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Abstract

The load transfer induced by the elas�c and plas�c phase anisotropies of a Ti–10V–2Fe–3Al �tanium alloy is studied. The
microstructure consists in α nodules embedded in elongated β grains. EBSD performed on the alloy shows no crystallographic

texture neither for α nor β phase. Tensile tests along the elonga�on direc�on, at a strain rate of 2 x 10-3 s-1 give a yield stress of
830 MPa with 13% duc�lity.

Simula�ons based on an advanced two-phase polycrystalline elasto-viscoplas�c self-consistent (EVPSC) model predict that the β
phase first plas�fies with a sequen�al onset of plas�city star�ng from <110> oriented β grains, then <111> and finally <100>
oriented β grains. This leads to a strong load transfer from the β grains to the α nodules whose average behavior remains elas�c
up to high stresses (~940 MPa). However, addi�onal simula�ons considering exclusively β grains of specific orienta�on show that
the behavior of α nodules is strongly dependent on the β texture in which they are embedded. Especially, in <001> β grains, which
plas�fy the latest, the model predicts the onset of plas�city in favorably orientated α nodules. Moreover, the orienta�on spread
within the β grains can modify the average plas�c behavior of α phase. In future, these results will be compared to data obtained
from in-situ High Energy XRD and SEM/EBSD experiments.

I. Introduc�on

Near β alloys like Ti-10-2-3 are o�en used for aircra� structural applica�ons [1-3] due to their excellent forgeability and
mechanical proper�es at low temperatures. These alloys undergo a complex transforma�on process, including β and α/β forging.
The final microstructure differs based on the thermomechanical history and the frac�on of alloying elements [4]. Generally, it
consists of α nodules embedded in a β matrix par�ally transformed during aging to secondary αs platelets of nanometric size [1].

The elas�c-plas�c behavior of these near β alloys is rather complex. Even the anisotropic elas�c behavior is not fully understood.
Literature shows a wide spread for the anisotropic elas�c constants of β phase with Zener anisotropy coefficient ranging from 1.4
to 8.3 [5]. This can possibly be due to chemical composi�ons of the corresponding phase evolving with the thermal history,
although one cannot sweep out the difficul�es to measure local elas�c constants in a mul�phase polycrystalline specimen. Such
lack of accuracy impedes predic�ve understanding of the material behavior. Grain-scale elas�c and plas�c anisotropies of both β/
α phases o�en lead to stress par��oning and to heterogeneous onset of plas�city [6]. They must be understood as they strongly
influence the macroscopic elasto-viscoplas�c behavior and the associated development of internal stresses that are responsible
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for isotropic and kinema�c hardening as well as crack ini�a�on. For these alloys, significant cracks have been observed a�er
failure origina�ng from basal slip ac�vity in the α nodules [7,8].

Mean field Self-Consistent models have been successfully used in the past together with experimental techniques like X-ray
diffrac�on (XRD) to characterize the stresses and strains in complex materials by taking into account grain and phase interac�ons
[9]. Many studies have been carried out in combina�on with in-situ diffrac�on experiments and self-consistent schemes to
characterize the plas�c deforma�on in �tanium alloys [10 - 13]. These studies employ elasto-plas�c or viscoplas�c models and
predict the average behavior of the phases reasonably well.

The present work aims to predict the inter-granular stress and strain evolu�on in the forged Ti-10-2-3 alloy during both elas�c and
plas�c deforma�ons. For this purpose, an advanced two-phase polycrystalline elasto-viscoplas�c self-consistent model, with first
order “affine” lineariza�on of the viscoplas�c flow rule, as described in [5] is applied on a simplified microstructure, i.e. α nodules
embedded in a β matrix, as the first step. Alongside, an a�empt is made to illustrate the role of anisotropic elas�c α/β strains on
the hierarchical onset of plas�city. The simulated data will be compared in the future to high energy XRD results.

II. Experimental procedure

II.1 Material:

Samples were cut from an α/β forged piece of the 10-2-3-�tanium alloy. They were all heat treated in the α/β domain for 1 hour
and water quenched to obtain a nodular microstructure with 15% of primary α nodules embedded in a β matrix. This matrix
consists of millimeter large elongated β grains, which are par�ally fragmented into equiaxed sub-grains with average size of 2.7
µm. The primary α nodules are present both at the β grain and sub-grain boundaries. Their average size is around 1.2 µm. Further
observa�on of the microstructure also confirmed that no secondary α lamellae formed during water quenching. The α volume
frac�on was confirmed to be around ~15% using laboratory X-ray diffrac�on.

II.2 Texture and Microtexture:

Neutron texture analysis was carried out on 1 mm cube samples at Laboratoire Léon Brillouin (LLB) in France. Pole figures were
generated for the β phase and the crystallographic texture was found to be random (not shown here). Addi�onal EBSD
measurements were performed on a JEOL JSM-6500F electron microscope equipped with the Nordlys-S camera. Several EBSD
maps with 0.5µm step size were carried out along the cross-sec�on (normal to the elonga�on axis) to characterize the
microstructure and local texture of α and β phases. The EBSD maps were post-processed with Aztec-Oxford instrumenta�on
so�ware.

Figure 1a shows the β - inverse pole figure (IPF) map of along the elonga�on direc�on. Figures 1b and c give a close-up view of
the rectangular area marked in Figure 1a to highlight the misorienta�ons among β sub-grains (Figure 1b) and the phase map
showing the primary α nodules in red and β grains in blue (Figure 1c). Equiaxed β sub-grains were found throughout the
microstructure with both small (>3°) and large (>15°) misorienta�ons. A higher frac�on of high angle grain boundaries is observed
within a single β grain and this forms the basis of equiaxed morphological assump�on for the β grains. Along with the high angle
grain boundary sub-grains, the β grains also present a significant orienta�on spread. The α nodules in the β grains are mostly
equiaxed and their texture is very close to random, i.e. the orienta�on rela�onship with the β phase was broken.

II.3 Tensile test:

Cylindrical tensile specimens with 6.35mm diameter were cut from the α/β forged piece along the elonga�on direc�on (the
tensile direc�on TD is parallel to the elonga�on direc�on of the β grains). The width of the β grains is ~200µm, such that there is
~100 grains in the tensile specimen’s cross-sec�on. The tensile tests were performed on a ZWICK Z250 machine with a force cell

of 250kN and a contact extensometer. Several different strain rates were studied ( 2 x 10-5 s-1, 2 x 10-4 s-1, 2 x 10-3 s-1) up to

fracture. The results are more detailed in [14]. In this work, only the tensile response at 2 x 10-3 s-1 is shown and used for the
present micromechanical simula�ons.
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Figure 1 (a) β-IPF map along the elonga�on direc�on (normal to the acquisi�on surface). (b) β- misorienta�on map of a region inside a β grain (black and yellow lines
indicate grain boundaries for respec�ve misorienta�ons >3° and >15°). (c) phase map (α and β phases are shown in red and blue colors).

III. Affine-based Elasto-Visco-Plas�c-Self-Consistent modeling

III.1 Single grain cons�tu�ve behavior in α/β phases:

A one-site elasto-viscoplastic self-consistent (EVPSC) scheme, formulated using the translated field method and a first order affine
approximation, is used. It has been described in detail elsewhere [5, 15] and only a brief description of the single crystal law
employed is presented. The simulations are performed under the infinitesimal small strain assumptions, where the total strain rate
tensor ( ), calculated from the generalized Hooke’s law, and the nonlinear viscoplastic strain rate tensor ( ).

The constitutive behavior at the single crystal level, for both α and β phases, is described by Méric-Cailletaud (MC) model [16].
The slip rate  for each slip system ‘s’ is defined as:

Where = max(x,0), τs is the resolved shear stress defined as τs = Rs:σ, with Rs is the symmetric Schmid orienta�on tensor and σ is

the first moment of stresses (average stress inside a given grain, i.e. a given orienta�on). The quan��es xs and rs are the kinema�c
and isotropic hardening components on each slip system, respec�vely. The evolu�on of the kinema�c hardening is described
through a simplified law with a single material coefficient c:

The viscoplas�c strain rate at the scale of grain is defined as:

III.2 EVPSC scale transi�on law:

The EVPSC scale transi�on law from micro- to macroscopic fields as detailed in [5] was used in this paper. Other details and
comparisons with other mean/full field approaches can be found in [17].

III.3 Applica�on of the affine EVPSC to Ti-10-2-3:

Two types of simula�ons have been carried out: the first one at the macroscopic scale and the second one at the scale of
individual β grains. These simula�ons are carried out assuming equiaxed grain morphology for both α and β phases with volume

3

MATEC Web of Conferences 321, 11090 (2020)	 https://doi.org/10.1051/matecconf/202032111090
The 14th World Conference on Titanium



frac�on coming from the XRD analysis (~15% of α phase).

Simula�on I: An isotropic crystallographic texture is considered for both the β and α phases, as observed experimentally with
neutron texture analysis. Several simula�ons were performed to iden�fy the number of orienta�ons required in each phase to
obtain an isotropic elas�c behavior (as observed experimentally from tensile tests in different direc�ons – not shown here) [14]. It
was found that at least 5000 random orienta�ons are required in the α phase and 2000 random orienta�ons are required for the
β phase. The Representa�ve Volume Element (RVE) is a polycrystalline (α+β) composite with 7000 random orienta�ons.

Simula�on II: The second simula�on is performed at the scale of single β grains with α/β texture coming from the EBSD map. The
choice of specific β grains oriented close to the <100> || TD was mo�vated from the results of Simula�on I. Indeed, those grains
were seen to be the latest to enter to plas�city with the model. They are herea�er referred as ‘Red grains’ (with respect to the
Standard Stereographic Triangle (SST) color code). Figure 2 shows the choice of six ‘Red grains’ on the EBSD map (selec�on of
grains based on high-angle boundary with misorienta�on angle of >25°.). The six red grains present local spread in orienta�on; for
example, red grain 2, 5 and 6 exhibit lower spread in orienta�on locally, while the red grain 1, 3 and 4 presents significant spread
in orienta�on. As men�oned previously, the texture of the α phase in these ‘Red grains’ is rather random.

Figure 2 Selec�on of six ‘red grains’ on the β-IPF map along the elonga�on direc�on (normal to the acquisi�on surface).

III.4 Elas�c and viscoplas�c parameters:

The elas�c and viscoplas�c parameters have been fi�ed on experimental tensile curves at several strain rates. The parameters
used for both simula�ons I and II are presented in Table 1.

The elas�c constants for the α phase have been selected from the literature [18], as there is considerable agreement. However,
for the β phase, widely different elas�c constants have been reported in the literature with an anisotropic factor ranging from 1.4
to 8.3. They have a significant influence on the predicted elas�c and plas�c incompa�bili�es at the grain scale as discussed in [5]
for a 10-2-3-Ti alloy fully β. Here, we consider the same constants for b phase as used by Mar�n et al. [19], as it provides
reasonably good fit with the experimental data for a 100% β phase alloy. The parameter ‘n’ is chosen to be rela�vely high (n=90
for the a phase and n=80 for the b phase) to predict the observed material’s low strain rate sensi�vity (see [14]). For the a phase,
the deforma�on proceeds by basal, prisma�c and first order pyramidal slip, while for the b phase the {110}<111>, {112}<111> and
{123}<111> slip modes are used. The cri�cal resolved shear stresses for these slip systems were es�mated based on the good fit
with the experimental macroscopic stress-strain curve and the observa�on of basal slip lines predominance in a nodules in 10-2-
3-Ti alloys [7,20].
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It should be noted that the inves�gated microstructure is a simplified one with primary α nodules embedded in a β matrix (with
no secondary α lamellae). The chosen SEC and viscoplas�c parameters for the model are expected to change for the classical aged
microstructure in which the β matrix is par�ally transformed into fine secondary α lamellae. A recent experimental study [7] on
the β metastable Ti-5Al-5Mo-5V-3Cr has also highlighted the role of elas�c anisotropy of the transformed β phase on the elas�c
and plas�c behavior.

III.5 Data analysis and interpreta�on:

Along with the conven�onal macroscopic curves, our simula�ons were also applied to predict the evolu�ons of the elas�c strains
with applied stress and their devia�on from linearity to iden�fy the onset of micro-plas�city and load transfers between α and β
phases. The interpreta�on of elas�c strain evolu�on is taken from the XRD la�ce strain analysis [21]. By following the evolu�on of
la�ce (i.e. purely elas�c) strains with applied stress in a composite material, one can iden�fy the plas�c events and load transfer
amongst different phases/grain families. A deflec�on of elas�c strains from linearity, when plo�ed with respect to applied stress,
indicates the nature of deforma�on of the phase. A nega�ve deflec�on from linearity indicates plas�city, whereas a posi�ve
devia�on indicates elas�c load takeover or “load-transfer” from the grain family/phase that has achieved plas�city.

Table 1 Elas�c and viscoplas�c parameters of the α and β-phases for each slip system family.

Parameters α (hcp) β (bcc)

Elastic moduli
(anisotropic)

(GPa)
C11=160, C33=181, C44=46.5, C12=90, C13=66 C11=100, C12=70, C44=36

Viscoplastic and
hardening
parameters

Slip system families Slip system families

Basal Prismatic Pyramidal<a> Pyramidal<c+a> {110}
<111>

{112}
<111>

{123}
<111>

n 90 90 90 90 80 80 80

K (MPa.s1/n) 270 270 270 270 300 3000 300

rs (MPa) 215 350 435 620 70 70 80

cs (MPa) 0 0 0 0 200 200 400

IV. Results and Discussion:

IV.1 Simula�on I:

The simula�on is carried out on the α+β composite with 7000 random crystal orienta�ons, up to a total strain of 10% (below the

failure strain of the material). The predicted α+β composite response along with the experimental curve for 2 x 10-3 s-1 strain rate
is shown in Figure 3. The elas�c response is well reproduced but a small discrepancy could be seen regarding the elas�c-plas�c
transi�on. The difference in yield stress predicted by the model is about 40 MPa (~5% higher than experimental data). However,
these discrepancies were found to lie within the sca�er of tensile data for different tested specimens of close microstructures.
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Figure 3 Experimental and predicted macroscopic stress-strain response of Ti-10-2-3 (random texture) at a strain rate of 2 x 10-3 s-1.

The evolu�on of elas�c strains with applied stress as well as its devia�on from linearity is given in Figures 4a and 4b, for the whole
composite (in black) and for the β and α orienta�ons separately (respec�vely in blue and red). Figure 4b indicates the onset of
plas�city in β phase with a strong load transfer to the α nodules. The behavior of the vast majority of α nodules remains elas�c
(see Figure 4b and sec�on III.4 for interpreta�on of the curves). As will be shown in simula�on II, the behavior of α nodules is
however strongly dependent on the β texture in which they are embedded.

Figure 4 (a) Evolu�on of elas�c strain with respect to applied stress for α+β composite. (b) Elas�c strain devia�on from linearity versus applied stress (linear fits are
carried out for data points below elas�c region: 400 MPa). The numbers in the closed brackets in the legend indicate the number of grains.
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The analysis by grouping different subsets of β fibers along TD indicates a sequen�al onset of plas�city star�ng from <110>
oriented β grains with load transfer to <100> grains, see Figure 5. At higher stresses, plas�city is seen to set in for the <111> β
grains family subset and finally for the <100> β grains. On the average elas�c strain curve for β phase (black solid line in Figure 5c),
the macro-plas�city in β phase starts when all the three-grain families’ subset has a�ained plas�city (i.e. ~860 MPa).

This sequen�al onset of plas�city in the β phase predicted by our simula�on agrees well with the in-situ XRD observa�ons on the
forged Ti-10-2-3 (similar microstructure) by Raghunathan and coworkers [10].

Figure 5 (a) Evolu�on of elas�c strains with applied stress for α+β composite, with β grain family subsets. (b) Elas�c strain devia�on from linearity versus applied stress
(linear fits are carried out for data points below elas�c region: 400 MPa). (c) Magnified sec�on of the elas�c strain devia�on plot. The colors in the plot correspond to the

color-coded SST provided alongside.

IV.2 Simula�on II:

It was seen in Simula�on I that for the β phase, the <100> || TD oriented grains enter to a plas�c regime at the end. Hence,
several β <100> || TD oriented grains were selected from the EBSD map to predict the average behavior of the embedded α
nodules (see Figure 2). For clarity, only the results of red grains 1, 3 and 6 will be discussed due to the significant presence of local
orienta�on spread.

Contrary to Simula�on I, an inverse trend is seen for the onset of plas�city and load transfer in Simula�on II, see Figure 6b. The
onset of plas�city is now seen in the α phase first, with a nega�ve devia�on of elas�c strains from linearity, with load transfer to β
grains. At higher applied stresses (770-800 MPa), plas�city is a�ained in the β phase, resul�ng in a load transfer with the α phase
(Figure 6b). Further plas�city is seen in the α phase with second load transfer to β phase for red grains 1 and 6 (810-830 MPa).
However, in the case of red grain 3, the second load transfer to the β phase is not seen.

The plas�c behavior of extremal Young’s moduli oriented α nodules has also been analyzed (see Figure 6c). For the α nodules with
‘c’ axis parallel to tensile direc�on (unfavorable orienta�on -for both basal and prisma�c systems), no plas�c strain could be seen.
However, for the ones having the ‘c’ axis perpendicular to the tensile direc�on (unfavorable orienta�on of basal systems,
favorable orienta�on of prisma�c systems), plas�city is seen in the red grains 1 and 6. It should be noted that the onset of
prisma�c slip is seen only a�er plas�city has been set in the β grain.

Thus, simula�on II highlights two major results: (1) the plas�c behavior of α nodules depends on the β-orienta�on it is embedded
in and on the orienta�on of the nodule itself, (2) having a β grain with a large orienta�on spread (red grain 3) can result in
modified average plas�c behavior of α phase compared to a β grain with less orienta�on spread (red grain 1 and 6).
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Figure 6 (a) Evolu�on of elas�c (la�ce) strain with applied stress for α + β  for Red grains 1, 3 and 6. (b) Elas�c strain devia�on from linearity versus applied stress (linear
fits are carried out for data points below the elas�c region: 400 MPa). (c) Plas�c strains with applied stress in the extremal Young’s modulus orienta�on for α and β.

V. Conclusions and perspec�ves

An EVPSC model was applied to simulate the tensile behavior and the associated stress par��oning for a (α+β) polycrystalline Ti-
10-2-3 alloy with a forged microstructure (primary α nodules embedded in a β matrix). The real texture and local texture of each
phase was measured using neutron diffrac�on and EBSD acquisi�ons. The numerical results indicate that the onset of plas�city in
a phase could be influenced by the crystallographic texture of the other phase.

At the scale of the specimen: the β phase is predicted to plas�fy first with sequen�al onset of plas�city star�ng from
<110> || TD, then <111> || TD and finally <100> || TD grains. This is followed by a strong load transfer to the α phase.
At the scale of β grains (<100> || TD oriented β grains with rather random oriented α nodules): it is predicted that
plas�city is ini�ated in the α phase first with a load transfer to the β phase. The plas�c behavior of α phase was found to
depend on the β grain in which it is embedded and its orienta�on spread.

High energy X-ray diffrac�on experiments are planned by the end of this year to obtain la�ce strains evolu�on with applied stress
and to verify the sequen�al onset of plas�city and corresponding load transfer amongst phases. It is also expected to refine the
anisotropic elas�c constants for the β phase and the viscoplas�c/hardening parameters of the model from la�ce strain evolu�on
for different orienta�ons in both phases. In-situ SEM studies are also planned to verify slip system ac�vity (at least in the α phase)
to check if the ac�ve slips suggested by the EVPSC model are in good agreement with experiment.
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