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Abstract—The presented work continues the line of recent
distributed computing community efforts dedicated to the theo-
retical aspects of blockchains. This paper is the first to specify
blockchains as a composition of abstract data types all together
with a hierarchy of consistency criteria that formally charac-
terizes the histories admissible for distributed programs that use
them. Our work is based on an original oracle-based construction
that, along with new consistency definitions, captures the eventual
convergence process in blockchain systems. The paper presents
as well some results on implementability of the presented ab-
stractions and a mapping of representative existing blockchains
from both academia and industry in our framework.

I. INTRODUCTION

The paper proposes a new data type to formally model
blockchains and their behavior. We aim at providing con-
sistency criteria to capture the correct behavior of current
blockchain proposals in a unified framework. It is already
known that some blockchain implementations solve eventual
consistency of an append-only queue using Consensus [5], [4].
The question is about the consistency criterion of blockchains
as Bitcoin [19] and Ethereum [24] that technically do not solve
Consensus, and their relation with Consensus in general.

We advocate that the key point to capture blockchain
behaviors is to define consistency criteria allowing mutable
operations to create forks and restricting the values read, i.e.
modeling the data structure as an append-only tree and not as
an append-only queue. This way we can easily define seman-
tics equivalent to eventually consistent append-only queue but
as well as weaker semantics. More in detail, we define a se-
mantic equivalent to eventually consistent append-only queue
by restricting any two reads to return two chains such that one
is the prefix of the other. We call this consistency property
Strong Prefix (already introduced in [14]). Additionally, we
define a weaker semantics restricting any two reads to return
chains that have a divergent prefix for a finite interval of the
history. We call this consistency property Eventual Prefix. Note
that our consistency criteria specifically defined for blockchain
systems have a similarity flavor with fork-consistency defined
in [18], which concern a different area, i.e., the data integrity
in the network file system domain.

Another peculiarity of blockchains lies in the notion of
validity of blocks, i.e. the blockchain must contain only
blocks that satisfy a given predicate. Let us note that validity
can be achieved through proof-of-work (Dwork and Naor

[11]) or other agreement mechanisms. We advocate that to
abstract away implementation-specific validation mechanisms,
the validation process must be encapsulated in an oracle model
separated from the process of updating the data structure.
Because the oracle is the only generator of valid blocks and
only valid blocks can be appended to the tree, it follows that,
it is the oracle that grants the access to the data structure and
it might also own a synchronization power to control the size
of forks, i.e., the number of blocks that point back to the same
block of the tree. In this respect we define oracle models such
that, depending on the model, the size k of forks can be equal
to 1 (i.e., strongest oracle model), strictly greater than 1, or
unbounded (i.e., weakest oracle model).

The blockchain is thus abstracted by an oracle-based con-
struction in which the update and consistency of the tree data
structure depends on the validation and synchronization power
of the oracle.

The main contribution of the paper is a formal unified
framework providing blockchain consistency criteria that can
be combined with oracle models in a proper hierachy of
abstract data types [23] independent of the underlying com-
munication and failure models. Thanks to the establishment of
the formal framework the following implementability results
are shown.
• The strongest oracle, guaranteeing no fork, has Consensus

number ∞ in the Consensus hierarchy of concurrent
objects [15] (Theorem V.2). Note that similarly to [8],
[13], [7] we extend the validity property of Consensus to
fit the blockchain setting.

• The weakest oracle, which validates a potentially un-
bounded number of blocks to be appended to a given
block, is not stronger than Generalized Agreement Lat-
tice [12].

• The impossibility to guarantee Strong Prefix in a
message-passing system if forks of size k > 1 are allowed
(Theorem V.6). This means that Strong Prefix needs the
strongest oracle to be implemented, which is at least as
strong as Consensus.

• A necessary condition (Theorem V.5) for Eventual Prefix
in a message-passing system is that each update sent by
a correct process must be eventually received by every
correct process. Moreover, the result implies that it is
impossible to implement Eventual Prefix if even a single



update is dropped at some correct process while it has
been received at all the other correct processes.

The proposed framework along with the above-mentioned
results helps in classifying existing blockchains in terms of
their consistency and implementability. We used the frame-
work to classify several blockchain proposals. We showed that
Bitcoin [19] and Ethereum [24] have a validation mechanism
that maps to our weakest oracle and then they only implement
Eventual prefix, while other proposals map to our strongest
oracle, falling in the class of those that guarantee Strong Prefix
(e.g. Hyperledger Fabric [4], PeerCensus [9], ByzCoin [16],
see Section V-C for further details).

Note that for space reasons all the theorems and lemmas
proofs and some formal definitions do not appear in this article
but are presented in the supplementary materials [3].

II. RELATED WORK

In [20] the authors extract Bitcoin backbone and define
invariants that this protocol has to satisfy in order to verify
with high probability an eventual consistent prefix. This line of
work has been continued by [21]. However, to the best of our
knowledge, no other previous attempt proposed a consistency
unified framework and hierarchy capturing both Consensus-
based and proof-of-work based blockchains. In [1], the authors
present a study about the relationships between Byzantine fault
tolerant consensus and blockchains. In order to abstract out
the proof-of-work mechanism the authors propose a specific
oracle, in the same spirit of our oracle abstraction, but more
specific than ours, since it makes a direct reference to proof-of-
work properties. In parallel and independently of our work, [5]
proposes a formalization of distributed ledgers modeled as an
ordered list of records. The authors propose in their formaliza-
tion three consistency criteria: eventual consistency, sequential
consistency and linearizability. Interestingly, they show that a
distributed ledger that provides eventual consistency can be
used to solve the consensus problem. These findings confirm
our results about the necessity of Consensus to solve Strong
Prefix. On the other hand, the proposed formalization does
not propose weaker consistency semantics more suitable for
proof-of-work blockchains as BitCoin. The work achieved in
[5] is complementary to the one presented in [2], where the
authors study the consistency of blockchain by modeling it
as a register. Finally, [14] presents an implementation of the
Monotonic Prefix Consistency (MPC) criterion and showed
that no criterion stronger than MPC can be implemented in a
partition-prone message-passing system.

III. PRELIMINARIES ON SHARED OBJECT SPECIFICATIONS
BASED ON ABSTRACT DATA TYPES

The basic idea underlying the use of abstract data types is to
specify shared objects using two complementary facets [22]: a
sequential specification that describes the semantics of the ob-
ject, and a consistency criterion over concurrent histories, i.e.
the set of admissible executions in a concurrent environment.

A. Abstract Data Type (ADT)

The model used to specify an abstract data type is a form
of transducer, as Mealy’s machines, accepting an infinite but
countable number of states. In the following, an abstract data
type refers to a 6-tuple T = 〈A,B,Z, ξ0, τ, δ〉. The values
that can be taken by the data type are encoded in the abstract
state, taken from a set Z. We refer by ξ0 ∈ Z the initial
state of the ADT. It is possible to access the object using
the symbols of an input alphabet A. Unlike the methods of a
class, the input symbols of the abstract data type do not have
arguments. Indeed, as one authorizes a potentially infinite set
of operations, the call of the same operation with different
arguments is encoded by different symbols. An operation can
have two types of effects. First, it can have a side-effect that
changes the abstract state according to the transition system
formalized by a transition function τ . Second, operations can
return values taken from an output alphabet B, which depends
on the state in which they are called and an output function δ.
For example, the pop operation in a stack removes the element
at the top of the stack and returns that element (its output).

B. Sequential specification of an ADT

An abstract data type, by its transition system, defines the
sequential specification of an object. The sequential specifi-
cation of an object describes its behavior when its operations
are applied sequentially. That is, if we consider a path that
traverses its system of transitions, then the word formed by
the subsequent labels on the path is part of the sequential
specification of the abstract data type, i.e. it is a sequential
history. A sequential history of an ADT T refers to a sequence
(σi)i≥0 (finite or not) of operations leading the state of T to
evolve according to its specification [3].

1) Concurrent histories of an ADT: Concurrent histories
are defined considering a partial order relation among events
executed by different processes. A set of processes invoking
operations of an ADT defines a concurrent history. Operations
are not executed instantaneously, i.e., given an operation
o ∈ Σ = A ∪ (A × B), we denote by einv(o) the invocation
event of operation o and by ersp(o) the corresponding response
event. In addition, we denote by ersp(o) : x the returned
value associated to the response event ersp(o). In the following
E represents the set of events and Λ is the function which
associates events to the operations in Σ. Given two events
(e, e′) ∈ E2 we say that e 7→ e′ in the process order if they
are produced by the same process, e 6= e′ and e happens before
e′. Given two events e, e′ ∈ E, we say that e precedes e′ in
operation order, denoted by e ≺ e′, if e′ is the invocation
of an operation occurred at time t′ and e is the response of
another operation occurred at time t with t < t′. Finally, for
any couple of events (e, e′) ∈ E2 with e 6= e′, we say that e
precedes e′ in program order, denoted by e↗ e′, if e 7→ e′ or
e ≺ e′. These asymmetric event structures allow us to define
a concurrent history of an ADT T =〈A,B,Z, ξ0, τ, δ〉 as a
6-tuple H = 〈Σ, E,Λ, 7→,≺,↗〉 [3].

2) Consistency criterion: A consistency criterion charac-
terizes which concurrent histories are admissible for a given



abstract data type. It can be viewed as a function that associates
a concurrent specification to abstract data types. Given a
consistency criterion C, an algorithm AT implementing the
ADT T is C-consistent if all the operations terminate and all
the admissible executions are C-consistent, i.e. they satisfy
consistency criterion C.

IV. BLOCKTREE AND TOKEN ORACLE ADTS

In this section we present the BlockTree and the token
Oracle ADTs along with consistency criteria.

A. BlockTree ADT

We formalize the data structure implemented by blockchain-
like systems as a directed rooted tree bt = (Vbt, Ebt) called
BlockTree. Each vertex of the BlockTree is a block and
any edge points backward to the root, called genesis block.
By convention, the root of the BlockTree is denoted by
b0. Two operations are provided: the append(b`) operation,
which appends a new block b` to the BlockTree, and
the read() operation, which returns a sequence of blocks
of the BlockTree. This sequence of blocks is called the
blockchain and is selected according to function f (see
below). Only blocks satisfying some validity predicate
P can be appended to the BlockTree. Predicate P is
application dependent. Predicate P mainly abstracts the
creation process of a block, which may fail (return false.
Note that false is denoted by ⊥) or successfully terminate
(returns true, denoted by >). For instance, in Bitcoin, a
block is considered valid if it can be connected to the
current blockchain and does not contain double-spending
transactions.

We represent by B a countable and non empty set of
blocks and by B′ ⊆ B a countable and non empty set
of valid blocks, i.e., ∀b ∈ B′, P (b) = >. By assumption
b0 ∈ B′; We also denote by BC a countable non empty
set of blockchains, where a blockchain is a path from a
leaf of bt to b0. A blockchain is denoted by bc. Finally,
F is a countable non empty set of selection functions,
f ∈ F : BT → BC; f(bt) selects a sequence of blocks
bc from the BlockTree bt (note that b0 is not returned)
and if bt = b0 then f(b0) = b0. This reflects for instance
the longest chain or the heaviest chain used in some
blockchain implementations. The selection function f and
the predicate P are parameters of the ADT which are
encoded in the state and do not change over the com-
putation. The following notations are used: {b0}_f(bt)
represents the concatenation of b0 with the blockchain of
bt; and {b0}_f(bt)

_{b} represents the concatenation of
b0 with the blockchain of bt and a block b.

1) Sequential specification of the BlockTree: The sequen-
tial specification of the BlockTree is defined as follows.

Definition IV.1 (BlockTree ADT (BT -ADT )). The Block-
Tree Abstract Data Type is the 6-tuple BT-ADT=〈A =
{append(bh, b`), read(): b ∈ B}, B = BC ∪ {true, false}, Z =

BT × F × (B → {true, false}), ξ0 = (b0, f, P ), τ, δ〉, where
the transition function τ : Z ×A→ Z is defined by

τ((bt, f, P ), read()) = (bt, f, P )

τ((bt, f, P ), append(b)) =

{
({b0}_f(bt)

_{b}, f, P ) if b ∈ B′

(bt, f, P ) otherwise

and the output function δ : Z ×A→ B is defined by

δ((bt, f, P ), read()) =

{
{b0} if bt = b0

{b0}_f(bt) otherwise

δ((bt, f, P ), append(b)) =

{
true if b ∈ B′

false otherwise

The semantic of the read and the append operations
directly depends on the selection function f ∈ F . In
this work we let this function generic to suit the different
blockchain implementations. Figure 1 illustrates an exe-
cution of the BT-ADT bt. Starting from the initial state
ξ0, state ξ1 is obtained by appending block b1 to ξ0
and state ξ2 is obtained by appending block b2 to ξ1.
The read operation applied in state ξ1 returns blockchain
{b0}_{b1}, and the read applied in state ξ2 returns
blockchain {b0}_f(bt)_{b2} = {b0}_{b1}_{b2}.

2) Concurrent histories of a BT-ADT and consistency cri-
teria: A BT -ADT consistency criterion is a function that
returns the set of concurrent histories admissible for a
BlockTree abstract data type. We define two BT consis-
tency criteria: BT Strong consistency and BT Eventual
consistency. For ease of readability, we employ the fol-
lowing notations:
• E(a∗, r∗) refers to an infinite set containing an infinite

number of append() and read() invocation and re-
sponse events. Similarly, E(a, r∗) refers to an infinite
set containing (i) a finite number of append() invoca-
tion and response events and (ii) an infinite number
of read() invocation and response events;

• score : BC → N denotes a monotonically increasing
deterministic function that takes as input a blockchain
bc and returns a natural number s as score of bc,
which can be the depth, the weight, etc of bc. In-
formally we refer to such value as the score of a
blockchain; by convention we refer to the score of the
blockchain uniquely composed by the genesis block
as s0, i.e. score({b0}) = s0. Increasing monotonicity
means that score(bc_{b}) > score(bc);

• mcps : BC × BC → N is a function which, given
two blockchains bc and bc′ returns the score of the
maximal common prefix of bc and bc′;

• bc v bc′ iff bc prefixes bc′.
We now present the BT Strong Consistency criterion.

Informally it says that any two read() operations return
blockchains such that one is the prefix of the other. This
is formalized through the following four properties.

The Block validity property imposes that each block in
a blockchain returned by a read() operation is valid (i.e.,



ξ0

ξ0 = { b0 , f, P}

ξ1

ξ1 = { b0 b1 , f, P}

append(b1) : true

if b1 ∈ B′

append(b3) : false

if b3 /∈ B′ ξ2

ξ2 = { b0 b1 b2 , f, P}

append(b2) : true

if b2 ∈ B′

append(b3) : false

if b3 /∈ B′

read() : b_0 b1 read() : b_0 b_1 b2

Fig. 1: A possible path of the transition system defined by the BT-ADT.

satisfies predicate P ) and has previously been inserted in
the BlockTree with the append() operation. Formally,

Definition IV.2 (Block validity). ∀ersp(r) ∈ E,∀b ∈ ersp(r) :
bc, b ∈ B′ ∧ ∃einv(append(b)) ∈ E, einv(append(b)) ↗
ersp(r)

The Local monotonic read property states that, given
the sequence of read() operations at the same process,
the score of the returned blockchain never decreases;
Formally,

Definition IV.3 (Local monotonic read). ∀ersp(r), ersp(r′) ∈
E2, if ersp(r) 7→ ersp(r

′), then score(ersp(r) : bc) ≤
score(ersp(r

′) : bc′)

The Strong prefix property says that for each pair of
read operations, one of the returned blockchains is a
prefix of the other returned one. Formally,

Definition IV.4 (Strong prefix). ∀ersp(r), ersp(r′) ∈
E2, (ersp(r

′) : bc′ v ersp(r) : bc) ∨ (ersp(r) : bc v ersp(r
′) :

bc′)

Finally, the Ever growing tree states that scores of
returned blockchains eventually grow. More precisely, let
s be the score of the blockchain returned by a read re-
sponse event r inE(a∗, r∗), then for each read() operation
r, the set of read() operations r′ such that ersp(r) ↗
einv(r

′) that do not return blockchains with a score greater
than s is finite. Formally,

Definition IV.5 (Ever growing tree). ∀ersp(r) ∈ E(a∗, r∗),
s = score(ersp(r) : bc) then
|{einv(r′) ∈ E | ersp(r) ↗ einv(r

′), score(ersp(r
′) : bc′) ≤

s}| <∞

Definition IV.6 (BT Strong Consistency (SC) criterion). A
concurrent history H = 〈Σ, E,Λ, 7→,≺,↗〉 of the system that
uses a BT-ADT verifies the BT Strong Consistency criterion
if the Block validity, Local monotonic read, Strong prefix and
the Ever growing tree properties hold.

We now present the BT Eventual Consistency crite-
rion, a weaker version of the Strong Consistency crite-
rion. Informally, the BT Eventual Consistency criterion
says that eventually any two read() operations return
blockchains that share the same prefix, which differs
from the BT Strong Consistency criterion by the Eventual
prefix property. The Eventual prefix property says that

for each blockchain returned by a read() operation with
s as score, then eventually all the read() operations will
return blockchains sharing the same maximum common
prefix at least up to s. Say differently, let H be a history
with an infinite number of read() operations, and let s
be the score of the blockchain returned by a read()
operation r then, the set of read() operations r′, such that
ersp(r) ↗ einv(r

′), that do not return blockchains sharing
the same prefix at least up to s is finite. We formalise this
notion as follows:

Definition IV.7 (Eventual prefix property). Given a concurrent
history H = 〈Σ, E(a, r∗),Λ, 7→,≺,↗〉 of the system that
uses a BT-ADT, we denote by s, for any read operation
r ∈ Σ such that ∃e ∈ E(a, r∗),Λ(r) = e, the score of
the returned blockchain, i.e., s = score(ersp(r) : bc). We
denote by Er the set of response events of read operations that
occurred after r response, i.e. Er = {e ∈ E | ∃r′ ∈ Σ, r′ =
read, e = ersp(r

′)∧ersp(r)↗ ersp(r
′)}. Then, H satisfies the

Eventual prefix property if for all read() operations r ∈ Σ with
score s, there is a set S = {(ersp(rh), ersp(rk)) ∈ E2

r |h 6=
k,mcps(ersp(rh) : bch, ersp(rk) : bck) < s} and |S| <∞.

Definition IV.8 (BT Eventual Consistency (EC) criterion). A
concurrent history H = 〈Σ, E,Λ, 7→,≺,↗〉 of the system that
uses a BT-ADT verifies the BT Eventual Consistency criterion
if it satisfies the Block validity, Local monotonic read, Ever
growing tree, and the Eventual prefix properties.

3) Relationships between Eventual Consistency and Strong
Consistency: Let HEC and HSC be the set of histories
satisfying respectively the EC and the SC consistency
criteria.

Theorem IV.1. Any history H satisfying SC criterion satisfies
EC and ∃H satisfying EC that does not satisfy SC, i.e.,
HSC ⊂ HEC .

Proof of Theorem IV.1 and an illustration showing a BT
Eventually Consistent history which is not Strongly Con-
sistent are reported in the supplementary materials [3].

Let us remark that the BlockTree allows at any time to
create a new branch in the tree, which is called a fork in
the blockchain literature. Note that that histories with no
append operations are trivially admitted.

In the following we introduce a new abstract data
type called Token Oracle, which when combined with



the BlockTree will help in (i) validating blocks and (ii)
controlling the presence of forks and their number, if any.

B. Token oracle Θ

We now formalize the Token Oracle Θ to capture the
creation of blocks in the BlockTree structure. The block
creation process requires that each new block must be
closely related to an already existing valid block in the
BlockTree structure. We abstract this implementation-
dependent process by assuming that a process will obtain
the right to chain a new block b` to bh ∈ B′, if it success-
fully gains a token tknh from the token oracle Θ. Once ob-
tained, the proposed block b` is considered as valid, and
will be denoted by btknh` . By construction btknh` ∈ B′. In the
following, in order to be as much general as possible, we
model blocks as objects. More formally, when a process
wants to access some valid object objh, i.e., P (objq) = >
it invokes the getToken(objh, obj`) operation with object
obj` from set O = {obj1, obj2, . . . }. If getToken(objh, obj`)
operation is successful, it returns the valid object objtknh`

such that tknh is the token required to access valid object
objh. The set of valid objects is denoted by O′, i.e.,
∀objq ∈ O′, P (objq) = >. We say that a valid object
is generated each time it is successfully returned by a
getToken(objh, obj`) operation and it is consumed when
the oracle grants the right to associate this valid object
objtknh` to objh. In the following, once an object is valid, if
it is clear from the context, we will not explicit the token
tkn with makes the object valid.

A valid object objtknh` is consumed through the
consumeToken(objtknh` ) operation. No more than k
valid objects objtknh`1

, . . . , objtknh`j
, 1 ≤ j ≤ k,

can be consumed for objh, where k is a param-
eter of the token oracle. The side-effect of the
consumeToken(objtknh` ) on the state of the token oracle
is the insertion of the valid object objtknh` in a set related
to objh as long as the cardinality of such set is less than
or equal to k.

We specify two token oracles, which differ in the way
tokens are managed. The first oracle, called prodigal and
denoted by ΘP , has no upper bound on the number of
tokens consumed for an object, while the second oracle
ΘF , called frugal, and denoted by ΘF , guarantees that no
more than k token can be consumed for each object.

The prodigal oracle ΘP when combined with the Block-
Tree abstract data type will only help in validating blocks,
while the frugal oracle ΘF manages tokens in a more
controlled way to guarantee that no more than k forks can
occur on a given block.

For both oracles, when getToken(objh, obj`) operation
is invoked, the oracle provides a valid object with a certain
probability pαi > 0 where αi is a “merit” parameter
characterizing the invoking process i. 1 Note that the

1The merit parameter can reflect for instance the hashing power of the
invoking process.

oracle knows αi of the invoking process i, which might
be unknown to the process itself. For each merit αi, the
state of the token oracle embeds an infinite tape where
each cell of the tape contains either tkn or ⊥. Since each
tape is identified by a specific αi and pαi , we assume that
each tape contains a pseudorandom sequence of values
in {tkn,⊥} depending on αi. 2

When a getToken(objh, obj`) operation is invoked by a
process with merit αi, the oracle pops the first cell from
the tape associated to αi, and a valid obeject is provided
to the process if that cell contains tkn. Both oracles enjoy
an infinite array of sets, one set for each valid object
objh, which is populated each time a valid object obj` is
consumed. When the set cardinality reaches k then no
more tokens can be consumed for that object. For the
sake of generality, ΘP is defined as ΘF with k =∞ while
for ΘF a predetermined k ∈ N is specified. Hence, the
state of the token oracle contains (i) the infinite array K
of sets (one per valid object) of elements in O′, (ii) infinite
tapes one for each possible merit, and (iii) the branching
parameter k. We consider oracles that are linearizable
(with respect to their sequential specification): they be-
have as if all operations, including concurrent ones, are
applied sequentially, so that each operation appears to
take effect instantaneously as some point between their
invocation and their response. The formal specification
of ΘP and ΘF,k abstract data types can be found in the
supplementary materials.

In Figure 2 is depicted a possible path of the transi-
tion system defined by ΘF,k-ADT and ΘP -ADT. When
a process with merit α1 invokes getToken(b1, bk), with
b1 the leaf of f(bt)), the first cell of tapeα1 is popped,
and if it contains a token, then getToken(b1, bk) returns a
valid block btkn1

k . Afterwards, when consumeToken(btkn1

k )
is invoked, the oracle checks if the cardinality of the set in
K[1] is strictly smaller than k, and if the affirmative inserts
btkn1

k in K[1]. In any cases, consumeToken() returns the
content of K[1], in this case btkn1

k . It follows that a process
that gets a valid block for some block bh but is not allowed
to consume it, is anyway notified with the set of valid
blocks that saturated K[h].

C. BT-ADT augmented with Θ Oracles

We augment the BT-ADT with Θ oracles and we
analyze the histories generated by their combination.
Specifically, we define a refinement of the append(b`)
operation of the BT-ADT with the oracle opera-
tions as follows: the append(b`) operation triggers the
getToken(bh ←last block(f(bt)), b`) operation as long as
it returns a valid block b`

tknh , and once obtained, the
valid block might be consumed, and in any cases the
append(b`) operation terminates. If less than k valid

2We assume a pseudorandom sequence mostly indistinguishable from a
Bernoulli sequence consisting of a finite or infinite number of independent
random variables X1, X2, X3, . . . such that (i) for each k, the value of Xk
is either tkn or ⊥; and (ii) ∀Xk the probability that Xk = tkn is pαi .



ξ0

ξ0 = {

{objtkn0
1 } {} {} . . .K

tkn ⊥ ⊥ . . .

tapeα2 ⊥ ⊥ tkn . . .

tapeα1

... , k}

ξ1

ξ1 = {

{objtkn0
1 } {} {} . . .K

⊥ ⊥ ⊥ . . .

tapeα2 ⊥ ⊥ tkn . . .

tapeα1

... , k}

getToken(obj1, obj`) : obj
tkn1
`

if pop(tapeα1
) = tkn

ξ2

ξ2 = {

{objtkn0
1 } {objtkn1

` } {} . . .K

⊥ ⊥ ⊥ . . .

tapeα2 ⊥ ⊥ tkn . . .

tapeα1

... , k}

consumeToken(obj
tkn1
` ) : {objtkn1

` }

if |K[1]| < k

Fig. 2: A possible path of the transition system defined by the ΘF and ΘF,k-ADTs.

blocks have already been consumed for bh, the valid block
is consumed i.e. block b`tknh is appended to the block h
in the blockchain f(bt) (i.e., {b0}_f(bt)|_h {b`}) and the
append(b`) operation returns true, otherwise false. We
say that the BT -ADT augmented with ΘF or ΘP oracle
is a refinement R(BT -ADT,ΘF ) or R(BT -ADT,ΘP ) re-
spectively. The formal specification of these refinements
are given in the supplementary materials.

Definition IV.9 (k-Fork coherence). A concurrent history
H = 〈Σ, E,Λ, 7→,≺,↗〉 of R(BT -ADT,ΘF,k) satisfies
the k-Fork coherence if there are at most k append(btknh` )
operations that return true for the same block b`.

Theorem IV.2 (k-Fork coherence). Any concurrent history
H = 〈Σ, E,Λ, 7→,≺,↗〉 of the R(BT -ADT,ΘF,k) satisfies
the k-Fork Coherence.

D. Hierarchy

We propose a hierarchy between BT-ADTs augmented
with token oracle ADTs. We use the following nota-
tion: BT-ADTSC and BT-ADTEC to refer respectively
to BT-ADT generating concurrent histories that sat-
isfy the SC and the EC consistency criteria. When
augmented with token oracles we get the following
four typologies, where for the frugal oracle we explicit
the value of k: R(BT-ADTSC ,ΘF,k), R(BT-ADTSC ,ΘP ),
R(BT-ADTEC ,ΘP ), R(BT-ADTEC ,ΘF,k). We aim at
studying the relationships among the different refine-
ments. Let ĤR(BT-ADT,ΘF,k) be the set of concurrent his-
tories generated by a BT-ADT enriched with ΘF,k-ADT
and ĤR(BT-ADT,ΘP ) be the set of concurrent histories
generated by a BT-ADT enriched with ΘP -ADT. Without
loss of generality, we consider only the set of histories
from which have been purged unsuccessful append()
response events (i.e., such that the returned value is
false). All the following theorems are proven in the sup-
plementary materials.

Theorem IV.3. ĤR(BT-ADT,ΘF ) ⊆ ĤR(BT-ADT,ΘP ).

Theorem IV.4. If k1 ≤ k2 then ĤR(BT-ADT,ΘF,k1 ) ⊆
ĤR(BT-ADT,ΘF,k2 ).

Finally, from Theorem IV.1, we have the following corol-
lary.

Corollary IV.4.1. Ĥ(R(BT-ADTSC ,Θ) ⊆ ĤR(BT-ADTEC ,Θ).

The above results imply the hierarchy depicted in Fig-
ure 4. The arrows A → B in the figure indicate that the
set of histories in A are included in the set of histories
in B according to Theorems and Lemmas presented in
Section V.

V. IMPLEMENTING BT-ADTS

A. Implementability in the shared memory model

We now consider a system made of n processes such
that up to f of them are faulty (stop prematurely by
crashing), f < n. Non faulty processes are said correct.
Processes communicate through atomic registers.

1) Frugal oracle ΘF,k=1 is at least as strong as Consensus:
We show that there exists a wait-free implementation
of Consensus [17] by ΘF,k=1. Note that similarly to [8],
we extend the validity property of Consensus to fit the
blockchain setting. Specifically, we have

Definition V.1 (Consensus C).
• Validity A value is valid if it satisfies the predefined

predicate P .
• Termination. Every correct process eventually decides

some value, and that value must be valid.
• Integrity. No correct process decides twice.
• Agreement. If there is a correct process that decides

value b, then eventually all the correct processes decide
b.

We first show that there exists a wait-free implementa-
tion of the Compare&Swap() object by ΘF,k=1 assuming
that blocks are valid, i.e., belong to B′. Doing this implies
that, under the assumption that blocks are valid, ΘF,k=1

has the same Consensus number as Compare&Swap(),
i.e., ∞ (see [15]). We then show that there is a wait-
free implementation of Consensus C by ΘF,k=1 for any
block b ∈ B (i.e., b may not be valid). Doing this will
imply that ΘF,k=1 has the same Consensus number as
Consensus(), i.e.,∞.



ξ0

ξ0 = { b0 , f, P}

ξ1

ξ1 = { b0 b1 , f, P}

append(b1) : true

if b1 ∈ B′

append(b3) : false

if b3 /∈ B′ ξ2

ξ2 = { b0 b1 b2 f, P}

append(b2) : true

if b2 ∈ B′

append(b4) : ⊥

if b4 /∈ B′

read() : b0 _ b1 read() : b0 _ b1 _ b2

ξ′0

{

{b0} {} . . .K

tkn ⊥ . . .

tapeα2 ⊥ tkn . . .

tapeα1

... ,k, b0 , f, P}

ξ′1/a

{

{b0} {} . . .

⊥ ⊥ . . .

⊥ tkn . . .
... ,k, b0 , f, P}

getToken(bh ←last block(f(bt)), b1) : b
tkn0
1

if pop(tapeα1 ) = tkn

ξ′1/b

{

{b0} {btkn0
1 } . . .

⊥ ⊥ . . .

⊥ tkn . . .
... ,k, b0 b1 , f, P}

consumeToken(b
tkn0
1 ) : {btkn0

1 }

if |K[0]| < k

Fig. 3: A possible path of the transition system defined by the refinement of the append() operation.

R(BT-ADTSC ,ΘF,k=1)

R(BT-ADTEC ,ΘF,k>1)

R(BT-ADTSC ,ΘP )

R(BT-ADTSC ,ΘF,k>1)

R(BT-ADTEC ,ΘP )

Theorem IV.4

Theorem V.6
Theorem IV.3

Theorem V.6

Theorem IV.3

Corollary IV.4.1

Corollary IV.4.1

Fig. 4: R(BT-ADT,Θ) Hierarchy. In gray we anticipate the
combinations impossible in a message-passing system due to
Theorem V.6.

Recall that Compare&Swap() takes three parameters
as input, the register, the old value and the new value.
If the value in register is the same as old value then
the new value is stored in register and in any case the
operation returns the value that was in register at the
beginning of the operation.

Figure 5 proposes an algorithm that reduces CAS
object to ΘF,k=1 object.

Theorem V.1. If input values are in B′ then there exists an
implementation of CAS by ΘF,k=1.

Figure 6 describes a simple implementation of Con-
sensus by ΘF,k=1. When a process p invokes procedure

Consensus with the block bh to which p wishes to append
its block b, it first sets its proposal (Line 1), and then
loops invoking the getToken(bh, proposal) operation until a
valid block is returned (Lines 3-4). Once process p obtain
a valid block, it invokes the consumeToken() operation
with this valid block as a parameter. The consumeToken()
returns the unique valid block for level level (Line 5). Note
that this unique valid block is the one of the first process
that invoked the consumeToken() operation. Thus the
decision value is the valid block of the first process that
invoked the consumeToken() operation (see Line 5), and
thus it is the same for all the processes.

Theorem V.2. ΘF,k=1 Oracle has Consensus number ∞.

2) Prodigal oracle ΘP is not stronger than Generalized
Lattice Agreement: In this section we present a reduction of
the prodigal oracle ΘP to Generalized Lattice Agreement
(GLA) [12]. We will first recall the properties of GLA, a
version of lattice agreement generalized to a possibly
infinite sequence of input values.

Definition V.2 (GLA Problem [12]). Let L be a join semi-
lattice with a partial order v. Each process may propose an
input value belonging to the lattice at any point in time. There
is no bound on the number of input values a process may
propose. Let vxi denote the x-th input value proposed by
a process pi. The objective is for each process pi to learn
a sequence of output values wyi that satisfy the following
conditions:

1) Validity. Any learnt value wyi is a join of some set of
input values.

2) Stability. The value learnt by any process pi increases
monotonically : x < y ⇒ wxi v w

y
i .



(1) compare&swap(K[h], {}, btknh` ) :

(2) first← consumeToken(b
tknh
` );

(3) if (first == b
tknh
` )

(4) then previous value = {};
(5) else previous value = first;
(6) endIf
(7) return previous value;

Fig. 5: An implementation of CAS by the Frugal Oracle with k = 1.

Consenus(bh):
(1) proposal← b;
(2) validProposal← ⊥;
(3) while (validProposal = ⊥):
(4) validProposal← getToken(bh, proposal);
(5) return (consumeToken(validProposal));

Fig. 6: An implementation of Consensus by the Frugal Oracle with k = 1.

3) Consistency. Any two values wxi and wyj learnt by any
two processes pi and pj are comparable.

4) Liveness. Every value vxi proposed by a correct process
pi is eventually included in some learnt value wyj of
every correct process pj , i.e. vxi v w

y
j

a) Reduction of the prodigal oracle to Generalized Lat-
tice Agreement: In order to show the reduction of the prodi-
gal oracle to GLA, we consider a lattice for each possible
object objh a process wants to append its own object to.
Intuitively, in the context of the BT-ADT, the object objh is a
vertex of a tree that maps to a lattice whose input values
are subsets of the vertexś children. In order to formally
define the input values of the lattice, let us recall that
a consume token operation invoked to chain an object
obj` to a given object objh, i.e., consumeToken(objtknh` ),
returns a set of objects that includes the chained object
objtknh` . In this context, the lattice input values belong then
to the objects power set, where the greatest lower bound
is the empty set.

Figure 7 shows an implementation of con-
sumeToken by GLA, where the process executes
proposeValue({objtknh` }) of GLA, taking the singleton set
{objtknh` } to be a newly proposed value. The consume
token returns a set that reflects all the objects in the
learnt set, which includes the proposed object.

Theorem V.3. ΘP Oracle is not stronger than Generalized
Lattice Agreement.

Proof. (Sketch)
The proof follows from the implementation in Figure 7. Let

us recall that the oracle must behave as an atomic object, which
means that we need to show that the oracle is linearizable
through GLA. GLA proposed values in our implementation are
sets, where each proposed value is a singleton set containing
a uniquely identified object. The join of any two proposed
values is the union of the proposed singleton sets. Any learnt
set is the union of some proposed sets. Any two learnt sets are
comparable through the inclusion operator. The first step is to

show that the order of non-overlapping consumeToken opera-
tions is preserved: if a process pi completes a consumeToken
ct1 operation before another process pj invokes another ct2
operation, then we must ensure that ct1 occurs before ct2 in
the linearization order, i.e. the effect of ct1 is visible to ct2.
Note that from the pseudo-code, the only values included in
K[h] are learnt values, i.e. a join of some proposed values
by the GLA Validity and from Line 2. Moreover, from Line 3
each process waits for its own proposed set to be learnt before
the consumeToken completes. This means that the proposed
set set1 by ct1 is learnt and included in K[h], before ct2 is
invoked. Since the learnt value set1 through ct1 must now be
comparable to the learnt set set2 through ct2, this implies that
the learnt set set2 through ct2 must also include set1. K[h]
will then include set1, i.e. ct2 has seen the effect of ct1. The
second step is to show that any two concurrent operations ct1
and ct2 can be linearized. By Consistency, even in this case
the learnt values must be comparable, either set1 is included
in set2 or the other way round. In both cases the effect of
one operation is visible to the other one, and then they can be
linearized. The last step is to show the the implementation is
wait-free. Wait-freedom is ensured by the Liveness property
of GLA that ensures that the execution time of Line 3 is
finite.

B. Implementability in a message-passing system model

In this section we are interested in distributed message-
passing implementations of BT-ADTs. In the following, we
will present (i) the necessity of a light form of reliable
broadcast to implement BT Eventual consistency, (ii) re-
finement of BTs with Oracles that are not implementable
in a message-passing system and (iii) the mapping of
current existing implementations with our abstract data
types.

To this end, we consider a message-passing system
composed of an arbitrarily large but finite set of n pro-
cesses, such that a subset of them can fail by exhibiting
Byzantine failures, that is deviates arbitrarily from the



(1) consumeToken(obj
tknh
` )

(2) proposeValue({objtknh` })
(3) wait until objtknh` ∈ LearntValue()
(4) K[h] = K[h]∪ LearntValue()
(5) return K[h];

Fig. 7: Reduction of the prodigal oracle to Generalized Lattice Agreement

distributed protocol P it should execute. A non-faulty
process is said correct. Processes communicate by ex-
changing messages over communication channels that
can be asynchronous or synchronous (see [6]). We will
specify whenever necessary the synchrony assumptions
of the channels. By default we consider asynchronous
channels.

The BlockTree is considered as a shared object repli-
cated at each process. Let bti be the local copy of
the BlockTree maintained at process i. To maintain the
replicated object we consider histories made of events
related to the read and append operations on the shared
object, i.e. the send and receive operations for process
communications and the update operation for BlockTree
replica updates. We also use subscript i to indicate that
the operation occurred at process i: updatei(bg, b`) indi-
cates that i inserts its locally generated valid block b` in
bti with bg as a predecessor. Updates are communicated
through send and receive operations: an update related
to a block b` generated on a process pi, which is sent
through the sendi(bg, b`) operation, and which is received
through the receivej(bg, b`) operation, takes effect on the
local replica btj of pj with the updatej(bg, b`) operation.

In the remaining of this work we consider implementa-
tions of BT-ADT in a Byzantine failure model where the set
of events E is restricted to a countable set of events that
contains (i) all the BT-ADT read() operations invocation
events by the correct processes, (ii) all BT-ADT read()
operations response events at the correct processes, (iii)
all append(b) operations invocation events such that b
satisfies predicate P and, finally (iv) send, receive and
update events generated at correct processes. Note that
the Oracle-ADT is by construction agnostic to failures.

1) Necessity of reliable communication: We define the
properties on the communication primitive that each his-
tory H generated by a BT-ADT satisfying the Eventual
Prefix Property must satisfy. We need to first introduce
the following definition:

Definition V.3 (Update agreement). A concurrent history
H = 〈Σ, E,Λ, 7→,≺,↗〉 generated by a BT-ADT satisfies
the update agreement property if properties R1, R2 and R3
hold.
• R1. ∀updatei(bg, b`) ∈ H , ∃sendi(bg, b`) ∈ H;
• R2. ∀updatei(bg, b`) ∈ H,∃receivei(bg, b`) ∈ H such

that receivei(bg, b`) 7→ updatei(bg, b`);
• R3. ∀updatei(bg, b`) ∈ H , ∃receivek(bg, b`) ∈ H,∀k.

Theorem V.4. The update agreement property is necessary to
construct concurrent histories H = 〈Σ, E,Λ, 7→,≺,↗〉 gen-
erated by a BT-ADT that satisfy the BT Eventual Consistency
criterion.

Proof. The intuition of the proof is that to meet BT Eventual
Consistency all the processes must have the same view of
BlockTree eventually. In fact missing an update on the branch
that will be eventually selected (which cannot be a-priori-
known) would imply that the prefix (which will be arbitrarily
long) for the process that missed the update will diverge
forever. For space reason the proof of the theorem can be
found in the supplementary materials.

We can now present the Light Reliable Communication
(LRC) primitive.

Definition V.4 (Light Reliable Communication (LRC)). A
concurrent history H satisfies the properties of the LRC
abstraction if and only if:

• (Validity): ∀sendi(b, bi) ∈ H,∃receivei(b, bi) ∈ H;
• (Agreement): ∀receivei(b, bj) ∈ H,∀k∃receivek(b, bj) ∈
H

From Theorem V.4, it is straightforward to show that
LRC is necessary to implement BT Eventual consistency
(by using arguments from [6]). The proof of the necessity
is based on the Validity and Agreement for R1, R2 and
R3. The interested reader can refer to the supplementary
materials for the proof.

Theorem V.5. The LRC primitive is necessary for any BT-
ADT implementation that generates concurrent histories which
satisfies the BT Eventual Consistency criterion.

By Theorem IV.1, the results trivially hold for the BT
Strong consistency criterion.

2) Impossibility of BT Strong Consistency with forks: The
following theorem states that BT Strong consistency can-
not be implemented if forks can occur. Intuitively the proof
is based on showing a scenario in which two concurrent
updates bi and bj are issued, linked to a same block b and
two reads at two different processes read b_bi and b_bj ,
violating the Strong prefix property.
Observation. Following our Oracle based abstraction
(Section IV-C) we assume by definition that the synchro-
nization on the block to append is oracle side and takes
place during the append operation. It follows that when an
append operation occurs and a correct process updates



its local blocktree then it cannot use anything weaker than
the LRC communication abstraction.

Theorem V.6. There does not exist an implementation of
R(BT-ADTSC ,Θ) with Θ 6= ΘF,k=1 that uses a LRC
primitive and generates histories satisfying the BT Strong
consistency.

The non-implementability of refinement
R(BT-ADTSC ,ΘP ) and R(BT-ADTSC ,ΘF,k>1) is a
direct implication of the theorem, whose effect is reported
in gray in Figure 4.

From Theorem V.6 the next Corollary follows.

Corollary V.6.1. ΘF,k=1 is necessary for any implementation
of any R(BT-ADTSC ,Θ) that generates histories satisfying
the BT Strong consistency.

Thanks to Theorem V.2 the next Corollary also follows.

Corollary V.6.2. Consensus is necessary for any implemen-
tation of a BT-ADT that generates histories satisfying the BT
Strong consistency.

C. Mapping with existing Blockchain implementations

We complete this work by illustrating the mapping in
the following table between different existing systems
and the specifications and abstractions presented in this
paper. Interestingly, the mapping shows that all the pro-
posed abstractions are implemented (even though in a
probabilistic way in some case), and that the only two
refinements used are R(BT -ADTSC ,ΘF,k=1) and R(BT -
ADTEC ,ΘP ). In the following we discuss Bitcoin and
Redbelly, an interested reader can find the discussions
for the other systems in the supplementary materials.

TABLE I: Mapping of some existing systems.

References Refinement
Bitcoin [19] R(BT -ADTEC ,ΘP ) EC w.h.p
Ethereum [24] R(BT -ADTEC ,ΘP ) EC w.h.p
Algorand [13] R(BT -ADTSC ,ΘF,k=1) SC w.h.p
ByzCoin [16] R(BT -ADTSC ,ΘF,k=1)
PeerCensus [9] R(BT -ADTSC ,ΘF,k=1)
Redbelly [8] R(BT -ADTSC ,ΘF,k=1)
Hyperledger [4] R(BT -ADTSC ,ΘF,k=1)

D. Bitcoin

In Bitcoin [19] each process p ∈ V is allowed to
read the BlockTree and append blocks to the Block-
Tree. Processes are characterized by their computational
power represented by αp, normalized as

∑
p∈V αp = 1.

Processes communicate through reliable FIFO authen-
ticated channels, which models a partially synchronous
setting [10]. Valid blocks are flooded in the system. The
getToken operation is implemented by a proof-of-work
mechanism. The consumeToken operation returns true
for all valid blocks, thus there is no bounds on the
number of consumed tokens. Thus Bitcoin implements
a Prodigal Oracle. The selection function f selects the

blockchain which has required the most computational
work, guaranteeing that concurrent blocks can only refer
to the most recently appended blocks of the blockchain
returned by a read() operation. Garay and al [20] have
shown, under a synchronous environment assumption,
that Bitcoin ensures Eventual consistency criteria with
high probability. The same conclusion applies as well for
the FruitChain protocol [21], which proposes a protocol
similar to BitCoin except for the rewarding mechanism.

E. Red Belly

Red Belly [8] is a consortium blockchain, meaning that
any process p ∈ V is allowed to read the BlockTree but
a predefined subset M ⊆ V of processes are allowed to
append blocks. Each process p ∈ M has a merit param-
eter set to αp = 1/|M | while each process p ∈ V \ M
has a merit parameter αp = 0. Each process p ∈ M
can invoke the getToken operation with their new block
and will receive a token. The consumeToken operation,
implemented by a Byzantine consensus algorithm run
by all the processes in V , returns true for the uniquely
decided block. Thus Red Belly BlockTree contains a
unique blockchain, meaning that the selection function
f is the trivial projection function from BT 7→ BC which
associates to the BT-ADT its unique existing chain of the
BlockTree. As a consequence Red Belly relies on a Frugal
Oracle with k = 1, and by the properties of Byzantine
agreement implements a strongly consistent BlockTree
(see Theorem 3 [8]).

VI. CONCLUSIONS AND FUTURE WORK

The paper presented a formal specification of
blockchains and derived interesting conclusions on their
implementability. Let us note that the presented work
is intended to provide the groundwork for the construc-
tion of a sound hierarchy of blockchain abstractions and
correct implementations. We believe that the presented
results are also of practical interests since our oracle
construction not only reflects the design of many current
implementations, but will help designers in choosing the
oracle they want to implement with a clear semantics
and inherent trade-offs in mind. Future work will focus on
several open issues, such as the solvability of Eventual
Prefix in message-passing, the synchronization power of
other oracle models, and fairness properties for oracles.
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