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A B S T R A C T

Neuroimaging studies have identified multiple extra-striate visual areas that are sensitive to symmetry in planar
images (Kohler et al., 2016; Sasaki et al., 2005). Here, we investigated which of these areas are directly involved
in perceptual decisions about symmetry, by recording high-density EEG in participants (n ¼ 25) who made rapid
judgments about whether an exemplar image contained rotation symmetry or not. Stimulus-locked sensor-level
analysis revealed symmetry-specific activity that increased with increasing order of rotation symmetry. Response-
locked analysis identified activity occurring between 600 and 200 ms before the button-press, that was directly
related to perceptual decision making. We then used fMRI-informed EEG source imaging to characterize the
dynamics of symmetry-specific activity within an extended network of areas in visual cortex. The most consistent
cortical source of the stimulus-locked activity was VO1, a topographically organized area in ventral visual cortex,
that was highly sensitive to symmetry in a previous study (Kohler et al., 2016). Importantly, VO1 activity also
contained a strong decision-related component, suggesting that this area plays a crucial role in perceptual de-
cisions about symmetry. Other candidate areas, such as lateral occipital cortex, had weak stimulus-locked sym-
metry responses and no evidence of correlation with response timing.
Symmetry is a highly salient feature of the natural world, found in
both plants and animals as well as human artifacts. There is a large
literature investigating the role of symmetry in visual perception that has
proceeded along three separate, but related lines of inquiry. First, the
computational operations necessary to detect symmetry have com-
manded a strong interest, mainly concerned with the necessity of
comparing features from spatially distant parts of the visual field (Cohen
and Zaidi, 2013; Dakin and Watt, 1994). This computational demand
suggests a close relationship between symmetry and global integration
processes involved in the perception of contours and motion (Lorenceau
and Shiffrar, 1992; McDermott and Adelson, 2004).

The second line of inquiry considers the prevalence of symmetry in
natural objects, which means that symmetry can serve as a powerful cue
for the detection, recognition and classification of objects. Symmetry has
been shown to have strong effects on multiple aspects of object pro-
cessing, such as shape discrimination (Delius and Nowak, 1982), mate
selection (Møller, 1992), and shape constancy operations (Li et al., 2013).
Symmetry may also influence scene perception, reducing the number of
perceived elements in a scene (Apthorp and Bell, 2015).

The third line of inquiry proposes that symmetry may play a key role
in neural representations, because the neural code of an input image can
ember 2017; Accepted 22 November
be made more effective by coding repeating image elements in terms of
their symmetries, rather than coding each image element independently.
Because symmetries are ubiquitous in the natural world, taking them into
account makes for a highly efficient coding strategy (Mumford and
Desolneux, 2010).

This longstanding interest in symmetry has understandably generated
a strong interest in identifying the neural mechanisms supporting sym-
metry perception. The first push in that direction used electroencepha-
lography (EEG) to study event-related potentials (ERPs) associated with
processing of reflection symmetry, and found a differential response in
posterior electrodes over occipital cortex, beginning at ~220 ms, well
after the response to the contrast change evoked by the image update
(Norcia et al., 2002). This initial EEG study has been followed by several
others measuring similar Sustained Posterior Negativity (SPN) responses to
different types of symmetric patterns (Bertamini and Makin, 2014;
Jacobsen and H€ofel, 2003; Makin et al., 2014, 2012, 2016; Palumbo
et al., 2015). Interestingly, while SPN latency is fairly consistent across
different stimuli and experiments, the amplitude has been found to scale
parametrically with the strength of the symmetry in a presented image
(Palumbo et al., 2015). Recent work has suggested that SPN amplitude
may in fact index a more general neural response to the perceptual
2017
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goodness of visual regularities (Makin et al., 2016).
Functional MRI studies on symmetry began with two studies pub-

lished the same year, that both focused on reflection symmetry in dot
patterns. The first study found a particularly strong response to symmetry
in dorsal lateral occipital cortex, compared to retinotopic cortex (Tyler
et al., 2005). The second study used an ROI definition procedure that was
independent of symmetry responses, and found several areas in
extra-striate visual cortex that were sensitive to reflection symmetry
(Sasaki et al., 2005). Some areas remained sensitive even when attention
was controlled – these areas included object-sensitive lateral occipital
cortex (LOC), ventral V4 (adjacent to ventral V3, presumably defined as a
quarter-field representation of the contralateral upper visual field,
following Hadjikhani et al., 1998), V3A, V7 (commonly referred to as
IPS0, see Swisher et al., 2007), and an area the authors called dorsal V4,
which appears to correspond to either V3B or LO1. Another group of
areas had significant responses only during passive viewing, including V3
and the motion-sensitive area MTþ (Sasaki et al., 2005).

We have recently expanded on this existing work, using a combina-
tion of EEG and functional MRI to measure responses to a novel set of
stimuli comprised of wallpaper patterns (Kohler et al., 2016). Wallpapers
are a class of regular textures that result from combinations of the four
fundamental types of symmetry reflection, translation, rotation and glide
(Fedorov, 1891; Polya, 1924). We focused on a subset of four of the 17
distinct wallpaper groups – those that contain rotation symmetries of
various order. Using a combination of functional MRI and EEG
source-imaging we showed that visual areas V3, hV4, VO1 and LOC had
responses that varied parametrically with the order of rotation symmetry
(Kohler et al., 2016). This sensitivity to rotation symmetry was not
observed in V1 or V2, suggesting that the information conveyed by this
form of regularity is not encoded prior to V3. EEG source-imaging
allowed us to study the temporal order of symmetry processing across
visual areas, and to determine that the onset of the symmetry responses
occurred earlier in V3 and hV4 than in LOC. This result suggests that
symmetry information is propagated along the ventral stream in a
bottom-up fashion (Kohler et al., 2016).

The literature thus suggest that multiple visual areas process sym-
metry, but the causal role of the individual areas in symmetry perception
remains poorly understood. A recent study found that reflection sym-
metry processing was disrupted when TMS was applied to LOC, but was
unaffected when TMS was applied to V1/V2 (Bona et al., 2014; Cattaneo
et al., 2011). This suggests that under the conditions of these experi-
ments, LOC likely had a causal role in reflection symmetry perception,
whereas V1/V2 did not. While these results indicate that LOC may be
part of the cortical network supporting symmetry perception, they do not
speak to the possible causal involvement of other areas that are respon-
sive to symmetry, such as mid-level extra-striate areas e.g. V3, hV4
or VO1.

Here we present an EEG study in which we took a different approach
to addressing the causal role of different visual areas in symmetry
perception. We collected EEG measurements of the neuronal response to
rotation symmetry, in the tradition of the initial ERP studies of symmetry.
We expanded on the existing EEG and fMRI literature, however, by using
an experiment design that made it possible to relate EEG measurements
of brain activity directly to trial-to-trial variability in behavior. Our
stimuli were textures from the four wallpaper groups containing rotation
symmetries of varying order, that we have previously studied (Kohler
et al., 2016). We asked participants to make speeded judgments about
whether a presented texture image contained rotation symmetry or not.
This approach allowed us to take two separate analysis approaches:
Stimulus-locked analysis, which identified encoding-related activity
analogous to that studied in our previous work, and response-locked
analysis, which identified activity that can be directly related to the
timing of button-press responses made by participants in each trial, and
thus to the timing of the underlying perceptual decision making process.

We first identify a set of electrodes over occipital cortex that have the
most pronounced differences in the encoding-related activity evoked by
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symmetry and no-symmetry stimuli, indicating that they are responding
to symmetry. These electrodes also have decision-related activity that is
separable from the encoding-related activity. We then use source imaging
to localize both encoding- and decision-related activity in visual cortex.
We can now ask which of the known symmetry-responsive visual areas
show encoding-related responses to symmetry, and which of them also
have activity that can be uniquely related to the perceptual decisions
about symmetry.

This response-locked analysis approach has been successfully applied
to investigations of the causal role of different visual areas in decisions
about other perceptual domains such as shape discrimination (Ales et al.,
2013) and disparity detection (Cottereau et al., 2014). Here
response-locked analysis was used to determine which of the several
areas that are capable of encoding symmetry are used to decode sym-
metry for perception. Considering that symmetry makes key contribu-
tions to multiple domains of visual perception, it is perhaps not surprising
that a large number of visual areas are sensitive to symmetry. It is
important, however, to clarify the contribution of each area to the
ongoing perception of symmetry itself. This is the first study to approach
this problem by coupling the trial-to-trial variability of brain
and behavior.

Materials and methods

Participants

Twenty-five participants (11 females, mean age 27.8 ± 11.7) took
part in the EEG experiment. Structural MRI data were collected in fifteen
of these participants (6 females, mean age 30.8 ± 13.6), so that indi-
vidualized head models could be constructed for distributed inverse
source modeling. All participants were pre-screened to confirm that they
had normal or corrected-to-normal visual acuity on the Bailey-Lovie
chart and normal stereopsis on the RandDot test (http://precision-
vision.com/products/stereo-vision-tests/randot-stereo-test.html). Their
written informed consent was obtained prior to the experiment under a
protocol that was approved by the Institutional Review Board of Stanford
University.

Wallpaper stimulus generation

The four wallpaper groups used in this study, P2, P3, P4 and P6, all
contain rotation symmetries, but the maximum order of rotation sym-
metry is different from group to group. Rotation symmetry around a
point can be defined in terms of its order n, which means that the object
can be rotated by an angle 360�/nwithout changing. Each group contains
rotation symmetry around several points that vary in order. For P2, the
maximum order of rotation symmetry is 2, for P3 it is 3, for P4 it is 4 and
for P6 it is 6 (we encourage the reader to identify rotation symmetries of
different order in Fig. 1A).

Exemplars from the different wallpaper groups were generated using
a modified version of the methodology developed by Clarke et al. (2011)
that we have described in detail elsewhere (Kohler et al., 2016). Briefly,
exemplar patterns for each group were generated from random-noise
textures, which were then repeated and transformed to cover the
plane, according to the symmetry axes and geometric lattice specific to
each group. The use of noise textures as the starting point for stimulus
generation allowed the creation of an almost infinite number of distinct
exemplars of each wallpaper group.

To control for the contribution of low level stimulus features to the
measured evoked responses, phase-randomized control exemplars were
generated that had the same power spectrum as each exemplar image for
each group. The phase scrambling operation eliminates rotation, reflec-
tion and glide-reflection symmetry relationships, but preserves the power
spectrum. As a result of the phase scrambling operation, all scrambled
control exemplars, regardless of which wallpaper group they are derived
from, degenerate to another symmetry group, namely P1. P1 is the
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Fig. 1. Experiment Stimulus and Design. (A) Exemplar images belonging to wallpaper
groups P2, P3 (top row), P4 and P6 (bottom row). (B) Schematic illustrating the experi-
mental design. Image 1 was always an exemplar image belonging to wallpaper group P1.
Image 2 was either different P1 exemplar or an exemplar from one of the four groups
containing rotation symmetry (PX). Images 1 and 2 were always spectrally matched. Each
image was shown for 1000 ms; participants had to indicate with a button press whether
the second image was P1 or PX. If their response was more than 600 ms after the onset of
the second image, a tone was played after the trial indicating a late response.
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simplest of the wallpaper groups (Liu et al., 2010) and contains only
translations of a region whose shape derives from the lattice. Because
different wallpaper groups have different lattices, P1 controls matched to
different groups have different power spectra. In our experiment, P2 and
P4 had the same lattice, while P3 and P6 shared a different lattice. Our
experimental design takes these differences into account by always
comparing the neural responses evoked by each wallpaper group to re-
sponses evoked by the matched P1 control exemplars. This means that
power spectrum differences between groups could not drive our effects.

Stimulus presentation

The stimuli were shown on a 24.5” Sony Trimaster EL PVM-2541
organic light emitting diode (OLED) display, with a screen resolution
of 1920 � 1080 pixels, 8-bit color depth and a refresh rate of 60 Hz,
viewed at 70 cm. The mean luminance was 70 cd/m2 and contrast was
95%. The diameter of the circular aperture was 13.8� of visual angle, and
the background was gray.

Experimental procedure

There were four experimental conditions, each corresponding to one
of four wallpaper groups: P2, P3, P4, P6. The structure of each trial is
shown in Fig. 1B: Participants were shown two successive images, with
each image presentation lasting 1000 ms, and were asked to determine if
the second image contained rotation symmetry or not. The first image
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was always a control image from wallpaper group P1, matched to the
wallpaper group (P2, P3, P4 or P6) associated with the second image in
that trial. There were two trial types per condition defined by whether
the second image was the same as or different from the first image. On
same trials, the second image was a different P1 exemplar, againmatched
to the current wallpaper group. This exchange led to a detectable contrast
transient, but no change in group. On different trials, the second image
was an exemplar belonging to one of the current wallpaper groups, P2,
P3, P4 or P6, depending on the condition – for all groups, we will refer to
this as PX. Prior to the experiment, participants were shown examples of
the five wallpaper groups in the experiment so that they could familiarize
themselves with the differences between P1 and PX. We pointed out
rotation symmetry axes present in PX (and absent in P1), but participants
were encouraged to look for overall structure, rather than individual
symmetry axes, when doing the task.

Participants were told to respond as quickly and accurately as
possible. To encourage rapid responses, participants were instructed to
respond no later than 600 ms after the onset of the second image. If a
response occurred later than 600ms, or not at all, this was communicated
to participants with a beep sound, that was played after the end of the
trial. Prior to collecting any EEG data, participants were also given
several practice trials for each condition, to ensure that they understood
the task and could make responses within the required time frame.
Participants made responses by pressing two buttons on a game pad,
using their left index finger for “same” trials and their right index finger
for “different” trials.

For each condition, 10 P1 exemplars were used as the first image, and
were then paired with 10 PX exemplars (on “different” trials) and 10
different P1 exemplars (on “same” trials). For each image pair within
each trial type, a differential rotation between 0 and 324� was applied so
that symmetry axes would not line up between trials with different ex-
emplars. For eight of our participants, the 20 image pairs per condition
were repeated 6 times, for a total of 480 trials. For the remaining 17
participants, there were 4 repetitions, for a total of 320 trials.

Behavioral analysis

We computed reaction time, percent correct and d’ for all partici-
pants. Out of the twenty-five participants, two were unable to perform
the task with the P2 stimulus. One participant had d’ < 0, indicating that
she tended to report PX as P1, and vice versa. The other had d’ ¼ 0
indicating that he was at chance level. Both of these participants' data, for
all four conditions, were excluded from further analysis – no other par-
ticipants had d’ lower than 0.3 for any of the four conditions.

Although participants were instructed to respond no later than
600 ms after the presentation of the second image, we only rejected re-
sponses if they occurred later than 900 ms after the presentation of the
second image – this threshold was imposed mainly to ensure that
waveforms would include at least 100 ms of data occurring after the
button press. We also rejected any trials that occurred before the onset of
the second image. Both early and late responses were extremely rare,
occurring on less than 1% and 3% of trials, respectively. As a result, the
average number of total trials, ‘Hits’, ‘Misses’, ‘Correct Rejects’ and ‘False
alarms’was 330, 140, 26, 127, and 37 trials per participant, respectively.
The corresponding standard deviations were equal to 65, 25, 17, 34 and
20. The average numbers of misses and false alarms were too small to
permit a proper analysis and we therefore focus on hits and correct re-
jects in this study.

EEG acquisition and preprocessing

The EEG data were collected with 128-sensor HydroCell Sensor Nets
(Electrical Geodesics, Eugene, OR) and band-pass filtered off-line from
0.3 to 50 Hz. Following each experimental session, the 3D locations of all
electrodes and three major fiducials (nasion, left and right pre-auricular
points) were digitized using a 3Space Fastrack 3D digitizer (Polhemus,
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Colchester, VT). The digitized locations were used to construct individ-
ualized EEG forward models for 15 of the participants (see EEG Source-
Imaging Analysis section). Raw data were subjected to an off-line sam-
ple-by-sample thresholding procedure in which noisy sensors were
replaced by the average of the six nearest spatial neighbors. On average,
less than 5% of the electrodes were substituted; these electrodes were
mainly located near the forehead or the ears, and as such are likely to
have a negligible impact on our results, as our stimuli will likely drive
responses mainly at electrodes over occipital, temporal and parietal lo-
cations. The EEG data was then re-referenced to the common average of
all the sensors and segmented into 2000 ms epochs (lasting from the
onset of image 1 until the offset of image 2). Epochs for which a large
percentage of data samples exceeded a noise threshold (depending on the
participant and ranging between 25 and 50 μV) were excluded from the
analysis on a sensor-by-sensor basis. This was typically the case for
epochs containing artifacts, such as blinks or eye movements. Across all
trials and participants, 11.1% of electrodes were excluded per trial.
Finally, waveforms from each trial were baseline-corrected by subtract-
ing the temporal average of the last 100 ms of the first image
(900–1000 ms into the trial) from the entire waveform. There was a 4.5
msec delay between the trigger for trial onset and the top of the video
frame (stimulus onset). This delay has not been corrected for in the
stimulus-locked analysis. We did not perform any further baseline-
correction at any stage of our analysis, and baseline-corrected data
served as the input to both the response-locked analyses in sensor-space
as well as the stimulus- and response-locked analyses in source space.

Structural MRI acquisition

Functional and structural MRI data were collected on a General
Electric Discovery 750 (General Electric Healthcare) equipped with a 32-
channel head coil (Nova Medical) at the Center for Cognitive and
Neurobiological Imaging at Stanford University. For each participant, we
acquired two whole-brain T1-weighted structural datasets
(1.0 � 1.0 � 1.0 mm resolution, TE ¼ 2.5 ms, TR ¼ 6.6 ms, flip
angle ¼ 12, FOV ¼ 256 � 256) and one single whole-brain T2-weighted
structural dataset (1.0 � 1.0 � 1.0 mm resolution, TE ¼ 75 ms,
TR ¼ 2500 ms, flip angle ¼ 90, FOV ¼ 256 � 256). These three scans
were used for the tissue segmentation procedure.

Tissue segmentation procedure

The FreeSurfer software package (http://surfer.nmr.mgh.harvard.
edu) was used to determine the boundaries between gray and white
matter, and gray matter and cerebrospinal fluid (CSF), and generate
cortical surface meshes (Dale et al., 1999). To avoid discontinuities in the
cortically constrained inversion procedure arising from curvature dif-
ferences between the gray/white and gray/CSF boundary, we generated
a surface partway between these two boundaries that has gyri and sulci
with approximately equal curvature. This “mid-gray” cortical surface
consisted of a very dense triangular tessellation of several hundred
thousand regularly spaced vertices. Using the MNE software package, we
down-sampled this tessellation from 292,010 to 20,484 vertices using the
MNE software package (http://martinos.org/mne/stable/index.html), a
number high enough to accurately reflect the shape of cortical manifold
(see e.g. Baillet et al., 2001), yet low enough to compute the forward
model on a standard workstation. The final mid-gray surface was used to
define the visual ROIs (see Atlas-based regions-of-interest section) and the
source space for the EEG current modeling. Additional boundaries be-
tween the brain/CSF and the skull, the skull and the scalp, and the scalp
and the air are required to generate the inverse model used for source
imaging (see EEG Source-Imaging Analysis section). These boundaries
were defined based on the T1-and T2-weighted structural MRI datasets,
by using the FSL toolbox (http://www.fmrib.ox.ac.uk/fsl/) to segment
contiguous volume regions for the inner skull, outer skull, and scalp.
These MRI volumes could then be converted into inner skull, outer skull,
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and scalp surfaces (Smith, 2002; Smith et al., 2004) that define each of
the three required boundaries.

Atlas-based regions-of-interest

Topographically organized visual ROIs were derived from a proba-
bilistic atlas (Wang et al., 2015). The atlas was generated by functionally
defining 25 topographic ROIs covering 22 visual areas in ~50 individual
participants, converting the surface data from each individual to
surface-based standardized space (Argall et al., 2006) and then assessing
the likelihood, across participants, of any particular vector on the stan-
dardized surface belonging to a particular ROI (Wang et al., 2015). The
atlas was defined using a maximum probability approach, which con-
siders a given vector as part of the set of ROIs if it is more often found
within the set, than outside the set, across participants. If this is the case,
the vector is then assigned the value of the most likely ROI, and if not, it
was considered to be outside the set of ROIs. The maximum probability
approach captures much of the overall structure of ROIs defined for in-
dividual participants and generalizes well to novel participants who did
not contribute to the atlas generation (Wang et al., 2015). We down-
loaded the atlas from http://scholar.princeton.edu/sites/default/files/
napl/files/probatlas_v4.zip and converted the ROIs from standardized
surface space to individual surface space for each of our participants,
using nearest-neighbor interpolation. We then used surface-based clus-
tering to eliminate vertices more than 1 edge removed from the main
cluster of each ROI, to ensure that all ROIs consisted exclusively of
contiguous vertices. This step eliminated small speckles, while having
minimal effect on the overall structure and extent of the ROIs. Finally, the
ROIs were down-sampled to match the 20,484 vertex surface mesh used
for source localization.

EEG sensor space analysis

For the EEG sensor-space analysis, we defined sensor ROIs, consisting
of the 16 electrodes (out of 128) that had the longest run of consecutive
time points with p-values less than 0.05 for a one-tailed paired t-test
comparing PX and P1, where PX and P1 were within-participant averages
across the four wallpaper groups. We split the 23-participant data set into
odd and even halves, and defined sensor ROIs separately for each half.
We then used each of the two 16-electrode ROIs to inspect the other half
of the data, so that ROI definitions were independent of the data being
analyzed. By selecting the features to include in the analysis (in this case:
electrodes) based on data that are independent from the data being
analyzed, this procedure avoids so-called “double dipping” – the use of
the same data set for selection and selective analysis –which can result in
distorted descriptive statistics and invalid statistical inference (Krie-
geskorte et al., 2009).

For the stimulus-locked analysis of response-timing and the response-
locked comparison of intact and shuffled waveforms, our goal is not to
identify differences between PX and P1 waveforms, the criteria we used
for feature selection, so it is not necessary to analyze odd and even
datasets separately. Thus, we analyzed data from all 23 participants as a
single dataset, using the 12 electrodes that were shared between the two
sensor ROIs defined based on each half of the stimulus-locked data. We
generated response-locked waveforms by selecting time points over a
window from 1000 ms prior to the button press until 100 ms after the
button press. When these waveforms are averaged together, the times of
the button presses will be aligned, although button presses occurred at
different times during each trial.

EEG Source-Imaging Analysis

For each participant, the EEG source space was defined by the
midgray surface (see Tissue segmentation procedure section). The distance
between the vertices of this surface was on average 3.7 mm, with a
standard deviation of 1.5 mm, range 0.1–11 mm. Current dipoles were
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placed at each of these vertices. Their orientations were constrained to be
orthogonal to the cortical surface to diminish the number of parameters
to be estimated in the inverse procedure (H€am€al€ainen et al., 1993). The
source space, the 3D electrode locations, and the individually defined
boundaries were then combined using the MNE software package to
characterize the electric field propagation using a three-compartment
boundary element method (H€am€al€ainen and Sarvas, 1989). The result-
ing forward model is linear and links the activity of the 20,484 cortical
sources to the voltages recorded by our EEG electrodes.

Cortical current density estimates of the neural responses were ob-
tained from an L2 minimum-norm inverse of the forward model as
described by Cottereau et al. (2012). We used the atlas-defined visual
ROIs (see Atlas-based regions-of-interest section) to constrain these esti-
mates by modifying the source-covariance matrix (functional area con-
strained estimation or FACE). The aim of this procedure was to decrease
the tendency of the minimum-norm procedure to smooth activity across
different visual ROIs. Two modifications were applied: 1) we increased
the variance allowed within the ROIs by a factor of two relative to other
vertices; and 2) we enforced a local correlation constraint within each
ROI using the first- and second-order neighborhoods on the cortical
tessellation with a weighting function equal to 0.5 for the first order and
0.25 for the second. This correlation constraint, therefore, respects both
retinotopy and boundaries between visual areas, and permits a more
precise dissociation of signals from different ROIs. This is not the case for
other smoothing methods, such as LORETA, that apply the same
smoothing rule across all of cortex (Pascual-Marqui et al., 1994). For each
participant, condition and trial type, the FACE inversion scheme was
applied to waveforms generated by averaging across each epoch (see EEG
Acquisition and Preprocessing section), which resulted in an estimation of
these waveforms for each source on the cortical tessellation. The wave-
forms were then averaged across all the sources belonging to each visual
ROI, for each participant, to determine the average response for each
ROI, which were in turn averaged across participants. The FACE pro-
cedure has been shown to reduce cross-talk between different cortical
ROIs resulting in better area resolution in the group inversion than can be
achieved in single participants (Cottereau et al., 2015).

Comparison of amplitude differences over time

Differences in response amplitude between the experimental condi-
tions were identified by a permutation test based on methods devised by
Blair and Karniski (1993) and described in detail by Appelbaum et al.
(2006). Briefly, this approach tests the null hypothesis that no differences
were present between experimental conditions tested by making syn-
thetic data sets in which the two condition labels were randomly
permuted across participants. For the stimulus-locked sensor space
analysis (n ¼ 11 and n ¼ 12 for the two data splits), synthetic data sets
were generated for all possible permutations (2048 and 4096, respec-
tively). For the stimulus-locked analysis of response timing (n ¼ 23) and
the response-locked comparison of intact and shuffled waveforms, both
performed in sensor space, 5000 synthetic data sets were generated, with
permutations randomly selected among the 8,388,608 possible permu-
tations. The same approach was taken for the source-localization data
(n ¼ 15): 5000 permutations were randomly selected among the 32,768
that were possible. For every permutation, we computed t-scores of the
waveform difference, and found the longest run of consecutive time
points with p-values less than 0.05. This procedure generates a
non-parametric reference distribution of consecutive significant p-values.
We then rejected the null hypothesis if the length of any consecutive
sequence of significant t-scores in the original, non-permuted data
exceeded 95% of the values in the null distribution. Because each per-
mutation sample contributes only its longest significant sequence to the
reference distribution, this procedure implicitly compensates for the
problem of multiple comparisons, and is a valid test for the omnibus
hypothesis of no difference between the waveforms at any time point.
Furthermore, this test not only detects significant departures from the
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null hypothesis, but also localizes the time periods when such departures
occur. However, since the correction procedure is tied to the length of the
data and the somewhat arbitrary choice of keeping family-wise error at
5%, we therefore also present the uncorrected significance values (see
red/yellow color maps in Figs. 3, 6, 7, 8, 10). By applying both statistical
approaches, we are better able to identify time periods when the re-
sponses depart from the null hypothesis.

Onset detection procedures

We identified onsets of the stimulus-locked activity specific to sym-
metry using the procedure described by Osman et al. (1992), in which the
onset is identified as the time-point at which the waveform achieves an
amplitude consistently above or below a criterion. We used the same
criterion throughout: 2.5 times the standard deviation over time, of a
noise distribution that was computed over a baseline window covering
the last 500 ms of the presentation of the first image. To be considered
consistently above or below criterion, the next two 50-ms windows
following the onset time-point had to exceed the criterion. Image update
responses manifested as positive transients, so we estimated the onset of
the image update response as the first time-point, following the presen-
tation of the second image, for which the within-participant average of
PX and P1 was consistently above criterion. Symmetry responses, on the
other hand, were seen as sustained activation that was more negative for
PX than P1, and were thus estimated as the first time-point for which the
difference waveform generated by subtracting P1 from PX was consis-
tently below criterion. We did not compute a common noise distribution
across all conditions – for every set of waveforms that went into a given
onset estimate, we computed independent noise distributions over the
baseline window.

We used a jackknife procedure to estimate the standard error of the
onset estimates and to quantify the significance of differences between
estimates, by computing average waveforms across all participants
except one, and then applying the onset detection procedure to the
resulting waveform. For visualization purposes, we estimated the stan-
dard error of average onsets across all participants, based on our jack-
knifed onsets (Equation (2); Miller et al., 2009). We computed t-statis-
tics for a two-tailed test comparing a pair of onsets, by subtracting the
jackknifed onset estimates for onset A and B, and then estimating the
standard error of the difference (see Equation (2); Miller et al., 1998). We
then subtracted onset A and B, estimated from the overall sample and
divided the overall difference with the estimated standard error of the
difference to derive a t-statistic (Equation (3); Miller et al., 1998).

Results

Behavioral results

We first examined participants' behavioral responses during the
rotation symmetry detection task. As described in the Methods, we
rejected two participants who were unable to do the task for group P2.
For the remaining 23 participants, we then computed the average reac-
tion time and ratio of correct responses, considering both PX and P1
trials, as well as d’, for each of the four conditions. The average reaction
time was 520 ms (standard deviation: 70 ms), the average number of
correct responses was 80.8% (standard deviation: 8.2%) and the average
d’ was 1.97 (standard deviation: 0.69). The average reaction time,
percent correct and d’ are shown as bar graphs in Fig. 2.

Performance was quite comparable across the four conditions, with
slightly worse accuracy and slower reaction time for P2 compared to the
other 3 groups. We tested these effects with a repeated measures analysis
of variance (rANOVA), implemented in R (R Core Team, 2014), using the
“ez” package (Lawrence, 2015). We performed separate rANOVAs for
each of the three measures of performance, and found significant main
effects of condition on reaction time (F(3,66) ¼ 12.2, p < 0.0001), ac-
curacy (F(3,66) ¼ 8.65, p < 0.0001) and d’ (F(3,66) ¼ 11.02,



Fig. 2. Behavioral Performance. Average reaction time (A), correct responses (B) and d’ (C) across 23 participants. Error bars are standard error of the mean.
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p < 0.0001). For all three tests, Mauchly's test indicated that sphericity
had not been violated. It is important to emphasize that effect sizes,
computed as generalized eta squared (η2G), following Bakeman's recom-
mendation (Bakeman, 2005), were quite small: RT: 0.0097; Accuracy:
0.087; d’: 0.092).

Sensor level activity locked to the stimulus onset

As mentioned above, our analysis focused exclusively on correct tri-
als. We identified sensor ROIs separately for odd and even participants as
described in the EEG sensor space analysis section. The selected electrodes
were located over the back of the head, and there was a reasonable
amount of overlap between the two sensor ROIs; 12 out of 16 electrodes
were found in both sets (see Fig. 3A and B). The responses were also quite
similar across the odd and even participants, with a transient above-zero
image update response occurring for both PX and P1, followed by a
Fig. 3. Stimulus-locked responses in sensor space. Sensor ROIs based on odd and even pa
showing the duration of the longest consecutive run of significant p-values for a one-tailed paire
values indicate electrodes for which no time-periods survived the permutation-based correction
four groups are shown in C and D. The difference between the PX and P1 waveforms is shown
averages across even participants, over the sensor ROI defined using odd participants, while w
participants. The solid black line at 1.0 s indicates the onset of the second image – note that t
conditions are overlaid in gray on the x-axes. The yellow/orange bars in the top part of each plot
p < 0.05), tested with a two-tailed paired t-test. Orange indicates p < 0.05, yellow indicates incre
that were found to be longer than what would be expected from chance, using permutation test
dotted line indicates the estimated onset of the difference waveform (t2; see Sensor level activity
onset delays in ms after the presentation of the second image, with error bars estimated using
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sustained negativity (see Fig. 3C and D).
We identified the onset of the image update response as the first time-

point for which the within-participant average of the PX and P1 wave-
forms, was consistently above criterion (see Onset Detection Procedures
section) – this occurred at ~100 ms after the onset of image 2. We
identified the onset of the symmetry response as the first time point for
which the PX-P1 difference waveform was consistently below criterion –

this occurred at ~150 ms after the onset of image 2. There were signif-
icant differences between PX and P1 during the sustained negativity,
which began at the onset of the symmetry response, and persisted until
the end of the trial, consistent with prior observations (Makin et al.,
2016; Norcia et al., 2002). Not surprisingly, given its long duration, this
run of differences survived the permutation-based correction procedure.
The clear majority of button-presses, indicated in gray on Fig. 3C and D,
occurred during this period. Both the odd and even halves of the data
exhibited this difference, and the onset estimates were also very similar.
rticipants are shown as black circles in (A) and (B), respectively, overlaid on a heat map
d t-test comparing PX and P1(see EEG sensor space analysis section), for all electrodes. Gray
procedure. The response waveforms for PX (cyan) and P1 (magenta), averaged across the
in green, with error bars indicating the standard error of the mean. Waveforms in (C) are
aveforms in (D) are averaged across odd participants, within the ROI defined using even
he first 500 ms of the trial is not shown. The response time distributions across the four
indicate time points when P1 and PX elicited significantly different responses (uncorrected
asingly smaller p-values. Asterisks indicate segments of continuously significant time-points
s. The first dotted line indicates the estimated image onset response (t1), while the second
locked to the stimulus onset section). The gray bars on the right side of the plot indicate the
a jack-knife procedure (see section Comparison of amplitude differences over time).
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We also repeated the symmetry onset estimation and PX and P1 com-
parison for P2, P3, P4 and P6 separately. These results mostly replicated
our previous finding that visual responses to wallpaper textures increase
parametrically with the maximum order of rotation symmetry within the
groups (Kohler et al., 2016). P2 (maximum order¼ 2) and P3 (maximum
order ¼ 3) yielded smaller, and less consistently significant differences
between PX and P1, than P4 (maximum order ¼ 4) and P6 (maximum
order ¼ 6). Symmetry response onsets were fairly stable across groups,
with the exception of P2 for the odd half of the P2 data, where the onset
could not be detected until very late, as a result of PX and P1 not being
reliably different (see Supplementary Fig. S1).

To visualize the pattern of activity evoked across all electrodes, as
symmetry processing unfolds, we plotted electrode maps of responses to
PX and P1 at 3 different time-points: The image onset (t1), the symmetry
onset (t2) and the peak symmetry response (t3, identified as the
maximum difference between P1 and PX). Since these maps are for
visualization only, we collapse over the two split halves of the data (see
Fig. 4). We see little difference between PX and P1 at the image onset, a
medially localized difference at the symmetry onset, which becomes
more widespread laterally and ventrally at the peak symmetry response.

Supplementary video related to this article can be found at https://
doi.org/10.1016/j.neuroimage.2017.11.051.

In conclusion, our stimulus-locked sensor space analysis shows that
symmetry responses begin approximately 50 ms after the onset of the
contrast change-driven image onset response. Differential activity related
to symmetry then persists for the duration of the symmetry image pre-
sentation. There is evidence of a symmetry response for all four groups
tested, but P4 and P6 yield the most consistent responses. All of these
effects replicate across the two independent groups of participants.

Source level activity locked to the stimulus onset

For the characterization of the data in source space, we first averaged
responses to PX and P1 across the four wallpaper groups to increase the
signal-to-noise ratio. We focused our analysis on 9 regions-of-interest
(ROIs), extracted from a probabilistic atlas (Wang et al., 2015). We had
previously identified five regions as having significant parametric re-
sponses to rotation symmetry (dorsal and ventral V3, hV4, VO1, and
LOC). All five were included in current analyses, but instead of using a
functionally-defined LOC ROI, we used more specific,
retinotopically-defined areas LO1 and LO2. LO1 and LO2 are part of the
object-selective lateral occipital complex and have significant overlap
with functionally defined LOC (Larsson and Heeger, 2006). In a
re-analysis of the data from our previous fMRI experiment (Kohler et al.,
2016), we found that the parametric response to rotation symmetry we
observed in LOC was in fact driven mostly by responses in LO1 (data not
shown). Based on these data, we reasoned that using LO1 and LO2
instead of LOC could potentially yield more specific results. We also
included VO2, a neighboring area to VO1 (Brewer et al., 2005) that was
not analyzed in our previous study. Like the other areas that were found
to be sensitive to symmetry, VO2 is positioned along the ventral
object-processing pathway, and thus likely to have similar sensitivity.
Finally, we included two control areas (V3A and V3B); retinotopic re-
gions of the dorsal pathway that are not expected to be selective to
symmetry, and did not have parametric responses in our previous study
(Kohler et al., 2016). All of the areas used are shown in Fig. 5.

The time-courses estimated in these ROIs from our source-imaging
approach are shown in Fig. 6. For both P1 and PX conditions, each of
the ROIs had strong sustained responses that arose ~150 ms after the
second stimulus onset and lasted for at least 500 ms (see the magenta and
cyan time-courses respectively corresponding to the P1 and PX condi-
tions). In most of the ROIs, this sustained response was preceded by a
transient image update response, which we also observed in the sensor
space data. The differential symmetry-specific response (see the green
time-courses) was significant in both sub-areas of V3 (dorsal and ventral)
and in VO1 (see Fig. 6) starting ~150 ms after the onset of the second
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image. This result is in line with our previous study (Kohler et al., 2016).
We also found significant differential responses in area VO2. This result is
new because we did not investigate VO2 in our previous study.
Symmetry-specific activity in the VO2 ROI reinforces the idea that
symmetry relationships are processed along the human ventral pathway.
In hV4, we observed differences between responses to the P1 and PX
conditions. However, these differences did not reach significance using
our criteria. This result is rather surprising given that we had found
strong symmetry sensitivity in this ROI in our previous study (Kohler
et al., 2016). Nonetheless, as we shall see in the following sections, our
response-locked analysis did identify hV4 responses that were signifi-
cantly modulated by perceptual decisions about symmetry. We did not
observe the sensitivity to rotation symmetry that we have previously
observed in functionally defined LOC (Kohler et al., 2016), in either of its
retinotopic counterparts LO1 and LO2. This discrepancy could poten-
tially arise from differences in task between the previous experiment and
the current one. Finally, as predicted, we saw no symmetry selectivity in
our two control ROIs (V3A and V3B).

In conclusion, our stimulus-locked source-space analysis identifies
significant symmetry-specific responses in both ventral and dorsal V3, as
well as in ventral areas VO1 and VO2. A trend can be observed in area
hV4, but did not reach significance. We see no evidence of symmetry
responses in either of the two lateral occipital areas (LO1 and LO2), nor
in our two control ROIs (V3A and V3B).

Relationship between response time and sensor-level stimulus-locked activity

Perceptual discriminations involve a chain of processes starting from
encoding of the stimulus attributes and ending with the generation of an
appropriate motor response (DiCarlo and Maunsell, 2005). The
stimulus-locked analysis demonstrated that the patterns used in our
experiment evoke responses that are tightly coupled to the time of target
presentation and that differentiate PX from P1. These differential evoked
responses begin well before the behavioral responses that are indicative
of successful discrimination.

There is considerable variability in the response time (RT) for target
identification (see histogram below waveforms in Fig. 3). This variability
could come from a number of sources, including the initial encoding
stage and/or the later processes that accumulate sensory evidence for a
decision (Gold and Shadlen, 2007). The stimulus-locked analysis will
emphasize RT-dependent variability that is due to the encoding process.
We test for the presence of RT-dependent variability, by splitting the
stimulus-locked waveforms by RT, and analyzing each group separately.
If the waveforms contain encoding-related variability that contribute to
RT, it should manifest as a difference between the groups.

For the stimulus-locked analysis of response-timing, data from all 23
participants were treated as a single dataset, and averaged over the 12
electrodes that were shared between the two sensor ROIs that we defined
based on stimulus-locked data from the odd and even participants,
respectively. For each participant, we split the stimulus-locked PX and P1
trial data into three groups, based on the button press timing: fast, me-
dium and slow responses (Cottereau et al., 2014). The data was split
using individualized criteria for each participant to ensure that each
group had the same number of trials. Fig. 7 replots the stimulus-locked
data from Fig. 3, collapsing across all 23 observers within the 12-elec-
trode sensor-ROI. The data are split by RT for both PX and P1. We tested
for RT-dependent differences using a paired t-test comparing fast and
slow waveforms, and corrected for multiple comparisons with the same
permutation approach that was used for the comparison between PX and
P1 in the previous analysis (described in detail in the Comparison of
amplitude differences over time section). There is some evidence of
RT-dependent differences in the stimulus-locked data, most prominently
at around ~200 ms after the onset of the second image. This effect occurs
in PX trials approximately 50 ms after the initial encoding of the stimulus
category (see Fig. 3) and appears to be driven by a difference in slope
between fast and slow trials. Because the effect does not survive

https://doi.org/10.1016/j.neuroimage.2017.11.051
https://doi.org/10.1016/j.neuroimage.2017.11.051


Fig. 4. Stimulus-locked activity across all electrodes as symmetry processing un-
folds. Topographic maps of stimulus-locked potentials evoked by PX and P1, averaged
across the four wallpaper groups, across all electrodes at three time points: (a) t1, the
image onset response, occurring at 96 ms after the presentation of the second image; (b)
t2, the symmetry onset response, occurring at 156 ms; (c) t3, the peak symmetry response,
occurring at 307 ms. The intersection of the sensor ROIs generated for the odd and even
participants is overlaid on the maps – note that these maps are averages across all 23
participants. A more complete picture of the development of the stimulus-locked sym-
metry-specific activity over time can be observed in Supplementary Video 1, which shows
equivalent topographic maps for PX and P1 over the entire duration of the second image,
in 5 ms increments.
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correction for multiple comparisons it can only be considered weak ev-
idence of encoding-related, RT-dependent variability. In the next section,
we will use response-locked analysis to identify more robust deci-
sion-related, RT-dependent variability in our data.

Response-locked sensor-level activity

We can emphasize activity that is related to the accumulation of
sensory evidence for a decision (Gold and Shadlen, 2007), by averaging
backwards in time from the moment of the button press. This
response-locked analysis will preferentially emphasize activity that has a
consistent timing relationship to the behavioral decision and motor
response over activity that has a consistent time relationship to the
stimulus onset (DiCarlo and Maunsell, 2005). Because stimulus-locked
responses to symmetry are very sustained (see Fig. 7), the
response-locked analysis will contain residual low-frequency stim-
ulus-locked components that survive the blurring generated by realign-
ing the waveforms to the moment of the button-press. To determine
whether there is variability in the response-locked waveforms that goes
beyond any residual stimulus-locked activity, we repeated the
response-locked analysis using RT labels that were randomly shuffled
among all of the trials. This eliminates the correlation between individual
trial waveforms and RT. Any differences we observe between intact and
shuffled response-locked waveforms are thus directly related to
decision-making.

For the response-locked analysis, we averaged response-locked intact
and shuffled waveforms from all 23 participants over our combined 12-
electrode sensor-ROI. We then tested for differences between the intact
and shuffled response-locked waveforms using a paired t-test, and cor-
rected for multiple comparisons with the same permutation approach
used in previous analyses (described in detail in the Comparison of
amplitude differences over time section). Although the intact and shuffled
waveforms are broadly similar, due to the sustained stimulus-locked
component present in both, we see significant differences for PX that
survive correction for multiple comparisons. The first differences occur as
early as ~550 ms prior to the button press.

Interestingly, we only see evidence of decision-related activity for P1
at the time of the button-press, where some time points also reach sig-
nificance for PX (but do not survive correction). This may reflect the
imbalance of the task: The first image was a P1 image in all trials, so in P1
trials a representation of the symmetries in the second (P1) image may
already exist. In PX trials, the second image contain new symmetries, so a
new representation must be built. In any case, the results from the PX
trials demonstrate that the response-locked waveforms contain decision-
related activity beyond that driven by the stimulus, that precedes the RT
by more than 500 ms. This activity can only be captured by taking the
timing of the button-press into account and by discounting sustained
stimulus-locked activity via the comparison with the shuffled waveform.

Response-locked activity across all sensors

We observed decision-related activity in our combined sensor-ROI,
which was defined by selecting the electrodes that had the most signif-
icant stimulus locked, encoding-related activity. This sensor-ROI was
over occipital visual areas, and yet had decision-related activity, as evi-
denced by the response-locked analysis. However, we also wanted to
investigate the timing of decision-related activity more broadly and
observe the transition to activity associated with the motor response. To
do this, we plot the response-locked scalp topographies at 3 key time-
points: 400 ms and 200 ms prior to the button-press, and at the
moment of the button-press. Because the intact response-locked topog-
raphies will be dominated by the residual stimulus-locked activity that is
likely encoding-related, we also plot the difference between intact and
shuffled waveforms, which highlights the decision-related activity
(see Fig. 9).

Prior to the button-press, the topographies with intact RT assignments



Fig. 5. Atlas-defined ROIs used for source imaging. On the left side of the figure, the
ROIs are plotted on the pial surface of the right hemisphere of a single subject. On the right
side of the figure, the same ROIs are shown on an inflated surface, which makes ROIs
hidden inside sulci visible.
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are dominated by symmetry-specific activity in visual cortex, which
shows little or no difference between PX and P1 at 400 ms (see top row of
Fig. 9A), but a large difference at 200 ms, near the peak of the response-
locked waveform (see middle row of Fig. 9A). The topographies of the
difference between intact and shuffled data exhibit a broad negative
difference at 400 ms for PX, but not P1 (see middle row of Fig. 9B). This
difference includes electrodes over occipital cortex, consistent with the
sensor ROI results (see Fig. 8), but is centered more anteriorly, possibly
due to the involvement of sources outside visual cortex. By the time of the
button-press, the intact and difference topographies are more similar (see
bottom row of Fig. 9), likely reflecting a mixture of sustained encoding-
related activity and response-related activity near the time of the button-
press. By comparing the intact vs shuffled trials (see bottom row of
Fig. 9B), we eliminate the sustained stimulus-locked component associ-
ated with encoding, and now the responses for both PX and P1 are
centered over central electrodes and are mirror symmetric consistent
with the finger used for the button-press (right index finger for PX, left
index finger for P1). The scalp topography thus clearly distinguishes two
phases of the response-locked waveform, an initial phase that is domi-
nated by stimulus-locked activity in visual areas, followed by a late phase
reflecting the shift to motor response generation based on the partici-
pant's choice. As demonstrated by the sensor ROI analysis (see Fig. 8), we
can identify decision-related activity during both phases.
Response-locked source-level activity

We have now identified stimulus-locked responses to symmetry both
at the sensor-level and at the source-level in a subset of visual ROIs. We
have also demonstrated that our response-locked analysis can identify
decision-related activity that is not captured by the stimulus-locked
analysis, and that is directly tied to trial-to-trial variability in partici-
pants’ responses. As a final analysis, we performed our response-locked
analysis on the source-level data in order to localize our decision-
related activity to one or more visual ROIs. We conducted this analysis
on the ROIs for which we saw a stimulus-locked symmetry response: V3d,
V3v, VO1 and VO2. Although we did not find significant differences
between activity evoked by the PX and P1 conditions in hV4, LO1 and
LO2 (see above), we also included these ROI in the analysis, because the
strong symmetry responses we previously observed in those areas
(Kohler et al., 2016) made it interesting to determine whether their
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activity could be linked to perceptual decision.
The response-locked analysis identified decision-related activity in

most of the ROIs that had exhibited significant symmetry responses in
our stimulus-locked analysis (see Fig. 10). In both V3v, V4, VO1 and VO2
we found significant differences between the intact and shuffled
response-locked waveforms for PX, with VO1 exhibiting the earliest
consistent differences. In V3d, the differences were extremely weak and
did not survive correction for multiple comparisons, which suggests that
the response-locked activity seen in V3v may be a result of mislocalized
sources from nearby ventral areas. As in the sensor-level analysis, there
were no consistent differences between intact and shuffled P1 data prior
to the button-press in any area, but LO2 exhibited significant differences
at or immediate after the button press for both PX and P1. This shows that
under the conditions of this experiment, LO1 and LO2 have neither
encoding-related or decision-related activity, but LO2 may play a role
post-decision, potentially by providing a confidence signal.

Discussion

This set of EEG results comprise the first brain imaging investigation
of the neuronal activity driving perceptual decisions about symmetry. As
in our previous study (Kohler et al., 2016), the stimuli were exemplars
from four wallpaper groups containing rotation symmetry. The addition
here of a speeded task involving the detection of the presence or absence
of rotation symmetry builds on both our previous data and previous EEG
investigations of symmetry by allowing us to distinguish encoding- and
decision-related activity. We find that while multiple visual areas have
symmetry-specific encoding-related activity, only some of them are
read-out for decision. Taken together, these findings provide a detailed
picture of the dynamics and likely origin in occipital cortex of neural
activity driving perceptual decisions about symmetry.

Decision-related activity in occipital cortex

Our response-locked analysis of the sensor space data from occipital
electrodes revealed activity that can be directly related to participants’
decisions about the presence or absence of symmetry beginning around
550 ms before the button press (see Fig. 8). The response-locked wave-
forms contain large amounts of residual stimulus-locked activity, due to
the highly sustained nature of the symmetry responses, but our com-
parison of intact and shuffled response-locked data identifies RT-
dependent variability in PX trials, that can only be captured by taking
the timing of the button-press into account. This contrasts with the results
of our stimulus-locked analysis conditioned on response timing where
the RT-dependent waveform differences were weaker and did not survive
corrections for multiple comparisons (see Fig. 7). This shows that the
trial-to-trial variability in RT is more closely associated with the accu-
mulation of evidence leading to a decision, rather than the initial
encoding of the visual stimulus.

We can distinguish two phases of the response-locked waveforms that
have different response topographies: An initial phase that is dominated
by encoding-related activity in visual areas, followed by a phase domi-
nated by motor-related responses (see Fig. 9). Importantly, we observe
decision-related activity prior to the button-press that occurs during the
initial phase, consistent with variability in the accumulation of sensory
evidence leading to the decision, prior to the generation of the motor
response. Importantly, this decision-related activity was found in a set of
electrodes over occipital cortex that were selected purely based on their
stimulus-locked response. Decision-related responses to symmetry thus
occur over brain areas that also have strong co-localized stimulus-locked,
encoding-related activity, as we have previously shown for decisions
with other stimulus regimes (Ales et al., 2013; Cottereau et al., 2014).

The source-level analysis provides further evidence for decision-
related activity in occipital visual areas. Of the 9 visual areas examined
in the stimulus-locked analysis, VO1 had the most robust encoding-
related responses to rotation symmetry (see Fig. 6). Importantly, VO1



Fig. 6. Stimulus-locked responses in source space. Average response waveforms for PX (cyan) and P1 (magenta), in our 9 ROIs, averaged across the four groups. The difference between
the PX and P1 waveforms is shown in green, with error bars indicating the standard error of the mean. Uncorrected and corrected p-values from paired t-tests comparing PX and P1 within
each ROI are shown above the plots, following the convention of Fig. 3. The t-test and corresponding permutation tests were performed within a temporal region of interest, defined based
on the sensor space analysis (see Fig. 3), which is indicated with gray shading. Asterisks indicate continuous segments of significant p-values that were longer than what would be expected
by chance, as indicated by permutation testing.
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also had strong decision-related responses that began between 600 and
400 ms prior to participants’ button presses (see Fig. 10). Our previous
study also found that VO1 was one of three visual areas that had the
strongest responses to rotation symmetry, along with hV4 and LOC
(Kohler et al., 2016). Here we expand on this work by showing that VO1
is directly involved in perceptual decisions about symmetry. VO2, an area
abutting VO1, also had both strong encoding-related and decision-related
activity. VO1 and VO2 have received little attention compared to
neighboring retinotopic areas hV4 and posterior parahippocampal cortex
(PHC-1 and 2). The role of V4 in object perception and attention has been
widely studied in both humans and monkey (Roe et al., 2012) and PHC-1
and 2 has substantial overlap with functionally localized
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parahippocampal place area (Arcaro et al., 2009). VO1 and VO2 have
been mainly associated with color processing (Brewer et al., 2005;
Brouwer and Heeger, 2009), which may interact with co-localized object
representations (Arcaro et al., 2009; Vandenbroucke et al., 2014). The
current results identify VO1 and VO2 as key players in symmetry pro-
cessing, that not only exhibit strong encoding-related activity, but also
directly drive perceptual decisions about symmetry.

Precision of ROI-based source imaging measurements

The precision of our source-imaging procedure deserves special
consideration, given that the interpretation of our source-level analyses



Fig. 7. Stimulus-locked responses in sensor space, split by response time. Average stimulus-locked waveforms plotted separately for fast, medium and slow trials for both PX (left plot)
and P1 (right plot), within the 12-electrode combined sensor-ROI described in the EEG sensor space analysis section. The difference between the fast and slow waveforms is shown in green
for both PX and P1, with error bars indicating the standard error of the mean. Uncorrected p-values from paired t-tests comparing fast and slow are shown above the plots, following the
convention of Fig. 3. There were no continuous segments of significant p-values that permutation testing revealed as being longer than what would be expected by chance.

Fig. 8. Response-locked waveforms in combined sensor ROI. Response-locked waveforms for intact and shuffled data, averaged across 12 electrodes within a combined sensor ROI,
consisting of the intersection of the sensor ROIs defined for odd and even participants. PX responses are shown on the left and P1 on the right, with the corresponding shuffled response-
locked waveforms, generated by shuffling the button-press labels among trials, shown in gray. Difference waveforms generated by subtracting the intact waveforms from the shuffled
waveforms are shown in green. Uncorrected and corrected significance of paired t-tests comparing intact and shuffled data are shown above the plots, following the convention of Fig. 3.
The shared features between intact and shuffled waveforms reflect stimulus-locked activity that is sustained enough to survive the response-locking procedure, while the differences
indicate activity that can be directly related to decision-making.
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depends fundamentally on our ability to distinguish signals generated by
different visual areas. Resolution in source-imaging depends not only on
the spatial separation of sources, but also on the details of their 3D ge-
ometry. When a given set of spatially separated sources have different
dominant orientations, they are easier to distinguish than sources with
the same dominant orientation. Similarly, resolution also depends on
source depth.

We have previously demonstrated that the ability of the minimum
norm solution to distinguish activity is improved by averaging activity
measured in individual ROIs across multiple participants, beyond the
limits of the intrinsic resolution of the method in single participants
(Cottereau et al., 2015). Because of the inherent properties of the EEG
inverse problem and specific limitations of the L2 inverse, activity in a
given ROI, hV4 for example, is a function not only of the activity arising
from hV4, but also from activity in neighboring ROIs. We have shown in
detailed simulations that the activity from neighboring ROIs will in some
cases project with a positive sign into a given ROI, and in other cases
project with a negative sign (Cottereau et al., 2015). This detailed pattern
of cross-talk signs varies considerably across individuals. By averaging in
the ROI space across participants, cross-talk between ROIs decreases as
the number of participants in the average increases. The decrease is rapid
up to approximately 8 participants, with a slower improvement for larger
numbers (Cottereau et al., 2015). This property is a unique advantage of
the way we perform ROI-based source imaging.
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With this in mind, how confident can we be in the spatial precision of
the source-imaging approach used in the present study? Barring the
availability of independent, ground truth evidence, we can assess the
resolution of our method by asking whether the source-waveforms or
patterns of response over conditions are the same or different in different
ROIs. ROI-level sources that have not been resolved will have the same
waveform or response profile. ROI-sources that have been resolved may
have different waveforms or response profiles depending on the func-
tional specificity of the ROIs.

Multiple dissociations between ROI functional profiles are apparent
in our data and these suggest that our method has an adequate level of
resolution for the questions we are asking. Although hV4 responses were
more pronounced for the PX than for the P1 condition (see Fig. 6), no
runs of consecutively significant time-points survived our criterion for
corrected significance, indicating that hV4 did not exhibit encoding-
related responses to symmetry. This null result would appear to contra-
dict our previous study where we did observe significant symmetry re-
sponses in hV4 (Kohler et al., 2016). It is important to note, however, that
in our present study hV4 had larger error bars than any other area (see
Fig. 6). It is therefore plausible that hV4 did in fact exhibit
encoding-related responses to symmetry, that our approach was not
sensitive enough to detect. Importantly, areas V3A, V3B, LO1 and LO2 all
showed no symmetry-specific stimulus-locked activity (see Fig. 6), indi-
cating that those areas could be resolved from both the ventral areas, and



Fig. 9. Response-locked activity across all electrodes. Intact response-locked data are shown in (A), while the difference between intact and shuffled data are shown in (B). Plotted at
400 (top) and 200 ms (middle) prior to the button-press, and at the moment of the button press (bottom).
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nearby dorsal V3, all of which had symmetry-specific responses
(see Fig. 5).

From this one could argue that V3, hV4, VO1 and VO2 were essen-
tially unresolved at the functional level. In the response-locked analysis,
however, there were several dissociations between these areas. We found
evidence of decision-related activity in ventral V3, hV4 and VO1, but not
in dorsal V3 (see Fig. 10). Our previous study found that there was no
functional distinction between dorsal and ventral V3 (Kohler et al.,
2016), so the decision-related activity we see in ventral V3 is likely due to
cross-talk from VO1 or hV4, rather than activity arising from ventral V3
itself. From these results, we conclude that dorsal, but not ventral V3, can
be resolved from VO1.

The pattern just described suggests that the dominant locus of
decision-related activity lies in hV4/VO1/VO2. A close analysis of the
response timing suggests that these three areas have also been resolved:
Consistent decision-related activity in hV4 and VO2 began ~100 ms later
than the corresponding decision-related activity in VO1 (see Fig. 10).
Taking both the stimulus- and response-locked data together, our results
suggest that while hV4 and VO2 might have both stimulus- and decision-
driven activity, VO1 is the earliest and primary driver of perceptual de-
cisions about symmetry.

Relationship to prior work on the cortical locus of symmetry perception

Previous functional MRI, TMS and EEG studies have implicated LOC
in symmetry processing (Bona et al., 2014; Kohler et al., 2016; Sasaki
et al., 2005; Tyler et al., 2005). LO1 and LO2, retinotopic areas that
overlap with functionally defined LOC (Larsson and Heeger, 2006), did
not have a measurable symmetry-specific response in the stimulus-locked
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analysis (see Fig. 6). The absence here of differential encoding of sym-
metry in LO1 and LO2 thus contrasts with results from the previous
studies. We note, however, that most of these studies focused on reflec-
tion, rather than rotation symmetry (Bona et al., 2014; Sasaki et al., 2005;
Tyler et al., 2005) and none of these studies used wallpaper patterns.
These factors, either separately, or in combination could contribute to the
differences in the overall pattern of symmetry-specific activity between
the present study and previous work.

In our previous study of rotation symmetry, we did use wallpaper
patterns and did find activation in LOC (Kohler et al., 2016). There are
however several differences between the present study and our previous
one. Here we studied symmetry processing in an open-loop fashion – up
to the time of the second interval in our task, there was no prior infor-
mation regarding stimulus category and the decision needed to be made
based on a single pattern exemplar. In our previous study, symmetry
patterns from a given group were presented periodically at 0.8 Hz over
12 sec trials, allowing ample time for feedback activity to influence the
response after the first presentation. It is possible that repeated presen-
tation allowed for higher-level object processing in the LOC that is less
likely to be evoked than in single, unpredictable event-related stimulus
presentations. Previous work directly comparing reflection to rotation
symmetry (Makin et al., 2012) has found differences between the two in
terms of response waveform, time and source distribution, with the
response to rotation symmetry producing a smaller Sustained Posterior
Negativity (SPN) with a more diffuse source distribution. If rotation
symmetry generates smaller responses than reflection symmetry, our
current paradigmmay be subject to a floor effect in LO1 and LO2. Finally,
it is worth noting that LO2 (but not LO1) does exhibit consistent differ-
ences between the intact and shuffled response-locked waveforms at or



Fig. 10. Responses-locked waveforms for intact data source-localized to 7 visual
ROIs. Response-locked waveforms averaged across sources within seven ROIs, four of
which showed strong symmetry responses in the stimulus-locked analysis (V3d, V3v, VO1
and VO2). The plots follow the convention from Fig. 8: PX responses are shown on the right
and P1 on the left, with the corresponding shuffled response-locked waveforms, generated
by shuffling the button-press labels among trials, shown in gray. Difference waveforms
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immediately after the button-press. This suggests that LO2 plays a role
after the decision has been made, potentially providing a confidence
signal. Further experiments under both open- and closed loop conditions
will be necessary to determine the role of LO1 and LO2 in symmetry
processing.

Relationship to prior work on the dynamics of symmetry perception

Our sensor-space analysis of encoding-related activity revealed a
symmetry-specific response in electrode ROIs over occipital cortex
defined using an independent feature selection procedure. The ampli-
tudes of the stimulus-locked activity varied with the maximum order of
rotation symmetry present in each of the four wallpaper groups (see
Supplementary Fig. S1), largely replicating our previous results (Kohler
et al., 2016). Across all groups, there was a clear image-update response
at ~100 ms after the image onset, followed by a symmetry-specific
response beginning at ~150 ms and lasting until image offset (see
Fig. 3). In our previous study (Kohler et al., 2016) we found evidence for
symmetry-specific processing as early as 75 ms. As discussed above, that
study used a steady-state design, with repeated, predictable pre-
sentations, while the current event-related using single unpredictable
stimuli. The higher predictability of the steady-state stimuli may have
allowed for faster processing.

While the onset of the symmetry response at 150msmay be later than
what we previously observed, it is in fact earlier than the ~220 ms
previously seen for the SPN for reflection symmetry (Makin et al., 2013,
2012, 2016; Norcia et al., 2002). It is possible that the task demands in
the current experiment, perhaps in combination with the use of rotation
symmetry, create this difference in temporal dynamics, perhaps because
different brain areas were recruited in our experiment. Support for
different networks being involved in rotation and reflection symmetry
comes from Makin et al. (2012) who found rotation symmetry-specific
responses as early as ~110 ms, prior to the SPN generated by both
rotation and reflection. These early responses were not observed for
reflection. So both our current data and the previous study byMakin et al.
(2012) find that neural responses to rotationmay begin earlier than those
for reflection. This is surprising given the psychophysical evidence that
reflection symmetry can be detected more quickly than rotation (Palmer
and Hemenway, 1978; Royer, 1981). In our data, the temporal progres-
sion of the scalp topography provides some evidence that different brain
areas are recruited over time (see Fig. 4): The symmetry-specific activity
begins medially and then quickly becomes more ventral and lateral
localized (see Supplementary Video 1). Further exploration of the po-
tential differences in the how the encoding of reflection and rotation
symmetry unfolds over time, will be an important goal for future brain
imaging work.

Relation to previous work on perceptual decision making

Our results add to a growing body of work which uses high-temporal
resolution neuroimaging methods such as EEG to study perceptual
decision-making in humans (Ales et al., 2013; Cottereau et al., 2014;
Dmochowski and Norcia, 2015; Donner et al., 2009; Kelly and O'Connell,
2013; O'Connell et al., 2012; Philiastides et al., 2014). Traditional
stimulus-locked analysis approaches identify cortical areas that
contribute to the encoding of a given stimulus attribute. When consid-
ering whether an area might be causally involved in perceptual decisions
about a stimulus attribute, evidence of encoding of this attribute is
necessary, but not sufficient. Stimulus-locked analysis can identify
generated by subtracting the intact waveforms from the shuffled waveforms are shown in
green. Uncorrected and corrected significance of paired t-tests comparing intact and
shuffled data for each ROI are shown above the plots, following the convention of Fig. 3.
There were consistent differences between intact and shuffled waveforms, prior to the
button-press, indicating activity that can be directly related to decision-making, in V3d,
V4, VO1 and VO2.
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encoding-related activity in a set of areas, but cannot determine which of
them are causally involved in perceptual decisions. In previous work, we
have shown that many early visual cortical areas encode disparity, but
only a subset, hV4 in particular, are involved in decisions about depth
magnitude (Cottereau et al., 2014). Similarly, many visual areas encode
texture-defined form (Appelbaum et al., 2010, 2012, 2006), but only LOC
is causally involved in decisions about shape (Ales et al., 2013). Our
current results show that although V3, hV4, VO1, VO2 and lateral oc-
cipital cortex can all have stimulus-locked, encoding-related responses to
rotation symmetry, only hV4, VO1 and VO2 can reliably be tied to
perceptual decisions, with VO1 having the earliest, and therefore likely
primary, decision-related variability. Based on this pattern across studies,
we suggest a common computational strategy: encoding of perceptual
attributes is widely distributed, but only a subset of the encoded infor-
mation is read out for decision. The areas that primarily define this
read-out appears to depend on the specific stimulus attribute in question:
hV4 for disparity, LOC for form perception and VO1 for rota-
tion symmetry.

Conclusion

In conclusion, our sensor space analyses identified encoding-related
responses to rotation symmetry that began around ~150 ms after the
symmetry image was presented, somewhat earlier than what has been
found in most previous studies of the latency of symmetry responses.
Electrodes over occipital cortex, selected based on the strength of their
encoding-related responses, also showed distinct decision-related activ-
ity that varied with button-press timing, beginning as early as 550 ms
before participants pressed the button. Our source imaging analysis
localized the encoding-related activity to several of the visual areas that
have previously been found to respond to rotation symmetry, with the
strongest symmetry-specificity occurring in area VO1. VO1 also exhibited
robust decision-related activity that began earlier than any other area,
indicating that VO1 may be the primary driver of perceptual decisions
about rotation symmetry.
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