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Abstract 

 

Extracellular matrix (ECM) has for a long time being considered as a simple 

architectural support for cells. It is now clear that ECM presents a fundamental 

influence on cells driving their phenotype and fate. This complex network is highly 

specialized and the different classes of macromolecules that comprise the ECM 

determine its biological functions. For instance, collagens are responsible for the 

tensile strength of tissues, proteoglycans and glycosaminoglycans are essential for 

hydration and resistance to compression, and glycoproteins such as laminins 

facilitate cell attachment. The largest structures of the ECM are the elastic fibers 

found in abundance in tissues suffering high mechanical constraints such as skin, 

lungs or arteries. These structures present a very complex composition whose core is 

composed of elastin surrounded by a microfibrils mantle. Elastogenesis is a tightly 

regulated process involving the sialidase activity of the Neuraminidase-1 (Neu-1) 

sub-unit of the Elastin Receptor Complex. Interestingly, Neu-1 subunit also serves as 

a sensor of elastin degradation via its ability to transmit elastin-derived peptides 

signaling. Finally, reports showing that neuraminidase activity is able to regulate  

TGF-β activation raises questions about a possible role for Neu-1 in elastic fibers 

remodeling.  

In this mini review, we develop the concept of the regulation of the whole life of 

elastic fibers through an original scope, the key role of Neu-1 sialidase enzymatic 

activity.  

Keywords : Elastin, Elastin-Derived Peptides, Elastin Receptor Complex, 

Neuraminidase-1, Desialylation 
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Introduction 

Extracellular matrix (ECM) is a network of macromolecules surrounding cells in 

all tissues. Although it has been considered for years as a simple architectural 

support, providing structural and mechanical functions, it is now clear that ECM also 

mediates diverse biological functions and influences cell phenotype. This highly 

complex and dynamic network is composed of several macromolecules playing 

distinct and precise roles involved in tissue function, integrity and homeostasis [1]. 

Among these proteins, collagens appear as main structural contributors of the ECM 

and are responsible for tensile strength [2]. Proteoglycans and glycosaminoglycans 

have the ability to sequester water allowing resistance of tissues towards forces such 

as compression, and several glycoproteins such as laminins or fibronectin act as cell 

attachment facilitators [3].  

Elastin, another fibrous protein, is involved in tissues elasticity and resilience 

enabling them to withstand repetitive mechanical stress. It is consequently found in 

highly deformable tissues such as skin, lungs or arteries [4, 5], where this highly 

elastic protein plays a crucial role in their physiological function. One extraordinary 

example of elastin fundamental function is the adoption by vertebrates of a close 

circulatory system using a specialized vessel wall designed to provide essential 

elastic recoil at high pressure [6, 7]. This wall, highly rich in elastin that accounts for 

up to 50% of the protein content of the aorta [8], presents an interconnected lamellar 

network of elastic fibers, responsible for transfer of the deformation stress throughout 

the wall, a process which is essential for vessels function [9]. 

 Elastin is the main component of a more complex supramolecular assembly 

named elastic fibers, the largest structures in ECM [10]. Elastic fibers are composed 
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of a core of elastin, a polymer of tropoelastin, surrounded by a mantle of microfibrils 

whose composition is complex. These fibers are assembled primarily during 

development and childhood. Besides their elastic properties, they also present the 

ability to sequester highly active growth factors such as latent Transforming growth 

factor-β (TGF-β), regulating its bioavailibility and activity [11, 12]. Although elastic 

fibers are designed to maintain elastic function for a lifetime and consequently are 

highly resistant to degradation, several enzymes (matrix metalloproteinases, serine 

proteases or cysteine proteases) are able to cleave elastic fibers [8, 13]. This leads to 

loss of tissue elasticity contributing to the ageing of ECM but also to the development 

of pathologies such as emphysema, aneurysms or atherosclerosis in which the 

elastin-derived peptides (EDP) produced play a central role [14-16].  

 The Elastin Receptor Complex (ERC) has been shown to be actively involved 

in some of the above mentioned processes through its participation in elastogenesis 

but also as a sensor of elastin degradation via its ability to bind EDP. In these two 

phenomena, reports clearly pointed out the central role of the sialidase activity of its 

Neuraminidase-1 (Neu-1) sub-unit [17, 18]. Neu-1 now clearly appears as the 

fundamental actor in the homeostasis of elastic fibers, playing a role during their 

synthesis but also being a crucial sensor of their degradation. Finally, reports showed 

the importance of sialidase activity in the regulation of TGFβ activation, suggesting 

an unexpected role for this enzyme class [19]. This opens new avenues for a role of 

the ERC and especially Neu-1 in the biochemistry, biology and functions of mature 

elastic fibers. 

 Based on this evidence, we summarized in this mini review the role of  

Neu-1 in the regulation of the whole life of the elastic fibers. We highlight the original 

concept of the regulation of elastic fibers from their biosynthesis to their degradation 
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via an innovative and not previously discussed point of view, the crucial participation 

of a sialidase, Neu-1.  

 

Elastin Receptor Complex-associated Neuraminidase-1 : a crucial 

actor of elastic fibers biosynthesis  

The formation of elastic fibers requires the coordination of several complex 

processes. It involves intracellular regulation at the transcriptional and post-

transcriptional levels, extracellular secretion and assembly of tropoelastin monomers 

at the site of elastogenesis. Tropoelastin secretion is followed by its maturation 

involving cross-linking through lysyl oxidase (forming diverse cross-links such as 

lysinonorleucine, desmosine or isodesmosine) [20] and its association with the 

preexisting microfibrils scaffold composed of several classes of glycoproteins such as 

fibrillins, Microfibrils Associated Glycoproteins (MAGPs), fibulins, Latent TGF-β 

Binding Proteins (LTBPs) or Elastin Microfibril Interface-Located proteins (EMILINs) 

[21]. The components of elastic fibers are synthesized and secreted from several cell 

types including smooth muscle cells, fibroblasts, endothelial cells, chondroblasts and 

mesothelial cells [22], with tissue-specific expression of elastin during development 

[23]. Importantly, elastogenesis is a process that generally ceases in childhood with 

little or no renewal of elastin production during adult life, thus exposing elastic fibers 

to diverse types of alterations [8]. 

After its synthesis and splicing, tropoelastin mRNA is exported outside the 

nucleus. Translation occurs at the surface of the rough endoplasmic reticulum (RER) 

thereby forming in human, for the largest isoform, an about 60 kDa polypeptide with a 

26 amino acid signal sequence that is cleaved as the protein enters the RER lumen 
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[24, 25]. After release of the signal peptide, the protein is transported to the trans-

Golgi apparatus. Tropoelastin is then chaperoned by EBP (Elastin Binding Protein), a 

splice variant of the lysosomal β-galactosidase that limits premature intracellular self-

aggregation and degradation by proteinases [26]. Tropoelastin is then accompanied 

to the cell surface through its interaction with EBP [27]. When reaching the plasma 

membrane, the latter assembles with Neu-1 and protective protein/cathepsin A to 

form a cell surface-targeted molecular complex named Elastin Receptor Complex 

(ERC). Besides EBP, all three components of the complex have been shown to 

participate in the regulation and assembly of elastic fibers but Neu-1 is clearly a 

central actor [28]. 

Indeed, the sialidase activity of Neu-1 that cleaves the terminal sialic acids 

(SA) of the carbohydrate chains of microfibrillar proteins during synthesis of elastic 

fibers, leads to access to the galactosyl residues. In turn, exposed galactosugars 

interact with the galactolectin domain of EBP, to induce the release of transported 

tropoelastin molecules, facilitating their subsequent assembly into elastic fibers. After 

release of the tropoelastin to the growing elastic fibers, EBP is recycled back into 

intracellular endosomal vesicles and can bind and escort a new synthesized 

tropoelastin molecule to the cell surface again [27] (Figure 1). 

Several elegant studies confirmed the essential role of Neu-1 in the synthesis 

of elastic fibers. The murine knockout of the Neu-1 gene led to abnormal organization 

of elastic fibers in the aorta with reduced level of elastin [29]. This is associated with 

abnormalities characteristic of early-onset of sialidosis in children (growth retardation, 

severe nephropathy, progressive edema, splenomegaly, kyphosis and urinary 

excretion of sialylated oligosaccharides) [30]. The treatment of human skin 

fibroblasts, aortic smooth muscle cells and ear cartilage chondrocytes with sialidase 
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inhibitors suppressed elastic fiber assembly and induced impaired elastogenesis in 

developing chicken embryos [28]. Moreover, elastogenesis in cultured dermal 

fibroblasts from patients with lysosomal β-galactosidase, PPCA and Neu-1 

deficiencies (such as congenital sialidosis and galactosialidosis) could be reversed 

by transformation with Neu-1 cDNA, treatment with bacterial sialidase [28] or 

substitutions in the Neu-1 gene [31]. Those findings clearly showed a preponderant 

role of Neu-1 activity for the correct deposition and assembly of elastic fibers. 

Consequently, Neu-1 appears as a key enzyme in the assembly of elastic fibers. 

 

Elastin Receptor Complex-associated Neuraminidase-1: molecular 

sensor of elastic fibers degradation  

 

 Besides its involvement in elastin and elastic fibers biosynthesis [28], 

accumulative data from the last decade have shown that ERC and especially Neu-1 

also serve as a functional sensor for elastic fiber degradation. Elastic fiber 

degradation occurs in different pathophysiological contexts and constitutes a typical 

hallmark of aging and associated diseases. Through EBP engagement, Neu-1 plays 

a critical role in the signal processes and biological activities mediated by these 

degradation products. This has been mainly demonstrated for elastin-derived 

peptides (EDP) [14, 17, 32-36] in the field of cardiovascular diseases [8, 37, 38], 

cancer progression [4] and emphysema [39, 40]. Signaling events involve mainly the 

phosphoinositide-3-kinase γ (PI3Kγ) pathway and converge to ERK1/2 and Akt 

activation [41-43] (Figure 2). 

 Identification and functional characterization of EDP released after elastin 

degradation have been extensively studied from the pioneer works of Senior et al. 

[44], and the discovery of the first EDP having biological activity towards fibroblasts 
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and monocytes, the GxxPG-containing peptide VGVAPG. This hexapeptide is located 

in the central region of the human tropoelastin polypeptide sequence, where it is 

repeated six times in the domain encoded by exon 24. To date, VGVAPG is 

considered as the archetypal EDP. Other tropoelastin-derived GxxPG sequences 

were further identified as bioactive such as PGAIPG [45], GVAPG and GLVPG [46], 

GVYPG, GFGPG, and GVLPG [47]. Moreover, longer bioactive peptides have also 

been identified [48]. Theoretical and experimental results concerning VGVAPG and 

other GxxPG peptides have demonstrated that these intrinsically disordered peptides 

can transiently sample the type VIII β-turn conformation that is required for their 

binding to EBP and their biological activities [49-51]. Molecular simulations have 

proposed that any residues located before this motif increases the β-turn 

stabilization, but they are not required for biological functions. The residue located 

after GxxP has no significant structural effect meaning that in the GxxPG bioactive 

motif, this glycine only has an importance for EBP anchoring and not for the EDPs 

structural behavior. Moreover, the “x” amino acids found in the GxxPG motif are of 

importance for obtaining the type VIII β-turn conformation. When x = G at any of 

these positions, the peptides fail to fold in type VIII β‐turn. Additionally, a proline 

residue located at the first “x” position stabilize the type VIII β‐turn structure whereas 

it blocks the establishment of this conformation when located at the second “x” 

position [52].  

Although elastin is the ECM protein containing the largest number of GxxPG 

sequences, many other ECM proteins and proteins involved in the constitution of 

elastic fibers contain such a sequence. For instance, fibrillin-1, -2, and -3, EMILIN-1 

and -2, fibronectin, and type III, IV, V, VII, and VIII collagens include at least three 

GxxPG motifs in their polypeptide sequences [53]. In this context, a fibrillin-1 
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fragment containing the EGFEPG sequence has been shown to upregulate MMP-1 

expression in fibroblasts [53] and to be chemotactic for macrophages [54]. Blocking 

the interaction between EBP and GxxPG motifs using the BA4 monoclonal antibody 

[55] or causing shedding of EBP by lactose [56, 57] inhibit chemotaxis to this fibrillin-1 

fragment as well as to aortic extracts of mgR/mgR mice, a mouse model of Marfan 

syndrome associated with increased susceptibility to fragmentation of elastin and 

fibrillin-rich microfibrils [54]. Importantly, the same group further showed that this 

monoclonal antibody BA4 can also decrease disease progression and ameliorate 

manifestations of aortic disease in this mouse model [58]. 

Although a sialidase inhibitor was not tested in the above-cited works, these 

data argue for a critical sensor role of Neu-1 via EBP engagement during elastic 

fibers degradation and suggest that specific inhibitors of Neu-1 should be of great 

value to prevent or decrease the biological effects mediated by these degradation 

products. Although significant advances have been achieved in the search for Neu-1 

inhibitors by using analogs of the broad spectrum sialidase inhibitor 2-deoxy-2,3-

didehydro-N-acetylneuraminic acid (DANA) [59], identification of more selective 

inhibitors of membrane Neu-1 sialidase activity is hampered by our poor knowledge 

on Neu-1 structure and membrane topology. In the absence of crystallographic data, 

homology models of the mammalian sialidase family have been developed based on 

the crystal structure of Neu-2 [60], with Neu-1 being predicted to have the typical 

structure of sialidases: a β-propeller composed of four anti-parallel β-sheets 

organized in six blades. However, recent studies on Neu-1 [61] and Neu-3 [62], the 

second plasma membrane sialidase, rather suggest that these sialidases have the 

characteristics of an integral membrane protein. By combining molecular biology and 

biochemical analyses with structural biophysics and computational approaches, two 
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regions were identified in Neu-1 as potential transmembrane (TM) domains, with its 

N- and C-termini oriented towards the cytosol. In membrane mimicking environments, 

the corresponding peptides form stable α-helices and one of these two TM domains 

is suited for self-association. Interestingly, introduction of point mutations within this 

TM domain blocks Neu-1 dimerization and decreases membrane sialidase activity 

[61]. Discovery of such dimer organization opens interesting prospects on ERC 

stoichiometry at the plasma membrane. Another interesting issue relies on how 

binding of GxxPG motifs to EBP triggers Neu-1 sialidase activity at the plasma 

membrane. It is tempting to speculate that the binding of GxxPG motifs to EBP leads 

to conformational changes within Neu-1 dimers that may help in increasing its 

catalytic activity. Further clarification on how Neu-1 is inserted within the plasma 

membrane, together with EBP and PPCA, is required to better understand the 

regulatory mechanisms of Neu-1 at the molecular level and its participation in 

biological processes. 

 Finally, Neu-1 now emerges as a critical regulator of the sialylation level of a 

myriad of membrane receptors, such as integrins [63, 64], tyrosine kinases receptors 

[32, 65, 66], Toll-like receptors [67, 68], and more recently CD36 [33]. Desialylation of 

these receptors by Neu-1 has been shown to modulate their activation and related 

signaling pathways. Moreover, recent findings have also reported that plasma 

membrane Neu-1, in complex with MMP-9, G protein-coupled receptors, and tyrosine 

kinase receptors or Toll-like receptors, could be involved in receptor transactivation 

[69, 70]. This opens new avenues in the complexity of the biological processes 

mediated by Neu-1, and possibly by elastic fibers degradation through EBP 

engagement. Taken together, these data clearly position Neu-1 as a fundamental 
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molecular sensor of elastic fibers degradation but also as a central regulator of the 

plasma membrane proteome. 

 

Neuraminidases and elastic fibers remodeling: an unconsidered 

role for Neu-1 ? 

As described above, Neu-1 plays a key role in elastic fibers assembly and 

degradation sensing. Interestingly, this sialidase belongs to a large family of enzymes 

conserved through evolution and this point could bring important information about 

unconsidered roles for Neu-1. 

Neuraminidases, or sialidases, are found in several species such as viruses, 

bacteria, protozoans, birds and mammals [71]. Neuraminidases play a key role in the 

catabolism of sialoglycoconjugates by cleaving their SA residues to induce temporal 

changes in their structure and functions [72, 73]. SA, distributed ubiquitously in 

mammals tissues, are N- or O-substituted derivatives of neuraminic acid (a 

monosaccharide with a nine-carbon backbone) and their presence in 

glycoconjugates can modify their functions and interactions with other molecules [74]. 

These compounds constitute terminal residues on glycan chains of glycoproteins and 

glycolipids on all living cells. Desialylation of glycoproteins and glycolipids is a crucial 

mechanism regulating molecular recognitions inside cells, between cells, between 

the cells and the ECM and between the cells and several pathogens [75]. 

Interestingly, viruses, bacteria or protozoans use these processes in order to 

get biological advantage. In this way, the relation between neuraminidases 

expression and TGF-β release and activation is of great interest. TGF-β is a cytokine 

which regulates several cellular and immunological processes such as initiation and 
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resolution of inflammatory responses [76-78]. TGF-β is secreted by cells as a 

biologically inactive molecule called latent TGF-β (LTGF-β) [79, 80]. This latent 

complex is composed of the N-terminal latency-associated peptide (LAP) and the 

mature TGF-β domain which are non-covalently linked [81]. Sha et al. have shown 

that the LAP amino acid sequence 50-85 (including amino acids which are 

glycosylated and contain terminal SA residues) are essential to LTGF-β complex 

formation and function [82]. Another form of TGF-β storage involves LTBPs that were 

identified as forming latent complexes with TGF-β by covalently binding LAP via 

disulfide bonds. Consequently, it has been proposed that LAP, TGF-β, and LTBP 

form the large latent complex (LLC). Agents that are able to activate LTGF-β induce 

the dissociation of LAP with the mature domain either by denaturing LAP or by 

altering its folding, which is a key step in TGF-β function [19, 81]. 

Several pathogens such as bacteria, parasites or viruses are able to evade 

immune responses by regulating TGF-β activation. Carlson et al. showed that 

neuraminidases of influenza A viruses and Clostridium perfringens activate LTGF-β 

by removing SA motifs from LTGF-β [19]. Their results have also demonstrated that 

TGF-β plays a crucial role in the protection of the host from influenza pathogenesis. 

Strikingly, human Neu-1 presents high sequence similarity and substrate specificity 

with viruses and bacteria neuraminidases [83, 84]. It could consequently be 

speculated that the ERC-associated Neu-1 could also participate in the regulation of 

the bioavailibility of TGF-β, suggesting a totally unconsidered role for Neu-1 (Figure 

3). Thus, in addition to the well-described role of Neu-1 in elastic fibers assembly and 

degradation sensing, Neu-1 could also have a pivotal role in the remodelling of 
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elastic fibers through a potential function in TGF-β release. Of course, this 

hypothetical new role for Neu-1 remains to be demonstrated. 

This hypothesis could also have an importance in pathologies associated with 

elastic fibers degradation and TGF-β release such as Marfan syndrome (MFS). 

Marfan syndrome (MFS) is an inherited, autosomal dominant disorder caused by 

mutations in the fibrillin-1 encoding gene (FBN1) with prominent skeletal 

abnormalities and clinical manifestations in eye, skin and the cardiovascular system 

[85]. MFS is associated with extensive elastic fibers degradation and excessive TGF-

β release [86, 87] due to the inability of fibrillin-1 to restrict TGF-β activation. It could 

consequently be tempting to speculate that the large amount of GxxPG fragments 

produced in MFS may also affect such processes by increasing the activation of the 

ERC and enhancing TGF-β release and activation by the sialidase activity of its Neu-

1 subunit.  

 

Conclusion 

Elastic fibers are fundamental components of the ECM. They provide, via 

elastin and to a lesser extent through their microfibrils component, elastic recoil to 

tissues such as skin, arteries or lungs. It is fascinating that their whole life could be 

seen via the scope of a single enzyme, Neu-1. Indeed, this sialidase plays a key role 

in their biosynthesis but also has the ability to sense their degradation through the 

ERC. Finally, interesting data emerging from the sialidase family could lead to the 

definition of new roles for Neu-1 that could modify the way we consider the regulation 

of TGF-β bioavailability.  
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In conclusion, the data summarized here clearly demonstrate that Neu-1 has 

now to be seen as a crucial regulator of the biochemistry and biology of ECM elastic 

fibers, opening new ways to consider ECM biology.  
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Figures Legends 

Figure 1: Role of ERC in elastogenesis. 1) After its synthesis, tropoelastin 

associates with EBP that acts as a chaperone protein accompanying the elastin 

monomer to the surface of the plasma membrane where it associates with the rest of 

the ERC, PPCA and Neu-1. 2) The consequent triggering of Neu-1 sialidase activity 

leads to the desialylation of microfibrillars proteins. The unmasking of galactosyl 

moieties permits the interaction with EBP leading to the release of tropoelastin and to 

the recycling of EBP. 3) Tropoelastin is incorporated to the elastic fibers under 

construction and through lysyl oxidase action, formation of cross-links leads to the 

formation of mature elastin. 

Figure 2: The sensor role of Neu-1 in elastic fibers degradation. Degradation of 

elastic fibers releases GxxPG fragments from the microfibrils and the elastin core. 

Binding of GxxPG fragments to the ERC triggers signaling pathways through Neu-1 

that involve critical signaling proteins, such as PI3Kγ, and converge to ERK1/2 and 

Akt activation. In addition, Neu-1 modulates the sialylation level and signaling of 

membrane receptors, such as the insulin receptor [32] and CD36 [33] that also 

contributes to the biological activities of GxxPG fragments. EBP, elastin-binding 

protein; ERC, elastin receptor complex, ERK1/2 extracellular-regulated protein 

kinases 1/2; Neu-1, neuraminidase-1; PI3K, phosphoinositide 3-kinase; PPCA, 

protective protein/cathepsin A. 

Figure 3 : Putative role of Neu-1 as a crucial regulator of TGF-β release.  

A) Bacteria, parasites or viruses have been shown to be able to regulate TGF-β 

activation. Neuraminidases of such organisms (as influenza A viruses and 

Clostridium perfringens) activate LTGF-β by removing sialic acids from LTGF-β and 

increase  
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TGF-β bioavailability. B). Hypothesis of a Neu-1-dependent TGF-β activation. Neu-1 

presents high sequence similitude and substrate specificity with viral and bacterial 

neuraminidases. Consequently, it could be postulated that the ERC-associated Neu-

1 may also play a role in the regulation of TGF-β bioavailability. In this hypothesis, 

the ERC is activated by EDP following elastic fibers degradation. The resulting 

increase in Neu-1 activity leads to the desialylation of LTGF-β resulting in an increase 

of TGF-β activation. 
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