 14 LGD mutations and
three intragenic microdeletions (Table 2, Supplementary Data 4).
The variants were detected by WES, targeted sequencing, or array
comparative genomic hybridization (aCGH) (Methods) in the
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corresponding collaborating centers either as part of routine
diagnosis or as part of research studies.

In total, we identified and recruited 19 families (19 probands
and 3 affected siblings) with potentially disruptive TANC2
variants, including 16 LGD mutations and three intragenic
microdeletions (Table 2, Fig. 2a, b). Among the 16 LGD
mutations, we determined that 11 are de novo, 4 are inherited,
and in 2 one parent’s DNA was not available. Two of the
three microdeletions are de novo and one is transmitted from
the mosaic father to two affected siblings (Fig. 2b, c,
Supplementary Fig. 2). TANC2 is a highly conserved gene, in
the top percentile of genes intolerant to truncating mutations (pLI
score= 1, RVIS%= 0.4). No LGD mutations in TANC2 are
present in the 1000 Genomes Project21, ESP6500 (ref. 22), and
1911 SSC unaffected siblings. Only three LGD mutations in
TANC2 are observed in 45,376 ExAC nonpsychiatric samples,
and none of the specific truncated mutations observed in our
patients are present in this database.

Based on these data, we assessed significance of the genetic
findings using two different tests. First, we assessed an
enrichment of de novo LGD mutations among probands. Ten
patients with confirmed TANC2 de novo LGD mutations were
screened from nine cohorts from a total of 16,113 tested
individuals (ACGC, Amsterdam, BCM, Leiden, Leipzig, Mel-
bourne, Paris, SSC, Toronto; Table 2). We estimate a significant
excess for TANC2 de novo LGD mutations compared with
expected calculations (P= 2.4 × 10−14, chimpanzee–human
divergence model (CH model); P= 4.8 × 10−14, denovolyzeR
model, see Methods). This observation remained significant after
genome-wide multiple-test correction (Padj= 9.2 × 10−10, CH
model; Padj= 1.9 × 10−9, denovolyzeR model; Bonferroni correc-
tion for two models and ~ 19,000 genes). Because exome
sequence coverage can differ among centers and affect the
sensitivity of de novo mutation discovery, we gathered empirical
data regarding the rate of de novo mutations among the different
referring centers (Supplementary Table 1). Instead of using 1.5 as

the overall mutation rate in the CH model, for example, we
repeated the analysis using 1.0 and 2.0 as extremes of the overall
mutation rate in the CH model (Supplementary Table 1). The
excess for TANC2 de novo LGD mutations among probands
remains significant under conditions of the most extreme de novo
mutation rate (de novo mutation rate= 2.0, Padj= 7.7 × 10−9; de
novo mutation rate= 1.0, Padj= 8.4 × 10−12) suggesting limited
effect of differences in mutation detection sensitivity.

As a second test, we performed a more traditional burden
analysis between cases and controls (Fisher’s exact test). For
example, we identified 13 probands with a known cohort size
(n= 17,567). This represents a nominal enrichment of LGD
mutations in NDD patients when compared to 45,375 ExAC
nonpsychiatric controls (P= 1.43 × 10−5, OR= 11.2, Fisher’s
exact test, Padj= 0.29, Bonferroni correction for 20,000 genes)
(Methods). To guard against potential exon dropout, we assessed
the mean coverage of TANC2 exons in ExAC. The average
coverage is 49.2 sequence reads per exon (Supplementary Fig. 3)
with 24/25 of the exons showing on average more than 20-fold
sequence read coverage.

Disruption of TANC2 defines an NDD syndrome. Through
patient recontact and review of the clinical information for all
available patients/family members from the collaborating centers,
we assembled phenotypic data for 19 probands and one affected
sibling (13 males, 7 females, aged 4–40 years) carrying LGD
mutations or intragenic microdeletions (Supplementary Data 4,
Table 3). The most consistent phenotypes include ASD, ID,
speech-language delay, and childhood motor delay (Table 3). In
some cases, presentation of ASD was consistent with features
reminiscent of the Rett-like spectrum. Of the 20 individuals
assessed for ASD, seven cases had a formal ASD diagnosis, eight
cases had clinical impression of ASD or Rett-like features, while
the remaining five cases had no autistic phenotypes. Of the 20
individuals assessed for cognitive ability, 17 have a diagnosis of
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Fig. 1 Prioritizing ASD candidate genes based on gene intolerance metrics and enrichment of FMRP/RBFOX targets. a Burden of de novo LGD mutations in
probands of SSC simplex quad families for three categories: (i) all de novo LGD events; (ii) de novo LGD events excluding genes where significant burden
has been reached; and (iii) de novo LGD mutations in intolerant genes without significance. The error bars represents a 95% confidence interval for the
mean rates. Underlying data are provided as a Source Data file. b Enrichment of genes with de novo LGD mutations in FMRP and RBFOX targets.
Enrichment is performed after excluding genes that reached significance (top panel) and the same but requiring that the genes are intolerant to mutation
(bottom panel). c Selection of genes for targeted sequencing. One hundred and twenty-eight intolerant genes were prioritized by pLI score (<0.84) and
RVIS percentile (>32) from the SSC and ASC cohorts, of which 58 genes were FMRP/RBFOX targets (Table 1). Fourteen genes were selected from the 58
genes for targeted sequencing in 2514 ASD probands from the ACGC cohort
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borderline to severe ID with two adult patients manifesting
learning disability without formal ID diagnosis. Only one patient
demonstrates an above-average IQ. Of the 20 individuals with
language development records, 18 exhibited speech-language
delay; at least 6 of them have absent language or severe language

problems. Childhood motor delay was observed in 13 of 19
individuals for whom this information was available. In addition,
11/20 individuals had either a formal diagnosis of epilepsy (n= 9)
or suffered from recurrent seizures (n= 2). Of the 15 patients
with a constipation record, 8 reported chronic or severe

Table 1 Prioritized ASD candidate genes

Gene ASD.LGD Seq.Quality MIS.sig CLIN.sig MIP-targets FMRP/RBFOX RVIS% pLI score

ATP1A1 1SP validated – – Yes Both 5.00 1.00
CUX2 1SG highConf – – Yes F 9.20 1.00
DSCAML1 1SP validated – – Yes F 0.67 1.00
ELAVL2 1FS validated – – Yes R 15.85 0.96
FAM91A1 1SG validated – – Yes F 21.65 0.88
FBXW11 1SG validated – – Yes R 20.08 1.00
RAPGEF4 1SP highConf – – Yes Both 9.59 1.00
SMARCE1 1SP highConf – Y(LGD) Yes R 23.48 1.00
SPTBN1 1SG validated – – Yes F 0.17 1.00
TANC2 1SG validated – – Yes Both 0.37 1.00
UBAP2L 1FS highConf – – Yes F 3.33 1.00
UBR3 1FS validated – – Yes Both - 1.00
UBR5 1FS highConf – – Yes Both 0.21 1.00
ZNF462 1FS highConf – Y(LGD) Yes F 1.09 1.00
BRSK2 1SP highConf – – – Both 4.95 0.89
DST 1FS validated – – – Both 0.28 1.00
EP400 1FS highConf – – – Both 7.32 1.00
GRIN2B 1FS,1SG,1SP validated Y Y(LGD,MIS) – Both 1.28 1.00
NBEA 1SG validated – – – Both 1.16 1.00
NCKAP1 1FS,1SG validated – – – Both 3.85 1.00
NRXN1 1SG validated – – – Both 1.78 1.00
SKI 1SG highConf – – – Both 11.79 0.97
SPAG9 1FS validated – – – Both 14.41 1.00
TRIM37 1SP highConf – – – Both 5.31 1.00
BAI1 1SG validated – – – F – 1.00
BIRC6 1SG highConf – – – F 0.07 1.00
CIC 1SG validated – Y(LGD) – F 0.83 1.00
DIP2A 1SG,1FS validated – – – F 8.68 1.00
DIP2C 1FS validated – – – F 0.61 1.00
DOT1L 1SG validated – – – F 2.18 1.00
KDM4B 1SG highConf – – – F 13.00 1.00
KIAA0100 1SG validated – – – F 2.12 0.92
KIAA2018 1SG highConf – – – F – 1.00
NF1 1SG validated – Y(LGD) – F 0.39 1.00
RALGAPB 1FS highConf – – – F 3.00 1.00
RELN 1SG highConf – – – F 5.17 1.00
SHANK2 1FS validated – – – F 2.03 1.00
SMARCC2 1SP validated – – – F 8.51 1.00
STXBP5 1FS highConf – – – F 4.70 1.00
TRIO 1FS highConf Y – – F 0.57 1.00
BAZ2B 1FS validated – – – R 13.09 1.00
BRWD1 1FS validated – – – R 10.52 1.00
CSDE1 1SG validated – – – R 6.18 1.00
CUL1 1SP highConf – – – R 9.85 1.00
ERBB2IP 1SP highConf – – – R – 1.00
GABRB3 1FS highConf Y – R 25.36 1.00
GGNBP2 1SG highConf – – – R 27.26 1.00
GRIA2 1SG highConf – – – R 10.77 1.00
HECTD1 1FS validated – – – R 0.45 1.00
MPP6 1SP validated – – – R 26.90 0.99
NFIA 1SG validated – – – R 18.59 1.00
NFIB 1SP validated – – – R 16.62 0.98
PCSK2 1FS validated – – – R 19.29 1.00
PRPF40A 1SP highConf – – – R 8.28 0.88
RANBP2 1FS highConf – – – R 1.77 1.00
UNC79 1FS validated – – – R 1.27 1.00
XKR6 1SG validated – – – R 16.93 1.00
YTHDC1 1FS validated – – – R 18.25 1.00

Notes: ASD.LGD represents LGD numbers and types in 3953 ASD patients from SSC and ASC cohorts. SG stopgain, FS frameshift, SP splice site. MIS.sig represents genome-wide significance for the de
novo missense mutations in this gene based on the 10,927 NDD patients9. CLIN.sig represents whether there are clinical case-series reports for likely gene-disrupting (LGD) or missense (MIS) mutations
of the specific genes
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constipation, 2 of which also presented with cyanotic extremities,
indicating the common autonomic symptoms in this patient
cohort.

Ataxia and skeletal anomalies were also observed in this patient
cohort. Ataxia or spastic ataxia symptoms, for example, were
observed in five patients; strabismus in five; progressive scoliosis
or hyperkyphosis in five; foot deformities (club foot, flat valgus
foot, talus valgus, inversion in ankles) in four; craniosynostosis
(brachycephaly, turricephaly) in three; hypotonia in four;
hypermobile joints in three; and chest deformities (pectus
excavatum, pectus carinatum) in three (Table 3, Supplementary
Data 4).

We observed some facial dysmorphic features with familial
variability (Fig. 3), including large ears with thick helices, thick
eyebrows with synophrys, deep-set eyes, strabismus, large nose
with high nasal bridge, short and flat philtrum, large mouth with
thin upper lip and thicker everted lower lip, widely spaced teeth
(four patients), and tongue protrusion. A low hairline was
commonly observed in patients of European descent.

Transmission of TANC2 mutations and psychiatric disorders.
Besides neurodevelopmental issues and association with ASD, we
observed multiple significant psychiatric disorders or behaviors in
the affected adult probands and carrier parents (Table 2, Sup-
plementary Data 4). Three out of the six adult (21–40 years)
probands showed different psychiatric problems: patient NN2.p1

presents with mood changes, aggressive behavior, and hyper-
activity; patient NN3.p1 has hallucinations, compulsive behavior,
and social-emotional delay; and patient SU.p1 suffers from major
depression.

In four of the five families with transmitted variants, we
observed mild neurodevelopmental phenotypes and/or psychia-
tric disorders in the carrier parents (Fig. 2c). In the simplex quad
family SS2, the father had received a complex neuropsychiatric
diagnosis, including bipolar, ADHD, and post-traumatic stress
disorder. In addition, the father showed features suggestive of
autism. For example, his SRS (Social Responsiveness Scale) falls in
the top 8th percentile of all parents in the SSC (Supplementary
Fig. 4). In this case, the father carried a splice-site mutation in
TANC2 (c.547+1G>A), which was transmitted to the affected
proband but not the unaffected sibling. In family NN2, the carrier
mother was also suspected of ID and had a history of undefined
psychiatric disorder. The TANC2 frameshift mutation (p.
A928Qfs*4) was transmitted maternally to the proband and two
affected siblings but not the unaffected sister. Interestingly, in
family CF, the carrier father was determined to carry a low-grade
somatic mosaicism for a 194 kb deletion (Chr17:61158866-
61353248) and has suspected ID with a background of delayed
motor development and school difficulties. In family GU, the
carrier mother has ID and a history of seizures, motor delay, and
learning difficulties during school years. Only the carrier father in
family TI was thought to be unaffected; however, no clinical
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Fig. 2 Location distribution and transmission pattern of TANC2mutations. a A protein domain graph (DOG) plot shows the positions of the 16 LGD (above)
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PI.p1

CF.p1

CF.p2

MA.p1

NN1.p1

CC.p1

MA.p1

Fig. 3 Facial dysmorphology. Proband photographs of PI.p1, CF.p1, CF.p2, MA.p1, NN1.p1, and CC.p1. Clinical similarities include low hairline (especially
European-descent patients), large ears with thick helices, thick eyebrows with synophrys deep-set eyes, strabismus, large nose with high nasal bridge (for
subset), short and flat philtrum, large mouth with thinner upper lip and thicker everted lower lip, inferior/widely spaced teeth (PI.p1, CF.p1, CF.p2, NN1.p1),
and tendency for a protruded tongue. Consent for the publication of photographs was obtained for these patients
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developing human brain
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Fig. 4 TANC2 expression in human developing brain. a T-stochastic neighbor embedding of 4621 single-cell RNA sequencing (scRNA-seq) profiles from
developing human brain samples identifies the major cell types in the developing brain. Cluster numbers are drawn directly from the source study, and
biological interpretations can be found in Supplementary Table 3. b Violin plot showing TANC2 expression across the major cell types identified in the
scRNA-seq (a). Samples are ordered according to the average expression level across single cells of each type, and p value represents Bonferroni-corrected
p value quantified using Wilcoxon rank sum test. n.s.—p > 0.05. Underlying data are provided as a Source Data file
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follow-up or neuropsychiatric assessment could be performed.
Combined, these observations indicate the important role of
TANC2 not only during neurodevelopment but also highlight the
later risk of psychiatric or behavioral disorders.

De novo missense variants in TANC2. Although the most sig-
nificant phenotypic findings were observed in patients with
putative disruptive variants, we also identified five individuals with
de novo TANC2missense mutations from denovo-db v.1.5 (ref. 23)
or by the targeted sequencing mentioned above (Table 2, Fig. 2a,
Supplementary Data 4). Three of these variants were identified in
individuals with a primary diagnosis of ASD (p.R755H, p.R961Q,
p.H1689R); one was found in an individual with a primary diag-
nosis of language disability and ID (p.R760C)24; and the last was
identified in a patient with schizophrenia (p.A794V)25, consistent
with its role in psychiatric disorders. We note that three of the
variants (p.R755H, p.R760C, p.A794V) cluster within the ATPase
regulatory domain and one (p.R961Q) maps to one of the ANK
domains (Fig. 2a). Variants p.H1689R, p.R760C, and p.A794V
have not been previously observed in ExAC nonpsychiatric
samples while p.R755H and p.R961Q have both been reported
four times in this database. Although the pathogenicity of these
missense mutations is not yet established, p.R755H, p.R760C, and
p.R961Q are predicted to have a damaging or possibly damaging
effect (Supplementary Table 2) by multiple prediction tools. In
addition, the specific p.R760C variant was recently reported to
impair the recruitment of KIF1A-transported vesicles in neu-
rons14, making its pathogenicity more likely from a functional
perspective.

Expression pattern of TANC2 in the developing human brain.
To further refine the expression pattern of TANC2 in the devel-
oping human cerebral cortex, we analyzed a single-cell RNA
sequencing dataset generated across 48 individuals26. Based on
the transcriptomic profiles of 48 distinct clusters, we broadly

classified six cell types: radial glia, intermediate progenitor cells,
excitatory neurons, medial ganglionic eminence (MGE) pro-
genitors, newborn MGE neurons, and inhibitory interneurons
(Fig. 4a, Supplementary Table 3). We find that TANC2 is broadly
expressed across many cell types, with enriched expression in
excitatory neurons and radial glia, in particular truncated and
outer radial glia (RG1 and RG2, Fig. 4b, Supplementary Table 4).
By contrast, MGE-derived newborn interneurons and their pro-
genitors in the medial ganglionic eminence are generally depleted
for TANC2 expression. Using the same approach, we find that
TANC1, the paralogs of TANC2, shows an even stronger pattern
of enriched expression in radial glial cells (Supplementary Fig. 5).

Disruption of TANC2 (rols) interferes with synapse function.
The closest Drosophila melanogaster homolog to human TANC2
is rols, which is highly conserved at the amino acid level (55%
similarity, 38% identity). Rols is the only TANC-like protein in
Drosophila with a DIOPT27 score of 11/15 for TANC2 and 9/15
for TANC1, making it the sole fly homolog to both human TANC
proteins28. To investigate whether TANC2 and Drosophila rols
function in a similar manner, and whether its disruption influ-
ences neurodevelopment in flies, we generated new rols alleles
and carried out a series of expression and phenotype analyses
along with tissue-specific RNAi-mediated knockdown and rescue
experiments.

To investigate the expression pattern of rols in Drosophila, we
generated rolsMI02479-TG4.1 by genetic conversion of the
rolsMI02479 allele via recombination-mediated cassette exchange
as previously described29–31 (Fig. 5a). Insertion of an SA (splice
acceptor)-T2A-GAL4-polyadenylation (polyA) signal creates an
artificial exon between exons 1 and 2 of rols, predicted to cause
premature transcriptional arrest as well as expression of GAL4
under the endogenous regulatory elements of rols. As expected,
rolsMI02479-TG4.1 mutants are embryonic lethal and are also lethal
at this stage when in trans with a corresponding deficiency
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(Df(3L)ED4475). Expression of human UAS-TANC2 failed to
rescue lethality but viability was restored upon introduction of an
80 kb P[acman] genomic BAC rescue (GR) construct (Fig. 5b)32.
These data indicate rolsMI02479-TG4.1 is a loss-of-function allele,
and that this allele is responsible for the lethality in the flies.

To determine if rols is expressed in the larval or adult brain we
used rolsMI02479-TG4.1 to drive UAS-mCD8::GFP revealing the

membranes of cells expressing rols (Fig. 5c). The Rols protein is
clearly expressed throughout the nervous system. Interestingly,
the rols expression pattern is similar to other genes previously
documented in glia31. We also generated an internally GFP-
tagged protein trap (rolsMI02479-GFSTF.1) allele33; however, we
were unable to detect endogenous Rols protein in vivo. In our
experience, this result is not uncommon, particularly for proteins
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that are low abundance. Hence, we focused on cell-type
expression of rols using the rolsMI02479-TG4.1 allele. To determine
the cell types that express rols during development, we utilized
Gv-TRACE34. This labels the cells that expressed rols previously

as well as the cells that currently express rols. Using HRP to stain
neuronal axons, we determined that rols is not actively expressed
in the muscles of third instar larvae (Fig. 6a, RFP positive nuclei)
but was present in muscle cells earlier in development (Fig. 6a,
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GFP positive nuclei). We also observed rols expression in the
nuclei of wrapping glia at the neuro-muscular junction (NMJ)
(Fig. 6a, yellow arrows).

Since TANC2 is a PSD-interacting protein and we observed
lineage expression of rols in the muscles, we investigated whether
reduction of rols influences synapse growth and function in
postsynaptic membranes. Using a muscle-specific driver (C57-
GAL4), we knocked-down rols in muscles via RNAi and
examined the third instar NMJ. We co-labeled the NMJs with
axonal (HRP) and postsynaptic (DLG) markers. Morphological
analysis was carried out for type Ib boutons at muscle 4 of
abdominal segment 3/4. Compared to wild type, we observed a
significant increase in mean satellite bouton number with rols
knockdown, and this overgrowth was rescued by expression of
UAS-rols in muscle (Fig. 6b). To determine whether rols
knockdown interferes with the expression or localization of
postsynaptic molecules, we examined the distribution of gluta-
mate receptor IIA (GluRIIA) subunit levels in type Ib boutons at
muscle 4 of abdominal segment 3/4. For quantification of wild
type and knockdown lines, we measured synaptic GluRIIA
immunofluorescence intensity normalized to wild type. We
observed a significant reduction of the synaptic immunoreactivity
of GluRIIA in the knockdown lines. This defect was also rescued
by expression of rols in muscle (Fig. 6b). These data indicate that
Rols in the postsynapse is important for proper synaptic
morphology and glutamate receptor clustering the normal
development of the NMJ.

We were unable to detect rols in the vast majority of Drosophila
neurons, including motor neurons. Lineage tracing showed no
evidence of historical rols expression in neurons (Fig. 7a). Instead,
we observed expression almost exclusively in glia (Fig. 7a, non-
ELAV+ cells). Thus, we examined the adult fly brain of
rolsMI02479-TG4.1>UAS-nls::GFP flies stained for neuronal (Elav)
and glial (Repo) markers. Consistently, rols is expressed in a
subset of glia and very few neurons also express rols (Fig. 7b).
Interestingly, the glial-specific expression of rols in the adult brain
is supported by recent single-cell transcriptomic data35.

Based on these data, we conducted glial-specific (repo-GAL4)
knockdown of rols and assessed adult flies for changes in
behavior. We did not detect any climbing or stress-induced
seizure-like behavior with glial or neuronal knockdown (Supple-
mentary Fig. 6). Hence, we examined Drosophila courtship
behavior to determine if there were detectable changes in
neurological function. In Drosophila, courtship is a stereotyped
social behavior that males are capable of performing without
prior training or experience. It is composed of a series of
sequential steps required for the initiation of copulation. One of
these steps, the production of courtship song through wing
vibration persuades the female to copulate and requires the
coordination of multiple sensory and motor systems. We isolated
male pupae before eclosion to prevent the possibility of
experience-based change in behavior. Isolated flies were
inspected, aged for 3–5 days, and placed in the test chamber
with a single wild-type female. All interactions were filmed for a
30-min period, and the video was analyzed using automated
tracking and behavior detection software36,37 (Fig. 7c). Using this
method, we observed that repo-GAL4>UAS-rols-RNAi flies
displayed a significant increased total duration of wing-
extension behavior while maintaining wild-type levels of
locomotion, grooming, and copulation (Fig. 7d–f, Supplementary
Fig. 7). Importantly, pan-neuronal knockdown of rols using elav-
GAL4 did not alter wing-extension behavior (Supplementary
Fig. 8).

In summary, using Drosophila, we confirmed the evolutionarily
conserved role of this gene in the postsynapse and found roles in
glia that modulate behavior.

Discussion
This study reports the phenotypic spectrum associated with
severe or disruptive TANC2 mutations for 20 probands or
affected siblings from 19 unrelated families. The neurodevelop-
mental phenotype is characterized by ASD, ID, speech and motor
delay, and facial dysmorphology. Other clinical features include
epilepsy, autonomic dysfunction, movement alterations, includ-
ing stereotypies and altered gait, and signs of connective tissue
abnormalities. Features of this disorder are reminiscent of Rett-
like phenotypes, at least for some of the most severely affected.

Several lines of evidence reinforce that the mutations in
TANC2 play an important role in NDDs. First, we identify a total
of 16 TANC2 truncating variants, including ten de novo SNVs
and two de novo microdeletions. Calculation of the enrichment of
ten de novo LGD mutations with available cohort sizes reaches
genome-wide significance for an excess of de novo mutation.
Second, we provide a consistent phenotypic profile of the 19
probands and one affected sibling recruited in this international
study. Third, we observe mild neurodevelopmental impairment
or neuropsychiatric disorders in carrier parents in four out of five
families with transmitted disruptive TANC2 variants or micro-
deletions. Finally, a recent functional study showed that proteins
with a disease-related LGD mutation (p.R1066*) failed to accu-
mulate at the dendritic spines14, indicating a critical role of the
predicted C-terminal PDZ interacting motif38 in disease patho-
genesis. All disruptive mutations identified in our patient cohort
delete or truncate before the predicted PDZ interacting motif.

TANC2 is a synaptic scaffold protein that interacts and co-
localizes with PSD proteins in dendrites in various brain
regions15. During rat brain development, Tanc2 expression is
detectable at embryonic stages and persists postnatally, albeit with
reduced expression15. Disruption of Tanc2 positively influences
dendritic spines and excitatory synapse formation14,15. In mouse
models, the Tanc2 knockout associates with embryonic lethality
consistent with a critical role in early-stage embryonic develop-
ment15. Although the mechanisms of TANC2 function remain to
be investigated, known protein interactions include the products
of numerous ASD and neuropsychiatric disorder risk genes (e.g.,
PSD95, SHANK1, SYNGAP1, CASK, and GRIN2B)14. Deciphering
the function of TANC2 will undoubtedly provide additional
insights with respect to PSD-related pathogenesis and its
importance with respect to converging NDDs and psychiatric
disorders.

In Drosophila, a reduction of rols in muscles results in the
reduction of postsynaptic GluRIIA levels. However, we only
detected rols expression in muscle early in development and not
throughout larval developmental stages. The effects of rols
knockdown in embryonic muscle using C57-GAL4 may affect
NMJ development or the perdurance of Rols in larval muscles
may affect the organization of the PSD protein and cause a
decrease in GluRIIA levels when Rols is lost progressively. We
also observed an increase in presynaptic satellite bouton number
upon reduction of rols in muscle. Typically, satellite bouton for-
mation is determined by presynaptic processes usually associated
with defects in synaptic vesicle endocytosis that lead to an
increase in satellite boutons39–41. In contrast, knockdown of the
postsynaptic protein Diablo results in an increase in satellite
bouton number42. The latter is correlated with an increase in
GluRIIA levels. Hence, the mechanisms underlying these NMJ
defects when rols is affected remain to be determined.

In humans, TANC2 is broadly expressed in different cell types
of the developing brain but shows enrichments in both excitatory
neurons and radial glial cells, which act as neural stem cells. In
contrast, we find that rols expression is restricted mainly to glia
cell types in larvae and adult flies. Reduction of rols in glia
increased the total amount of time Drosophila males spent
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performing courtship-related wing extensions. In many animals,
courtship is a complicated neurological process that involves
integrating sensory input, multiple components of the central
nervous system and motor output. In Drosophila, it has pre-
viously been shown that alterations in glial function are sufficient
to alter courtship behavior, demonstrating that changes in glia
can have consequences on behavioral output43. Our results sug-
gest that rols in supporting glia may act in modulating neuronal
function. Intriguingly, TANC2 as well as other PSD-related
proteins are also expressed in radial glia44, which act as neural
stem cells and give rise to both excitatory neurons and macroglia.
Moreover, the second human homolog of rols, TANC1, shows a
more restricted expression during development, with enriched
abundance in radial glia, astrocytes, and newborn neurons, sug-
gesting the possibility of subfunctionalization45 as well a possible
neofunctionalization of ancestral rols function during vertebrate
evolution. Our results suggest that the functional consequences of
NDD gene variants in neuron–glia communication should be
investigated in vertebrate models to assess if they may underlie
the clinical heterogeneity of NDD.

In summary, we have demonstrated an excess of de novo
disruptive TANC2 mutations among patients with neurodeve-
lopmental delay and autism. Our results suggest that TANC2 is
one of a growing list of genes where mutations associate with
both pediatric neurodevelopmental and adult neuropsychiatric
disease, for example, SHANK3 (ref. 46), NRXN1 (ref. 47),
ZMYND11 (ref. 48), POGZ25, and RELN49. Because disruptive
mutations may also be inherited, much larger cohorts of both
cases and controls will be needed to establish its involvement with
neurodevelopment and psychiatric disease. As such, the detection
of pathogenic TANC2 mutations will not only lead to a causal
diagnosis for patients in such populations but also be important
for a better understanding of genotype–phenotype associations
and in guiding precision medicine. Animal models and deeper
molecular functional studies on the cell-specific role of TANC2 in
neurodevelopment will not only provide insights regarding PSD
pathogenesis in ASD and other neuropsychiatric disorders but
also provide an avenue for the development of long-term treat-
ment of these disorders.

Methods
Prioritizing ASD candidate genes. De novo LGD mutations were analyzed from
two ASD WES cohorts: (1) SSC2, which included 2508 ASD probands and 1911
unaffected siblings from 615 trios and 1902 simplex quad families; and (2) ASC 4,
which included 1445 ASD probands from trio families. All de novo LGD mutations
collected from the two cohorts were re-annotated with ANNOVAR (2018Apr16)50.
Conflicts between ANNOVAR annotation and the original annotation were
manually curated. We removed variants that were observed in the general popu-
lation (MAF > 0.1% in ExAC nonpsychiatric subset) and LGD sites with low
quality. Thresholds of mutation intolerance (pLI score and RVIS) were determined
according to the distribution of pLI score and RVIS percentage of genes with
significance (FDR corrected q < 0.05) in Coe et al.9 (Supplementary Fig. 1).
Enrichment of de novo LGD mutations between probands and siblings from 1902
SSC simplex quad families was performed using ANOVA considering paternal
birth age as a covariate. Enrichment analysis of genes with de novo LGD mutations
in probands and siblings in 842 FMRP targets (with transcripts bound by the
fragile X mental retardation protein)51 and 1488 RBFOX targets (merge of 1048
binding targets and 578 splicing targets)52 was performed using Fisher’s exact test
using all protein-coding genes expressed in brain as the background53.

ACGC cohort and targeted sequencing. Targeted sequencing of the 14 candidate
genes was performed on 2154 ASD probands of complete parent–child trios or
quads from the ACGC cohort, which has been described previously20. In brief,
ACGC patients are diagnosed primarily according to DSM-IV/V criteria doc-
umenting additional comorbid conditions where possible. Peripheral-blood DNA
of all probands, parents and siblings, where available, was collected with informed
consent. Genomic DNA was extracted from the whole blood using a standard
proteinase K digestion and phenol–chloroform method. The sequencing data have
been deposited in the National Database for Autism Research (NDAR)54. The
study complied with all relevant ethical regulations for work with human

participants and was approved by the Human Ethics Committee of Center for
Medical Genetics, Central South University (institutional review board (IRB)
#2014031113).

Targeted sequencing was performed using smMIPs19,20. In summary, smMIPs
were designed using MIPgen with an updated scoring algorithm. After
amplification, libraries were sequenced using the Illumina HiSeq2000 platform.
Sequences were aligned against GRCh37 using BWA-MEM (v.0.7.13)55 after
removing incorrect read pairs and low-quality reads. SNVs/indels were called with
FreeBayes (v.0.9.14)56. Variants exceeding tenfold sequence coverage and read
quality over 20 (QUAL > 20) were annotated with ANNOVAR using reference
GRCh37. LGD variants and rare missense variants (MAF < 0.1% in ExAC
nonpsychiatric subset) were selected for validation using Sanger dideoxy
sequencing.

Statistical analysis for excess de novo LGD mutations. The probability of de
novo LGD mutation enrichment was calculated using two statistical models: (1) a
binominal model that incorporates gene-specific mutation rates estimated from the
overall rate of mutation in coding sequences, estimates of relative locus-specific
rates based on CH model19 with an expected rate of 1.5 de novo mutations per
exome, and (2) a Poisson model that uses gene-specific mutation rates estimated
from trinucleotide context and accommodates known mutational biases, such as
CpG hotspots57,58. TANC2 mutation burden between the disorder cohort and
45,375 ExAC nonpsychiatric samples was performed using Fisher’s exact test. All
statistical analyses were performed using the statistical software R (v3.2.1) (www.r-
project.org/).

Patients and assessment. The probands carrying TANC2 LGD mutations or
microdeletions and their family members were recruited to different participating
centers from eight countries. For each affected individual, detailed clinical infor-
mation was obtained through patient recontact or detailed review of medical
records by neurologists, pediatricians, or geneticists. Written informed consent was
obtained from study participants or their parents or legal guardians in the case of
minors or those with ID, in line with local IRB requirements at the time of col-
lection. Genomic DNA was extracted from the whole blood of the affected indi-
viduals and their parents. Parents and affected/unaffected siblings of the probands
where available were also recruited for segregation analysis and phenotyping. The
authors affirm that human research participants provided informed consent for
publication of the images in Fig. 3.

Variant detection. The 20 potentially disruptive variants in TANC2 were identi-
fied by WES, targeted sequencing, or aCGH following the standard guidelines at
the participating centers. The details are described below.

WES was applied for detection of variants in individuals NN1.p1, NN2.p1,
NN3.p1, NN4.p1, AN.p1, LN.p1, PF.p1, TC.p1, LG.p1, SS1.p1, SS2.p1, HU1.p1,
and HU2.p1. The LGD mutations in patients SS1.p1 and SS2.p1 were detected by
WES from the SSC cohort2,59.

The LGD mutations in patients HU1.p1 and HU2.p1 were detected using
clinical WES at the Human Genome Sequencing Center at Baylor College of
Medicine. The WES protocol, including library construction, exome capture, and
HiSeq next-generation sequencing and data analysis have been described
elsewhere60.

The LGD mutations in patients NN1.p1, NN2.p1, and NN3.p1 and the de novo
missense mutation in NN4.p1 were detected by WES at the Nijmegen Radboud
University Hospital and at the Maastricht University Medical Center. Routine
diagnostic exome sequencing and variant calling using a parent–offspring trio
approach was performed24. Briefly, the exome was captured using the Agilent
SureSelectXT Human All Exon v5 library prep kit (Agilent Technologies, Santa
Clara, CA, USA). Exome libraries were sequenced on an Illumina HiSeq 4000
instrument (Illumina, San Diego, CA, USA) with 101 bp paired-end reads at a
median coverage of 75× at the BGI Europe facilities (BGI, Copenhagen, Denmark).
Sequence reads were aligned to the hg19 reference genome using Burrows-Wheeler
Alignment (BWA) version 0.5.9-r16.1455. Variants were subsequently called by the
Genome Analysis Toolkit (GATK) unified genotyper, version 3.2-2 and annotated
using a custom-built diagnostic annotation pipeline.

The LGD mutation in patient LN.p1 was detected by WES at Department of
Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands.
Exomes were captured using the Clinical Research Exome v2 capture library kit
(Agilent, Santa Clara, CA, USA) accompanied by Illumina paired-end sequencing
on the NextSeq 500 (Illumina, San Diego, CA, USA). The in-house sequence
analysis pipeline Modular GATK-Based Variant Calling Pipeline (MAGPIE)
(LUMC Sequencing Analysis Support Core, LUMC) was used to call the SNVs/
indels. An in-house developed annotation pipeline was used to annotate the
variants.

The LGD mutation in patient PF.p1 was detected by WES at the Département
de Génétique, Hôpital Pitié-Salpêtrière, Paris, France. DNA was extracted from
maternal, paternal, and proband samples. Trio WES was performed on a NextSeq
500 Sequencing System (Illumina, San Diego, CA, USA), with a 2 × 150 bp high-
output sequencing kit after a 12-plex enrichment with SeqCap EZ MedExome kit
(Roche, Basel, Switzerland), according to the manufacturer’s specifications.
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Sequence quality was assessed with FastQC 0.11.5, reads were then mapped using
BWA-MEM (v.0.7.13), sorted, and indexed in a BAM file (SAMtools 1.4.1),
duplicates were flagged (sambamba 0.6.6), and coverage was calculated (Picard-
tools 2.10.10). Variant calling was done with GATK 3.7 Haplotype Caller61.
Variants were then annotated with SnpEff 4.3, dbNSFP 2.9.3, gnomAD, ClinVar,
HGMD, The Human Variome Project Great Middle East, and an internal database.
Coverage for these patients was 93% at a 20× depth threshold.

The LGD mutation in patient TC.p1 was detected by WES using genomic DNA
from the proband and parents in a clinical molecular genetics laboratory, GeneDx;
the exonic regions and flanking splice junctions of the genome were captured using
the Clinical Research Exome Kit (Agilent Technologies, Santa Clara, CA, USA).
Short-read sequencing was performed using the Illumina platform with ~100 bp
paired-end reads. Sequence variants were called based on alignment to the human
reference genome, GRCh37/UCSC hg19, as previously described62.

The LGD mutation in patient LG.p1 was detected by WES at University of
Leipzig Hospitals and Clinics, Leipzig, Germany. Trio WES for the proband and his
biological parents was performed. DNA was subjected to exome capture using
Agilent SureSelectXT library preparation and human all exon capture (V6; Agilent,
Santa Clara, CA, USA). Sequencing was performed on an Illumina NovaSeq6000
(2 × 100 bp, Illumina, San Diego, CA, USA) by a commercial provider (CeGaT,
Tübingen, Germany) on our request. Bioinformatics processing and filtering was
performed using the software Varfeed and Varvis (Limbus, Rostock, Germany).
This study was approved by the ethics committees of the University of Leipzig
(402/16-ek).

The LGD mutation in patient MA.p1 was detected by WES at University of
Washington Center for Mendelian Genomics (UW-CMG, Seattle, WA, USA).
Library construction and WES were performed for the proband–parents trio. The
exome was captured using the NimbleGen SeqCap EZ Exome 2 (Roche
NimbleGen, Madison, WI, USA). Exome libraries were sequenced on an Illumina
HiSeq platform (Illumina, Inc., San Diego, CA, USA) with 75 bp paired-end reads
at the Northwest Genomics Center at the University of Washington (Seattle, WA,
USA). Sequence reads were aligned to the hg19 reference genome using Burrows-
Wheeler Aligner (BWA) version 0.7.8. Variants were called by the GATK unified
genotyper, version 3.1.1, and annotated with SeattleSeq, version 138. Variants not
predicted to impact protein-coding sequence or present (AC > 3) in the Genome
Aggregation Database, gnomAD version 2.0, were excluded. All putative de novo
variants were validated using Sanger sequencing.

The LGD mutations in patients CC1.p1, TI.p1, AA.p1, and GU.mo were
detected using smMIPs. The smMIP sequencing and analysis was performed as
previously described19,20 and summarized above. For patient CC1.p1, the splice-
site mutation was detected using smMIP-based targeted sequencing of 2514
probands with a primary diagnosis of ASD. For patient TI.p1, the disruptive
mutation was detected using smMIP-based targeted sequencing of 1201 probands
with primary diagnosis of DD. For patient AA.p1, the disruptive mutation was
detected using smMIP-based targeted sequencing of 2383 probands with primary
diagnosis of ID. For patient GU.mo, the disruptive mutation was detected using
smMIP-based targeted sequencing of 253 probands with primary diagnosis of ID.
Validation and inheritance determination were performed by Sanger sequencing in
both probands and parents.

aCGH was applied for detection of variants in individuals DU.p1, PI.p1, CF.p1,
and CF.p2. The de novo CNV in patient DU.p1 was detected using customized
exon-targeted oligo array (OLIGO V8.1), which covers more than 1700 disease-
associated genes, respectively, with exon-level resolution63 at Baylor Genetics.
Chromosomal microarray analysis (CMA) revealed a copy number loss of
chromosome band 17q23.3 of approximately 0.146 Mb in size
(17:61271293–61417468, GRCh37) followed by a copy number gain of
chromosome band 17q25.1 of approximately 0.316 Mb in size
(17:72205984–72521915) in the proband. The clinical significance is unclear at the
present time. Parental CMA revealed the copy number loss of chromosome
17q23.3 is not present in either parent. Parental CMA also showed that the copy
number gain of chromosome 17q25.1 is present in the mother. This copy number
gain most likely represents a familial variant although the clinical significance of
this gain is unclear at the present time.

The de novo CNV in patient PI.p1 was detected using aCGH 4 × 44K kit (Agilent,
Santa Clara, CA, USA) at the Laboratories of Clinical Genetics and Molecular
Genetics of Neurodevelopment, Department of Women’s and Children’s Health,
University of Padua, Italy. aCGH was performed according to standard protocols.
Further analysis with CGH 244K kit and real-time PCR was performed on the
proband’s sample to refine the breakpoints of the detected alteration. Array results
were analyzed with DNA Analytic 4.0 Software (Agilent, Santa Clara, CA, USA) and
genomic positions were based on Human Genome Assembly NCBI Build 37/hg19.

The CNV in patients CF.p1 and CF.p2 was detected using an aCGH 8 × 60k kit
(Agilent, Santa Clara, CA, USA) at CHU Lille, Clinique de Génétique Guy
Fontaine, Lille, France. aCGH was performed according to standard protocols.
Further analysis with a FISH study with BAC RP11-191F21 was performed to
detect the mosaic status64 of the father CF.fa (9 of the 150 mitoses).

Analysis of TANC2 expression in the developing human brain. To interrogate
the expression pattern of TANC2 and TANC1 in the developing human cerebral
cortex, we analyzed a single-cell RNA sequencing dataset generated from across 48

individuals provided in a recent publication26. In short, processed normalized
expression values, and the associated metadata, were downloaded from the UCSC
cell browser (https://cells.ucsc.edu/dev/?ds=cortex-dev). Cluster assignments for
each cell were directly used from the source study, and biological interpretation of
each broad cell type was made based on the published analysis and is further
summarized in Supplementary Table 3. For each cell type, we calculated enrich-
ment of TANC2 or TANC1 using an odds ratio, and statistical significance of
enrichment or depletion was calculated using Wilcoxon rank sum test (using
wilcox.test() from R stats v3.5.3), followed by multiple hypothesis correction using
Bonferroni adjustment (p.adjust() built in function in R).

Drosophila stocks. D. melanogaster stocks were cultured in standard medium at
25 °C. The following stocks were obtained from the Bloomington Drosophila Stock
Center (BDSC): UAS-rols-RNAi lines—y1sc*v1; P{TRiP.HMC04426}attP40
(BDSC_56986) and y1sc*v1; P{TRiP.HMJ22326} attP40(BDSC_58262), UAS-rols -
y1 w*; P{Mae-UAS.6.11}rolsLA00796 (BDSC_22194), rols deficiency line - w1118; Df
(3 L)ED4475, P{3’.RS5+3.3’}ED4475/TM6C, cu1 Sb1 (BDSC_8069), UAS-mCD8::
GFP - w*; P{10XUAS-mCD8::GFP}attP2 (BDSC_32184), UAS-nls::GFP - w1118; P
{UAS-GFP.nls}8 (BDSC_4776), G-TRACE - w*; P{UAS-RedStinger}4, P{UAS-FLP.
D}JD1, P{Ubi-p63E(FRT.STOP)Stinger}9F6/CyO (BDSC_28280), Repo-Gal4 -
w1118; P{GAL4}repo/TM3, Sb1 (BDSC_7415), C57-Gal4 was previously described64.
The newly generated y1 w*; Mi{Trojan-GAL4.1}rolsMI02479-TG4.1/TM3, Sb1 Ser1

(BDSC_76150), y1 w*; Mi{PT-GFSTF.1}rolsMI02479-GFSTF.1 (BDSC_64471), and
UAS-TANC2 - y1 w*; PBac{UAS-hTANC2.B}VK37 (BDSC_78452) were generated
in the Bellen lab and have been deposited in BDSC. The 80 kb genomic rescue line
for rols was generated by Genetivision by insertion of the CH321-52G11 P[acman]
genomic BAC clone into the VK37 landing site on chromosome 2. Study protocols
comply with all relevant ethical regulations and were approved by the IRB of
Central South University.

Imaging and NMJ analysis. Whole-mount immunostaining of the Drosophila
NMJ was performed31,65. For adult brains: adult flies were dissected and fixed in
4% PFA in PBS overnight at 4 °C. Brains were transferred to 2% Triton X-100 in
PBS (phosphate-buffered saline) at room temperature for permeabilization and
subsequently vacuumed for 1 hr then incubated overnight at 4 °C. Third instar
larval brains were fixed in 4% PFA in PBS at 4 °C for 2 h and transferred to 0.5%
Triton X-100 in PBS at 4 °C overnight. All tissues were blocked in 10% normal goat
serum with 0.5% Triton X-100 in PBS and incubated with primary antibodies: anti-
GFP conjugated with FITC ab6662 (Abcam), 1:500; anti-Elav (Embryonic lethal
abnormal vision) rat monoclonal: 7E8A10 (DSHB), 1:200; anti-Repo (mouse
monoclonal: 8D12 (DSHB), 1:50. Primary antibodies were incubated at 4 °C
overnight and then washed 3× with 0.5% Triton X-100 in PBS. For Elav staining in
larval brains, the secondary antibody conjugated to Alexa-647 number: 712-605-
153 (Jackson ImmunoResearch) and CY3 number: 712-165-153 (Jackson Immu-
noResearch) conjugated was used for the adult brains. The secondary for Repo
staining was Alexa-647 number: 715-165-150 (Jackson ImmunoResearch). The
secondary for HRP used was anti-rabbit Alexa-405 number: 711-475-152 (Jackson
ImmunoResearch). All secondaries were diluted 1:250 in 0.5% Triton X-100 in PBS
and incubated at 4 °C overnight, washed 4× and mounted in RapiClear®
(#RC147001—SunJin Lab Co.), and imaged with confocal microscopy (Zeiss
LSM880). Images were processed using Imaris.

For NMJ analysis, primary and secondary antibodies were used: rabbit anti-
HRP (1:1000; code number: 323-005-021; Jackson ImmunoResearch, West Grove,
PA, USA); mouse anti-DLG (4F3; 1:50; DSHB); mouse anti-GluRIIA (8B4D2; 1:50;
DSHB); Alexa 488- or cy3-conjugated anti-mouse and anti-rabbit secondary
antibodies (1:500; Jackson ImmunoResearch, West Grove, PA, USA). All images
were collected using a ZEISS LSM880 confocal microscope and analyzed with
image J software (National Institutes of Health). Statistical analysis was performed
using GraphPad Prism 6.0 software (GraphPad Software, Inc.). Statistical
significance was performed using one-way ANOVA for comparisons of all group
means. Data expressed as the means ± SEM p values <0.05 were considered to be
statistically significant. The analysis was performed double blind.

Behavior testing. Housing and handling—All flies were grown in a temperature
and humidity controlled incubator at 25 °C and 50% humidity on a 12-h light/dark
cycle. Flies were reared on standard fly food (water, yeast, soy flour, cornmeal, agar,
corn syrup, and propionic acid). Collection of socially naïve adults was performed
by isolating pupae in 16 × 100 polysterine vials containing approximately 1 mL of
fly food. After eclosion, flies were anesthetized briefly with CO2 to ensure they were
healthy and lacked wing damage. Anesthetized flies were returned to their vials and
allowed a full 24 h to recover before testing.

Courtship paradigm—Courtship assays were performed in a custom-made six-
well plate with 40 mm circular wells, with a depth of 3 mm and 11° sloped walls
(milled66). One Canton-S virgin female (aged 6–10 days) and experimental male
(aged 3–5 days) were simultaneously introduced into the chamber via aspiration.
Recordings were taken using a Basler 1920UM, 1.9MP, 165FPS, USB3
Monochromatic camera using the BASLER Pylon module, with an adjusted
capturer rate of 33FPS. Conversion of captured images into a movie file was
performed via a custom MatLab script, and tracking of flies in the movie was
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performed using the Caltech Flytracker37. Machine learning assessment of
courtship was performed using JAABA36 and 20% videos were manually verified
for accuracy post screening.

Software and statistics—Data analysis was performed using Microsoft Excel and
GraphPad Prism. Determination of significance in behavior tests was performed
using the Kruskal–Wallis one-way analysis of variance and the Dunn’s multiple
comparison test. P values of 0.05 or less were considered significant. Outliers were
identified and eliminated using a ROUT test (Q= 1%). Evaluation of significance
when examining the number of successful copulations was determined via Chi-
Square test. P values of 0.05 or less were considered significant.

Climbing and bang-sensitivity assays. Flies were anesthetized with CO2 and
housed in individual vials 24 h prior to testing67. For climbing, flies were given 1
min to habituate to an empty vial and tapped to induce a climbing response and
timed to reach the 7 cm mark. For bang-sensitivity, flies were vortexed for 15 s and
assessed for recovery time to an upright position.

URLs. For GeneMatcher, see https://www.genematcher.org/; for ANNOVAR, see
http://annovar.openbioinformatics.org/en/latest/; for MARRVEL, see https://www.
marrvel.org.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The MIP sequencing data for this study have been deposited in the NIMH data
repository National Database for Autism Research (NDAR) (https://doi.org/10.15154/
1252218) and is available to all qualified researchers after data use certification. A
reporting summary for this article is available as a Supplementary Information file.
Underlying data in Figs. 1a; 4; 6b, c; 7d–f; Supplementary Figs. 5, 6a, b are provided as
Source Data file.
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