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ABSTRACT: The extraction of accurate physiological parameters from clinical samples provides a unique perspective to understand
disease etiology and evolution, including under therapy. We introduce a new methodologic framework to map patient proteome
dynamics in vivo, either proteome-wide or in large targeted panels. We applied it to ventricular cerebrospinal fluid (CSF) and could
determine the turnover parameters of almost 200 proteins, whereas a handful was known previously. We covered a large number of
neuron biology- and immune system-related proteins including many biomarkers and drug targets. This first large data set unraveled
a significant relationship between turnover and protein origin that relates to our ability to investigate organ physiology with protein
labeling strategy specifics. Our data constitute the first draft of CSF proteome dynamics as well as a repertoire of peptides for the
community to design new analyses. The disclosed methods apply to other fluids or tissues provided sequential sample collection can

be performed. We show that the proposed mathematical modeling applies to other analytical methods in the field.

Clinical proteomics mostly relies on the absolute
quantification of targeted proteins or global proteome
quantification?. Although highly successful, this type of
analysis does not reveal the synthesis and clearance rates behind
the observed abundance. Detailed and tissue-specific
knowledge of individual protein turnover constitutes a
complementary perspective that provides a unique insight into
protein regulation. For instance, protein turnover abnormalities
were related to disease pathophysiology in certain cases:
amyloid-f (AP) and Tau in Alzheimer disease3* (AD), the
superoxide dismutase [Cu-Zn] (SODI) in amyotrophic lateral
sclerosis®, or the retinol-binding protein 4 (RBP4) in type 1
diabetes®. Other authors employed large-scale turnover
mapping to identify the regulated processes involved in
zebrafish heart morphogenesis’ or tissue remodeling during
early-stage human heart failure?.

Turnover data are commonly obtained by mass spectrometry
(MS) and hence isotopic tracers are employed to label the newly
synthesized proteins. The ratio of labeled versus unlabeled
protein peptide abundances (Figure la) is called the relative
isotope abundance (RIA). Usually, a time course is realized to
acquire RIA curves from which synthesis and/or degradation
rates can be learned through mathematical modeling. The tracer
is typically introduced in animal or patient diet, or cell culture
media. Commonly used tracers® are '3Cy-labeled amino acids,

e.g. leucine (Leu) or phenylalanine, [?H,]O, or '>N. Different
tracing protocols exist and a common choice consists of
delivering the tracer continuously over a rather long time
(weeks). Labeling thus reaches saturation in most proteins but
the longest-lived ones!®!!. Other protocols, which could be
regarded as pulse-chase experiments, provide the tracer over a
limited period and keep collecting samples afterwards!?. To
reduce analytical work it is possible to multiplex samples prior
to MS as was demonstrated in HeLa cells’®. In every case,
performing in vivo experiments in tissues causes the measured
turnover to be the net result of multiple phenomena and not just
a physical property of the proteins. The observed turnover
results from local synthesis and degradation (molecular
biology) as well as passive and active transport across tissues
(physiology). Moreover, for a given protein, its turnover may
vary in different tissues. Depending on the tracing protocol,
different abilities to separate local versus remote contributions
might be achieved.

Limited in vivo data are available in human. Initial efforts
aimed at characterizing the total protein dynamics upon uptake
of isotopically labeled aminoacids!*. More recent work taking
advantage of progress in proteomics determined protein
turnover at the single protein level>®!215 in small- to medium-
size panels!®1’, or proteome wide® with a strong bias towards
plasma. The protocol called stable isotope labeling kinetics!?



(SILK) was introduced to follow A in the cerebrospinal fluid
(CSF). A 3C4-Leu tracer was intravenously injected for 9 hours
while CSF was sequentially collected over 24 hours or more. It

is a thus pulse-chase protocol. SILK allowed its authors to
determine the turnover of AD molecular actors such as AP
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Figure 1. SILK principle. a) Principle of RIA calculation. b) Proteomics workflow: 1, tracer injection for 9 hours; 2, split of each
sample in 3 aliquots to increase MS coverage; 3, peptide SCX separation; 5, LC-MS profiles of each fraction of each aliquot at every
time point; 6, extraction of MS peaks according to the peptide library. c¢) Typical example of an RIA curve featuring gradual
incorporation before clearance for a clusterin peptide. The size of the dots represents the labeled peptide MS signal intensity (arbitrary
scale). d) False discovery rate estimation of the selected observations (one peptide in a specific fraction and at a specific charge state).
¢) Number of proteins whose mathematical model was built on 1, 2, etc. observations. f) Example of a protein mathematical model

for clusterin (observations are denoted fraction_peptide charge).

peptides'?, tau proteins®, and ApoE*®. One major finding was
AD association with a reduced CSF clearance of Af. This
observation drew attention to the glymphatic system impacting
CSF circulation!® and was essential to model the kinetics of
amyloid accumulation over the evolution of the disease'®. SILK
was also used to confirm the on-target effect of an anti-AD
drug?°.

In this work, we introduce whole proteome SILK (wpSILK),
a novel proteomics framework to perform SILK-like
experiments on a large scale. In the first instance, we eliminated
any affinity purification step and integrated peptide liquid
chromatography (LC) to deal with sample complexity and to
perform analyses proteome-wide by high-resolution MS
(HRMS) profiling. In the second instance, we followed targeted
peptides by multiple reaction monitoringZz (MRM). A
sophisticated bioinformatics pipeline including mathematical

modeling was developed to process the complex wpSILK data.
We demonstrated the potential of wpSILK on ventricular CSF,
a fluid of paramount clinical relevance, obtaining the turnover
parameters of ~200 proteins. Our data constitute the first draft
of the CSF dynamic proteome. They provide a vast repertoire
of easily MS-detectable peptides amenable to turnover
experiments that cover a broad range of central nervous system
(CNS) functions, known biomarkers, and drug targets. Finally,
we tried to dissect the relationship between observed turnover
and local versus remote protein origin. Our results have the
potential to speed up pharmacokinetic/pharmacodynamic
(PK/PD) modeling of therapeutic targets related to neurological
diseases.

EXPERIMENTAL SECTION
Human samples



Samples were generated following the clinical protocol “In
Vivo Alzheimer Proteomics (PROMARA)” (ClinicalTrials
Identifier: NCT02263235), which was authorized by the French
ethical committee CPP Sud-Méditerranée 1V (#2011-003926-
28) and by the ANSM agency (#121457A-11). Patients
hospitalized in neurosurgery unit having in place a temporary
ventricular derivation of the CSF were enrolled. To facilitate
ethical approval (see above), result comparisons, and data
sharing we decided to follow the original SILK "Cg-Leu
infusion protocol strictly*2. Briefly, 13C4-Leu prepared per the
European Pharmacopeia [19] was intravenously administered.
After a 10min initial bolus at 2 mg/kg, an 8h50 infusion at 2 mg
kg/h was performed. Three to 4 mL of ventricular CSF samples
were collected at times: 0, 3.02, 6.47, 9.22, 10.17, 12.3, 15.22,
18.13,21.13, and 24.47 hours. At times 0 and 9, 3 mL of plasma
EDTA were also collected. CSF and blood were aliquoted in
polypropylene tubes of 1.5 mL and stored at -80°C until further
analysis.

Sample analysis and data generation

Ventricular CSF and blood were collected from three post
subarachnoid hemorrhage patients over a 24 to 36 hours period
with intravenous injection of *C¢-Leu. The experiment started
8 to 19 days after initial, medical ventricular drainage and
normalization of CSF clinical chemistry analysis (normal CSF
protein content lies in the 0.2-0.4 g/L range?!). Patient data are
reported in Table S1 and patient 1, who was chosen for HRMS
profiling, had the largest post drainage delay. The other two
patient samples were used for the MRM variant of wpSILK to
confirm 26 selected proteins. CSF and plasma free Cg¢-Leu
concentrations were estimated by UPLC-MS/MS at different
time points (Table S2) and matched previously reported
values?®?.

Patient 1 CSF samples were submitted to the wpSILK HRMS
workflow (Figure 1b). Briefly, each sample was split into 3
aliquots and digested (LysC and trypsin). Strong cation
exchange (SCX) LC was used to obtain 6 fractions for each.
Fractions 5 and 6 were regrouped and eventually discarded due
to very limited peptide content (Figure S1). The other 4
fractions were submitted to LC-MS profiling by first pooling
the 3 identical SCX fractions of each aliquot and injecting this
pool 3 times for better proteome coverage. A few injections
were repeated due to poor LC (Figure S2). In parallel, we
generated a peptide reference library by pooling identical SCX
fractions over all the time points (Figure 1b), which were
submitted 6 times each to LC-MS-MS/MS. Mascot peptide
identifications (<1% FDR) were imported in Skyline
software??. In total, we found 4,558 peptides present in 1,001
proteins and 3,196 peptides from 860 proteins were Leu-
containing. Skyline was applied to extract primary quantitative
data from LC-MS, i.e. peptide identity, SCX fraction number,
retention time, charge state, nominal and '*Cs-Leu-shifted
masses, and peak areas resulting in a large tabular export of
3,044,088 rows (Table S3). Time-dependent incorporation of
13C4-Leu in a peptide could be followed by computing RIAs at
each time point.

Full details of the chromatography and mass spectrometry
procedures are provided as Supplemental Information for the
sake of concision.

Peptide selection and protein model construction

The limited duration and amounts of 3Cy-Leu injection due
to obvious patient safety considerations precluded the full

labeling of proteins. Consequently, heavy (3Cq-Leu labeled)
peptide signals were 10 to 100 times weaker than their light
(unlabeled) counterparts. Moreover, untargeted HRMS
profiling and subsequent peptide identification against a
reference peptide library may yield wrong assignments. Data
processing hence had to ensure that true RIA curves were
extracted from Skyline export. Our algorithm follows the
general line of bottom-up quantitative proteomics with peptide-
level filters and protein-level modeling based on unique — non-
shared — peptides only. Considering occasional low heavy
peptide signals and Skyline peak misassignments, we found that
RIAs were more accurately computed using the most intense
isotopic peak only, e.g. A1/(A1 + A1) referring to Figure la.
Initial filters were applied to eliminate incomplete or too weak
signals. RIA curves from the same peptide in distinct fractions
or at different charge states were treated separately, as
independent observations. While some peptides gave rise to
convincing RIA curves, e.g. Figure 1c, many adopted dubious
shapes (Figure S3). We thus reasoned that a mathematical
model of 3Cg-Leu incorporation might help to eliminate ill-
shaped curves and noisy data. Moreover, such a model is
necessary to extract turnover parameters.

The so-called 2-compartment model, where tracers from a fee
pool integrate a protein-bound pool, has been shown to fit
turnover dynamics data accurately?*?*. Considering the
specifics of SILK, i.e. tracer injection over a limited time and
free tracer concentration in the range 10-15% as opposed to
saturation, we generalized this model. We also wrote the model
in a novel fashion, better separating the role of the parameters.
Mathematical details, differences with respect to previous
literature, and the overall data processing algorithm are
provided in Supporting Information (SI). We only introduce the
general principle here. A function f(t) representing *C¢-Leu
injection is introduced, its value is 0 (no injection) or 1
(injection), i.e. f()=0 if t<0 or t>9, and f(t)=1
otherwise. Denoting A = Ay, + Ay the sum of light (unlabeled)
and heavy (lajl)eled) free Leu abundance, we can define the free

H
ratio @ =7y = Similarly, the protein-bound total Leu
abundance is

Py
P = P+ Py, with bound ratio f = 5 7. Assuming arate A of

free 13C4-Leu availability and protein appearance/clearance rate
k¢, we obtain the dynamical system:

@ = (Af () — )k,
[ﬁ=m—mm' 1

The absence of 1*Cy-Leu at t = 0 imposes @(0) = 0 = $(0).
The first equation features the entrance of new tracers in the free
pool and exit into the bound pool, while the second one features
the corresponding entrance in the bound pool and protein
degradation. Note that according to the introduction, we talk
about appearance and clearance rates instead of the sole
synthesis and degradation rates. Also, the model is written
assuming a steady-state, which imposes that appearance and
clearance occur at the same rate k.. Model parameters were fit
by minimizing squared-differences between RIA values and
B(@).

The application of the model to Skyline output allowed us to
impose obvious morphological filters, e.g. f(t) and a(t) both
increasing initially, maximum of f(t) not reached before 9h,
and sufficient correlation between f(t) and experimental RIAs.



To estimate the FDR associated with peptide observations we
processed peptides devoid of Leu identically. We estimated a
global FDR of 7.3%, which dropped to 0.6%, respectively 0%,
when 2, respectively 3 or more, observations were available for
a single protein (Figure 1d). At this FDR we selected 965
observations, covering 579 distinct peptides and 235 proteins.
Out of these 579 peptides, 532 were unique, i.e. not shared by
multiple proteins, and served as the basis of protein turnover
calculations for 196 distinct proteins. Peptides from precursors

of complement C4 isotypes A and B were found with a large
number of selected observations (23), none of which were
unique and neither C4A nor C4B were counted. We added C4A
to our list as a representative of both isotypes, which raised the
total of distinct proteins to 197. Among these 197 proteins, 86
were detected with a single observation at 7.3% FDR, an
acceptable risk given the unique nature of the data. The
remaining 111 proteins were associated with high-confidence
turnover information (Figure le).
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Figure 2. Overview of the observed dynamics. a) Histogram of observed half-lives with selected examples indicated. b)-f) Representative
examples of distinct dynamics: Matrix metalloproteinase-9 (MMP9); Fibulin-1 (FBLN1), Monocyte differentiation antigen CD14;

Kallikrein-6 (KLK6); and Serum albumin (ALB).

When more than one observation was available, we
integrated them. Although isoforms or chains might display
different turnovers'>?5, peptides that were specific to an isoform
did not feature distinct dynamics except for a few cases that are
discussed below. Most of the observed variability was thus
expected to be experimental. We implemented a robust
algorithm, where all the observations of unique peptides were
first combined and fit with our model (eq 1). Then, outlier
observations were eventually discarded and the integrated
model recomputed. A typical example is featured in Figure 1f.
Finally, to obtain estimates of model parameter standard
deviations, including 1-observation proteins, we employed a
bootstrap procedure?.  Details of the overall procedure,
parameter tables as well as plots for all the selected proteins are
provided in SI.

The found protein CSF dynamics were very diverse (Figure
2). The distribution of half-lives consisted of bulk of rather
short-lived proteins followed by other proteins harboring
slower clearance rates (Figure 2a). Many proteins displayed an

increase of their labeled proportion over the whole experiment
duration, e.g. KLK6 or ALB (Figure 2e-f) despite a tracer
injection stop at 9h.

Validation of selected proteins in additional patients

To confirm wpSILK HRMS results we exploited the MRM
variant of our framework on 26 chosen proteins. MRM was
executed on the CSF samples directly, without prior SCX
peptide separation (SI) following a standard protocol?’ that we
restricted to proteotypic peptides?. The mathematical model
was applied successfully to MRM data (Figure 3a-b) and the
various peptide selection filters applied identically. Starting
with patient 1, we found MRM RIA curves highly similar to
HRMS data (Figure 3c-e) for all the proteins but two, C9 and
GC (Figure 3f-g). The amplitude of the curves was not
preserved, reflecting differences in the MS technology, but the
shape of the curve governed by the clearance rate k. was well-
preserved. The new parametrization of the 2-compartment
model we introduced in eq 1 facilitated the estimation of close
k. from similar curves but different amplitudes, yielding



reproducible estimations of the turnover parameter k. (Figure
3h). The parameter A, more related to the amplitude was
nonetheless correlated (Figure 3i). Protein dynamics from
patients 2 and 4 (Figure 3c-g), were also close and we could
estimate inter-individual turnover parameter k. variability in
the range 10-20% for most proteins (Figure 3j), 4 being more
variable (Figure 3k) and reflecting potential variation in 3Cs4-
Leu patient labeling efficiencies. The 26 protein model
parameters are reported in Table S4.

RESULTS AND DISCUSSION
Dynamic proteome composition

Among the 197 proteins for which we obtained turnover
parameters, 185 were known CSF proteins and 190 known

plasma protein. We used as reference plasma proteome the
union of the plasma proteome database?® (PPD) and proteins
annotated as plasma in UniProtKB/Swissprot. Similarly, we
defined a reference CSF proteome by taking the union of CSF
proteins reported in two comprehensive lists3®3l. Potentially
novel CSF proteins were (HUGO symbols for short) CEP290,
FBXW10, KSR2, LOX, SH2D3A, SIK2, SPEN, TMEM212
and immunoglobulins (IGHV3-43, IGHV3-74, IGKV3D-15,
IGKV4-1). FBXW10, SH2D3A, and TMEM212 were also
absent from our reference plasma proteome. By compiling
annotations from Reactome, KEGG, and GOBP, we classified
our 197 proteins in general categories and more detailed
functions (Figure 4a-b). We covered mainly neuron biology-
associated proteins (56), the immune system (44), the
extracellular matrix (ECM) (37),
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Figure 3. Validation of selected proteins by triple-quad MRM. a) Two clusterin peptides targeted in MRM. b) Neuropilin 2 MRM data in
patient 2 who was followed over 41.5 hours. ¢) Clusterin dynamics in 3 patients, including HRMS and MRM data in patient 1. Original, non-
aligned RIA reported in the insert. d) Serum albumin. e) Cystatin-C. f,g) Only 2 cases of strong disagreement between HRMS and TQ data
(vitamin D-binding protein, GC, and complement component C9). h,i) Reproducibility of patient 1 turnover parameters between HRMS and
MRM data. Pearson correlation, GC and C9 data excluded (red dots). Pearson’s correlation coefficient and P-value by transforming to a
Student’s t distribution. j,k) Relative variability of turnover parameters between the 3 patient MRM data (left, all proteins), and omitting GC

and C9 (right).

intracellular proteins (34) likely reflecting cell leakage, and
hemostasis (26).

Neural tissue development and renewal proteins were
comprised of different subcategories, e.g. apolipoproteins
involved in lipid delivery, growth factors such as IGF-2 and
proteins related to IGF transport and uptake, secretogranins, or
proteins responsible for small molecule transport such as
albumin, transferrin, transthyretin, vitamin D binding protein,

and alpha-1-acid glycoprotein 1 involved in drug uptake for
instance. Multiple neuropeptides were also profiled, among
which the proprotein convertase subtilisin/kexin type 1
inhibitor (PCSKIN), proenkephalin, prosaposin (PSAP), out at
first homolog, neural EGFL like 2, chromogranins A and B, etc.
Neuronal tissue homeostasis was represented by the amyloid-f3
precursor protein (APP), cystatin C, follistatin like 1, and
calsyntenin 1 among others. Intracellular and extracellular



matrix proteins (ECMs, fibulins, VTN) were likely waste or
debris of dead or damaged cells in majority. The dynamics of
their clearance informs us of the ability of the CSF — and the
CNS - to normally eliminate them, deviation from these rates
might reflect pathological states.

Interestingly, we could identify distinct dynamics of the
precursor and processed peptides of the myelinotrophic and
neurotrophic factor PSAP involved in the lysosomal
degradation of sphingolipids (Figure 4c-d) and the prohormone
convertase 1 inhibitor PCSKIN (Figure S4). In some cases,
peptides from the same protein display very different dynamics
as exemplified by SPP1 (Figure S5). Its peptides segregate
according to prirgary sequence positions coherently, which

Neuron tissue development and renewal -
Immune system -

Component of the extra Cellular Matrix -
Intra cellular biological pathways -
Hemostasis -

0

Complement cascade -

Coagulation -

Tissue homeostasis -

Protein maturation -

Cell signalisation -

Antibody subunit -

Innate Immune System -

Protein backbone -

Insulin—like GF transport and uptake -

Metabolism -

Lipoprotein -

ECM remodeling -

Transport of small molecules -

Neuroendocrine peptide -

Renin-angiotensin system -

Cytoskeleton -

Axon guidance -

Scavenging of heme -

Protein glycosylation -

Neurogenesis -

Intracellular trafficking -

Cytokine and chemokine signaling -

Cell cycle -

TGF-B interaction -

Myelinotrophic and neurotrophic factor -

DNA replication and transcription -
Translation - &

0

o
-

w
1

>k %

might suggest the existence of undescribed post-translational
processing of this protein that plays a major role in tumor
progression and inflammation32. We also obtained different
turnover parameters for the components of the complement
system, which might reflect overall control through the
shortest-lived components (C1QB, C1QC, CIR, C18S, and C9).
Similarly, at the level of a protein complex, FGA has a much
higher clearance rate than FGG and might control the fibrinogen
assembly in a rate-limiting fashion (SI).

A repertoire of CSF proteotypic turnover biomarkers

Our data provide a large repertoire of CSF peptides that
yielded high-quality MS signals compatible with dynamics pro
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Figure 4. Dynamic proteome composition and relationship with synthesis location. a),b) General and more detailed categories of proteins
for which turnover was determined. c¢),d) Mature chain Saposin-C versus propeptide Prosaposin dynamics. e) Top 22 proteins expressed in
the CNS and the liver (GTEx database33) display very different stability (**P<0.01, Kolmogorov-Smirnov (KS) test). f) Significant trend
over the entire data set relating the CNS/liver TPM ratios3? to the first (<0.23), second and third (<0.92), and fourth (<9.56) quartiles of half-
lives. (***P<0.005, ****P<]10-5, KS test). g) Price ef al., human plasma'” half-lives (left) versus the same protein in our CSF data (middle)
and our CSF protein not present in the plasma data (right, KS test). h) The dynamics measured by wpSILK (green dot) are the result of
transfers (T, T, T3) occurring at different speeds, most of which transit through the blood which acts as a large reservoir compared to CSF.

i) CSF (white) and blood (pink) respective volumes.

filing. More than 100 of the corresponding proteins harbor
mutations or display altered expression in one or several
diseases (Table S5). Among them, neurological diseases
including Alzheimer (APOE, APP), spinocerebellar ataxia
(FAT2), leukoencephalopathy (CSFIR, HTRA1, RNASET2,
PSAP) and various disorders (AHSG, ATP6AP2, CEP152,
CHI3L1, CTSD, DST, RELN, RPS23) are well represented. We
also found proteins responsible for amyloidosis (FGA, GSN,
LYZ, APOA2, APP, B2M, CST3), a situation where the
investigation of the protein fate, i.e. the balance between
production, aggregation, and clearance, is essential to
understand the underneath pathophysiology?. We noticed 16
proteins (ADAM9, CEP290, C3, C4a, C9, CFB, CFH, CFI,
CST3, DCN, EFEMPI1, HTRAI, IGFBP7, LTBP2, RBP4,
TGFBI), which are linked to eye diseases, and in particular
macular degeneration. We also surveyed the clinical trial
database (clinicaltrials.gov) and found 23 proteins that are the
direct targets of tested therapies (Table S6), 4 of them for
diseases affecting the CNS and targets for future AD therapy
(APP, CD14, MMP9, SERPING1).

Further AD proteins (52 in total) were found using the
“Diseases and Functions Annotation” Ingenuity® tool. For
instance, MMP-9 (Figure 2b), involved in neuronal plasticity,
acts as a-secretase, therefore, reducing AP production®*, or
ApoE, ALB (Figure 2f), and A2M that are known AP carrier.
Another example is CD14 (Figure 2d), which is a receptor for
TREM2, a recently identified genetic risk factor of AD and is a
marker of microglial cells that mediate the phagocytosis of the
amyloid component®® and contribute to neuroinflammation.

A general relationship between turnover and protein origin

The CSF is relatively poor in cells and most proteins are
imported from the blood or the CNS with a double origin for
many of them. We continued our analysis by investigating the
relationship between the tissue of origin of a protein and its
turnover. Due to protein transport in the body, we reasoned that
mRNA expression was a better locator of synthesis compared
to tissue protein abundance. The Genotype-Tissue Expression
(GTEx) project® served as reference. A majority of our 197
proteins were of CNS or liver origin. We grouped GTEXx tissues
to obtain CNS, liver, and other tissues median transcripts per
million (TPM) for each gene (SI). Selecting the top 25 CNS and
liver transcripts, removing common selections, left us with 22
CNS and 22 liver genes. The corresponding CNS proteins
displayed significantly shorter half-lives (Figure 4e) suggesting
a potential general trend. We hence grouped the whole set of
197 proteins after their half-life in 3 bins: quartiles 1, 4, and
2&3. Comparing the ratio of CNS over liver transcript
abundance in these 3 groups revealed a significant association
with the half-life (Figure 4f). To complete this analysis we
reprocessed published plasma datal’” with our mathematical
model and algorithm (SI). For the 41 proteins that were shared

by our CSF data and at least 2 out of 3 patients of the plasma
study, we observed shorter half-life in the CSF (Figure 4g). This
significant trend was even stronger for CSF proteins absent
from the plasma study, in agreement with Figure 4f.

We believe that the relationship between half-life and protein
origin results from the combined effect of CSF renewal on the
one hand, and plasma and other tissues acting as a reservoir on
the other hand (Figure 4h). The CSF is mostly produced by the
choroid plexus and reabsorbed by arachnoid granulations, its
renewal occurs 3-4 times/day. Proteins entering the CSF, from
the CNS or the plasma, experience this flow which adds to
protein degradation. Remarkably, the median half-life of our
197 proteins is 7.4 hours, a value compatible with the CSF
renewal rate. Nonetheless, a dissymmetry is created with
proteins not produced in the CNS due to the aforementioned
reservoir effect, which might even be amplified by frequent
higher protein plasma concentrations and the larger blood
volume compared to CSF (Figure 41). This reservoir effect may
thus change CNS clearance rates of proteins that are not present
in the CNS predominantly or not blocked at the CSF-blood
barrier, resulting in an apparent continuous supply of labeled
proteins. One could hypothesize that the stability of proteins
produced in the liver could be higher due to the necessity to
travel a long way. This nonetheless contradicts murine data,
where brain proteins were found more stable than liver
proteins'?, an observation we could confirm reanalyzing these
data and considering proteins detected in brain, blood, and liver
to limit the contribution of intracellular proteins (Figure S6).

CONCLUSIONS

To be able to link molecular biology and physiology in a
global picture is a very desirable goal. This is the foundation of
many past and current analytical efforts and tremendous
progresses have been achieved. Nevertheless, to fully embrace
the complexity of the relationship between locally occurring
molecular interactions and the interplay of several tissues
remains an immense challenge. In this report, we contributed
what we believe could be an important tool to address that task.
We propose a methodological framework (wpSILK) to in vivo
interrogate clinical samples for protein turnover in a highly
multiplexed, targeted fashion employing MRM or proteome-
wide through HRMS. It required the development of innovative
bioinformatics and mathematical modeling, which were shown
to be applicable to already published data sets obtained with
different proteomics choices as well. Recent MS instrument
developments such as applications ion mobility or further
improvements might ultimately alleviate the need for peptide
SCX chromatographic separation or allow to analyze all the
time points at once exploiting isobaric tagging. In such a case,
wpSILK implementation would be similar to the MRM variant
we presented and mathematical modeling would remain
identical.



We illustrated our methods by characterizing the human
ventricular CSF in vivo. We could obtain CSF turnover
parameters for 197 proteins, which is a significant increase over
previously existing data covering a handful of proteins*°>1%1>
(AB, APOE, SODI, tau) to the best of our knowledge. We
further showed result reproducibility across a panel of 26
proteins in the same patient and two additional individuals with
an orthogonal MS technology (MRM). This panel provided the
first estimate of inter-individual turnover variability (10-20%)
for late-sixty females. Among previous data, only APOE was
also present in our study, we found a turnover parameter k. in
the range 3-5.5%/day for APOE, whereas previous values in
younger (22-49 years old) males were in the 1.5-2%/day range.
Overall, the inter-individual variability we observed in turnover
is compatible with what was reported for APOE, SODI1, and tau
(17-40%). Admittedly, the use of material from patients who
suffered subarachnoid hemorrhage might bias our data. It
should nonetheless be considered that wpSILK was performed
after a rather long time following this trauma, integration of
3C¢-Leu only starts at this late moment, and CSF protein
concentrations and cell counts returned to normal ranges (Table
S1). Accordingly, turnover data as reported here constitute a
first draft of the human CSF dynamics. Additional studies with
healthy individuals — that are difficult to organize for obvious
ethical reasons — will have to corroborate these numbers.

The opportunity to analyze the first large CSF turnover data
set unraveled a significant correlation between CSF clearance
rates and the origin of proteins present in this fluid, i.e. CNS
versus peripheral. We could support this discovery by
integrating published human?*3¢ and murine!* data. CNS
synthesized proteins tended to be cleared faster, which we
believe is related to CSF renewal and peripheral tissues (blood,
liver, etc.) acting as a reservoir. CSF renewal impacts the
clearance of every protein present in the CSF, whereas protein
entering the CSF through its barrier with blood experience a
concomitant reservoir effect. The latter mechanism provides
labeled proteins to CSF for a longer time due to peripheral
tissues larger volumes, frequent higher concentrations, and
delays metabolizing free '3Cq-Leu and exporting the labeled
proteins towards the CSF. That is, the obtained turnover data
accurately reflect CSF physiology but access to CNS turnover
parameters might be limited for proteins that are not CNS-
specific, especially if they have a longer half-life. This
observation has consequences on the choice of the tracing
protocol suggesting that continuous tracing protocols might
tend to bias in vivo CSF-inferred CNS dynamics with average
body dynamics. This is especially true for biomarkers with
multiple indications in the CNS and at other organs, e.g.
transthyretin (TTR) for AD¥ and malnutrition or protein
metabolic impairment®. Pulse-chase tracing should be
preferred to more accurately approach CNS physiology.

Our complete data set constitutes a broad and diverse
repertoire of proteotypic peptides amenable to turnover
analyses from which the community could compose panels of
MRM peptides to conduct research on CNS pathologies or
biology. In some cases (PSAP and PCSK1N), we were able to
distinguish between propeptides and active chain dynamics to
follow enzymatic processing and maturation. This knowledge
represents a veritable asset for the community, notably when
the metabolism of a specific protein will be at the center of the
investigation. This is the case in therapeutic research to evaluate

the on-target effect of a pharmaceutical agent as exemplified on
a secretase inhibitor acting on Ap production?.

The wpSILK method applies to other fluids, e.g lumbar
CSF'2 or blood, or tissues provided sequential sample collection
can be performed.

The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository
with the dataset identifiers PXD012462 (MS/MS and Mascot
identifications for the reference peptide library) and PXD012502
(HRMS profiles). MRM data were submitted to PeptideAtlas with
the identifier PASS01312. Software is available upon request for
nonprofit organizations and academic users.
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