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Explicit and Tight Bounds of the Convergence Time of

Average-based Population Protocols

Yves Mocquard∗ Bruno Sericola† Emmanuelle Anceaume‡

1 Introduction

This paper focuses on the deep analysis of average-based problems in the popu-
lation protocol model [1], a model in which agents are identically programmed,
with no identity, and they progress in their computation through random pair-
wise interactions. A considerable amount of work has been done so far to deter-
mine which properties can emerge from pairwise interactions between finite-state
agents, together with the derivation of bounds on the time and space needed to
reach such properties. In this work, we are primarily interested in problems that
aim at quantifying properties on the system population, such as the proportion
problem [2] or the counting problem [3]. Namely, we consider a set of n agents,
interconnected by a complete graph, that asynchronously start their execution
in one of two distinct states A (associated with some positive integer m) and B
(associated with 0), and such that nA (resp. nB) is the number of agents whose
initial state is A (resp. B). Such problems can be solved by relying on average-
based population protocols [4, 3, 2]. Briefly, n agents starting independently from
each other with an initial integer state, interact randomly by pairs, and at each
interaction, keep the average of both states as their new state. Average-based
protocols have also been used in gossip-based aggregation protocols as well as in
consensus protocols [5].

2 Average-based Population Protocols

Average-based population protocols use the average technique to compute the
proportion of agents that started their execution in a given state A. The notion of
time in population protocols refers to as the successive steps at which interactions
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occur, while the parallel time refers to as the successive number of steps each
agent executes. Agents do not maintain nor use identifiers, however, for ease of

presentation the agents are numbered 1, 2, . . . , n. We denote by C
(i)
t the state

of agent i at time t. The stochastic process C = {Ct, t ≥ 0}, where Ct =

(C
(1)
t , . . . , C

(n)
t ), represents the evolution of the population protocol. This means

that, for every i = 1, . . . , n, we have C
(i)
0 ∈ {0,m}. At each discrete instant t,

two distinct indices i and j are uniformly chosen among 1, . . . , n, that is with
probability 1/(n(n − 1)). Once chosen, the couple (i, j) interacts, and both

agents update their respective local state C
(i)
t and C

(j)
t by applying the transition

function f , leading to state Ct+1, given by f(C
(i)
t , C

(j)
t ) = (C

(i)
t+1, C

(j)
t+1) with

(
C

(i)
t+1, C

(j)
t+1

)
=

(⌊
C

(i)
t + C

(j)
t

2

⌋
,

⌈
C

(i)
t + C

(j)
t

2

⌉)
and C

(r)
t+1 = C

(r)
t for r 6= i, j.

We denote by ` the mean value of the sum of the entries of Ct and by L the

row vector of Rn with all its entries equal to `, that is ` =
∑n

i=1C
(i)
t /n and

L = (`, . . . , `). We denote by ‖.‖ the Euclidean norm and by ‖.‖∞ the infinite
one. Let λ = min {`− b`c, d`e − `} , which is the distance between ` and its
nearest integer. It is easily checked that we have 0 ≤ λ ≤ 1/2. In Theorem 4
of [2], we dealt with the case where ` − b`c = 1/2. This case implies that n is
even. In the following theorem, we generalize these results to the case where n is
odd. We denote by 1{A} the indicator function, which is equal to 1 if condition
A is true and 0 otherwise.

Theorem 2.1 For all δ ∈ (0, 1), if λ =
(
n− 1{n odd}

)
/(2n) and if there exists a

constant K s.t. ‖C0 − L‖ ≤ K then, for every t ≥ (n − 1) (2 lnK − ln δ − ln 2),
we have

P

{
‖Ct − L‖∞ >

n+ 1{n odd}

2n

}
= P

{
max
1≤i≤n

C
(i)
t − min

1≤i≤n
C

(i)
t > 1

}
≤ δ.

The shadow process. We introduce what we call a shadow process of the
stochastic process C = {Ct, t ≥ 0}. This shadow process is a stochastic process

denoted by D = {Dt, t ≥ 0} and defined at time t = 0 by D
(i)
0 = C

(i)
0 + 1{i∈B0},

where B0 is a non empty subset of b agents with b ≤ n− 1, i.e. B0 ⊂ {1, . . . , n}
and |B0| = b. For every t ≥ 1, the shadow process Dt is defined as process Ct,
that is, when the couple (i, j) is chosen to interact at time t, the vector Dt+1 is
given by

(
D

(i)
t+1, D

(j)
t+1

)
=

(⌊
D

(i)
t +D

(j)
t

2

⌋
,

⌈
D

(i)
t +D

(j)
t

2

⌉)
and D

(r)
t+1 = D

(r)
t for r 6= i, j.
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Both stochastic processes C and D behave identically and evolve following the
same interactions. The only difference lies their initial values. Note that process
C is a part of the protocol but not process D which is introduced only for the
probabilistic analysis of C. As we did for process C, we denote by `D the mean
value of the sum of the entries of Dt and by LD the row vector of Rn with all its
entries equal to `D. Lemma 2.2 shows that if at time t = 0, D0 is in the shadow
of C0 then for any time t ≥ 0, Dt remains in the shadow of Ct.

Lemma 2.2 For all t ≥ 0, there exists a non empty set Bt of b agents, i.e.
Bt ⊂ {1, . . . , n} and |Bt| = b, such that for all i ∈ {1, 2, . . . , n}, we have

D
(i)
t = C

(i)
t + 1{i∈Bt}.

Lemma 2.3 For all t ≥ 0, we have∣∣‖Dt − LD‖∞ − ‖Ct − L‖∞
∣∣ ≤ 1− 1

n
and

∣∣∣‖Dt − LD‖ − ‖Ct − L‖
∣∣∣ < √n.

In Theorem 2.1, we obtained a first bound on the convergence time in the
particular case where λ =

(
n− 1{n odd}

)
/(2n). This result together with Lem-

mas 2.2 and 2.3 are used to obtain general results, i.e. results which apply for
any value of λ.

Theorem 2.4 For all δ ∈ (0, 1), if there exists a constant K such that ‖C0−L‖ ≤
K, then, for every t ≥ (n− 1) (2 ln (K +

√
n)− ln δ − ln 2), we have

P

{
max
1≤i≤n

C
(i)
t − min

1≤i≤n
C

(i)
t > 2

}
≤ δ and P

{
‖Ct − L‖∞ ≥

3

2

}
≤ δ.

3 Application: Solving the Proportion Problem.

We apply our results to the proportion problem.

Definition 3.1 (Proportion Problem.) A population protocol solves the pro-
portion problem with precision ε ∈ (0, 1) and with probability at least 1 − δ,
δ ∈ (0, 1), in τ(n, ε, δ) interactions, if at any time t ≥ τ(n, ε, δ), any node is
capable of computing nA/n with an ε-precision without the knowledge of the pop-
ulation size n.

We denote by γA the proportion of nodes starting with A, i.e. γA = nA/n, where
nA is the number of nodes starting with A. The following theorem gives an

evaluation of the first instant t from which the distance between C
(i)
t /m and γA

is less than a fixed ε with any high probability 1− δ.

Theorem 3.2 For all δ ∈ (0, 1) and ε ∈ (0, 1), by taking m = d3/(2ε)e, we
have, for all t ≥ (n− 1) [lnn− ln δ + 2 ln(2 + 1/ε) + ln(9/32)],

P

{
|C(i)
t /m− γA| < ε, for all i = 1, . . . , n

}
≥ 1− δ.
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Experimental results. We show how tight our bounds are by comparing the
theoretical bound τ of the parallel convergence time to the results obtained via
extensive simulations (see Figure 1). We introduce the parallel convergence time

θ defined by θ = inf{t ≥ 0 s.t. for all i, |C(i)
t /m − γA| < ε}/n. We have run N

independent simulations of θ and stored the N values of the parallel convergence
times denoted by θ1, . . . , θN . The estimation of the first instant t such that
P{θ < t} ≥ 1− δ is thus given by θdN(1−δ)e.
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(a) θdN(1−δ)e as a function of ε, with δ =
10−1 and N = 104. From top to the bot-
tom, we have n = 105, n = 104 and n = 103

respectively.
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(b) θdN(1−δ)e as a function of ε, with n = 103

and N = 106. From top to the bottom, we
have δ = 10−5, 10−3 and 10−1 respectively.

Figure 1: Comparing the estimation θdN(1−δ)e with the theoretical bound τ of
the parallel convergence time (Theorem 3.2).
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