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Abstract.

4D-MRI is a promising tool for organ exploration, target delineation and treatment

planning. Intra-scan motion artifacts may be greatly reduced by increasing the imaging

frame rate. However, poor signal-to-noise ratios (SNR) are observed when increasing

spatial and/or frame number per physiological cycle, in particular in the abdomen.

In the current work, the proposed 4D-MRI method favored spatial resolution, frame

number, isotropic voxels and large field-of-view (FOV) during MR-acquisition. The

consequential SNR penalty in the reconstructed data is addressed retrospectively using

an iterative back-projection (IBP) algorithm. Practically, after computing individual

spatial 3D deformations present in the images using a deformable image registration

(DIR) algorithm, each 3D image is individually enhanced by fusing several successive

frames in its local temporal neighborood, these latter being likely to cover common

independent informations. A tuning parameter allows one to freely readjust the balance

between temporal resolution and precision of the 4D-MRI.

The benefit of the method was quantitatively evaluated on the thorax of 6 mice

under free breathing using a clinically acceptable duration. Improved 4D cardiac

imaging was also shown in the heart of 1 mice. Obtained results are compared

to theoretical expectations and discussed. The proposed implementation is easily

parallelizable and optimized 4D-MRI could thereby be obtained with a clinically

acceptable duration.

Keywords: 4D-MRI, Abdominal MRI, Cardiopulmonary MRI, Denoising, Iterative back-

projection.
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1. Introduction

Due to its superiority on soft-tissue contrast and its non-invasive feature, MRI is an

established modality in clinical routine. In particular, it has become a promising

technique for imaging moving organs at the abdomen or cardio-thoracic level with the

possibility of obtaining time-resolved 3D images (4D-MRI). Many applications can be

considered, such as lung exploration and detection of lung nodules (Ohno et al. 2017)

(Feng et al. 2019), cystic fibrosis (Dournes et al. 2016), or, to an even more complex

degree, 3D-cine cardiac imaging (Jahnke et al. 2006). 4D-MRI is also a tool of choice

for planning sessions in radiation (Paganelli et al. 2015) (Jinsoo et al. 2017) and High

Intensity Focused Ultrasound (HIFU) (Ferrer et al. 2019) therapies of abdominal tumors:

it thereby facilitates the prospective analysis of organ localisation on the therapeutic

treatment and allows monitoring changes in target motion patterns during the treatment

course (Stemkens et al. 2016).

A wide range of approaches have been developed to obtain 4D-MRI images. The

data needs to be re-ordered retrospectively in 3D according to the respiratory or

cardiac cycles. For this purpose, the most recent approaches use self-gating techniques

where a motion signal is extracted from the acquired data (Han et al. 2017) (Higano

et al. 2017) (Trotier et al. 2016). Then, to construct high-resolution 4D-MR data,

both prospective gated imaging and retrospective binning methods have been explored

in previous studies (Tryggestad et al. 2013) (Liu et al. 2015) (Stemkens et al. 2015).

For both prospective and retrospective binning, the challenge is to populate motion

bins densely enough within an acceptable acquisition duration. Missing-data artefacts

are frequenlty encountered and a large slice-thickness is generally mandatory to obtain

sufficient field-of-view (FOV) and signal-to-noise ratio (SNR). These approaches are

generally limited in spatial resolution, and super-resolution (SR) techniques have thus

recently been proposed to compensate for large voxel sizes in acquired images (Van Reeth

et al. 2015) (Chilla et al. 2017) (Freedman et al. 2018): several low-resolution images

containing independent information of the same region are fused using an iterative back-

projection (IBP) to produce one high-resolution image. An intrinsic drawback of such

SR-approaches is that it can not provide any additional information in image regions

prone to unmoving tissues. Alternatively, sparse imaging has also been introduced and

has enabled to obtain 5D cardiac information (3D images plus two distinct temporal

dimensions representing cardiac and respiratory phases, respectively) with extension of

XD-GRASP techniques (Feng et al. 2018). These different techniques use specific k-

space encoding, most often radial or spiral trajectories. These last methods are known

to be more robust to motion. Further motion correction methods based on linear phase

correction to all the acquired k-space have been introduced (Cheng et al. 2012) and

it can be coupled with acceleration technique to obtain free-breathing images in a

wide range of applications (Cheng et al. 2015) (Zhang et al. 2015) (Chen et al. 2017).

In the latter approaches, the presence of movement due to breathing generates long

acquisition times to obtain high spatial resolution images in 4D, preventing the use of
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this type of imaging in clinical routine. The complexity of reconstruction methods using

self gating information, and/or Compressed Sensing reconstructions with multi-channel

coils is also an issue that must be taken care of for the development of abdominal and

cardiopulmonary MRI in clinical routine.

For all above-mentioned methods, multiple 2D or 3D images with sufficient SNR

need to be acquired, which imposes several restrictions during MR-acquisition in terms of

either: image FOV, spatial resolution, frame number, voxel sizes or acquisition duration.

In the current paper, our approach is to put aside any SNR considerations during the

MR-signal acquisition. A 4D-data set is acquired during the physiological motion cycle

(breathing or cardiac) with a large FOV, privileged spatial resolution and frame number

(thereby avoiding intra-scan motion artifacts, only inter-scan motion are present) and

isotropic voxels. The consequential SNR penalty in reconstructed data is retrospectively

addressed by adjusting the balance between temporal resolution and precision of the 4D-

MRI, using an IBP strategy (Irani & Peleg 1993).

Our contribution is four-fold:

(i) An image-enhancement method is proposed to optimize 4D abdominal MRI: a 4D

data set with a high spatio-temporal resolution is acquired during the physiological

motion. Each 3D image are subsequently individually enhanced by fusing several

successive frames — these latter being likely to contain common independent

anatomical informations — using an IBP-strategy.

(ii) An input parameter — referred to as ρ ∈ [0, 1] in the scope of this study — is

introduced to freely adjust the balance between the precision (favored by increasing

ρ toward 1) and the temporal resolution (favored by decreasing ρ toward 0) of the

4D output.

(iii) The performance of the proposed 4D image-enhancement method is quantitatively

analysed in terms of both precision and accuracy in the thorax of 6 mice. Intrinsic

limits of the method in the presence of complex organ deformations are illustrated

in the heart of 1 mouse. Obtained results are compared to compressed sensing

reconstructions and to theoretical expectations, and discussed.

(iv) The benefit of using multi-CPU, GPU (Graphics Processing Unit) and computer

cluster architectures is evaluated.

2. Materials and Methods

2.1. Proposed retrospective 4D IBP-enhancement method

The proposed method (detailed in Fig. 1) consists of three successive steps:

• Step #1 - MR-acquisition/reconstruction: A 4D-MRI with isotropic voxels

and optimized spatial resolution/frame number is first acquired during the

physiological motion cycle (i.e. breathing if the thorax is screened, cardiac cycle

if it is the heart) (see section 2.1.1). In order to obtain each dynamic 3D image
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in a reduced scan time (thereby avoiding intra-scan motion artefacts), the amount

of acquired data in the k-space has to be limited. This largely affects in turns the

signal-to-noise ratio (SNR).

• Step #2 - Estimation of 3D organ deformations: At this point, we have

a set of low-SNR 4D data with optimized spatial resolution/frame number. 3D

inter-scan spatial deformation present in the 3D images were individually estimated

using a deformable image registration (DIR) algorithm (see section 2.1.2). Potential

deformation perturbations in motion estimates induced by the presence of noise in

input images were compensated.

• Step #3 - IBP-enhancement: Each 3D low-SNR image was individually

enhanced by fusing several successive frames covering commmon informations using

an IBP approach (Irani & Peleg 1993) (see section 2.1.3). Practically, we iteratively

minimized differences between acquired 3D low-SNR images and images generated

from back-registering a guess of the unnoisy image.

Figure 1: Data processing sequence designed for 4D abdominal MRI using the

proposed IBP-algorithm. The dashed light-grey line encompasses data involved in the

reconstruction of one single frame (here frame #1).

2.1.1. Step #1: Acquisition of 4D data with optimized spatial resolution/frame number

A Self-Gated 3D UTE (Ultrashort Echo Time ) sequence was used, as described in

section 2.2.2. For the rest of the manuscript, let N be the number of 3D noisy

frames. We denote by I
(k)
LQ the original “low quality” (noisy) images (k is a time index,

k ∈ {1, ..., N}). Assuming the periodicity of the breathing and cardiac activities, k is

taken modulo N once it goes out the range [0, N ] in equations that follow.
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2.1.2. Step #2: Estimation of 3D organ deformations ∀(n, k) ∈ {1, ..., N}2, let Tn,k

be the 3D spatial transformation that allows registering the frame k (i.e. I
(k)
LQ, referred

to as the “moving image”) onto the frame n (i.e. I
(n)
LQ, referred to as the “reference

image”). Both forward and backward non-rigid displacements (i.e. Tn,k and T−1
n,k) are

mandatory for the achievement of Step #3. Tn,k and T−1
n,k were estimated using a 3D

Optical Flow (OF) algorithm (Zachiu et al. 2015). Briefly, the OF-algorithm calculates

non-rigid displacement between two imaging frames according to a transport equation,

with an additional constraint on motion smoothness to model elastic organ deformation.

An inverse consistency error (ICE), as defined by (Christensen & Johnson 2001), was

minimized in order to provide a pair of symmetric transformations (Tn,k, T
−1
n,k) for a

given pair of frames indexed by (n, k).

At this point, it must be noticed that OF-estimates are inherently sensitive to the

presence noise in OF-input (noisy) images. ∀(n, k) ∈ {1, ..., N}2, the potential noise in

forward transformations Tn,k were reduced using the following two-steps process:

(i) Perturbations in Tn,k arising from the presence of noise in “moving images” (index

k) could be easily reduced using a voxelwise temporal (along k) average-filter (kernel

size=5) applied on Tn,k, for each n ∈ [1, ..., N ] individually.

(ii) We could then take benefit of the assumption that Tn,n has to be identically equal to

0 ∀n ∈ [1, ..., N ] (no organ motion): once filtered as done in (i), Tn,n is filled by OF

persistant biases arising from the presence of noise in the “reference image” (index

n). For any given n, Tn,n thereby provides a voxelwise OF-bias map which was

subtracted to Tn,k ∀k ∈ [1, ..., N ] (practically: Tn,k = Tn,k − Tn,n, ∀k ∈ [1, ..., N ]).

This two-steps process was performed for backward transformations T−1
n,k , ∀(n, k) ∈

{1, ..., N}2, similarly.

2.1.3. Step #3: IBP image enhancement We denote by I
(k)
HQ the N the desired “high

quality” 3D images. We recall that each frame in I
(k)
HQ is calculated by fusing several

successive frames in ILQ covering commmon informations. Practically, only successive

frames contained in a sliding temporal window (centered on the working frame) were

taken into account (let ∆T ≥ 2 be the size of this temporal window). We denote by

ρ ∈ [0, 1] the ratio between the temporal window size and the total amount of frame

N (we have ρ = ∆T
N
). We underline that ρ is a crucial user-defined parameter for the

algorithm, and its impact on the overall results will be carrefully evaluated and discussed

later.

An IBP algorithm (Irani & Peleg 1993) was employed in each 3D frame invidually in

order to compensate for inherent numerical approximations arising from the application

of 3D spatial transformations on images. We denote by I
(n)
HQ

∣

∣

∣

i
the unnoisy guess (frame

n) obtained at iteration i.

(i) An initial guess of the desired unnoisy image was first computed. For each frame

n ∈ [1, ..., N ], we computed the mean of noisy images contained in the above-
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mentioned temporal window (i.e. I
(k)
LQ, ∀k ∈

[

n− ∆T
2
, n+ ∆T

2
[ ), each image being

registered onto the current position:

I
(n)
HQ

∣

∣

∣

0
=

1

∆T

∑

k∈[n−∆T
2

,n+∆T
2

[

Tn,k

(

I
(k)
LQ

)

(1)

The theoretical SNR improvement is analysed in Appendix A.

(ii) Noisy images I
(k)
LQ

∣

∣

∣

i+1
(k ∈

[

n− ∆T
2
, n+ ∆T

2
[ ) which would be acquired if the

guess was correct could then be estimated. To this end, the current guess of the

unnoisy image I
(n)
HQ

∣

∣

∣

i
was back-registered on each frame position using the 3D spatial

deformations T−1
n,k :

I
(k)
LQ

∣

∣

∣

i+1
= T−1

n,k

(

I
(n)
HQ

∣

∣

∣

i

)

(2)

(iii) For each frame, the voxelwise differences between original and generated 3D noisy

images could be calculated as follows:

Σ(n) =
1

∆T

∑

k∈[n−∆T
2

,n+∆T
2

[

Tn,k

(

I
(k)
LQ

∣

∣

∣

0
− I

(k)
LQ

∣

∣

∣

i+1

)

(3)

(iv) From a fixed-point scheme mimizing Σ(n), an updated unnoisy guess I
(n)
HQ

∣

∣

∣

i+1
could

be generated ∀n ∈ {1, ..., N}:

I
(n)
HQ

∣

∣

∣

i+1
= I

(n)
HQ

∣

∣

∣

i
+ Σ(n) (4)

(v) The iterative process (ii)-(iv) was repeated (I
(n)
HQ

∣

∣

∣

i
→ I

(n)
HQ ) until the relative

variation of the residual error (i.e the mean squared of Σ(n)) fell below a pre-defined

user threshold (noted ε). While a reduced value for ε may lead to an advantageous

decrease of the residual error, it must also be high enough to prevent the algorithm

to get caught in an infinite loop (for numerical precision considerations). In all

presented experiments, a good compromise for ε = has been found for a common

value of 10%.

Note that, for the completion of all frames, the total number of forward/backward

transformation pairs (Tn,k, T
−1
n,k) involved in Eq. (1), (2) and (3) reached N×(N−1)

2
using

a temporal window size ∆T = N . For computation time considerations, only needful

pairs of transformations were pre-calculated in Step #2 and stored in random access

memory (RAM) for fast access.

2.2. Experimental validation

Both the precision and the accuracy of the 4D outputs were quantitatively evaluated

on the abdomen of 6 mice under free-breathing. The performance of the method was

subsequently analysed on the heart of one mouse.
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2.2.1. Experimental setup Experiments were performed on a 7T Bruker Biospec

system (Ettlingen, Germany), using a 4-phased array coil in a volume configuration

(19 × 25.5 mm diameter, Rapid Biomedical). Acquisitions were performed on a group

of healthy mice (C57BL/6, body weights = 19-25g, Charles River, France). All

experimental procedures were approved by the Animal Care and Use Institutional

ethics committee of Bordeaux, France (approval no. 5012032-A). The respiration was

monitored using a balloon placed on the mouse abdomen. Respiratory rhythm was

stabilized at 100 inspirations per minute and anesthesia was regulated by modifying the

proportion of isoflurane inhaled. Before mouse positioning facing up in the magnet,

100 µmol Fe/kg of ultrasmall superparamagnetic iron oxide particles (Ferumoxytol,

AMAG Pharmaceuticals) was injected through the tail vein to decrease the blood T1

longitudinal relaxation time and obtain a high blood signal.

2.2.2. MR protocol A radial 3D self-gated UTE (Ultrashort Echo Time) sequence

(Cardiet et al. 2019) was used to perform the acquisitions with the following parameters:

Repetition time/Echo time (TR/TE) = 3.5/0.081 ms, excitation pulse/duration/angle =

bloc pulse/0.05 ms/15°, field-of-view = 22.5×22.5×22.5 mm3, matrix = 128×128×128,

resulting in an isotropic voxel size of 176 µm, receiver bandwidth = 100 kHz. The

number of samples per projection is equal to 75: 64 (matrix size) + 6 (ramp

compensation) + 5 (Self-Gating samples). The radial acquisition scheme corresponding

to 30 000 projections was repeated 40 times (with the number of repetitions noted NR)

corresponding to a total acquisition duration of 70 minutes.

The self-gating signal, as already described in (Hoerr et al. 2013) (Trotier

et al. 2016), enables to identify respiratory and cardiac cycles. With the same data,

cardiac or respiratory cine frames can be reconstructed. To do this, the k-space data

were attributed, retrospectively, to the corresponding cine frame, according to their

temporal position within the respiratory or cardiac cycle in order to generate 40 frames

per breathing cycle or 30 frames per cardiac cycle.

To reconstruct the undersampled images, the 35 first minutes (NR=20) and the 17

first minutes (NR=10) and the 8 first minutes (NR=5) of the acquired data were used.

2.2.3. Performance assessment in the thorax of 6 mice

Spatial analysis: All data acquired during the stable phase of the respiration cycle

(from the 70 minutes acquisition time image, NR=40) were summed retrospectively in

order to produce a gold-standard high resolution 3D image. Then, the performance of

the proposed approach could be assessed by evaluating the peak-SNR (pSNR) between

the 3D enhanced output obtained at the stable phase of the exhalation and the gold-

standard. For this purpose, for images with normalised intensity (values in the range

[0, 1]), the pSNR can be obtained as follows:
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pSNR = 10× log

(

1

EQM

)

(5)

EQM being the mean quadratic error between our output and the goldstandard,

obtained after image registration (using an algorithm which aims at maximizing edge

alignment between the images being registered (Denis de Senneville et al. 2016), in order

to prevent any impact on the EQM) and intensity standardization (Nyul & Udupa 1999)

(an histogram matching of order 2 was employed (Christensen 2003)).

Temporal analysis: A signal intensity drop was observable in the lung at the end of

the inhalation, presumably caused by the variation of proton density per voxels along

breathing. The accuracy over time was evaluated by analysing time-intensity curves

(TIC) calculated over a cubic region of 15×15×15 voxels (noted Γ) located in the lung.

The TIC, applied on a given 4D image I, can be calculated as follows:

fI,Γ(n) =
1

|Γ|
∑

~r∈Γ

I
(n)
HQ(~r) (6)

~r ∈ Ω being the spatial location, Ω the image coordinates domain, n the time index,

and |Γ| the number of voxels in Γ (|Γ| = 153 in the current study).

The signal bias could then be evaluated by computing the Mean Absolute Error

(MAE) between TICs resulting from original (fILQ,Γ(n)) and enhanced (fIHQ,Γ(n)) data-

sets, over the N frames of the observed physiological cycle, as follows:

MAE =
1

N

N
∑

n=1

∣

∣fILQ,Γ(n)− fIHQ,Γ(n)
∣

∣ (7)

Comparison with compressed sensing techniques: Two compressed sensing strategies

(referred to as “CS-[1-2]”) were analysed:

(i) CS-1: each 3D frame in the time sequence was individually reconstructed using a

L1-Wavelet regularization.

(ii) CS-2: the complete 4D data set was reconstructed using a L1-Wavelet

regularization for both spatial and temporal dimensions.

Compressed sensing reconstructions were performed using the Berkeley Advanced

Reconstruction Toolbox (BART, DOI:10.5281/zenodo.592960). The estimation of

the coil sensitivity was performed using the ESPIRiT calibration approach (Uecker

et al. 2014). A manual tuning of regularization parameters was performed and only

best achievable results are reported in this study.

Statistical analysis A Wilcoxon paired test was carried out in order to study whether

pSNR and MAE differences are statistically significant between original, Compressed

sensing and IBP-enhanced data sets, and between all pairs of tested ρ values. A

significance threshold of p = 0.05 was used.
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2.2.4. Performance assessment in the heart of a mouse A qualitative analysis was

performed as follows: we first observed mis-registered areas by analysing image difference

between the images being registered. Subsequently, intensity biases on enhanced images

were analysed on voxelwise difference maps calculated between original and enhanced

images.

Note that the use of a goldstandard image was hardly feasible in the heart

(insufficient steady periods were present in the cardiac motion pattern), preventing

pSNR calculations in the scope of this experiment.

2.2.5. Benchmark Above-mentioned performance indicators were evaluated for

acquisition durations of 8, 17 and 35 minutes and for ρ values of 5%, 20% and 100%.

Note that, for the thorax experiment, ρ values of 5%, 20% and 100% corresponded

to temporal sliding windows sizes ∆T of 2, 8 and 40 frames, respectively. For the heart

experiment, it corresponded to ∆T = 2, 6 and 30 frames, respectively.

2.2.6. Hardware and implementation We evaluated the computational overhead of our

method using two different hardware architectures:

Test platform #1: This platform employed commodity CPU/GPU hardwares. An

Intel 2.5 GHz i7 workstation (Quad-core) with 32 GB of RAM was used. The GPU was

a NVidia GeForce GTX 770 with 2 GB of dynamic random-access memory (NVIDIA,

Santa Clara, CA, USA). We separately tested three hardware configurations: (i) OF-

registration tasks were performed by the CPU only (each individual OF-registration

being multi-threaded on the four available CPU) ; (ii) registration tasks were performed

by the GPU only ; (iii) OF-registration tasks were split into two groups, each group

being respectively tackled simultaneously by the CPU and the GPU (the size of each

group was optimized for an optimal hardware utilisation).

Test platform #2: This platform was a computer cluster with 9 nodes of Intel Xeon

E5-2680 2.5 GHz (2 Dodeca-core) with 128 GB of RAM.

The implementation was performed in C++ and parallelized through multi-

threading. The GPU implementation was realized using the compute unified device

architecture (CUDA) (NVIDIA 2008).

3. Results

3.1. Performance assessment in the thorax of 6 mice

A visualization of typical OF-registration results obtained in the thorax of a mouse

is reported in Fig. 2. The implemented OF-algorithm estimated a spatially regular

elastic deformation (mainly head-foot, as expected), as shown in 2d. The maximum
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absolute difference between the reference and the registered image decreased by 60%

when the OF-based registration was applied (2f), even for two images associated to

opposite instants of the breathing cycle (i.e. I
(1)
LQ

∣

∣

∣

0
and I

(20)
LQ

∣

∣

∣

0
). This maximum absolute

difference remained almost constant throughout the complete breathing cycle and didn’t

exceed the basal level (see 2g), demonstrating steady performance of the employed OF

algorithm.

ILQ (frame #1)

(a)

ILQ (frame #20)

(b)

Registered frame #20

(c)

T1,20

(d)

Difference (b)-(a)
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Figure 2: Typical registration results obtained using the implemented OF-algorithm

(Step #2, see section 2.1.2) on the thorax of a mouse (acquisition duration=35 minutes).

The original input noisy images obtained at the begining (a) and at the end of the

exhalation (b) are reported. (c) shows the image in (b) registered on position in

(a) using the implemented optical-flow algorithm. Note that the displacement in the

liver/lung interface can be observable thanks to the red dashed lines in (a,b,c). The

estimated spatial deformation field is reported in (d). The voxelwise image difference

obtained before (e) and after image registration (f) are reported. The maximum absolute

difference is reported in (g) for each of the 40 frames before (black dashed plot) and

after (red plot) image registration.

The image quality visually improved with an increasing iteration number in the IBP

algorithm, as shown in Fig. 3d, 3e and 3g. The corresponding voxelwise error decreased

accordingly (see 3f and 3h). The residual error, as a function of the iteration number,
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Reconstruction Experiment

8 min 17 min 35 min

pSNR MAE pSNR MAE pSNR MAE

(×10−4) (×10−4) (×10−4)

Original 27.3 ± 1.1 0 ± 0 27.4 ± 1.3 0 ± 0 28.3 ± 1 0 ± 0

IBP [ρ = 5%] 29 ± 1 34 ± 7 29.3 ± 1.5 34 ± 15 30.7 ± 0.9 25 ± 5

IBP [ρ = 20%] 31.3 ± 0.9 47 ± 14 31.9 ± 1.8 47 ± 19 34.3 ± 1.1 37 ± 14

IBP [ρ = 100%] 32 ± 0.7 199 ± 45 32.6 ± 1.9 195 ± 43 34.7 ± 0.6 194 ± 41

CS-1 28.4 ± 1.4 40 ± 14 28.8 ± 1.1 42 ± 9 29.5 ± 1.1 49 ± 8

CS-2 29.7 ± 1.4 49 ± 14 29.6 ± 1 49 ± 9 29.8± 1 53 ± 6

Table 1: Summary of pSNR and MAE numerical values obtained for various acquisition

durations (8, 17 and 35 minutes) and all tested reconstruction methods.

depicted a strict decrease toward zero (3c) showing the convergence of the implemented

fixed point scheme (Eq. (4)). At convergence, Fig. 4 shows that the enhanced image

obtained at the end of the exhalation (4b, 4e and 4h) was visually more similar to the

gold-standard (4c, 4f and 4i) as compared to the original one (4a, 4d and 4g). Videos

of typical IBP-enhanced 4D images (acquisition duration=8 minutes, ρ = 100%) are

provided in Supplemental Data. This visual inspection is confirmed in Fig. 5 and Table

1 for all tested mice. Only the following test did not shown statistically significantly

different pSNR values: [35 minutes/ρ = 20%] versus [35 minutes/ρ = 100%] (p = 0.16).

For all other scenarios, the pSNR significantly increased for increased ρ value, for all

tested acquisition durations (p < 0.03). Using the proposed approach, an acquisition

duration of 8 minutes led to a pSNR higher than the one obtained on the original image

with an acquisition duration of 35 minutes. Fig. 6 and Fig. 7 provide a temporal

analysis of the data. The signal in the lung drop during the exhalation, as shown by

the black dashed line in Fig. 6. Although the time intensity curve obtained for ρ = 5%

visually fitted nicely this trend (red line), this were not the case at the end of inhalation

for ρ = 20% (green line), and even worse for ρ = 100% (black line. No temporal variation

was screened here). These observations are confirmed for all tested mice and acquisition

durations in Fig. 7. The proposed IBP approach is compared with several up-to-date

compressed sensing strategies in Fig. 8. It can be observed that both pSNR (8e) and

MAE (8f) values were better using combined the spatio-temporal regularization strategy

(CS-2) as compared to the frame-by-frame based strategy (CS-1). One can notice that,

by setting ρ = 20%, a significantly higher pSNR was obtained using the proposed IBP

approach (p < 0.03), as compared to CS-1 and CS-2, together with a similar MAE

penalty (p > 0.3).
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Figure 3: Typical example of the IBP-enhancement (Step #3, see section 2.1.3) of an

image acquired on the abdomen of a mouse during the stable phase of the exhalation.

(a): original image (acquisition duration=35 minutes, ρ = 100%), (b): IBP-enhanced

image at convergence, (c): residual error as a function of the iteration number. The

original image (d), the initial guess (e) and its corresponding residual error map at (f),

the guess at convergence (g) and its corresponding residual error map (h) are emphasized

within a region of interest delimited by the red dashed rectangles in (a,b). Note that

units in (c,f,h) are arbitrary intensity units (a.i.u).

3.2. Performance assessment in the heart of a mouse

A visualization of typical OF-registration results obtained in the heart of a mouse

is reported in Fig. 9. The implemented OF-algorithm estimated a complex local

deformation, as shown in 9d. The maximum absolute difference between the reference

(reported in 9a) and the registered image (reported in 9b) decreased by only 20% when

the OF-based registration was applied (9f). The maximum absolute difference increased

during the cardiac cycle, even approaching the values obtained when no registration

was applied, demonstrating poor performance of the employed OF algorithm for images

prone to complex deformations.

Fig. 10 displays the performance of IBP-enhancement for ρ values of 5%, 20% and

100%. For ρ values of 5% and 20%, voxelwise image differences between original and

IBP-enhanced images shown comparable values in the heart and in the surrounding
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Acquired image (ILQ)

(a)

IBP-enhanced image (IHQ)

(b)

Gold-standard

(c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Typical results obtained on the thorax of a mouse during the stable phase

of the exhalation. The original (left column, acquisition duration=17 minutes), the

corresponding IBP-enhanced (center column, ρ = 100%) and the goldstandard images

(right column) are shown. Coronal, transversal and sagittal images are displayed in the

1st, 2nd and 3rd lines, respectively.

tissues (see 10e and 10f). This was however not the case for ρ = 100%: large image

differences are observable in 10g, especially in areas pointed by red arrows. Note that

these regions match nicely mis-registered areas (see red arrows in Fig. 9c and 9f).
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Figure 5: Summary of pSNR values obtained for various acquisition durations (8, 17

and 35 minutes) and ρ values of 5%, 20% and 100%. Standard deviations over the 6

mice are given by the size of the red error bars.
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Figure 6: Time intensity curves obtained in a region of 15 × 15 × 15 voxels located in

the lung a mouse (red arrow in Fig. 4a) for ρ values of 5%, 20% and 100%.

3.3. Computational request

A computational benchmark of our implementations of the proposed reconstruction

strategy, obtained for different ρ values using our two test platforms, is provided in

Table 2. As expected, the computation time greatly benefited from our combined

CPU/GPU implementation, and huge speed-up could be obtained using the computer

cluster. About 15 minutes were necessary to enhance 40 frames of 128×128×128 voxels
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Figure 7: Summary of MAE (as defined in Eq. (7)) obtained for various acquisition

durations (8, 17 and 35 minutes) and ρ values of 5%, 20% and 100%). Standard

deviations over the 6 mice are given by the size of the red error bars.

(the thorax MR-scan) with ρ = 5% using our commodity hardware. A computer cluster

complete the same task within less than a minute. While around one hour was needed

using our commodity hardware for ρ = 100%, three minutes only were mandatory using

our computer cluster.

4. Discussion

The strategy consists of privileging spatial resolution/frame number of the acquired

MR-data as well as isotropic voxel sizes and large FOV, the consequential SNR penalty

being adressed using an IBP approach. The benefit of the increased frame number is

two-fold: first, reduced scan times allows limiting intra-scan motion artifacts. Second,

the temporal resolution is converted into SNR thanks to the IBP strategy.

The proposed IBP approach acts like an “improved” temporal filter in the sense

that it is able to compensate for spatial organ deformations, and ensuing interpolation

biases. The input parameter ρ controls the kernel size (∆T ) of this average filter and,

by the way, its cut-of-frequency. ρ thereby allows adjusting the balance between the

precision gain and the inherent resulting penalty on the output accuracy. Practically,

the algorithm is prone to catch high temporal frequencies of the signal for low ρ values

(see red curve in Fig. 6). Conversely, any temporal signal variations not attributed to

motion may be dropped for ρ = 100% (see blue curve in Fig. 6).

In theory, the overall precision gain (i.e the noise standard deviation reduction) is

equal to
√
∆T (see Appendix A). In return for the above-mentioned precision benefit,
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Figure 8: Typical results obtained using IBP and compressed sensing approaches. (a):

original image (acquisition duration=8 minutes), (b): Gold-standard image, (c): IBP-

enhanced image (ρ = 20%), (d): Compressed Sensing reconstruction (CS-2). pSNR and

MAE values are summarized for each tested reconstruction methods (original, IBP with

ρ = 20% and compressed sensing values) for various acquisition durations (8, 17 and 35

minutes) in (e) and (f), respectively. Standard deviations over the 6 mice are given by

the size of the red error bars.

a penalty factor of ∆T is applied on the temporal resolution of signal variations not

attributed to motion. On the thorax experiments, it is interesting to note that a

moderate ρ value of 5% (which corresponded to a temporal window of 2 frames) improved

greatly the pSNR (by ≃2 dB, which matched the theoretical SNR improvement ratio

of
√
2 arising from Eq. (A.1)): this rendered the pSNR obtained using an acquisition

duration of 8 minutes greater than the one obtained using an acquisition duration of 35

minutes without IBP-enhancement (see Fig. 5). This was achievable together with a

moderate impact on the output accuracy: a penalty factor of 2 was applied on temporal

signal variations not attributed to motion (see the red curve in Fig. 6).

The input parameter ρ has thus to be chosen according to the final practical

application: for segmentation/delineation propagation tasks, a high ρ value may be
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Figure 9: Typical registration results obtained using the implemented OF-algorithm (see

section 2.1.2) on the heart of a mouse. The original input noisy images are reported

for two different instants of the cardiac cycle in (a) and (b). (c) shows the image in (b)

registered on position in (a) using the implemented OF algorithm.The estimated spatial

deformation field is reported in (d). The voxelwise image difference obtained before (e)

and after image registration (f) are reported. Note that high values in (f) are obtained

in mis-registered areas (see red arrows in (c) and (f)). The maximum absolute difference

is reported in (g) for the individual registration of all acquired frames onto the image

in (a) before (black dashed plot) and after (red plot) image registration.

beneficial in order to enhance anatomical contrasts whatever the gray intensities of

these latter. For processings based on a quantitative image contrast analysis, low ρ

value may be preferable in order to prevent inherent reconstruction biases on overall

results.

The performance of the reconstruction also rely on the ability of the employed

image registration algorithm to catch organ deformations. We chose a 3D OF algorithm,

because of its short processing time and minimal user intervention. The implemented

OF algorithm shown steady efficiency throughout the complete breathing cycle in the
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Figure 10: IBP-enhanced image of the heart of a mouse. The original (a) and the IBP-

enhanced images obtained for ρ values of 5% (b), 20% (c) and 100% (d) are shown. The

voxelwise image difference between the original image and the IBP-enhanced images

obtained for ρ values of 5% (e), 20% (f) and 100% (g) are reported.

thorax experiment (see Fig. 2), allowing the use large temporal window sizes (see Fig.

5 and 7). Low ρ value (≤ 20%) were however mandatory for the heart experiment in

order reduce the complexity of spatial deformations within the used temporal window

(see Fig. 9 and 10). It must be however underlined that there is no easy approach

to establish the robustness of OF-estimates without having any sort of silver or gold

standard. We believe that the use of quality assurance criteria (QA) on motion estimates

(Zachiu et al. 2018) is a promising path of investigation.

It must be reported that the use of a goldstandard image for pSNR evaluation

has several inherent limitations. We recall that sufficient steady periods needed to be

present in the motion pattern in order to increase the amount of data in the k-space while

avoiding intra-scan motion artifacts. In the thorax experiments, only data acquired at

the end of the exhalation could be used. However, quite lenghty acquisition (70 minutes)

were mandatory and peristaltic/motion drifts were likely to occur (see red arrow in Fig.
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Experiment Computation time [min]

Test platform #1 Test platform #2

4-CPU GPU 4-CPU/GPU 9-Nodes of 24-CPU

Thorax ρ = 5% 34 28 15 1

ρ = 20% 69 46 31 2

ρ = 100% 145 117 65 3

Heart ρ = 5% 25 20 11 1

ρ = 20% 41 34 19 1

ρ = 100% 81 68 37 2

Table 2: Computation time (in minutes) obtained using our implementation (OF-

calculations + IBP algorithm) on our two test platforms, for the thorax and heart

experiments, for different ρ values.

4i). These latter may not be present in the used input data sets, which hampered in

turns our pSNR evaluation.

While existing motion correction strategies operating in the k-space are inherently

restrained to translational and rotational movements, the proposed approach, which

operates in the spatial domain, allows accumulating signal with complex elastic organ

deformations. We expect that motion correction strategies in the k-space may be

beneficial to reduce intra-scans artifacts of our input images and, in turn, to further

improve our output quality.

Most of computation time are devoted to the completion of needed OF-calculations.

Using the proposed technique, OF-calculations can be performed individually for

different frame pairs. That way, the computation time greatly benefits from a combined

CPU/GPU (test platform #1) or computer cluster architectures (test platform #2).

5. Conclusion

The proposed method enriches the acquisition and reconstruction tasks by a subsequent

IBP-enhancement step. Our results match theoretical expectations: a pSNR gain of

2 dB could be obtained with a moderate penalty factor 2 on the temporal resolution.

In this context, the IBP-enhancement of a 4D-MRI acquired in 8 minutes led to a

precision higher than the one acquired in 35 minutes. Up to 6 dB was also achievable

by totally sacrificing the temporal resolution. The proposed implementation is easily
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parallelizable and takes great benefit of computer cluster architectures. The method

was thus compatible with a clinically acceptable time duration: 8 and less than 3

minutes were successively mandatory for MR-acquisition and IBP-algorithm (including

OF-calculations), respectively.

Future works will include the compensation of additional sources of artifacts

(potential biases arising either from intra-scan movements or from the Rician noise

distribution in MR-magnitude images which is a non-zero mean distribution), the

developement of an improved motion estimation model, the IBP-enhancement of MR-T1,

-T2 and -T ∗

2 images as well as the evaluation of the method on patients.
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Appendix A. Theoretical analysis of noise reduction

A temporal data averaging is performed in Eq. (1). Let σ(ILQ) be the noise standard

deviation in Tn,k

(

I
(k)
LQ

)

, assuming an identically distributed noise ∀k ∈ {1, ..., N}. It

quickly comes that the noise standard deviation of I
(n)
HQ

∣

∣

∣

0
is theoretically equal to:

σ
(

I
(n)
HQ

∣

∣

∣

0

)

=
1√
∆T

σ (ILQ) (A.1)

Eq. (1) thus enabled a theoretical SNR reduction by
√
∆T .
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