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Abstract  
 
During the last fifty years, there has been a dramatic increase in the development of 
anthropogenic activities, and this is particularly threatening to marine coastal ecosystems. The 
management of these multiple and simultaneous anthropogenic pressures requires reliable 
and precise data on their distribution, as well as information (data, modelling) on their 
potential effects on sensitive ecosystems. Focusing on Posidonia oceanica beds, a threatened 
habitat-forming seagrass species endemic to the Mediterranean, we developed a statistical 
approach to study the complex relationship between human multiple activities and ecosystem 
status. We used Random Forest modelling to explain the degradation status of P. oceanica 
(defined herein as the shift from seagrass bed to dead matte) as a function of depth and 10 
anthropogenic pressures along the French Mediterranean coast (1700 km of coastline 
including Corsica). Using a 50 x 50 m grid cells dataset, we obtained a particularly accurate 
model explaining 71.3 % of the variance, with a Pearson correlation of 0.84 between predicted 
and observed values. Human-made coastline, depth, coastal population, urbanization, and 
agriculture were the best global predictors of P. oceanica’s degradation status. Aquaculture 
was the least important predictor, although its local individual influence was among the 
highest. Non-linear relationship between predictors and seagrass beds status was detected 
with tipping points (i.e. thresholds) for all variables except agriculture and industrial effluents. 
Using these tipping points, we built a map representing the coastal seagrass beds classified 
into four categories according to an increasing pressure gradient and its risk of phase shift. 
Our approach provides important information that can be used to help managers preserve 
this essential and endangered ecosystem. 
 
Keywords: Species distribution modelling; Ecological status; Human impacts; Change point; 
priority areas; Threats; Submersed aquatic vegetation; Coastal pressures management.  
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1.Introduction 
 
Ecosystems are globally threatened by anthropogenic pressures (Halpern et al., 2008; 
Hoekstra et al., 2005; Jackson et al., 2001; Stachowitsch, 2003; Vitousek et al., 1997). The 
increasing impact of humans on ecosystems is accompanied by an increasing demand on 
ecological services (e.g. production of edible biomass or nutrient cycling). In this context, 
concerns are emerging about our capacity to manage the balance between human impacts, 
ecosystem status and the provision of ecological services (United Nations Environment 
Programme, 2006). These concerns affect the vast majority of the human population, but they 
are particularly pressing for coastal ecosystems which concentrate high levels of marine 
biodiversity (Halpern et al., 2008). Therefore, the development of new predictive tools to 
support decision makers to maintain healthy ecosystems, despite increasing pressures, are 
urgently needed (Mouquet et al., 2015). 
 
The relationship between the intensity of anthropogenic pressures and the status of 
ecosystems is largely acknowledged (Wilkinson, 1999). Well-known examples include the 
'phase shift' (or regime shift) which implies a dramatic change from a healthy to a degraded 
ecosystem status after a tipping point is reached (Hughes, 1994; Scheffer et al., 2001). The 
existence of non-linearity in an ecosystem’s response to disturbance adds complexity and 
challenges for the development of predictive statistical tools. For example, diverse methods, 
from experiments to time series analyses have been used to study a decrease and/or an 
unexpected resurgence of seagrass in a non-linear way (Connell et al., 2017; Gurbisz and 
Kemp, 2014; Hughes et al., 2017; Lefcheck et al., 2017). However, non-linearity also opens 
new possibilities for ecosystem management if thresholds and tipping points are identified 
(Folke et al., 2004). Indeed, the same variation in pressure intensity could have either a 
negligible or dramatic effect on ecosystems, according to the nature of the system-pressure 
relationship, and the position of the ecosystem status relative to the tipping point. It also 
means that different ecosystem ‘‘states’’ (e.g., bare sediment, dead seagrass beds and 
sediment colonized by alive seagrass or submersed aquatic vegetation) can exist under the 
same set of environmental conditions (e.g., turbid and clear water) (Gurbisz and Kemp, 
2014). Therefore, the development of tools able to quantify the nature of the system-
pressure relationship and the relative distance to tipping points is essential so that managers 
can understand how their decisions impact ecosystems (Graham et al., 2015).   
 
In this study, we developed a spatially explicit statistical approach to: (i) characterize the 
system-pressure relationship for multiple pressures, (ii) identify tipping points and (iii) use 
the distance from these tipping points to classify an ecosystem according to its risk of phase 
shift. Seagrass ecosystems were chosen because they provide many ecosystem services such 
as nursery, spawning, feeding and oxygenation, and they also aid coastal protection and 
sediment trapping (Borum et al., 2004; Campagne et al., 2012). However, they are 
threatened by many human activities such as shoreline alteration, anchoring, wastewater 
release and climatic changes (Orth et al., 2006, 2017a; Waycott et al., 2009). We chose the 
most common Mediterranean seagrass meadow (Posidonia oceanica (L.) Delile) as a model 
system. P. oceanica is a protected plant (Pergent et al., 2010) which forms extensive 
meadows from the surface to depths of 40 m (depending on water transparency and 
temperature). Over the last 100 years, a global decline with losses exceeding 25 % 
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worldwide has been observed for most species of seagrass (Waycott et al., 2009), including 
P. oceanica,  whose loss of area has been evaluated to be 10 %  (Boudouresque et al., 2012; 
Marbà et al., 2014). A recent study led along the French South-Eastern coast specified that 
73 % of the shallow seagrass limits had declined over the last 85 years, with a loss of 13 % of 
the initial shallow meadow areas (spatial extent between 0 and 15 m deep) (Holon et al., 
2015). Lost areas were mainly found along human-made coastlines such as harbours (Holon 
et al., 2015). Coastal infrastructures were also recently recognized as a major threat to the P. 
oceanica food web (Giakoumi et al., 2015). 
 
Based on an extensive collection of high resolution field data, we propose a framework to 
quantify the role of multiple anthropogenic pressures in shaping the status of coastal 
ecosystems, such information can then be used to map their risk of degradation. We used a 
fine resolution (scale 1:10000) spatial dataset covering the entire French Mediterranean 
coastline (1700 km), combining the distribution of P. oceanica and 10 anthropogenic pressures 
in a statistical modelling framework. Our approach comprised four main steps: (1) mapping 
human pressures and their intensities for three different grid cell sizes using a geographic 
information system (GIS), (2) mapping living and dead P. oceanica beds, (3) modelling and 
predicting the relationships between the distribution of human pressures and the degradation 
status of P. oceanica (4) use of the best model to build maps highlighting priority areas for 
management, according to the tipping point values (identified by step 3) of the 10 
anthropogenic pressures. 
 
2.Materials and Methods 
 
2.1. Study area and seagrass bed maps  
Our study considers the French Mediterranean coastline (1700 km including Corsica) 
between 0 m and 40 m deep, i.e. the bathymetric range of P. oceanica in France 
(Boudouresque et al., 2012). Two ecosystem states were taken into account: living P. 
oceanica seagrass beds and dead matte covering (what remains of the plant after its death), 
which account for 70641 ha and 5693 ha of seabed, respectively (Holon, 2015). Maps of 
these marine habitats and bathymetric data were obtained during previous work and are 
freely available after free registration at http://www.medtrix.fr (DONIA expert project, see 
Holon et al., 2015a,b for details concerning data and map building). Briefly, after compiling a 
bibliographic synthesis, we gathered and homogenized data from 1:10000 habitat maps; 
these data were collected by different organizations and programmes (see 
acknowledgements). Campaigns were led between 2005 and 2014 using classical methods: 
aerial or satellite photography, side-scan sonar survey, sonar survey and validation through 
direct observations (“ground-truth points”) based on classical dives and/or towed dives. A 
final 1:10000 continuous habitat map was realized, comprising 11 habitat classes including P. 
oceanica seagrass and dead matte. For this study, all habitats other than P. oceanica and its 
dead matte were removed. To find the scale that allowed for the best model, the original 
vector map was rasterized using three different grid cell sizes: 20 x 20 m, 50 x 50 m and 100 
x 100 m. For each cell size, the degradation status of P. oceanica meadows was calculated as 
the percentage of dead matte cover (interpreted as a decline rate, see Moreno et al. (2001)); 
the higher the percentage of dead matte cover, the higher the degradation status.  
 
2.2. Anthropogenic pressures  
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We considered 10 relevant pressures for which data were available (Holon et al., 2015b): (1) 

agriculture (land cover), (2) aquaculture (total area of the farms), (3) coastal erosion (land 

cover), (4) industrial effluents (chemical oxygen demand), (5) human-made coastline (big 

harbours / harbours / artificial beaches, ports of refuge / pontoons, groynes, landfills and 

seawall areas), (6) boat anchoring (number and size of boats observed during summer), (7) 

fishing (traditional and recreational fishing areas estimated from the observation of buoy 

nets, pleasure fishermen and fishing boats i.e. passive fishing), (8) coastal population (size 

and density considering the inhabitants / residents), (9) urban effluents (capacity and 

output) and (10) urbanization (land cover). It is thought that these pressures impact the 

seagrass by modifying water clarity and/or current, and/or by causing direct physical damage 

(Boudouresque et al, 2012). Coastal populations often include consumers which can lead to  

an increased demand on resources (water, energy, raw material) and natural areas for 

recreational activities, and can also increase the emission of various pollutants in the water, 

soil and air (Savage et al., 2010). By definition, human-made coastline, coastal population 

and urbanization were somewhat correlated (Spearman correlation coefficient 0.57 – 0.62), 

but not enough (<0.8) to discard any of them. Moreover, Random Forests, i.e. the method 

that we used, are unaffected by multicollinearity. All other predictors were poorly correlated 

(Spearman correlation coefficient < 0.27). Details concerning data and map building have 

previously been described in Holon et al. (2015b). Briefly, data concerning the origin and 

intensity of these pressures came from published databases: MEDAM, CORINE land cover, 

INSEE and MEDOBS data, but were also provided by Agence de l’Eau RMC and IFREMER. 

Satellite-aerial pictures and unpublished data from Andromède océanologie were also 

analysed. Models of the spatial extent of the pressures were built using ArcGIS 10 (ESRI, 

Redlands, California, USA), with a 20 m distance matrix. We applied a pressure curve (type 

𝑦 = 𝑎. exp(−𝑏𝑥)) considering the distance (but not the current) to the source with a 

negative exponential shape ranging between 100 % (origin) and 0 % (no more impact) to 

each type of pressure. We also included bathymetry to model the spread of each pressure 

(Holon et al., 2015b). Please note that for a given pressure, grid cells with equivalent 

pressure values could correspond to different types of origin and intensity, for example for 

human-made coastline, the pressure at a large distance (15 km) from a large harbour may 

correspond in value to the pressure estimated at a short distance (1 km) from a pontoon 

(details described in Holon et al, 2015b). All pressure layers were then log[X+1]-transformed 

and rescaled between 0 and 100 to allow direct comparisons (0 = no pressure = the minimal 

value observed in our data and 1 = the maximal value of pressure observed in our data). The 

maps are freely available from http://www.medtrix.fr (IMPACT project) after free 

registration. Two additional layers with larger grid cells (50 x 50 m and 100 x 100 m) were 

also built. 

 
2.3. Link between the degradation status of P. oceanica and predictive variables 
The degradation status of P. oceanica (percentage of dead matte cover) was modelled 
according to depth and each anthropogenic pressure using Random Forests (also denoted in 

http://www.medtrix.fr/
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the literature as “RF” and “randomForest”) as previously described by Liaw and Wiener (2002) 
and Prasad et al. (2006) (Breiman, 2001; Cutler et al., 2007). Random Forests is a machine 
learning method that builds a set of classification or regression trees. Numerous trees are built 
using a random sample of the observed data and a random set of predictive variables each 
time, to decide the best split at each tree node. Trees are grown to maximum size without 
pruning, and the aggregation of trees is performed by averaging (Breiman, 2001;  Cutler et al., 
2007). The estimation of response values is performed using the withheld ‘out-of-bag’ 
observations (Prasad et al., 2006; Cutler et al., 2007). The explained model’s variance is 
assessed on the accuracy of the prediction of ‘out-of-bag’ data. Random Forests have been 
found to be ideally suited to ecological data as they do not require linear relationships, they 
effectively model variable interactions, can handle missing data and correlated variables, are 
more stable than traditional regression trees to minor changes in input data and have high 
predictive power (Breiman, 2001; Prasad et al., 2006; Cutler et al., 2007; Catherine et al., 2010; 
Parravicini et al., 2012; Breiman et al., 2013). The choice of RF building parameters was 
optimized using the R “caret” package (Kuhn, 2008): Random Forests were built using 1000 
trees so to stabilize the ‘out-of-bag’ error and allow for random testing of seven potential 
splitting variables at each node.  
 
2.3.1. Choice of scale 
For each scale studied (20 x 20 m, 50 x 50 m and 100 x 100 m grid cell sizes) a model was built 
and the predictive capacities of the three models were compared using the percentage of 
explained variance and the Pearson correlation between training (prediction forest built on 
80 % (random subsample of cells) of the dataset) and testing (the remaining 20 % of the data) 
datasets. Thereafter, the scale (grid size) producing the highest explained variance and 
correlation was used.  
 
2.3.2. Estimation of the relative influence of the predictive variables on the degradation 
status of P. oceanica 
In RF, the importance of a predictive variable is quantified by comparing the accuracy of the 
model’s predictions using the original variable with the accuracy of the same model using a 
randomly permuted variable (Siroky, 2009). Two output metrics are generally used. The first, 
(IncMSE), is a normalized comparison of the mean square error of the model’s predictions 
with predictions generated using randomly permuted predictor values from the ‘out-of-bag’ 
data (Cutler et al., 2007). The second, (IncNodePurity), is the average total decrease in node 
impurity attributed to splitting on each measured variable using the residual sum of squares; 
it provides an indication of node prediction accuracy attributed to each variable. The relative 
importance of each quantitative predictive variable (depth and 10 anthropogenic pressures) 
on the degradation status of P. oceanica was assessed using both metrics.  
 
2.3.3. Detection of tipping points  
To characterize the shape of the system-pressure relationship, we produced partial 
dependence plots and studied the effect of each individual predictor. Random Forest partial 
dependence plots allowed us to visualize the influence of each individual predictor on the 
response variable, while considering the average effects of all interactions with all the other 
predictors. This was achieved by applying the model to a new dataset for each unique value 
of the predictor of interest, with all other predictors held constant across other 
permutations. The response variable for this specific value of the predictor was then equal to 
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the average of the predictions over the entire dataset (Jones and Linder, 2015). Single 
tipping points (i.e. the point at which the statistical properties of a sequence of observations 
abruptly change) were detected using the “Changepoint” R package (Killick and Eckley, 
2013), using the default method (“Amoc” at most one change). Briefly, with this method, the 
data are divided into two segments and the values of the parameters associated with each 
segment (in this case the mean) are estimated to detect a potential change between 
segments (likelihood ratio test). Every point is a priori a candidate change point and if there 
is evidence of a change, the candidate point providing the strongest evidence becomes the 
detected change point. 
 
2.3.4. Map building 
For each grid cell, the relative distance to tipping points was scaled between 0 and 2 (tipping 
point value being equal to 1). To aid both visualization and management decisions, the results 
were presented according to four equal categories: [0 to 0.5] being largely below tipping point, 
[0.5 to 1] being below tipping point, [1 to 1.5] being above tipping point and [1.5 to 2] being 
largely above tipping point. An additional map combining all predictive variables according to 
their tipping point and their effect on predicted degradation status was also built with raster 
mosaic equal to the weighted sum of the transformed values for all variables. The weights 
were defined as proportional to the range of prediction for each partial plot (maximum – 
minimum), as it considered the global effect of each predictor on P. oceanica bed status, and 
gave more importance to predictors that had a stronger effect, even locally (aquaculture for 
instance as shown by Delgado et al. (1999)). For a given predictor p among n predictors, the 
weight was calculated using the following equation: 
 

𝑊𝑒𝑖𝑔ℎ𝑡𝑝 =  
𝑟𝑎𝑛𝑔𝑒(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛𝑝)

∑ 𝑟𝑎𝑛𝑔𝑒(𝑛
𝑖=1 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛𝑖)

 

 
This final map shows the influence of the combined pressures on the seabed (seagrass beds 
and dead matte) according to four equal categories between the minimal and maximal values. 
Managers could use the information provided by this map to decide which areas to protect, 
prioritizing areas in the first category (with the lowest values), then the areas in the second 
and then the third categories. The lowest category (very low) contained well-preserved 
seagrass beds with a small risk of phase shift. The second category (low) contained seagrass 
beds that were approaching the tipping point, and for which management efforts would be 
required to avoid reaching this tipping point. The third category (high) included seagrass beds 
with a high risk of phase shift, and for which management efforts were either urgently 
required or too late. The final category (very high) consisted of highly degraded seagrass beds, 
and for which a return to living seagrass beds would be a very long and perhaps impossible 
process. 
 
 
All statistical analyses were performed using R 3.0.2. (R Development Core Team, 2014). An 
overview of the processing steps used in this study is shown in Figure 1.  
#Figure 1 here# 
 
3. Results 
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3.1. Optimal scale 
The models obtained with the 20 x 20 m and 50 x 50 m datasets showed similar predictive 
performances (with percentages of explained variance of 69 % and 71.3 %, respectively and 
Pearson correlation values of 0.83 and 0.84, respectively). In contrast, the model obtained 
with the 100 x 100 m dataset (90060 cells) clearly showed a lower predictive capacity (60.7 % 
explained variance, with a Pearson correlation value of 0.77). The comparison between the 
predictive capacities of the models obtained with each of the three datasets led us to perform 
the rest of the analyses using the 50 x 50 m grid cells dataset (351955 cells). 
 
3.2. Relative influence of the predictive variables on the degradation status of P. oceanica  
Three anthropogenic pressures occupied the highest numbers of cells: urbanization (87 % of 
all cells), coastal population (72 %) and agriculture (50 %) (Fig. 2). In contrast, aquaculture (1.6 
% of the cells) and industrial effluents (5.5 % of the cells) only occupied a few cells (Fig. 2). 
  
#Figure 2 here# 
 
IncMSE and IncNodePurity, the metrics that we used to assess the relative importance of each 
quantitative predictive variable, identified human-made coastline, depth, coastal population, 
urbanization and agriculture among the most influential variables (Fig. 3). Boat anchoring, 
industrial effluents and aquaculture were the least influential variables of the model (Fig. 3). 
Individual partial dependence plots showed how the predicted degradation status of P. 
oceanica varied as a function of the different individual variables (Fig. 4 and S1), considering 
the influence of all the other predictors included in the model. From the partial dependence 
plots, depth, human-made coastline, boat anchoring and aquaculture showed the highest 
values of percentage of dead matte cover (prediction > 20 % on the y axis, Fig. 4 and S1) 
meaning a high local influence when the pressure is present. Globally, all the pressure 
variables increased the degradation status of P. oceanica beds (the higher the pressure value, 
the higher the dead matte cover) (Fig. 4). As an example, the partial dependence plot for 
urbanization (Fig. 4D) showed that the average dead matte cover remained relatively stable 
until an urbanization pressure value of 69 % (distance of 800 m from a cell totally covered by 
urbanization), whereupon the dead matte cover increased dramatically. This would suggest 
that limits need to be set for future urbanization projects to ensure they are a distance of at 
least 800 m away from P. oceanica beds, to avoid their degradation. The most interesting 
information gleaned from partial dependence plots were the shape of the predictors-response 
variable relationships, exploited in the analysis of tipping points below.  
 
#Figure 3 here# 
 
3.3. Tipping points 
Tipping points were detected for all variables except for agriculture and industrial effluents 
(Fig. 4 and S1, Table 1). The percentage of dead matte clearly increased at depths beyond 20 
m (Fig. 4B). A tipping point of 28 % was estimated for boat anchoring corresponding to 56 
boats (<15 m) per grid cell (50 x 50 m) per summer, meaning that the percentage of dead 
matte cover started to increase beyond 2.2 fifteen-meter boats per 100 m² per summer (Fig. 
S1I, Table 1). Similarly, coastal population and human-made coastline influenced the 
percentage of dead matte cover up to distances of 3.9 km (for a population density > 2000 
inhabitants/km²) and 2.5 km (for a harbour), respectively (Figs. 4C and 4A, Table 1). Smaller 
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tipping point distances were observed for urbanization (800 m), urban effluents (940 m for a 
40 000-100 000 population equivalent discard), coastal erosion (570 m), aquaculture (320 m) 
and fishing (100 m) (Figs. S1D, S1H, S1G, S1K and S1F, Table 1). 
 
#Figure 4 here# 
 
#Table 1 here# 
 
Maps built for each pressure showed that along the mainland, all the meadows and dead 
matte located near the coast surpassed the tipping point value for coastal population, except 
for very small areas including islands (detailed maps are freely available on 
http://www.medtrix.fr (“IMPACT” project) after free registration, see Fig. 5 for an example).  
 
#Figure 5# 
 
Weights used to combine the pressures according to their relative influence on predicted 
degradation were: 32.4 % for human-made coastline, 13.3 % for coastal population, 9.6 % for 
urbanization, 11.8 % for agriculture, 5.3 % for fishing, 7.4 % for erosion, 5.6 % for urban 
effluents, 20.4 % for anchoring, 10.3 % for industrial effluents and 10.3 % for aquaculture. The 
weighted sum of all pressures was then classified into four equally spaced categories (0-0.34, 
0.34-0.69, 0.69-1.03 and 1.03-1.38) to help decision makers protect the most vulnerable areas 
from reaching tipping points. Combining all the pressures, most of the meadows and dead 
mattes located near the coastline corresponded to the categories “high” or “very high” (see 
Fig. 6 and detailed maps available at www.medtrix.fr, “IMPACT” project). In contrast, offshore 
areas showed lower scores especially where meadows and dead matte occupied the largest 
areas (Fig. 6). Preserved areas (category “very low”) covering the entire bathymetric gradient 
from the coastline to offshore were rare (Fig. 6).  
 
#Figure 6# 
 
4. Discussion 
 
4.1. An effective framework to detect and map the influence of multiple pressures  
The objectives of our study were to quantify the influence of multiple anthropogenic pressures 
on the degradation of a coastal ecosystem, and to build an efficient predictive model and use 
such information to highlight which areas managers should prioritize according to the 
identified tipping points. We found that 50 x 50 m grid cells were sufficient to obtain a model 
with very good performance (71.3 % of the variance explained). The model had an excellent 
predictive capacity with a Pearson correlation of 0.84 between predicted and observed values. 
Our approach showed that most pressures exhibited a complex non-linear effect on the 
degradation of the studied ecosystem (tipping points were detected for eight pressures), thus 
justifying our selection of a Random Forest modelling approach.   
The map we built based on these results provides useful information for managers. The main 

objective of the European Union’s (EU's) Marine Strategy Framework Directive (MSFD, 
2008/56/EC) is to ensure marine resources within EU waters are kept in a sustainable state by 
achieving Good Environmental Status (GES). Our study proposes a simple methodology to help 
achieve GES targets that could be easily reproduced for other ecosystems, given enough 

http://www.medtrix.fr/
http://www.medtrix.fr/
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available data. Note, however, that tipping points related to different pressures may be 
combined in a synthetic index differently from the way used here. Here, we have chosen to 
consider the global effect (rank shown in Fig. 3) of each predictor and to give more importance 
to predictors that have a stronger effect (in individual partial dependence plots), even if they 
are localized (occupying only a small percentage of cells, aquaculture for instance as shown 
by Delgado et al. (1999)).  
 
 

4.2 Variables acting on the degradation status of P. oceanica  
This work allowed us to rank the pressures acting on seagrass beds. These pressures 
influence the degradation status of P. oceanica by decreasing water clarity, increasing 
sediment deposit, modifying water current and/or by direct physical damage (Boudouresque 
et al, 2012). 
 
Depth was a particularly important variable to be considered in our model because it can show 
how the death of seagrass beds is vertically distributed: the percentage of dead matte cover 
abruptly increases below 20 m. Depth was one of the most influential variables of the model 
because i) the intensity of the pressures were modelled with a decreasing shape according to 
increasing depths (Holon et al., 2015b), and ii) for ecological reasons. Indeed, depth acts on P. 
oceanica presence and vitality through its role in the penetration of light into the water 
column, water temperature, water column mixing and the sedimentation process 
(Boudouresque et al., 2009, 2012).  
 

Among the anthropogenic pressures, human-made coastline was the most influential 
predictor: it figured among the most important variables of the model, it was very frequent 
(almost continuous (in presence) but at a varying intensity along the coastline) and was 
individually associated with a strong prediction of the degradation status. A relatively scarce 
pressure like aquaculture had a weak influence in the global model (because of its rare 
presence along the coastline), but was very important locally to predict the degradation 
status (its presence was associated with high local dead matte percentages, prediction > 20 
% - Fig. S1k) as already suggested for P. oceanica by Delgado et al. (1999) and for other 
seagrass species by Orth et al. (2017a). These findings confirm results from previous studies 
of both this region (Micheli et al., 2013) and elsewhere (Andersen et al., 2015; Ban et al., 
2010).  
 
A ‘500 m safety distance’ from potential sources of impact is generally assumed for seagrass 
meadows (Cabaço et al., 2008; Pergent-Martini et al., 2006; Tuya et al., 2013), but our work 
shows this is insufficient. Actually, except for aquaculture (320 m for aquatic farms < 3977 
m²) and fishing (100 m, an expected short distance given the types of fishing estimated i.e. 
passive fishing), all the tipping distances we found were over 500 m (i.e. a strong impact). 
Human-made coastline influenced the degradation status of P. oceanica up to a distance of 
2.5 km (for a harbour), this distance was 3.9 km for coastal population (from a population 
density > 2000 inhabitants/km²), 800 m for urbanization and 940 m for urban effluents (from 
a 40000 – 100000 population equivalent discard). Harbours are already known to be the 
most damaging human-made coastal infrastructures: destroyed meadows have been found 
up to a distance of 5 km from a harbour (2.9 ± 5.2 m² destroyed for 1 m²; built over 5 km), 
with a strong increase in impact over the first kilometre (Holon et al., 2015a). All man-made 
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coastal structures impact seagrass status, but pontoons were found to have the least impact 
(Holon et al., 2015a; Patrick et al., 2016). 
 
4.3. Building a decision support tool  
At the interface between economic development and biological conservation, managers 
need to know where and on which ecosystems they should urgently act. Our approach 
extends previous models on the effects of multiple stressors on an ecosystem (Bianchi et al., 
2012; Parravicini et al., 2012; Stelzenmüller et al., 2010; Vacchi et al., 2014), and the 
identification of tipping points represents an objective way to identify and rank ecological 
priorities and concerns. Specifically, four main benefits for managers can be highlighted: i) 
the differentiation of pressures acting linearly or through a quantitative tipping point allows 
managers to differentiate their actions and target values to fall under the tipping points, ii) 
fine-scale detailed maps available for French managers at www.medtrix.fr allow them to 
observe locally the spatial influence of each pressure and their combined effect, iii) zonation 
(i.e. the classification of sea beds into categories depending on the degradation risk) 
facilitates decision making concerning monitoring and sampling aspects and helps to 
precisely (using a grid cell size of 20 x 20 m) know where to act and iv) individual maps show 
which pressures should be targeted as a priority. Moreover, our combined map detailing 
how P. oceanica beds and dead matte covering are influenced by the combination of all 10 
pressures, displays four categories (Fig 5b) and can thus help managers decide the actions to 
be taken depending on category and location.  
For instance, we showed that areas classified as “very low” occupying the entire depth 
gradient (shallow to deeper parts) of the ecosystem are scarce along the mainland coastline. 
We believe they deserve to be protected or be favoured for well-reasoned planning. For 
areas classified as being under a low level of influence from all pressures, managers must 
concentrate efforts to prevent seagrass beds from reaching tipping points; priority pressures 
can be identified via the individual maps. On the other hand, where the influence of the all 
pressures is very high, limitation efforts are almost certainly useless because the dead matte 
cover may already have reached 100 % (seagrass entirely dead) and recovery will be difficult. 
It is more efficient to focus on avoiding reaching the tipping point in areas classified as “very 
low” or “low”, rather than repairing dead seagrass beds in areas classified as “high” or “very 
high”.  
Areas in the “high” category can also be targeted for mitigation measures to avoid sliding 
into the “very high” category. Simultaneously, restorative actions (or experiments) may also 
be undertaken. Restoration of a degraded seagrass bed can be extremely difficult because 
reestablishment (in bare sediment or dead matte) requires more stringent conditions than 
those needed to maintain an already established bed. As previously shown for other 
submersed aquatic vegetation, resurgence requires the synergy of long-term water quality 
and favourable climatic conditions (i.e. a dry period that increased light availability due to 
less runoff), followed by positive feedback effects (facilitation) (Gurbisz and Kemp, 2014). 
Restoration of P. oceanica meadows would be even more challenging because the 
colonization of new areas and the recolonization of lost areas, via seeds, vegetative 
fragments or marginal spread of the meadow are extremely slow processes (horizontal 
growth is on average 1-6 cm/year) (Marba et al., 1996; Marbà and Duarte, 1998; Pergent-
Martini and Pasqualini, 2000; Boudouresque et al., 2012).  
 

http://www.medtrix.fr/
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Finally, while our final map combining the different predictors is interesting in terms of 
regional analysis (to define areas with priority conservation issues or restoration capacities), 
local stakeholders and managers could also take advantage of the individual pressure maps 
we produced. For instance, they can be used to decide on which pressure they should act on 
as a priority, and what pressure value (tipping point) not to exceed. Some pressures are 
relatively easy to modulate (fishing, anchoring, aquaculture or effluents to a lesser extent), 
while others are quite unalterable (coastal population). For example, a recent cooperation 
between science and management to regulate seine-haul fishing has led to a reduction of 
between 43 and 90 % in the frequency of new scars occurring in seagrass beds (Orth et al., 
2017b). Our study shows that an anchoring pressure of more than 2.2 small boats (less than 
15 m in length) per 100 m² per summer needs to be reduced to avoid a drop-in seagrass bed 
status. Recent works have highlighted the important but underestimated impact of anchoring 
on seagrass beds (Deter et al., 2017; Unsworth et al., 2017), while preventive measures could 
be as simple as mooring prohibition, mooring buoys or access to habitat maps for sailors 
(Montefalcone et al., 2006; Okudan et al., 2011).  
 
4.4. Biases and perspectives 
When interpreting our results, it is important to consider the biases inherent to the datasets, 
including the number of pressures and the methods used to spatially model the pressures 
depending on the bathymetry and the distance to the origin; these have already been 
discussed by Holon et al. (2015). Note also, that our work focuses on anthropogenic pressures 
from the driver-pressure-state-impact-response framework (Digout and UNEP/GRID-Arendal, 
2005) so to make manager’s decisions and actions easier, and has not taken into consideration 
certain states (measurable changes in water quality such as turbidity). However, these states 
directly act on and impact the plants; their inclusion could be useful to complete our work in 
a more mechanistic way (e.g. large-scale data concerning the prevalence of pathogens, density 
of invasive species, rubbish density or chemical contents). In addition, some dead mattes may 
have a natural (non-human) origin (Boudouresque et al., 2009; Vacchi et al., 2010), but this is 
assumed to be rare considering the very high stability of seagrass bed limits where exerted 
anthropogenic pressures are weak (Holon et al., 2015). Finally, quantitative values of tipping 
points may vary a little according to the method used (Killick, 2016) and deserve to be 
validated or even adjusted through another study. The literature concerning the statistical 
analysis of tipping points is huge (Mantua, 2004; Scheffer et al., 2009) and will certainly 
increase in the future as non-linear effects are detected in real ecosystems (Andersen et al., 
2009; Gurbisz and Kemp, 2014; Connell et al., 2017; Hughes et al., 2017; Lefcheck et al., 2017). 
As a direct perspective, our model could be used to predict the degradation status of P. 
oceanica along other coastlines. It could also be applied to other habitats as soon as maps 
with information concerning specific habitat status and pressure data become available. 
Seabeds have not been mapped for numerous regions in the world, and many coastlines lack 
data concerning multiple pressures (inventory, spatial localization, distance of dilution). These 
regions could benefit if habitat maps become more common. Moreover, our predictive model 
could also be used to build scenarios depending on expected changes in pressure data (e.g. 
increasing coastal population) or to predict (after a refining step) the impact of a new 
infrastructure (e.g. harbour expansion) within a bay. Similarly, even if our model already has 
a good predictive capacity (71.3 % of the variance explained), it could still benefit from the 
inclusion of environmental variables. For example, wind levels, freshwater effluents (river 
outputs and floods) or the sea surface temperature could help to better predict seagrass bed 
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loss and differentiate natural and anthropogenic causes. For example, the model could be 
combined with the IPCC (Intergovernmental Panel on Climate Change, 
https://www.ipcc.ch/index.htm) climate change projections and used to predict their impacts 
on P. oceanica meadows. Some of these environmental variables are already impacting P. 
oceanica and other seagrass species and are expected to increase in the future (Boudouresque 
et al., 2009; Duarte, 2002; Jordà et al., 2012; Pergent et al., 2014, 2015; Lefcheck et al., 2017; 
Orth et al., 2017a). 
 
5. Conclusion  
 
This study proposes a new approach to consider the role of human pressures on the 
degradation status of coastal ecosystems. By using maps of marine habitats and 
anthropogenic pressures our approach can model and predict the relationships between 
human pressures and degradation status. We selected our best model to build maps 
highlighting priority areas for management. Using 50 x 50 m grid cells, our model shows 
excellent performance to predict the degradation status of an important marine ecosystem: 
P. oceanica meadows. Moreover, our study provides useful tools for stakeholders and 
managers including pressure tipping points and prioritization maps. These could be used to 
facilitate decision making concerning impact assessment and actions addressing specific 
threats and conservation. The method developed here could be applied to other marine 
ecosystems. 
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8.Figure captions 
Figure 1. Overview of the processing steps followed in this study. Explanations are provided 
in section 2 of the text. 
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Figure 2. Proportion of 50 x 50 m cells (in percentage) occupied by the different predictors 
used to model the degradation status of P. oceanica. Total number of cells = 351955. 
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Figure 3. Importance of each of the 11 predictors: ((1) agriculture (land cover), (2) aquaculture 
(total area of the farms), (3) coastal erosion (land cover), (4) industrial effluents (chemical 
oxygen demand), (5) human-made coastline (big harbours / harbours / artificial beaches, ports 
of refuge / pontoons, groynes, landfills and seawall areas), (6) boat anchoring (number and 
size of boats observed during summer), (7) fishing (traditional and recreational fishing areas), 
(8) coastal population (size and density considering the inhabitants / residents), (9) urban 
effluents (capacity and output), (10) urbanization (land cover) and (11) depth) in the model, 
in terms of mean square errors (IncMSE) and node prediction accuracy (IncNodePurity). The 
higher the value of IncMSE and IncNodePurity, the greater the importance of the variable for 
the percentage of dead matte cover. 
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Figure 4. Partial dependence plots of the predicted degradation status of P. oceanica (in 
percentage) as a function of the four most important predictors (based on IncNodePurity, Fig. 
3) through the Random Forest model. Note that to improve visualization, the Y axis scale is 
adapted to each variable. The X axis scale is given in scaled values (percentage of the maximum 
value, see Table 1 for the corresponding usable units). Single tipping points (i.e. the point at 
which the mean percent of dead matte cover changes) were detected for each plot. The 
predictive variables are: (A) human-made coastline (big harbours / harbours / artificial 
beaches, ports of refuge / pontoons, groynes, landfills and seawall areas), (B) depth (in 
metres), (C) coastal population (size and density considering the inhabitants / residents) and 
(D) urbanization (land cover). Plots concerning the other predictor variables are shown in Fig. 
S1. 
 

 
 
 

Figure 5. Examples of detailed maps classifying P. oceanica beds and dead matte depending 
on how they are influenced by (a) the 10 individual pressures (agriculture, human-made 
coastline, coastal population, urbanization, fishing, coastal erosion, urban effluents, boat 
anchoring, industrial effluents and aquaculture) according to their tipping point values and 
(b) the combination of the 10 pressures (raster mosaic equal to the weighted sum of the 
transformed values for all variables; weights defined proportionally to the range of 
prediction for each partial plot). Tipping point values ranged between 0 and 2 for each 
variable; prediction ranged between 5.3 % for fishing and 32.4 % for human-made coastline, 
and weighted sums ranged between 0 and 1.38. Four equally spaced categories (very low, 
low, high and very high) are used to help managers and stakeholders to make decisions 
according to the risk of tipping (risk of phase shift). The Gulf of Cannes is used as an example. 
All the detailed maps are available: www.medtrix.fr (“IMPACT project”). 
  

http://www.medtrix.fr/
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Figure 6. Map classifying P. oceanica meadows and dead matte depending on how they are 
influenced by a combination of the 10 pressures (agriculture, human-made coastline, coastal 
population, urbanization, fishing, coastal erosion, urban effluents, boat anchoring, industrial 
effluents and aquaculture) according to their tipping point values (raster mosaic equal to the 
weighted sum of the transformed values for all variables; weights defined proportional to the 
range of prediction for each partial plot). Administrative French departments are indicated in 
grey and main cities in black. All the detailed maps are available at www.medtrix.fr (“IMPACT” 
project). Three zooms are presented (A, B and C). 
 

 
 
  

http://www.medtrix.fr/
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Table 1. Corresponding pressure values (0%, 100 % and tipping point values) in percentage (0 
% = minimal pressure value observed in our data, 100 % = maximal pressure value observed) 
and usable units (distance in km to the source of the pressure, or number of boats per summer 
per 100 m²) for the 10 anthropogenic pressures. The corresponding values cited as examples 
in the results section are presented in bold. Values in italics and parentheses correspond to 
pressure values of 50 % and concern pressures for which a linear effect was detected (no 
tipping point). COD = chemical oxygen demand 
 

Pressure Category 0 % 
Tipping 

point (%) 
100 % 

Human-made 
coastline 

(distance in km) 
 

Very large harbours (Marseille and Toulon) 15 3.72  0 

Harbours 10 2.48 0 

Ports of refuge, artificial beaches 3 0.74 0 

Pontoons, groynes and landfills 1 0.25 0 

Coastal population 
(distance in km) 

≤ 80 inhabitants / km² 1 0.19 0 

]80-300] inhabitants / km² 3 0.58 0 

]300-2 000] inhabitants / km² 5 0.97 0 

> 2 000 inhabitants / km² 20 3.87 0 

Urbanization 
(distance in km) 

For a cell totally urbanized  10 0.80 0 

Agriculture 
(distance in km) 

For a cell totally covered by agriculture 10 (1.50) 0 

Fishing 
(distance in km) 

 - 1 0.10 0 

Coastal erosion 
(distance in km) 

Aggradation 5 0.94 0 

Erosion 3 0.57 0 

Urban effluents 
(distance in km) 

< 10 000 population equivalent discard 1 0.19 0 

]10 000-40 000] 3 0.57 0 

]40 000-100 000] 5 0.94 0 

> 100 000 population equivalent discard 10 1.88 0 

Boat anchoring 
(number of boats per 
summer per 100 m²) 

  0  2.2  8  

Industrial effluents 
(distance in km) 

COD < 100 mg/l 5 (0.75) 0 

COD = [100-1000 mg/l] 10 (1.50) 0 

COD > 1000 mg/l 20 (3.00) 0 

Aquaculture 
(distance in km) 

Small farms < 3977 m² 0.5  0.16 0  

Large farms > 3977 m² 1 0.32 0  
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Supplementary file. 
Figure S1. Partial dependence plots of the predicted degradation status of P. oceanica (in 
percentage) as a function of each predictive variable through the Random Forest model. Note 
that to improve visualization, the Y axis scale is adapted to each variable. The X axis scale is 
given in scaled values (percentage of the maximal value, see Table 1 for the corresponding 
usable units). Single tipping points (i.e. the point at which the mean percent of dead matte 
cover changes) were detected for each plot.  The 11 predictor variables are: (A) human-made 
coastline (big harbours / harbours / artificial beaches, ports of refuge / pontoons, groynes, 
landfills and seawall areas), (B) depth (in metres), (C) coastal population (size and density 
considering the inhabitants / residents), (D) urbanization (land cover), (E) agriculture (land 
cover), (F) fishing (traditional and recreational fishing areas), (G) coastal erosion (land cover), 
(H) urban effluents (capacity, output), (I) boat anchoring (number and size of boats observed 
during summer), (J) industrial effluents (chemical oxygen demand) and (K) aquaculture (total 
area of the farms). a = 32 % = a distance of 2.5 km from a harbour; b = 20 m; c = 41 % = a 
distance of 3.9 km from a cell with a population density >2000 inhabitants / km²; d = 69 % = a 
distance of 800 m from a cell totally covered by urbanization; f = 63 % = a distance of 100 m 
from traditional and recreational fishing areas; g = 42 % = a distance of 560 m from a cell totally 
covered by erosion; h = 42 % = a distance of 940 m from a 40 000 – 100 000 population 
equivalent discard; i = 28 % = 2.2 boats / 100 m² during summer; k = 23 % = a distance of 320 
m from an aquatic farm covering less than 3977 m² (see Table 1). 
 

 
 
 


