Supporting Information

Insights into rheological behavior of aqueous dispersions of synthetic saponite: effects of saponite composition and sodium polyacrylate

Cunjun Li,^{†,#} Qiqi Wu,[†] Sabine Petit,^{\perp} Will P. Gates, ^{∇} Huimin Yang,¹ Weihua Yu,^{†,§} Chunhui Zhou^{*,†,‡}

[†]Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
[‡]Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
[§]Zhijiang College, Zhejiang University of Technology, Shaoxing 312030, China
[§]Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou, 310012, China
[⊥]Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), UMR 7285 CNRS, Université de Poitiers, Poitiers Cedex 9, France

^VInstitute for Frontier Materials, Deakin University Melbourne-Burwood, Burwood,

Victoria 3125 Australia [#]College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China

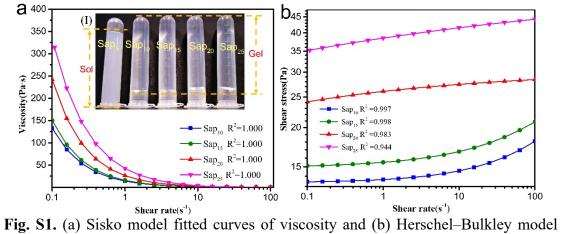
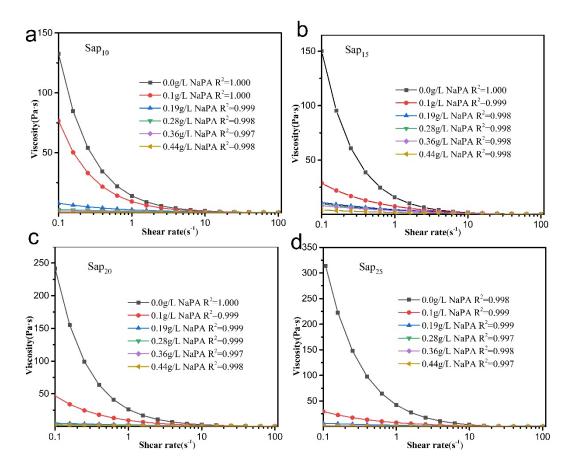
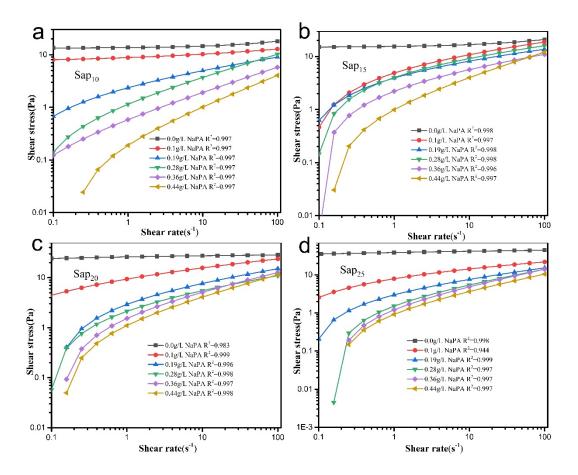
E-mail: clay@zjut.edu.cn (Chunhui Zhou)

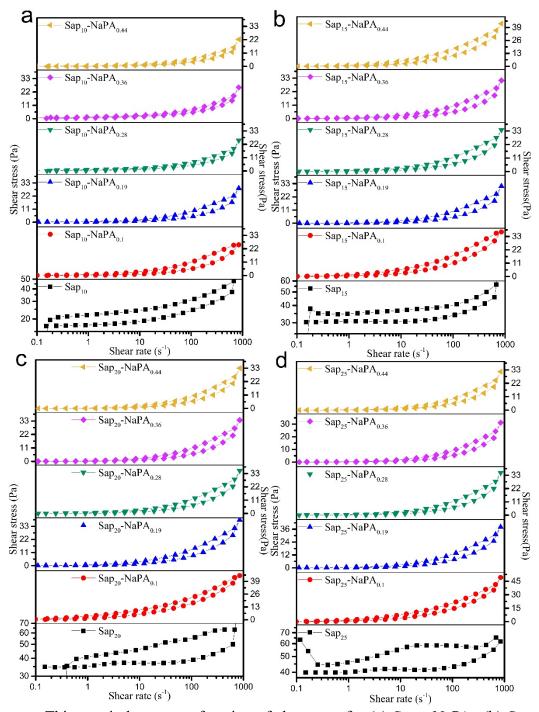
Number of pages: 11

Number of figures: 8

Table of Contents:

Fig. S1. Sisko model fitted curves of viscosity and Herschel–Bulkley model fitted curves of shear stress as a function of shear rate for Sap_x dispersions
Fig. S2. Sisko model fitted curves of viscosity as a function of shear rate for Sap _x -NaPA _y dispersion
Fig. S3. Herschel–Bulkley model fitted curves of shear stress as a function of shear rate for Sap_x -NaPA _y dispersions
Fig. S4. Thixotropic loops as a function of shear rate for Sap_x -NaPA _y dispersions
Fig. S5. Storage modulus (G') and loss modulus (G") of Sap _x -NaPA _y dispersions
Fig. S6. FTIR of NaPA, Sap _x -control and Sap _x -NaPA _{0.44} S 8
Fig. S7. SEM image of Sap ₅ S 9
Fig. S8. Pore size distribution of Sap_x


Fig. S1. (a) Sisko model fitted curves of viscosity and (b) Herschel–Bulkley model fitted curves of shear stress as a function of shear rate for Sap_x dispersions. Sap_x means the Sap synthesized at the Si/Al molar ratio of 10, 15, 20 and 25. The insert (I) is the snapshot of Sap dispersion after 7 d standing.

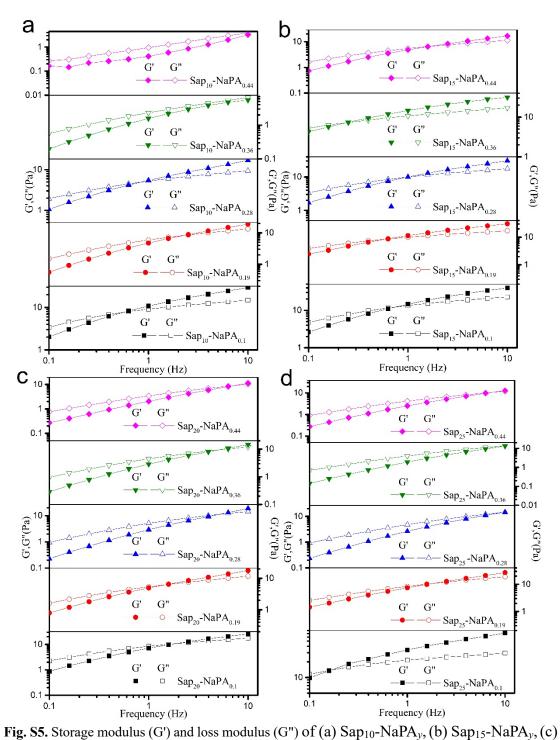

Fig. S2. Sisko model fitted curves of viscosity as a function of shear rate for (a) Sap₁₀-NaPA_y, (b) Sap₁₅-NaPA_y, (c) Sap₂₀-NaPA_y and (d) Sap₂₅-NaPA_y dispersions. Sap_x-NaPA_y: the Sap_x dispersed in deionized water followed by 7 d standing and then the addition of NaPA to reach the concentration of 0.1, 0.19, 0.28, 0.36, and 0.44 g/L, respectively, before drying in an oven. Sap_x means the Sap synthesized at the Si/Al molar ratio of 10, 15, 20 and 25.

Fig. S3. Herschel–Bulkley model fitted curves of shear stress as a function of shear rate for (a) Sap₁₀-NaPA_y, (b) Sap₁₅-NaPA_y, (c) Sap₂₀-NaPA_y and (d) Sap₂₅-NaPA_y dispersions. Sap_x-NaPA_y: the Sap_x dispersed in deionized water followed by 7 d standing and the addition of NaPA to reach the concentration of 0.1, 0.19, 0.28, 0.36, and 0.44 g/L, respectively, before drying in an oven. Sap_x means the Sap synthesized at the Si/Al molar ratio of 10, 15, 20 and 25.

Fig. S4. Thixotropic loops as a function of shear rate for (a) Sap_{10} -NaPA_y, (b) Sap_{15} -NaPA_y, (c) Sap_{20} -NaPA_y and (d) Sap_{25} -NaPA_y dispersions (in log-log mode). Sap_x -NaPA_y: the Sap_x dispersed in deionized water followed by 7 d standing and the addition of NaPA to reach the concentration of 0.1, 0.19, 0.28, 0.36, and 0.44 g/L, respectively, before drying in an oven. Sap_x means the Sap synthesized at the Si/Al molar ratio of 10, 15, 20 and 25.

Sap₂₀-NaPA_y and (d) Sap₂₅-NaPA_y dispersions. Sap_x-NaPA_y: the Sap_x dispersed in deionized water followed by 7 d standing and the addition of NaPA to reach the concentration of 0.1, 0.19, 0.28, 0.36, and 0.44 g/L, respectively, before drying in an oven. Sap_x means the Sap synthesized at the Si/Al molar ratio of 10, 15, 20 and 25.

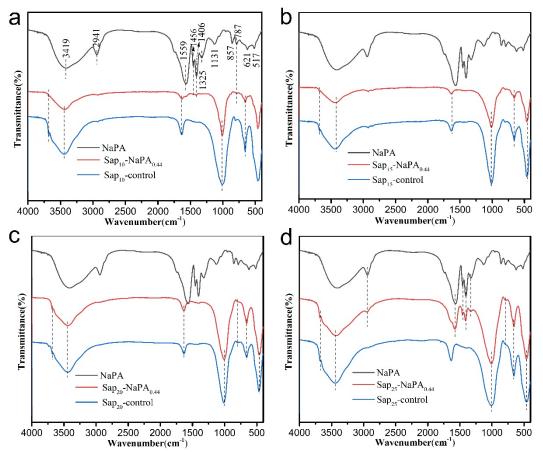
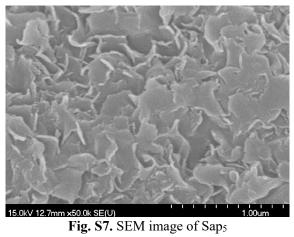



Fig. S6. FTIR of (a) Sap₁₀-control and Sap₁₀-NaPA_{0.44}, (b) Sap₁₅-control and Sap₁₅-NaPA_{0.44}, (c)

Sap₂₀-control and Sap₂₀-NaPA_{0.44}, (d) Sap₂₅-control and Sap₂₅-NaPA_{0.44}, and NaPA. Sap_x-NaPA_{0.44}: the Sap_x dispersed in deionized water followed by 7 d standing and the addition of NaPA to reach the concentration of 0.44 g/L, before drying in an oven. Sap_x means the Sap synthesized at the Si/Al molar ratio of 10, 15, 20 and 25.

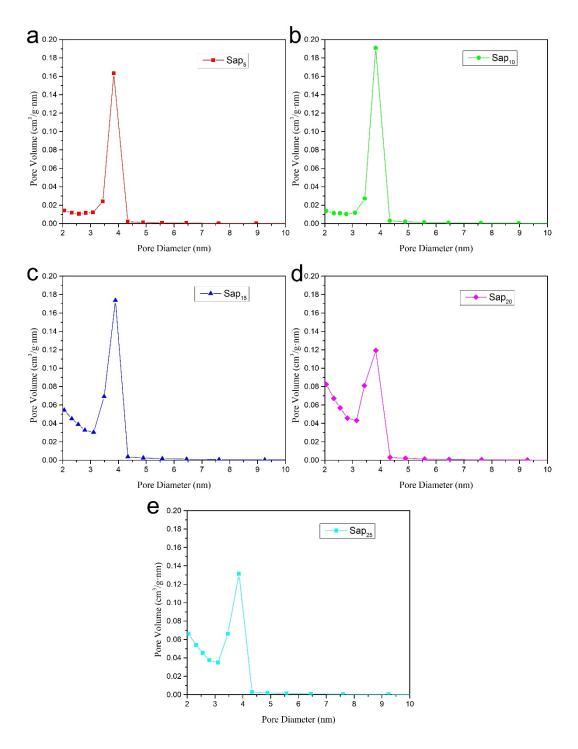


Fig. S8. Pore size distribution of Sap_x

The average pore diameter of Sap₅, Sap₁₀, Sap₁₅, Sap₂₀ and Sap₂₅ is 3.61, 3.68, 3.34, 3.08 and 3.16 nm, respectively. The BJH desorption cumulative pore volume of Sap₅, Sap₁₀, Sap₁₅, Sap₂₀ and Sap₂₅ between 1.70 nm and 300.00 nm were 0.110, 0.130, 0.166, 0.176 and 0.156 cm³/g, respectively. But the BJH desorption cumulative pore volume

of Sap₅, Sap₁₀, Sap₁₅, Sap₂₀ and Sap₂₅ between 2.05 nm and 3.10 nm were 0.0122, 0.0118, 0.0416, 0.0624 and 0.0490 cm³/g, respectively. The cumulative pore volume increased with the increase of Si/Al ratio ranging from 5 to 20. Sap₂₀ shows the lowest average pore size and the highest BJH desorption cumulative pore volume among the synthetic Sap.