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Mean Field Games provide a powerful framework to analyze the dynamics of a large number
of controlled objects in interaction. Though these models are much simpler than the underlying
differential games they describe in some limit, their behavior is still far from being fully understood.
When the system is confined, a notion of “ergodic state” has been introduced that characterizes most
of the dynamics for long optimization times. Here we consider a class of models without such an
ergodic state, and show the existence of a scaling solution that plays a similar role. Its universality
and scaling behavior can be inferred from a mapping to an electrostatic problem.

Mean Field Games are a powerful framework intro-
duced about a decade ago by Lasry and Lions [1] as an
alternative approach to differential game theory when the
number of agents becomes large (see [2] for a suitable
introduction to the field for physicists). Their applica-
tions are numerous, ranging from finance [3, 4] and econ-
omy [5, 6] to engineering sciences [7, 8], and wherever
one has to deal with optimization issues for many cou-
pled subsystems. On a quite general basis, a Mean Field
Game involves a set of N players (or agents) which are
characterized by a continuous “state variable” Xi ∈ Rd,
i = 1 . . . N , which, depending on the context, may repre-
sent a physical position, the amount of resources owned
by a company, the house temperature in a network of
controlled heaters, etc.. These state variables evolve on a
time interval [0, T ] according to some controlled dynam-
ics, which we assume here to be described by a linear,
d-dimensional, Langevin equation, dXi

t = aitdt + σdWi
t,

where each component of Wi is an independent white
noise of variance one, σ is a constant, and the “control
parameter” is the velocity ait. This control is adjusted in
time by the agent i in order to minimize a cost functional
over the remaining time to play, which in the simplest
case can be assumed of the form

c[ai](xit, t) = E
[∫ T
t

(
µ
2 (ait)

2 − V [mτ ](Xi
τ )
)
dτ

+ cT (Xi
T )
∣∣∣Xi

t = xit

]
. (1)

In (1), cT (x) is the terminal cost, an additional cost
player i would pay if his state at the end of the game,
Xi(T ), is equal to x, µ is positive constant, akin to a mass
in physics, and V [mt](x) is a functional of the empirical
density at time t mt(x) = 1

N

∑
j δ(x − Xj(t)), through

which the agents’ optimization problems are coupled. We
shall assume V [mt](x) takes the simple form

V [mt](x) = U0(x) + g mt(x) . (2)

For a very large number of players, like in a mean field
theory, the fluctuations of the empirical density are ne-
glected and mt(x) becomes a deterministic quantity gov-
erned by a Fokker Planck equation. Furthermore, the
optimization problems decouple and the optimal value of

the cost (1) (the “value function”) for the agent i becomes
a function of the variable xit, solution of an Hamilton-
Jacobi Bellman equation [9]. The resulting model is
called a Mean Field Game and can be defined as a pair
of coupled equations, describing the (forward in time)
evolution of the density of players m(x, t) and the (time
backward) evolution of the value function u(x, t). In the
simple case we consider here the system of deterministic
equations takes the form [2, 10]

∂tm−
1

µ
∇ [m∇u]− σ2

2
∆m = 0 (3)

∂tu−
1

2µ
[∇u]

2
+
σ2

2
∆u = V [m] . (4)

The coupling between the two PDE’s comes from two
parts: in the Fokker-Planck equation (3), the optimal
velocity appears in the drift term and here is propor-
tional to the gradient of the value function, a = − 1

µ∇u;
in the Hamilton-Jacobi Bellman equation (4) the term
V [m] reflects the dependence of the cost functional (1)
on the density. This structure also induces rather atyp-
ical boundary conditions: the (forward) Fokker-Planck
equation is associated with an initial condition m(0,x) =
m0(x) specifying the initial distribution of agents, while
the terminal cost CT in Eq. (1) imposes a final con-
dition for the value function, u(T,x) = cT (x). This
forward-backward structure together with mixed initial-
final boundary conditions leads to new challenges when
trying to characterize, either analytically or numerically,
solutions to this system of equations.

For a large class of settings, which includes in partic-
ular the case of repulsive interactions when the system
is confined either by a stabilizing external potential or
because of a geometry with fixed spatial extension, such
a system exhibits an ergodic (stationary) state, indepen-
dent on the boundary conditions, which can be rigorously
defined in the limit T →∞ as an hyperbolic fixed point.
The importance of this result, as proven by Cardialaguet
et al. [11] is twofold: for finite but long enough opti-
mization time T , the game will stay very close to this
ergodic (time independent) state except possibly in its
initial and final parts. Furthermore, the transient dy-
namics near t = 0 and t = T completely decouple one
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from the other, and the mixed boundary problem simpli-
fies accordingly: they describe how the initial and final
boundary conditions match with the ergodic state and
are characterized by two possibly different time scales, τi
and τf , independent on T .

The problem we want to address in this letter is the
behavior of such a system when an ergodic state cannot
exist, for instance when the state space is unbounded
and the interactions repulsive, so that any initially local-
ized configuration will expand forever. The natural ques-
tion in such conditions is whether some kind of limiting
(non-stationary) regime still exists for such systems that
would, at some level, play a similar role as the ergodic
state in confined systems.

Considering more specifically a one-dimensional prob-
lem without “one-body” term (i.e. U0(x) ≡ 0), a first
indication that this is indeed the case is brought out by
numerical solutions for the system (3)–(4) for repulsive
interactions (that is V [mt](x) = gm(t, x), g < 0), start-
ing from a localized initial density. Numerical results (see
Figure 1) show clearly that except for transient times
near t = 0 and near t = T , the density can be accurately
fitted on an inverted parabolic shape

m(x, t) =


1

N(t)
(z(t)2 − x2) if |x| ≤ z(t)

0 otherwise
, (5)

where the prefactor is found to be N(t) = 4
3z(t)

3, as total
mass conservation requires. Assuming this shape as an
ansatz, the evolution reduces to that of the scaling factor
z(t), which is for most times found to grow as a power
law (see left insert in Figure 1)

z(t) ∼ t2/3 . (6)

These features appear for sufficiently long optimization
time T , and are essentially independent of the initial and
final boundary conditions provided the initial distribu-
tion has a bounded extension and the final cost is close
to zero everywhere.

By analogy with the physics of Bose condensate, let us
introduce a characteristic length-scale, the healing length
ν = µσ2/|g|, which represent the typical distance on
which interactions balances quantum pressure (or dif-
fusion in our case) [12]. A necessary condition for the
behavior observed in Fig. 1 to appear is the smallness
of ν with respect to other length-scales. This condition
will however eventually be fulfilled at one point as the
extension of density distribution grows in time, possibly
inducing a time shift in (6).

What those numerical results tell us is that in this set-
ting, the notion of ergodic state has been replaced by
the next best thing, namely a universal scaling solution.
The goal of this paper is to understand this puzzling re-
sult, in particular the 2

3 scaling exponent, and give some
arguments in favor of its universality.

For this purpose, we now introduce a few formal trans-
formations which allow to show that this result is rather
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Figure 1. Numerical simulation of the time evolution de-
scribed by the system (3)–(4) in one space dimension with
T = 200, g = −2, σ = 0.5 and µ = 1. The initial distri-
bution is a Gaussian of variance 0.1 centered at the origin,
and the terminal cost is cT (x) = 0. The left inset shows a
log-log plot of the time evolution of the density at the ori-
gin m(0, t) (full line), showing a t2/3 scaling behavior (dashed
line) at almost all times. On the right inset the rescaled den-
sity z(t)m(x/z(t), t) is shown to have an invariant parabolic
shape (with z(t) = 4/(3m(0, t))).

natural and intuitive, once the problem is cast in its
proper language. In turn, we will also gain a better un-
derstanding of this regime

I. HYDRODYNAMIC REPRESENTATION

The main idea behind the approach below comes from
the deep link between Mean Field Games and the non-
linear Schrödinger equation, discussed at lengths in [2],
which allows for the use of several techniques developed
to study Bose-Einstein condensates. One of these tech-
niques, the Madelung substitution, is particularly well
suited to deal with the small ν regime [13]. It consists in
defining a velocity field v(t, x)

v(x, t) = −∇u
µ
− σ2∇m

2m
, (7)

which maps the evolution (3) for the density m to a sim-
ple transport/continuity equation

∂tm+∇(mv) = 0 . (8)

The evolution for the velocity field v derives from the
HJB equation (4) and reads

∂tv +∇
[
σ4

2
√
m

∆
√
m+

v2

2
+
g

µ
m

]
= 0 , (9)

and involves a O(σ4) term. As in the context of cold
atoms, this term can be neglected as long as the charac-
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teristic length of the system is large in front of the heal-
ing length ν = µσ2/|g| [13], leading to what is referred
to as the Thomas Fermi approximation. This weak noise
limit is also one of the requirements for the appearance
of the parabolic behavior described in Figure 1. In this
approximation, the O(σ4) term in (9)is dropped and the
equations read

∂tm+∇(mv) = 0

∂tv +∇
[
v2

2
+
g

µ
m

]
= 0

. (10)

These equations are formally very close to those studied
for instance in the field of cold atoms [12], the main dif-
ferences being the (negative) sign of g, which makes the
system elliptic rather than hyperbolic, and the nature of
the boundary conditions. Within this approximation, it
can easily be verified that the ansatz Eq. (5) with

z(t) = 3

(
|g|
4µ

)1/3

t2/3 , (11)

is a particular solution of the Thomas-Fermi-like equa-
tions Eq. (10). The real mystery is therefore not that
such a particular solution does exist, but to understand
why this t2/3 behavior shows up at all intermediate times
for a large class of boundary conditions, and in other
terms, why it is universal in the large optimization time
limit.

II. RIEMANN INVARIANT AND HODOGRAPH
TRANSFORM

To answer this question, we shall turn to an approach
developed in the context of non-linear waves [14], which
relies on the notions of Riemann invariants and hodo-
graph transform. Riemann’s method can be considered
an extension of the method of characteristics. It amounts
to finding curves (characteristics) on which some quan-
tities (Riemann invariants) are conserved. Here, one
can show that there exists a pair of Riemann invariants,
(λ+(x, t), λ−(x, t)), namely λ± = v±2i

√
|g|m/µ, so that

(10) reads
∂tλ+ +

(
3

4
λ+ +

1

4
λ−

)
∂xλ+ = 0

∂tλ− +

(
1

4
λ+ +

3

4
λ−

)
∂xλ− = 0

. (12)

Though characteristics do not exist in this context (they
are curves in the complex plane C2), this change of vari-
ables still allows us to linearize these equations using an
hodograph transformation [14]. Taking the pair (λ+, λ−)
as independent variables, we express x and t as functions
of them, so that the system (12) transforms into a linear
one {

∂−x− β+∂−t = 0

∂+x− β−∂+t = 0
, (13)

where β± =
(
3
4λ± + 1

4λ∓
)
, and where we have intro-

duced the notation ∂± ≡ ∂
∂λ±

. This system can be read-
ily integrated once as{

x− β+t = ω+

x− β−t = ω−
, (14)

with ω± solution of

∂±ω∓ = −(∂±β∓)t = −1

4
t . (15)

Thus the functions ω± can be expressed as derivatives of
a potential ω± = ∂±χ, where χ(λ+, λ−) is solution of an
Euler-Poisson-Darboux equation:

∂2+−χ−
1

2(λ+ − λ−)
(∂+χ− ∂−χ) = 0 . (16)

The main difference with the traditional treatment of
NLS that we have closely followed until now is that
here the Riemann invariants (λ+, λ−) are complex con-
jugates. In terms of its real and imaginary parts, ξ =
1
2 (λ+ + λ−) = v and η = 1

2i (λ+ − λ−) = 2
√
|g|m/µ,

equation (16) becomes

∂ξξχ+ ∂ηηχ+
1

η
∂ηχ = 0 , (17)

which is the Laplace equation in cylindrical coordinates
(with no angular dependence) with η and ξ as radial and
axial coordinates, respectively. Equations (14) now read{

ηt = −Eη
2(x− ξt) = −Eξ

, (18)

with Eη and Eξ the radial and axial components of the
electric field, E = −∇χ. Note that even if (17) is origi-
nally a two-dimensional problem, a clear connection with
electrostatics emerges when considering it a three dimen-
sional one with axial symmetry.

III. POTENTIAL REPRESENTATION

Through the hodograph transform we have shown that
for any potential χ, solution of the Laplace equation (17),
there is a solution to the Thomas Fermi equation (10)
provided that the relations (18) between x, t and the
electric field E hold. The linear Laplace equation (and
the related electrostatic problem) is clearly significantly
simpler than the original non-linear hydrodynamic equa-
tions. The price to pay for that simplification is that tak-
ing into account the boundary conditions becomes highly
non trivial since the locus of the curves t(ξ, η) = 0 or
t(ξ, η) = T on which these conditions are expressed actu-
ally depend on the particular potential χ(ξ, η) considered.

However, since the dynamics we are interested in is
associated with the spreading of the density of agents,
the curves t(ξ, η) = const. are contracting as t increases,
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smaller time curves including every larger time ones. If
we consider χ as generated by a distribution of charge
ρ(ξ, η), Eq. (17) implies that ρ(ξ, η) = 0 between the
curves t(ξ, η) = 0 and t(ξ, η) = T but can be non-zero
either near the origin (for times larger than T ) or at large
distance (corresponding to negative times). If the opti-
mization time is long enough we can assume that there
exists a range of times [t̃min, t̃max], 0 � t̃min, t̃max � T ,
so that for any curve t(ξ, η) ∈ [t̃min, t̃max] the distribu-
tions of charges both at the origin and “at infinity” are far
enough so that the effects of their moments are essentially
negligible. Since the total charge at infinity contributes
only by an irrelevant constant, we can give a good ap-
proximation of χ in this range of time as the potential
created by a point charge Q0 located at the origin

χ(η, ξ) ≈ Q0√
η2 + ξ2

, (19)

with a relation between Q0 and the boundary conditions
of the problem yet to be determined.

The main result of this paper is that the approxima-
tion of the charge distribution by a monopole centered
at the origin is precisely the observed universal behavior
expressed by Eqs. (5)-(6). In addition the conditions un-
der which this approximation is valid provide the regime
of validity of the scaling form Eqs. (5)-(6). Indeed, in-
serting Eq. (19) into Eq. (18) and inverting the relation
between (ξ=v, η=

√
|g|m/µ) and (x, t) readily gives

m(t, x) =
3
(
(µQ0/2g)2/3z(t)2 − x2

)
4z(t)3

v(t, x) = −z
′(t)

z(t)
x

. (20)

for |x| < z(t), with z(t) given by Eq. (11). It suffices now
to show that independently of the boundary condition we
have Q0 = 2g/µ (which is in any case required by the
normalization of m(x, t)), to prove that Eq. (20) is in
fact the numerically observed scaling form Eqs. (5)-(6).

To show this, we can simply apply Gauss’s law∫
St̃

( ~E · ~n)dS = 4πQ0 (21)

on a surface St̃ such that t(η, ξ) = t̃ = const., for any 0 ≤
t̃ ≤ T . Parametrizing this surface by (x, θ), with dS =

ηj(x, t̃)dθdx (with j(x, t̃) ≡
√

(∂xξ)2 + (∂xη)2), and the
normal ~n to the surface St̃ given by ~n = (nξ, nη, nθ) =

j(x, t̃)−1 (∂xξ,−∂xη, 0), we get

Q0 = 1
4π

∫ 2π

0

∫
R η
[
2(x− ξt̃)∂xη − ηt̃∂xξ

]
dθdx

= 1
2

∫
R
[
−t̃∂x(η2ξ) + 2xη∂xη

]
dx . (22)

If we assume η to decrease sufficiently fast with x, the
first, time dependent, term integrates to zero. This was
to be expected because no matter the time t̃, as long as
0 < t̃ < T , the total charge included in St̃ is the same: Q0

is by construction a constant of the motion. Integrating
by part and recalling that η = 2

√
|g|m/µ, Eq.(22) yields

Q0 = 2g
µ

∫
Rmdx, which, because of the normalization

condition on m(x, t), is the required result.

IV. CONCLUSION

Introducing a potential representation for the [1d
potential-free] Mean Field Game problem Eqs. (3)–(4),
we have shown that the remarkable, and a priori quite
puzzling universal scaling form we have observed numer-
ically for large optimization times can be derived in a
very natural way. In this representation, it appears as
the simple fact that the related potential χ, sufficiently
far away from the charge distribution which creates it,
can be well approximated by the potential generated by
a single monopole. The condition of being sufficiently far
from both the charges near the origin and the one near
infinity is reflected in the MFG problem by considering
times far from both t = 0 and t = T , which is of course
only possible in the limit of very long optimization time.
In some sense, we have thus been allowed to replace the
notion of ergodic state by what could be thus called “an
ergodic scaling form” in a situation where a genuine er-
godic state cannot exist.

At a more general level, the potential representation
of this Mean Field Game underlies the integrability of
the hydrodynamical equations (10). Beyond the simple
monopolar approximation Eq. (19), we can construct a
complete multipolar expansion for the potential χ, and
it can be seen easily that each “charge” of this expan-
sion correspond to a conserved quantity of the dynam-
ics. The mapping between the boundary conditions and
these charges being thus equivalent to the mapping be-
tween boundary conditions and constants of the motion.
This consideration emphasizes the fact that the deep rea-
son behind the scaling law characterizing the 1d potential
free MFG that we consider in this paper is actually their
integrable character. A more in depth discussion of this
question will appear in a separate publication [15].
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