Tables:

Table 1: Total Si and Na concentrations in solutions at the end of syntheses and minerals identified for series of experiments at $pH_i = 12$ and $pH_i = 13.3$. $pH_i = initial pH$ of the starting solutions at 25 °C. $pH_f = final pH$ at the end of the synthesis (cooling fluids at 25 °C).

	Time (day)	Sample	рН _і	рН _f	[Si] mol·L ⁻¹	[Na] mol·L ⁻¹	Minerals
$pH_i = 12$	1	NT42	11.93	11.10	8.16×10 ⁻³	2.68×10^{-2}	nontronite
	6	NT0	12.03	11.44	1.47×10 ⁻²	1.47×10 ⁻²	nontronite
	15	NT38	12.01	11.66	1.02×10 ⁻²	3.13×10 ⁻²	nontronite
	31	NT28	11.97	11.64	1.17×10 ⁻²	3.29×10 ⁻²	nontronite
	62	NT10	12.03	11.36	1.37×10 ⁻²	3.49×10 ⁻²	nontronite
	183	NT33	11.99	11.57	1.46×10 ⁻²	3.87×10 ⁻²	nontronite + ε aegirine
nH: - 13 3	1	NT44	13 33	13 13	3 14×10 ⁻²	2.37×10^{-1}	nontronite
$p_{11} = 15.5$	1		10.00	10.10	5.14×10	2.57×10	nontronite
	6	NT7	13.30	13.22	4.31×10 ⁻²	3.04×10 ⁻¹	nontronite
	15	NT41	13.35	13.15	4.20×10 ⁻²	2.51×10 ⁻¹	nontronite + ε aegirine
	31	NT32	13.29	13.23	3.35×10 ⁻²	2.61×10 ⁻¹	nontronite + aegirine + hematite
	62	NT17	13.30	13.22	1.90×10 ⁻²	2.59×10 ⁻¹	aegirine + hematite
	183	NT35	13.31	13.33	7.63×10 ⁻³	3.01×10 ⁻¹	aegirine + hematite

	Time	Sample	$a(H^+)$	$a(Na^+)$	a(H ₄ SiO ₄)
$pH_i = 12$	1	NT42	1.55E-10	2.16E-02	6.81E-04
	6	NT0	1.78E-10	2.46E-02	1.38E-03
	15	NT38	1.35E-10	2.48E-02	7.31E-04
	31	NT28	1.41E-10	2.60E-02	8.73E-04
	62	NT10	1.41E-10	2.74E-02	1.02E-03
	183	NT33	1.26E-10	3.01E-02	9.60E-04
$pH_i=13.3$	1	NT44	2.00E-11	1.52E-01	1.71E-04
	6	NT7	2.00E-11	1.66E-01	2.29E-04
	15	NT41	2.09E-11	1.61E-01	2.41E-04
	31	NT32	1.82E-11	1.66E-01	1.56E-04
	62	NT17	1.70E-11	1.64E-01	8.11E-05
	183	NT35	1.38E-11	1.89E-01	2.30E-05

Table 2: Thermodynamic activities of aqueous species of H^+ , Na^+ , and H_4SiO_4 at 150 °C for the series of experiments at $pH_i = 12$ and $pH_i = 13.3$.

Table 3: Thermodynamic data of aegirine, hematite, ferripyrophyllite, and nontronites $[Si_{4-x}Fe(III)_x]Fe(III)_2O_{10}(OH)_2Na_x]$ with x = 0.5, 0.75, 1.15, and 1.35. $\Delta G^\circ_f =$ standard Gibbs free energy of formation; $\Delta H^\circ_{f=}$ standard enthalpy of formation; $S^\circ =$ standard entropy; Cp= heat capacity; K_{eq} 150 °C = equilibrium constant of dissolution at 150 °C

	∆G° _f (kJ∙mol ⁻¹)	ΔH° _f (kJ·mol ⁻¹)	S° (J⋅K ⁻¹ ⋅mol ⁻¹)	Cp (J·K ⁻¹ ·mol ⁻¹)	log ₁₀ (K _{eq}) 150°C
Aegirine	-2417.20	-2584.50	170.57	169.88	-1.81
Hematite	-744.25	-826.23	87.4	103.88	-6.82
amorphous silica	-850.36	-903.15	46.90	59.89	-2.00
ferripyrophyllite	-4382.44	-4739.82	292.73	328.72	-13.70
Fe(III)- nontronite	-4324.36	-4678.20	334.51	374.67	-13.23
(x = 0.5)					
Fe(III)- nontronite	-4292.30	-4645.54	351.43	397.65	-12.56
(x = 0.75)					
Fe(III)- nontronite	-4257.94	-4611.66	364.76	420.62	-11.55
(x = 1.15)					
Fe(III)- nontronite (x = 1.35)	-4220.80	-4573.38	386.54	448.19	-10.93

Table 4: Tetrahedral iron content (^[4]Fe (III)) of nontronites synthesized at $pH_i = 12$ and 13, estimated from the position (± 0.5 cm⁻¹) of the v Si-O band (Baron et al., 2016). The Full Width at Half Maximum (FWHM) and the intensity of the v Fe³⁺₂ - OH band were obtained from the decomposition of IR spectra (normalized to the v Si-O band) using one pseudo-Voigt component.

	Time	Sample	v Si-O (cm ⁻¹)	^[4] Fe(III)	v Fe ³⁺ ₂ - OH		
	(day)				FWHM (cm^{-1})	Intensity (a.u.)	
$pH_i = 12$	1	NT42	1012	0.46	72	0.131	
	6	NT0	1009	0.51	64	0.163	
	15	NT38	1004	0.61	59	0.159	
	31	NT28	1002	0.64	56	0.167	
	62	NT10	997	0.73	51	0.177	
	183	NT33	997	0.73	52	0.185	
$pH_i = 13.3$	1	NT44	974	1.16			
	6	NT7	965	1.32			
	15	NT41	962	1.38			