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Introduction

10 Circadian

Q3
Q4

rhythmicity is of crucial relevance for
anaesthesia, not only for chronopharmacological
aspects, but also for the clinical management of
patients (Dispersyn et al. 2009).

Mammalian physiology is endogenously rhyth-
15 mic on a daily basis, due to a network of circadian

clocks that generate an internal cyclic timing. At
the top of the circadian system is a master clock
located in the suprachiasmatic nuclei (SCN) of
the hypothalamus. This structure provides timing

20 signals to many secondary clocks and oscillators
in the brain and peripheral organs, thus control-
ling indirectly many circadian rhythms in beha-
viour (e.g., the sleep-wake cycle), physiology (e.g.,
hormonal secretion, like pineal melatonin or

25 adrenal glucocorticoids) (Kalsbeek et al. 2011)
and sensitivity to drugs (e.g., anaesthetics)
(Dispersyn et al. 2010). Furthermore, the SCN
clock can be reset by environmental cues, allow-
ing the phase-adjustment of internal rhythmicity

30 to the external cues.
Although the main environmental synchroni-

zer (also called “Zeitgeber” or “time-giver”) is
ambient light, the SCN clock can also be reset
by other, non-photic cues. The most common

35 non-photic factors are behavioural manipula-
tions, although nutritional cues may also impact
SCN function (Challet 2010). Period (Per)1 and
Per2 are genes participating in the main feedback
loop of the molecular clockwork and involved in

40 resetting of the SCN (Ko and Takahashi 2006).

More precisely, expression of both genes in noc-
turnal rodents’ SCN is up-regulated by light
exposure during nighttime (i.e., period of mini-
mal daily expression) and down-regulated by

45behavioural activation during daytime (i.e., per-
iod of maximal daily expression) (Albrecht et al.
1997; Challet and Pévet 2003).

The chronobiotic impact of general anaesthetics
(i.e., their effect on the circadian clock) is not fully

50characterized yet. Propofol is a widely used intra-
venous anaesthetic. On the one hand, general
anaesthesia induced by propofol triggers phase-
advances of SCN-controlled circadian rhythms
only at certain times of the day (late resting period

55and early active period (Dispersyn et al. 2009;
Challet et al. 2007). Moreover, general anaesthesia
induced by propofol has been associated with a
subsequent reduction of Per2 mRNA levels in the
whole brain (Yoshida et al. 2009). On the other

60hand, inhalational anaesthesia with sevoflurane
leads to a down-regulation of Per2 in the SCN,
but its shifting effects of the sleep-wake cycle have
not been clearly identified (Ohe et al. 2011). One
critical point that remains to be characterized is

65the acute effects of propofol anaesthesia per se on
the SCN molecular clockwork. For that purpose,
anaesthesia has to be of short duration (to limit
secondary effects, such as hypothermia), without
concomitant surgery (to avoid confounding effects

70on the read-out parameters) and in the absence of
light (to avoid stimulating effects of light on clock
gene expression). In this context, we studied Per1
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and Per2 expression in the SCN of rats exposed to
constant darkness after a single-dose injection of

75 propofol (or vehicle) when the SCN clock is
shifted by propofol (i.e., late afternoon in rats).

Material and methods

Animals and housing conditions

Adult, 2-months-old, male Long-Evans rats (Rattus
80 norvegicus) were obtained from Janvier® (Le Genest-

St-Isle, France). The experiment was performed in
accordance with the Principles of Laboratory Animal
Care (NIH published 86–23, revised 1985) and the
French laws (License n°67–88 to E.C.).

85 Animals were housed in Plexiglas cages (n = 5 per
cage) at 23°C under a 12 h light/12 h dark cycle (LD)
for 2 weeks. Food and water were available ad libitum.
On the day of the experiment, all rats were transferred
to constant darkness by not allowing lights on in the

90 morning. Because previous studies (Dispersyn et al.
2009; Challet et al. 2007) showed that propofol
administration at the end of the resting period leads
to phase-advanced sleep-wake and body temperature
rhythms, rats received a single-dose injection of pro-

95 pofol 1% (120 mg/kg, n = 15) or vehicle (Intralipid®
10%, n = 15) in late day (i.e., projected circadian time
(CT) 10, that is, 10 h after the expected time of lights
on). Thereafter, rats were decapitated after CO2 killing
in darkness 1 h, 2 h or 3 h after the treatment (i.e.,

100 projected CT11, CT12 or CT13; n = 5 per time and
treatment). Brains were quickly removed, frozen with
−30°C isopentane and stored at −80°C.

Radioactive in situ hybridization

Twenty-µm brain coronal sections at the SCN level
105 were made on a cryostat, mounted in series on

SuperFrost®Plus slides (VWR, USA) that were stored
at –20°C. We analysed expression of Per1 and Per2
mRNA in the SCN. The rPer1 and rPer2 clones are a
gift from Prof. H. Okamura (Graduate School of

110 Pharmaceutical Sciences, Kyoto University, Japan).
The sense (to check specificity of the signal) and
antisense cRNA riboprobes were transcribed in the
presence of 35S-UTP (0.4625 Mbq/μl, PerkinElmer,
France) according to the manufacturer’s protocol

115 (MAXIscript, Ambion, Austin, TX, USA).

Briefly, sections were postfixed in 4% phosphate-
buffered paraformaldehyde for 15 min, rinsed in 1×
phosphate buffer saline (PBS) for 2 min, and then
acetylated for 10 min in 0.1M triethanolamine and

120acetic anhydride. After a 1× PBS rinse for 2 min,
sections were dehydrated in graded ethanol series
and finally dried at room temperature (RT).
Hybridization was carried out at 54°C overnight
with riboprobe in a solution containing 100% deio-

125nized formamide, 4 g of sulfate dextran, 50×
Denhardt’s solution, 20× sodium citrate saline
(SSC), 40 mg salmon sperm DNA, 10 mg transfer
RNA, 1M dithiothreitol. After hybridization, the sec-
tions were washed for 5 min in 2× SSC before being

130treated with ribonuclease A (Sigma-Aldrich; 10 mg/
ml) and a buffer solution for 30 min at 37°C. The
slides were then rinsed and stringency washes were
carried out (1× SSC for 5 min at RT, and 0.2× SSC
for 30 min at 62°C). Finally, the sections were dehy-

135drated in a graded ethanol series and air-dried at RT.
Slides were exposed with 14C standards to an auto-
radiographic film (BioMax® MR, Kodak, Lyon,
France) for 3 days. Analysis of the autoradiograms
was performed using NIH-ImageJ software.

140Background was subtracted. For each probe and
each animal, quantification was calculated and aver-
aged on three sections of middle SCN for a given
brain by subtracting the intensity of staining of back-
ground area (diameter: 200 µm) measured in the

145anterior hypothalamic area above the SCN from an
area (diameter: 200 µm) measured in the left and
right SCN.

Statistical analysis

Data are presented as mean ± SEM. Data were ana-
150lysed with two-way analyses of variance (ANOVA;

IBM® SPSS® Statistics version 25, Chicago, USA).
Bonferonni post hoc tests were used if main effects
or interactions were found to be significant.

Results

155● Expression of Per1 (n = 27, not 30 due to lost
sections)

We found a time (CT11, CT12, CT13; F
(2,27) = 15.103; p < 0.001) and a treatment effect
(Propofol, Intralipid®; F(1,27) = 4.407; p = 0.048).
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The interaction between time/treatment was also sta-
160 tistically significant (F(2,27) = 4.310; p = 0.027). The

post-hoc test showed only differences between CT11
versus CT12 (p = 0.005) and CT11 versus CT13
(p < 0.001) (Figure 1). Together, these results indicate
that propofol anaesthesia induced a decrease in Per1

165 expression in the SCN at CT11 and CT12 when com-
pared with vehicle group.

● Expression Per2 (n = 26, not 30 due to lost
sections)

We observed a treatment effect (Propofol, Intralipid®;
F(1,26) = 13.382; p = 0.002), but no time effect

170 (CT11, CT12, CT13; F(2,26) = 0.338; p = 0.717)
was detected. No difference between different time
points was found with the post hoc test. Finally, the
interaction between time/treatment was statistically
significant (F(2,26) = 3.535; p = 0.048) (Figure 1).

175 Thus, the expression of Per2 in the SCN is decreased
at CT11 and CT12 after propofol anaesthesia.

Discussion

At behavioural level, propofol anaesthesia in rats
produces phase-advances in the late (subjective)

180 daytime, an effect reminiscent of the chronobiotic
consequences of classical non-photic cues (i.e.,
transient behavioural arousal associated with
motor activity) studied in nocturnal mammals
(Mrosovsky 1996; Challet and Pévet 2003) exogen-

185 ous melatonin (Pitrosky et al. 1999) and dark
pulses in constant light (Dwyer and Rosenwasser
2000; Mendoza et al. 2004).

At molecular level, we show here for the first
time that short-term anaesthesia induced by pro-

190pofol leads to a transient down-regulation of Per 1
and Per2 expression in the SCN. These acute
effects already known for behavioral arousal and
dark pulses (Maywood et al. 1999; Mendoza et al.
2004) play a causal role in the resetting properties

195of non-photic cues (at least for Per1: see Hamada
et al (Hamada et al. 2004). Of interest, even if
treatment with exogenous melatonin can shift the
SCN clock as propofol anaesthesia does, the initial
molecular targets are not Per genes, but Rev-erbα

200and Rorβ (Agez et al. 2007). Together, these data
suggest that propofol anaesthesia shares activation
of common transduction SCN pathways with clas-
sical non-photic cues and dark pulses, but not with
pharmacological doses of melatonin.

205Per genes and anaesthesia

Other studies have already found that general
anaesthesia influences Per2 expression in the
brain of rodents. They show a decrease in Per2
expression after inhalational anaesthesia (sevoflur-

210ane) (Sakamoto et al. 2005; Kobayashi et al. 2007)
or after propofol anaesthesia (Yoshida et al. 2009).
In these studies, gene expression was assessed in
the whole brain and the authors have maintained
anaesthesia for 2 h or more. Their animals were

215exposed to hypothermia and hypoxia, both being
able to interact with circadian rhythmicity (Herzog
and Huckfeldt 2003; Touitou et al. 2010).
Ketamine, an intravenous anaesthetic acting as
N-methyl-d-aspartate (NMDA) receptors

Figure 1.Q5

CHRONOBIOLOGY INTERNATIONAL 3



220 antagonist (Solt and Forman 2007) alters Per2
expression in an in vitro model (Bellet et al.
2011). Recently, a decrease in Per2 expression in
SCN of rodents after 4–8 hours exposition to sevo-
flurane (Ohe et al. 2011; Kadota et al. 2012; Anzai

225 et al. 2013) or isoflurane anaesthesia (Xia et al.
2015) in subjective daytime is reported. Besides,
Wang et al. show a suppression in Per1 expression
in the middle prefrontal cortex (mPFC) of rats
(Wang et al. 2016). To our knowledge, the conse-

230 quence of general anaesthesia on Per1 expression
in the SCN has not been studied yet.

Cerebral targets of propofol

To understand the molecular changes induced in the
master clock by propofol, we need to investigate the

235 neurochemical mechanisms of general anaesthesia,
especially the targets of propofol. Molecular studies
have demonstrated that the Ɣ-aminobutyric acid type
A (GABAA) receptors are the main target of volatile
anaesthetics (isoflurane, sevoflurane) and of propofol

240 (Solt and Forman 2007; Rudolph and Antkowiak
2004). GABAA receptors are the major inhibitory
neurotransmitter-gated ion channels in the human
brain (Solt and Forman 2007) and GABA is the
principal neurotransmitter of the circadian system

245 (Moore and Speh 1993; Albers et al., 2017). More
than 90% of SCN neurons contain GABA as a neu-
rotransmitter and express both GABAA and GABAB

receptors (Albers et al., 2017; Han et al. 2012).
Propofol decreases neuronal excitability by enhan-

250 cing the activity of GABAA receptors. The hypnosis
and immobility induced by propofol aremediated by
GABAA receptors containing β3 subunits, while
sedation is linked to receptors containing β2 subunits
(Solt and Forman 2007). Propofol also acts through

255 other receptors like glycine receptors or calcium
channels (Rudolph and Antkowiak 2004).

GABAergic system in the SCN as a putative
target of propofol anaesthesia

The data mentioned above suggest that the propofol
260 action can be mediated by GABAA receptors in the

SCN. In vitro, GABA can induce phase-shifts in
clock cells kept in culture and the daily treatment
by GABA synchronizes cultured clock cells (Liu and
Reppert 2000). In SCN explants of luciferase

265transgenic rats, the suppression of Per2 expression
observed after sevoflurane application is blocked by
the co-application of both GABAA and GABAB

receptor antagonists, suggesting an GABergic
mechanism (Matsuo et al. 2016). In vivo, the

270GABAA receptor activation by muscimol (a selective
GABAA receptors agonist) during themid-subjective
day not only induces phase advances of locomotor
activity in hamsters (Smith et al. 1989), but also
suppresses Per1 mRNA and Per2 mRNA expression

275in the SCN of both diurnal and nocturnal rodents
(Ehlen et al. 2006; Novak et al. 2006). Yokota and al.,
report also phase advances in hamster locomotor
activity and reduced expression of Per1 and Per2 in
the SCN 1 and 2 h after injection of brotizolam

280(which is a GABAA receptor agonist belongs to ben-
zodiazepines family) during mid-subjective daytime
in hamsters (Yokota et al. 2000). The effects are quite
comparable to those observed after propofol injec-
tion. However, the injection of muscimol (Smith

285et al. 1989) or brotizolam (Yokota et al. 2000) during
the mid-subjective night leads to phase-delays of
locomotor activity, while propofol anaesthesia has
no longer any shifting effects at this time of day
(Challet et al. 2007). In mutant mice with loss of

290function of voltage-gated Na+ channel NaV1.1
(which is the primary voltage gate Na+ channel in
several classes of GABA interneurons), Han et al.
demonstrated important disruption in the circadian
master clock with longer circadian period, delayed

295activity onset and decreased circadian amplitude.
This impairment is related to reduction of
GABAergic transmission (Han et al. 2012). In a
recent abstract, the suppression of Per1 expression
in the mPFC of rats following a propofol infusion is

300described. However, this result is not observed when
propofol is co-administered with GABAzine (a
GABAA receptor antagonist) (Wang et al. 2016).

Other propofol targets?

The molecular interaction of propofol with GABAA

305receptors is largely studied, but its action on glycine
receptors is not fully clear. Recently, Nguyen et al.
demonstrated that the glycine receptors partially
contribute to propofol-induced hypnosis (Nguyen
et al. 2009). An electrophysiological study on SCN

310cells revealed that glycine application induces phase
advances during the subjective day and phase-delays
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during the early subjective night (Mordel et al. 2011).
The timing of these phase-shifts, however, is very
different from those induced by in vivo injections of

315 propofol (Challet et al. 2007), suggesting that the
chronobiotic effects of propofol are not mainly
mediated via glycinergic signalling.

Another hypothesis for propofol action is a mod-
ulation of the gap junctions in the SCN. These junc-

320 tions made of connexins are responsible for the
intercellular coupling between SCN cells (Aton and
Herzog 2005). An ultrastructural study reported the
immunocytochemical evidence that these neuronal
gap junctions are composed of connexin36 (Rash

325 et al. 2007). Previously, Mantz and colleagues
showed that propofol and other general anaesthetics
differentially reduce permeability of gap junctions, at
least in cultured astrocytes (Mantz et al. 1993). In rat
SCN neurons cultured in vitro, the gap junction

330 communication is involved in interneuronal com-
munication and the coupling state between neurons
via GABAA receptor. The GABAA receptor agonist
muscimol acts as a gap junction blocker (Shinohara
et al. 2000). In the same way, connexin36-knockout

335 mice show dampened circadian activity rhythms and
a delayed onset of activity during transition to con-
stant darkness, as compared to wild-type mice (Long
et al. 2005). Of note, these knockout mice show a
greater sensitivity to anaesthetics, including propofol

340 (Jacobson et al. 2011). Together, these data suggest
that the phase-shifts induced by propofol anaesthesia
may be related to an uncoupling effect between SCN
neurons mediated by GABAA receptors.

Some data suggest that circadian effects of anaes-
345 thetics result from the inhibition of the biding of the

complex CLOCK:BMAL1 (Circadian Locomotor
Output Cycles Kaput: Brain and Muscle Arnt-like 1
protein) via glycogen synthase kinase 3β (GSK3β)
(Poulsen et al. 2018). In physiological conditions,

350 CLOCK:BMAL1 complex promotes Per genes tran-
scription (Ko and Takahashi 2006). Ketamine, pro-
pofol anaesthesia or long-term sevoflurane exposure
leads to (GSK3β) inactivation (Poulsen et al. 2018).
This effect has also been observed in the presence of

355 dizocilpine maleate (an NMDA receptor antagonist)
(Hetman et al. 2000) suggesting an anti-NMDA
mechanism of ketamine and sevoflurane, but
another not yet elucidated mechanism for propofol.

Further studies are needed to better understand the
360 neurochemical and chronobiological mechanisms

underlying propofol anaesthesia and propose preven-
tive treatments of the circadian disturbances, fatigue
and sleep disorders reported by patients after general
anaesthesia (Dispersyn et al. 2009).
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