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ABSTRACT

Arakawa and Schubert proposed convective quasi equilibrium as a guiding principle for the closure of

convection parameterization. However, empirical experiences from operational implementation efforts

suggest that its strict application does not work well. The purpose of the present paper is to explain mathe-

matically why this closure does not work in practice, and to suggest that problems stem from physically

unrealistic assumptions. For this purpose, the closure hypothesis is examined in its original form, and without

imposing a condition of a positiveness to the convective mass fluxes. The Jordan sounding with idealized

large-scale forcing is used for diagnosis purposes. The question is addressed from several perspectives

including the completeness of the entraining-plume spectrum, and a singular vector decomposition of the

interaction kernel matrix. The main problems with the quasi-equilibrium closure are traced to (i) the rela-

tively slow response of shallower convective modes to large-scale forcing and (ii) detrainment at convection

top producing strong cooling and moistening. A strict application of the convective quasi-equilibrium prin-

ciple leads to a singular response of shallow convection. An explicit coupling of convection with stratiform

clouds would be crucial for preventing this unrealistic behavior, recognizing that the reevaporation of

detrained cloudy air is a relatively slow process.

1. Introduction

Closure is a key issue in the convection parameteri-

zation problem (cf. Yano et al. 2013). Convective quasi

equilibrium, as originally proposed by Arakawa and

Schubert [1974; see Yano and Plant (2012a) as a review],

remains an important guiding principle for the con-

vective closure even today (e.g., Zhang 2002, 2003;

Donner and Phillips 2003; Bechtold et al. 2014), in

spite of various criticisms (e.g., Houze and Betts 1981;

Mapes 1997).

The quasi-equilibrium closure may be formally stated

for a spectral form of mass-flux convection parameteri-

zation as

KM1F5 0: (1.1)

Here, K is an interaction matrix (kernel in Arakawa and

Schubert 1974) that describes the feedback from the

mass-flux vector (spectrum) M onto the large-scale

tendency of an instability measure known as the cloud

work function; F is the spectrum of large-scale forcing

for the cloud work function, which is also defined as a

vector. The vector components correspond to convec-

tive plume types that represent a spectrum of convective

towers. The cloud work function corresponds to the rate

at which available potential energy is converted into

convective kinetic energy, as normalized by the mass

flux at the convection base (cf. Yano et al. 2005a). Here,

the equilibriumassumption states that the total tendency

vanishes. Generalizations of the quasi-equilibrium ideas

are discussed by Yano and Plant (2016).

Equation (1.1) states that the convective response

(first term) is always in balance with the large-scale

forcing (second term). This closure is, intuitively speak-

ing, physically sound, because the convective process is

much faster than the large-scale processes. However, in

spite of a series of subsequent efforts, this original form
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of the closure has never become fully operational, but

only in variant forms (e.g., Moorthi and Suarez 1992).

This study will explain why the formulation given by

Eq. (1.1) is structurally difficult to implement as a clo-

sure from a mathematical point of view.

The original implementation (Lord and Arakawa

1980; Lord 1982; Lord et al. 1982) devoted much at-

tention to maintaining positiveness of the convective

mass fluxes, because only convective updrafts were

considered. Unfortunately, in our opinion and as we

will discuss below, a rather elaborate iteration proce-

dure introduced for this purpose may have obscured

some more basic issues with a strict convective quasi-

equilibrium closure.

The present study focuses on the closure problem

exactly as given by Eq. (1.1) without any further re-

strictions. This strategy may be partially justified by

considering negative mass fluxes as detraining down-

drafts (i.e., time-reversed updrafts). Importantly, re-

gardless of whether this reinterpretation stands or not,

this simplification enables us to elucidate more clearly

and cleanly some basic problems with Arakawa and

Schubert’s (1974) original convective quasi-equilibrium

closure.

For the same reason, the original assumption of a

spectrum of purely entraining plumes is maintained in

the present study, because we believe it is important to

establish a baseline. In the literature, the problems

with the oversimplified entraining-plume hypothesis

have been extensively discussed, and various alterna-

tive formulations have been proposed, as reviewed in,

for example, de Rooy et al. (2013) and Yano (2014a).

Analysis with a more elaborate plume model would be

considered a future work.

A simple formulation for the terms in Eq. (1.1) is

provided in the next section, and some basic demon-

strations of the problems are made in section 3. The

identified problems are investigated in section 4 by

examining the completeness of the entraining-plume

spectrum as well as the mathematical structure of the

interaction (kernel) matrix.

The present paper focuses on a rather narrow ques-

tion ofmathematical difficulties with the original closure

formulation by Arakawa and Schubert (1974). Various

physical issues associated with this closure hypothesis as

well as with the mass-flux formulation itself are exten-

sively discussed in the literature. Some of these may be

found in a review of quasi equilibrium by Yano and

Plant (2012a), and more general issues associated with

the mass-flux parameterization are covered by Plant and

Yano (2015). In concluding, in section 5, the paper also

turns to the physical implications from the present

findings, also referring to background issues.

2. Formulation

a. Data

A tropical climatology based on the Jordan sounding

(Jordan 1958) is adopted for specifying vertical profiles

of temperature and moisture. The vertical resolution

used for the profile data is 50 hPa from 1000 to 200 hPa,

and with a surface value at 1015hPa being separately

given. Data are also available at the 175-, 150-, 125-,

100-, 80-, 60-, 50-, 40-, and 30-hPa levels.

We introduce idealized large-scale advective forcings

defined by

F
L
[T]52w

�
T

u

�
du

dz
, (2.1a)

F
L
[q

y
]52w

dq
y

dz
(2.1b)

for temperature and moisture, respectively. Here, T, u,

and qy are the vertical profiles for the temperature, the

potential temperature, and the moisture as provided by

the Jordan sounding. The large-scale vertical velocity w

in Eq. (2.1) is prescribed by

w(z)5
w

0
sinp

"
p(z)2p(z

T
)

p
0
2 p(z

T
)

#
for p

0
$p(z)$ p(z

T
)

0 for p(z
T
). p(z)

8>><
>>:

(2.2)

as a function of the pressure, p(z), with w05 1022m s21,

and p0 5 1015hPa the surface pressure. Three types of

large-scale forcing are considered: deep (zT 5 15km),

shallow (zT 5 5 km), and very shallow (zT 5 1.5 km).

The purpose of this idealization is to examine the con-

vective response to large-scale forcing strictly confined

to a certain vertical range. These forcing profiles are

shown in Fig. 1a. Here, as a drastic simplification, po-

tential contributions to the forcing from boundary layer

processes are neglected, despite their possible impor-

tance. Consistent with that assumption, contributions

from boundary layer processes to the interaction matrix

K will also be neglected in the analysis below.

The large-scale forcing on the cloud work function F

from Eq. (1.1) is obtained by vertically integrating a

linear combination of two large-scale forcings, as ex-

plicitly given by Eq. (B33) in Arakawa and Schubert

(1974). The integration is defined with a weighting that

is a function of the fractional entrainment rate « (see

next subsection) and the resulting integrated forcing is

presented in Fig. 1b. We remark that the forcing has a

relatively weak dependence on a microphysical param-

eter c0, which is defined by Eq. (2.5) below in section 2c.
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The vertical profile of the large-scale forcing as defined

by Eqs. (2.1a), (2.1b), and (2.2) has a well-defined ver-

tical scale but its projection onto the plume components

in Fig. 1b, presents a very broad distribution of forcing

as a function of the entrainment rate, despite the fact

that the entrainment rate determines the vertical scale

of each plume mode. Moreover, the main difference

from changing the vertical scale of large-scale forcing

is a change of the spectrum amplitude rather than a

change of the spectrum shape.

We diagnose the convective quasi-equilibrium closure

of Eq. (1.1) by closely following the mass-flux spectrum

formulation introduced byArakawa and Schubert (1974),

and for formulation details we refer to the original

paper. In the following two subsections, we describe

two major assumptions for which some additional

specifications are required: the entraining-plume

spectrum (section 2b) and the precipitation formulation

(section 2c).

b. Entraining-plume spectrum

Arakawa and Schubert’s (1974) entraining-plume

spectrum is characterized by a set of constant frac-

tional entrainment rates «i, which are defined in this

study by

«
i
5

i2 1/2

n
«
max

, (2.3)

where the vector index i spans for i5 1, . . . , nwith n5 20

plume types considered, and «max 5 1024m21 is the

maximum fractional entrainment rate considered. The

ith entraining plume has a normalized mass-flux pro-

file of

h
i
(z)5

�
exp[2«

i
(z2 z

B
)] for z

B
# z# z

Ti

0 otherwise
, (2.4)

where zB and zTi are the bottom and top levels of the

plume, respectively. The base level zB is taken to be

950 hPa (583m), approximately corresponding to the

top of the convectively well-mixed boundary layer. The

top zTi is defined by the level of neutral buoyancy, at

which all of the plume air detrains into the environment.

The top height zTi is diagnosed as a continuous function

by taking a linear interpolation of values between the

data height levels and we assume that the plume-top

detrainment happens over a vertical layer spanning be-

tween these two levels.

For a larger fractional entrainment rate «, the in-

plume air is more diluted by the environmental air, and

so becomes less buoyant. As a result, the plume top

height zTi decreases with increasing «. In essence, the

fractional entrainment rate « becomes a reverse mea-

sure of the convection depth zT. Some examples of

vertical profiles of entraining plumes for the Jordan

sounding are shown in Fig. 2. A full mass-flux profile for

the ith plume is defined byMihi(z), whereMi is the mass

flux at the plume base for the plume type and is the ith

component of the mass-flux vector M in Eq. (1.1).

c. Precipitation efficiency

A very simple cloudmicrophysics is used, in which the

precipitation rateRiwithin the ith plume at each vertical

level is assumed to be proportional to the cloud water

FIG. 2. Normalized mass-flux profiles, h 5 M(z)/M(zB), for se-

lected entraining plumes under the microphysical formulation

given by Eq. (2.5). In order from the deepest (solid) to the shal-

lowest profiles (double–dotted chain), the plots are for values of

« 5 1 3 1025, 2 3 1025, 4 3 1025, 6 3 1025, and 8 3 1025 m21.

FIG. 1. The three types of the large-scale forcing profile consid-

ered: deep (solid and chain) dashed shallow (long dashed and

double dotted–dashed), and very shallow (short dash and triple

dotted–dashed). (a) The forcings are shown as a function of height

for both the thermal (negative curves) and the moisture (positive

curves) terms. (b) The forcings are shown in terms of the genera-

tion rate of cloud work function [as found in Eq. (1.1)] across the

spectrum of fractional entrainment rates.
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vertical flux wciqci with a proportionality constant c0
called the precipitation efficiency:

R
i
5 c

0
w

ci
q
ci
.

Here, wci 5 Mihi/rsi and qci are, respectively, the in-

cloud vertical velocity and the cloud water mixing ratio

of the ith plume type, and r is the air density. The pre-

cipitation rate Ri is defined in such a manner that the

fractional area si occupied by the ith plume type does

not appear in actual calculations of the total water for a

given plume type [cf. Eq. (6.2b) of Yano 2015].

The precipitation efficiency c0 is chosen by following

a curve shown in Hack et al. (1984, their Fig. 3).

Specifically, we take

c
0
52

2Dc

p
arctan

�
«2 «

0

«
c

�
1 c

00
, (2.5)

where c00 5 (cmax 1 cmin)/2 and Dc 5 (cmax 2 cmin)/2.

Note that c0 / cmax and c0 / cmin as «/ 0 and «/ ‘,
respectively; «0 marks a transition from a weakly pre-

cipitating shallow (with large «) regime to a heavily

precipitating deep (with small «) regime. Here, the pa-

rameters are set as «0 5 5 3 1025m21, cmax 5 4.5 3
1023m21, cmin 5 5 3 1025m21, and «c 5 1026m21.

Figure 3 plots the precipitation efficiency c0 as a function

of the fractional entrainment rate «.

3. Basic analyses

a. Interaction matrix

The interaction matrix (kernel) K is defined by Eq.

(B32) and Eqs. (B35)–(B38) of Arakawa and Schubert

(1974). Its evaluation using Eq. (2.5) for the precipita-

tion efficiency is shown in Fig. 4a. An element Kij of the

interaction matrix defines the rate at which a unit of

the convection-base mass flux for the jth plume type Mj

changes the cloud work function for the ith plume type.

By referring to Eq. (144) and Fig. 11 of Arakawa and

Schubert (1974), we find that the large-scale thermody-

namic profiles are modified by convection in two major

ways: (i) detrainment at the plume top, which cools and

moistens the large-scale environment due to evapora-

tion of the detrained cloudy air, and (ii) a compensating

descent in the large-scale environment, which leads to

adiabatic heating and drying by downward transport of

drier air from aloft. These two major processes modify

the cloud work function, and the interaction matrix can

be separated into two dominant contributions:

K5K
d
1K

y
, (3.1)

where Kd and Ky represent the effects of detrainment

and environmental descent, respectively. A third part

KM as defined by Eq. (B32) of Arakawa and Schubert

(1974), is neglected because of our assumptions above

about boundary layer processes.

The evaporative cooling associated with detrainment

leads to a further destabilization of the atmosphere, and

thus Kd is positive definite (Fig. 4b). This tendency is

stronger when a plume is less strongly precipitating, and

hence for the shallower plumes with larger «0. Moreover,

the detrainment effect is felt only by the plume types

that extend higher than the detrainment level of the

plume in question (i.e., « , «0), and so Kd is triangular.

On the other hand, adiabatic heating by environmental

descent leads to a stabilization, and thus Ky is negative

definite (Fig. 4c). The descent effect is stronger for

deeper plumes with smaller «0, and affects plume types

of all depths.

b. Response due to a single plume

Once a value of Mi, as a component of the mass-flux

vector M, is specified [see also Eq. (3.2) below], the

tendencies of temperature and moisture produced by

each convective plume type, i, can be calculated, re-

spectively, from Eqs. (3.6a) and (3.6b) of Yano (2015).

Examples of the convective response from individu-

al plume types are shown in Fig. 5. Here, we rather ar-

bitrary assume Mi 5 1022 kgm22 s21. For the cases of

«5 63 1025 and 83 1025m21, the resulting plumes are

relatively shallow, with relatively weak precipitation.

This leads to strong cooling and moistening at the de-

trainment level associated with cloud evaporation. The

effects are much less pronounced for the deep-plume

example, because a high precipitation does not leave

much cloud water for detrainment at the plume top.

The values obtained for the strong cooling and moist-

ening associated with the detrained-air reevaporation

are shown in the appendix to be consistent with a simple

scale analysis.

FIG. 3. Dependence of the precipitation efficiency c0 on the frac-

tional entrainment rate « as defined by Eq. (2.5).
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The strongly peaked character of the thermodynamic

tendencies from individual plume types raises potential

issues for construction of the total convective response,

obtained by taking a linear sum of these individual

tendencies weighted by the convection-base mass-flux

values, Mi. The total response is considered next.

c. Total convective response

The convective-base mass-flux vector, M 5 (Mi), is

obtained from Eq. (1.1) by multiplying the inverted

matrixK21 on the large-scale forcing F. The obtainedM,

shown in Fig. 6a as a function of the fractional entrain-

ment rate «, is marked by relatively large contributions

from both small and large « with modest contributions

from intermediate values. This basic structure is not

dependent on the depth of the large-scale forcing.

The resulting vertical profile of the total mass flux

M(z) is given by

M(z)5�
n

i51

h
i
(z)M

i
(3.2)

and is shown in Fig. 6b, where hi(z) is the vertical profile

of the ith plume type, as defined by Eq. (2.4).

The most noticeable feature is a strong downdraft

below the 4-km level, which is the lowest height

achieved by plumes with largest fractional entrainment

rates « under the givenmean thermal profile. Above this

level, a substantial updraft reaches the 14-km level un-

der deep large-scale forcing (solid curve), consistent

with the depth of forcing in Fig. 1a. It is replaced by an

updraft that decreases linearly with height between 4

and 14km under shallow large-scale forcing (long dashed).

This response is rather unintuitive considering the fact

that shallow large-scale forcing only reaches the 5-km

level (cf. Fig. 1). Only when very shallow large-scale

forcing is considered does the convective response

above the 4-km level becomes negligible (short dashed).

Figure 7 shows the corresponding convective ten-

dency profiles for temperature (Fig. 7a) and moisture

(Fig. 7b). Clearly these do not match well with the

forcings in Fig. 1, even though the cloud work functions

for each mode are in equilibrium by construction (cf.

section 5a). The sudden increase of mass flux at the 4-km

level (Fig. 6b) is associated with unrealistically strong

heating and drying, withmagnitudes circa 60Kday21 for

temperature and2120Kday21 for moisture. The peaks

are manifestations of those seen for individual plume

FIG. 4. The interaction matrix Kij is plotted with the index i shown vertically and j shown horizontally for corresponding fractional

entrainment rates « and «0, respectively, as defined by Eq. (2.3). (a) The full matrix and the two components due to (b) detrainment and

(c) environmental descent are shown. The evaluation uses the deep large-scale forcing (solid and chain–dashed curves in Fig. 1).

FIG. 5. Profiles of the tendencies of (a) the temperature and

(b) the moisture (mixing ratio) produced by convective plumes for

given, selected entrainment rates: « 5 2 3 1025 (solid), 4 3 1025

(long dashed), 6 3 1025 (short dashed), and 8 3 1025 m21 (chain

dashed). Plotted in units of K day21 and assuming the convective

mass-flux amplitude of Mi 5 1022 kgm22 s21.

APRIL 2020 YANO AND PLANT 1375

D
ow

nloaded from
 http://journals.am

etsoc.org/jas/article-pdf/77/4/1371/4922364/jasd190165.pdf by M
eteo-France, Jun-Ichi Yano on 17 July 2020



types in Fig. 5, but with the signs reversed: entrain-

ment (i.e., negative cloud-top detrainment) at the

top of detraining-downdraft plumes causes this ten-

dency. On the other hand, tendencies with more

reasonable magnitudes are found at the other verti-

cal levels.

4. Further analyses

a. Completeness of the spectrum of plumes

The basic idea of the spectrum model is to be able to

represent every possible convective profile using a sum

of profiles from the individual plumes. Thus, we now ask

whether the ensemble of entraining plumes has such a

capacity. The question may be more formally posed as

the possibility of decomposing any given arbitrary mass-

flux profileM(z) by a plume spectrum given by the set of

functions {hi} (i 5 1, . . . , n) as

M(z)5�
n

i51

~m
i
h
i
(z) , (4.1)

where ~mi are the expansion coefficients. Unfortunately,

performing such a decomposition is not straightforward,

because the exponential entraining-plume profiles

of Eq. (2.4) do not constitute an orthogonal set.

Nevertheless, it is instructive to consider the issues

further by assessing decompositions of both hi and M

using a complete orthonormal set. For this purpose, it is

convenient to use the vertical normal modes Wi(z) for

the vertical velocity defined for the hydrostatic primitive

equation system (Kasahara and Puri 1981; Fulton and

Schubert 1985). Thus, we set

h
j
5�

n

i51

ĥ
ij
W

i
(z) , (4.2a)

M5�
n

i51

m̂
i
W

i
(z) (4.2b)

with expansion coefficients ĥij and m̂i for hj and M, re-

spectively. By substituting Eq. (4.2a) into Eq. (4.1), and

by comparing this result with Eq. (4.2b), we find

m̂
i
5�

n

j51

~m
j
ĥ
ij
, (4.3)

and so the expansion coefficients ~mj are determined

by inverting the matrix ĥij. In order for the inverse

to exist, the determinant of this matrix must be

nonzero.

To investigate the structure of thematrix, we perform a

singular vector decomposition:

ĥ
ij
5 �

n

k51

l
k
w

ik
~w
kj
, (4.4)

with eigenvalues lk and eigenvectors wik and ~wkj,

the subscript k designating the index for the ei-

genmode. These are defined by linear eigenvalue

problems:

FIG. 7. Vertical profiles of the convective tendencies for

(a) temperature and (b) moisture (the mixing ratio) for the three

large-scale forcing profiles given in Fig. 1: deep (solid), shallow (long

dashed), and very shallow (short dashed).

FIG. 6. (a) The spectrum of convective-base mass flux as a

function of the fractional entrainment rate, as obtained from in-

verting thematrixK in Eq. (1.1). Results are presented for the deep

(solid), shallow (long dashed), and very shallow (short dashed)

forcings, as shown in Fig. 1. (b) The corresponding vertical profiles

of the total mass flux.
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�
n

j51

ĥ
ij
w

jk
5 l

k
w

ik
, (4.5a)

�
n

i51

~w
ki
ĥ
ij
5 l

k
~w
kj
. (4.5b)

These two vector sets are called the right and the left

vectors, which satisfy the orthonormality

�
n

k51

~w
ik
w

kj
5 d

ij
. (4.6)

As a result, the determinant and the inverse matrix are

defined by

det(ĥ
ij
)5P

n

k51lk
, (4.7a)

ĥ21
ij 5 �

n

k51

l21
k w

ik
~w
kj
, (4.7b)

respectively. The eigenvalue spectrum {lk} characterizes

a singularity of a given matrix. If any of the eigenvalues

lk are too small, the determinant becomes very small,

and the inverse matrix becomes singular.

Figures 8a and 8b shows the plume spectrum {hj(z)}

and the plume matrix (ĥij), respectively. To ensure that

we retain sufficient vertical modes for the decomposi-

tion, and henceforth for the dimension of the matrix

(ĥij), we reset n5 40 in Eq. (2.3) only for the analysis of

the present subsection. The eigenvalues, lk, obtained by

the singular vector decomposition of Eq. (4.4) are

plotted in Fig. 9: note that we have chosen to label the

eigenvectors in order of decreasing magnitude of the

corresponding eigenvalues jlkj. The eigenvalues fall to

very small values above k $ 20, suggesting that the

entraining-plume decomposition is highly redundant,

and as a result the determinant of the matrix (ĥij)

practically vanishes.

However, the singular vector decomposition can be

used to regularize a matrix by removing all the small

eigenvalues lk with, say, k . nc (with nc , n) from the

summations in Eqs. (4.4) and (4.7b). Thus, we obtain

ĥ
ij
’ �

nc

k51

l
k
w

ik
~w
kj
, (4.8a)

ĥ21
ij ’ �

nc

k51

l21
k w

ik
~w
kj
. (4.8b)

Setting nc5 16 yields a regularized matrix (ĥij) shown in

Fig. 10a, and its transformation back to real space leads

to Fig. 10b. The reconstruction is noisier than the

FIG. 8. (a) The vertical profiles for the plume spectrum {hj(z)}, shown as a function of height (horizontal axis) and

the plume index (vertical axis). (b) The plume matrix (i.e., the spectrum of plumes decomposed by the vertical-

velocity normal modes) ĥij, shown as a function of the normal mode index i (horizontal axis) and the plume-type

index j (vertical axis). See Eq. (4.2a) for its definition.

FIG. 9. The eigenvalues lk for the plume matrix ĥij, plotted as a

function of the index k in decreasing order of their absolute value.

Both the real (solid) and imaginary (long dashed) parts are shown.
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original spectrum shown in Fig. 8a; nevertheless, the

overall structure remains surprisingly similar.

In summary, the completeness analysis demonstrates

the entraining-plume decomposition to be highly redun-

dant, so that it does not directly permit a decomposition

of any vertical mass-flux profile under the formulas (4.1)

and (4.3) due to a singularity of thematrix (ĥij). However,

the singularity can easily be removed under a singular-

vector decomposition, and the reconstructed nonsingular

plume spectrum remains fairly close to the original

entraining-plume spectrum. Thus, the redundancy of the

entraining-plume decomposition is not a practical issue in

applying the convective quasi-equilibrium closure.

b. Eigenvalues and eigenvectors of the interaction
matrix

The basic structure of the interaction matrix K can

also be elucidated by performing a singular-vector de-

composition. Here, the right and the left eigenvectorsMl

and ~Ml, respectively, are defined by solving linear ei-

genvalue problems:

KM
l
5 k

l
M

l
, (4.9a)

~M
l
K5 k

l
~M

l
, (4.9b)

with the eigenvalues kl (l 5 1, . . . , n). Recall the

orthonormality

~M
i
�M

j
5 d

ij
. (4.10)

The large-scale forcing vector F may then be repre-

sented in terms of the interaction matrix decomposi-

tion by

F5�
l

F
l
M

l
(4.11)

with the expansion coefficients Fl being defined by

F
l
5 ~M

l
� F . (4.12)

Similarly, the cloud-base mass-flux vector M may be

represented as

M5�
l

m
l
M

l
. (4.13)

Substitution of Eqs. (4.11) and (4.13) into Eq. (1.1)

shows that the expansion coefficients are related by

m
l
5F

l
/k

l
. (4.14)

The interaction-matrix eigenvalues kl are plotted

in Fig. 11 in decreasing order of their absolute

values. From Eq. (4.14), if the large-scale forcing

were to contribute with the same order to all of

the eigenmodes (cf. Fig. 1b), then the higher-order

modes (say, l $ 14) would dominate the convective

response.

Considering the eigenmodes themselves, the spectra

of the first eight right and left eigenvectorsMl and ~Ml are

shown in Figs. 12 and 13, respectively. The most striking

feature is that the right eigenvectors Ml are dominated

by the high-entrainment (i.e., high mode index) shal-

lower modes, whereas the left eigenvectors ~Ml encom-

pass relatively low-entrainment deep modes (from the

eighth to the fourteenth mode index).

These features have significant consequences in defining

the response of convection M against a given large-scale

FIG. 10. (a) The plume matrix ĥij, as in Fig. 8b but here following a regularization by retaining only the first

nc 5 16 modes in Eq. (4.4). (b) The vertical profiles for the plume spectrum {hj(z)} as in Fig. 8a, but re-

constructed after the matrix regularization as in (a). Although both spectra contain complex values, only the

real components are shown, the imaginary components being numerically negligible.
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forcing F. First, the expansion coefficients Fl for

the large-scale forcing are defined by projecting the

large-scale forcing F onto the left eigenvectors ~Ml by

Eq. (4.12). Since ~Ml reflects the deeper modes, there is a

tendency that the deeper the structure of the large-scale

forcing, the stronger the projection onto the expansion

coefficients Fl and hence onto ml, through Eq. (4.14).

However, the right eigenvectors Ml are dominated by

the shallowmodes, and thus, the convective responseM,

as defined by Eq. (4.13) is also dominated by shallow

modes. Due to these different characteristics of the left

and the right eigenvectors, we therefore find that con-

vection responds most effectively to deeper modes of

large-scale forcing, but that it manifests as a response

primarily through the shallower modes. Note that this

‘‘twisted’’ relation stems from a strong asymmetry of the

interaction matrix, as is demonstrated more explicitly

using a simple idealized example matrix in the next

subsection.

c. Analysis of an idealized, highly truncated
interaction matrix

It is also informative to take an analytical per-

spective on the singularities in strict convective

quasi-equilibrium closure by examining an idealized

interaction matrix, which captures its basic charac-

teristics. Specifically, we consider a 33 3 interaction

matrix K of the form

K5

0
B@

k 2k
d

2k
d

k
s

k 2k
d

k
s

k
s

21

1
CA . (4.15a)

The quasi-equilibrium closure of Eq. (1.1) reduces to

K

0
B@

M
3

M
2

M
1

1
CA1

0
B@

F
3

F
2

F
1

1
CA5 0: (4.15b)

Here, the order of the vector indices for M and K is

reversed from a standard convention so that the matrix

form defined by Eq. (4.15a) closely follows the matrix-

element distributions shown in Fig. 4: the given distri-

bution can directly be compared with the definition

Eq. (4.15a) by flipping the horizontal direction in the

figures. The idealizedmatrix is normalized by setting the

right-lowest element to21; k, ks, and kd are expected to

be small values, where k and ks represent destabiliza-

tion tendencies of shallow convection modes acting

on themselves and on the deeper modes, respectively,

whereas2kd represents the stabilization from the deeper

modes to shallower modes.

The solution to the matrix problem (4.15b) is

M
3
5 [(2k2 k

s
1 k

d
2 1)k

s
k
d
2 k2]21[(k2 k

s
k
d
)F

3

1 (11 k
s
)k

d
F
2
2 (k1 k

d
)k

d
F
1
] ,

(4.16a)

M
2
5 [(2k2 k

s
1k

d
2 1)k

s
k
d
2 k2]21[(k

d
2 1)k

s
F
3

1 (k2 k
s
k
d
)F

2
2 (k2k

s
)k

d
F
1
] ,

(4.16b)

FIG. 11. The eigenvalues kl for the interaction matrix K, plotted

as a function of the index l in decreasing order of their absolute

value. Both the real (solid) and imaginary (long dashed) parts are

shown. An exceptionally large magnitude for the real component

of the first eigenvalue (less than 225) is beyond the range of this

plot and is not presented. The second to the ninth eigenvalues

constitute a series of complex conjugate pairs, as well as the elev-

enth and the twelfth, and from the fifteenth to the eighteenth

eigenvalues.
FIG. 12. The first eight right eigenvectors Ml (l 5 1, . . . , 8) of

the interaction matrix, as defined by Eq. (4.9a). (a) Real and

(b) imaginary components. The first four vectors are shown by

solid, long-dashed, short-dashed, and dot–dashed curves. They are

followed by four other varying types of the curves. Note the change

of scale in the horizontal axis.
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M
1
5 [(2k2 k

s
1k

d
2 1)k

s
k
d
2 k2]21[(k2 k

s
)k

s
F
3

1 (k1 k
d
)k

s
F
2
2 (k2 1 k

s
k
d
)F

1
] .

(4.16c)

A further simplification is to set all the small param-

eters to the same value, ks 5 kd 5 k, so that the solution

in Eq. (4.16) becomes

M
3
5

1

2(k2 1)k
[(12 k)F

3
1 (11 k)F

2
2 2kF

1
] ,

(4.17a)

M
2
5
F
3
2F

2

2k
, (4.17b)

M
1
5

2F
2
1F

1

12 k
. (4.17c)

When the limit of k / 0 is taken, the above solution

reduces to

M
3
/2

F
3
1F

2

2k
,

M
2
/

F
3
2F

2

2k
,

M
1
/2F

2
1F

1
,

retaining only the leading terms with respect to k, and

assuming all forcing components Fj ( j 5 1, 2, 3) to be of

O(1). Thus, the two shallowest convective modes, M3

andM2, respectively, diverge in the limit of k/ 0. Also

note that the signs of M2 and M1 sensitively depend on

differences between F3 and F2, and that between F2 and

F1, respectively.

In this manner, the idealized matrix (4.15a) provides a

very simple demonstration for the origin of the singular

behaviors of the quasi-equilibrium closure that were

seen in previous subsections.

d. Perturbation analysis

The idealized matrix problem may be further devel-

oped by considering a perturbation expansion. Noting

that many of the matrix elements are small in K, we

can write

K5K(0) 1 dK(1) , (4.18a)

M5M(0) 1 dM(1) 1 . . . , (4.18b)

where d is a small expansion parameter, and where the

idealized matrix (4.15a) can be decomposed as

K(0) 5

0
@ 0 0 0

0 0 0

0 0 1

1
A , (4.19a)

dK(1) 5

0
B@

k 2k
d

2k
d

k
s

k 2k
d

k
s

k
s

0

1
CA . (4.19b)

To O(1), we obtain

K(0)M(0) 1F5 0,

with det[K(0)] 5 0, because of the fact that large ele-

ments are localized, and hence there is no solution

available for M(0). To avoid this problem, we need to

reformulate the expansion of Eq. (4.18b) as

M5
1

d
M(21) 1M(0) 1 . . . (4.20)

so that we obtain to O(1/d):

K(0)M(21) 5 0, (4.21)

which, with the matrix (4.19a), leads to

M
(21)
1 5 0

and leaves the other two componentsM
(21)
2 andM

(21)
3 as

undetermined. At O(1) we have

K(0)M(0) 1K(1)M(21) 1F5 0, (4.22)

which makes the problem solvable. Specifically for the

case with Eqs. (4.19a) and (4.19b), this O(1) relation

defines M
(21)
2 , M

(21)
3 , and M

(0)
1 .

FIG. 13. The first eight left eigenvectors ~Ml (l 5 1, . . . , 8) of the

interaction matrix, as defined by Eq. (4.9b). Plotted in the same

format as for the right eigenvectors in Fig. 12.
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Thus, the perturbation analysis here more explicitly

demonstrates how a strict application of the convective

quasi-equilibrium condition tends to lead to an abnor-

mally strong response of shallow convection to large-

scale forcing.

5. Physical implications

The present paper has focused on a rather narrow

question of mathematical difficulties with the original

closure formulation of Arakawa and Schubert (1974).

In concluding, we turn to the physical implications

from the present findings, also referring to background

issues.

a. Free-ride principle

The convective quasi-equilibrium closure of Eq. (1.1)

is based on stationarity of the cloud work function,

which is a vertically integrated quantity [cf. Eq. (133) of

Arakawa and Schubert 1974]. Thus, the closure is also

formulated in terms of vertically integrated quantities.

However, we might intuitively expect that a certain

quasi-equilibrium state (i.e., a balance condition) is

achieved at each vertical level, at least to a good ap-

proximation, if a large enough number of convective

modes is considered. The different modes provide dif-

ferent weighting functions and upper limits for the in-

tegrals in question.

It is observationally known that the large-scale trop-

ical atmosphere satisfies a free-ride state [Fraedrich and

McBride 1989; later Sobel et al. (2001) term it alterna-

tively as ‘‘weak temperature gradient’’], with a close

balance between the large-scale tendency and the

convective response in both the heat and moisture

equations:

w
du

dz
’ Q

1
1Q

R
, (5.1a)

w
dq

y

dz
’ 2

C
p

L
Q

2
. (5.1b)

Here, Q1 and Q2 are tendencies due to nonadvective

processes, apart from radiative heating, QR, in the con-

text of large-scale modeling (i.e., convective-scale ad-

vections are not explicitly considered). See Fig. 1 of

Yano (2001; also reproduced as Fig. 4.2 in chapter 4 of

Plant and Yano 2015) for a graphical demonstration.

Although the literature tends to refer only to the bal-

ance (5.1a), here, it is seen that the second balance

Eq. (5.1b) is equally valid. In the large-scale tropical

atmosphere, Q1 and Q2 are mostly due to convection

(i.e., Qc). On the other hand, the vertical advection and

the radiation terms may be combined to define the total

large-scale forcing FL. Thus, the free-ride state may be

equivalently expressed in the form

Q
c
1F

L
’ 0 (5.2)

for both variables. Equation (5.2) may be considered

as a statement of convective quasi equilibrium, but de-

fined separately on each vertical level, rather than as an

integral constraint.

Hence, we are led to ask whether, given enough plume

modes in Eq. (1.1), we obtain a free-ride state corre-

sponding to Eq. (5.2): Will this be actually accomplished

in practice by the quasi-equilibrium closure?

b. Completeness of the plume spectrum

Equivalence between Eqs. (1.1) and (5.2) could be

established if the mass-flux spectrum were able to rep-

resent any possible convective response that may be

required to satisfy the free-ride state. Thus, a first con-

sideration is whether the mass-flux spectrum is flexible

enough to represent any possible vertical profile. This

has been examined using normal-mode and singular-

vector decompositions in section 4a. The entraining-

plume decomposition is shown to be highly redundant,

as expected from the individual plume profiles (cf.

Fig. 2), and so a decomposition of the entraining plumes

into normal modes does not provide well-defined ex-

pansion coefficients. However, this ill posedness of

the decomposition can be resolved by removing all the

singular vectors with almost-vanishing eigenvalues from

the expansion. A reconstructed plume spectrum still

remains fairly close to the original entraining-plume

spectrum, but practically removing the redundancy.

Here, the mathematical question of the completeness

of a plume spectrum addresses its capacity and flexibility

to represent any physically feasible vertical structure of

convection. As we have seen, the conclusion obtained is

rather mixed, and further investigations from a more

practical perspective could be warranted.

c. Convective response under the spectrum mass flux

The next consideration is how an individual plume

modemodifies the large-scale thermodynamic state (i.e.,

convective response: section 3b). The effect of an indi-

vidual entraining plume is composed of two main parts:

(i) detrainment that cools and moistens the large scale

by reevaporation of the detrained cloudy air and (ii)

compensating environmental descent, in response to the

convective updraft, that induces adiabatic heating and

drying. A major difference between these two effects is

that the detrainment effect is found only at a single level

at the plume top, whereas the environmental descent is

felt at all of the vertical levels spanned by the plume.
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As a result, the detrainment effect focused on a single

vertical level tends to be abnormally strong, with cooling

and moistening rates far exceeding 10Kday21 and so

strongly dominant at that level over the environmental-

descent effect.

The consequence is that a straightforward inversion

of the interaction matrix in the closure condition of

Eq. (1.1) produces a full convective response against a

given large-scale forcing that becomes very singular

(section 3c). For idealized large-scale forcing profiles

with a half-sine-shaped large-scale uplifting, we find that

the convective response is dominated by singularly

strong warming and cooling induced at the top of

the detraining-plume downdrafts (i.e., entraining-plume

updraft modes with a negative amplitude). Due to the

tendency of entraining-plume modes to produce a sin-

gular response, the convective quasi-equilibrium closure

condition does not achieve a thermodynamic state close

to the free-ride balances. Thus, the mathematical anal-

ysis herein points out in an explicit manner how and

why a physically unrealistic feature of the entraining-

plume model causes a problem.

A very simple way of removing these singular

cooling–moistening effects would be to neglect all of

the detrainment effects from the interaction matrix K

by setting Kd 5 0 in Eq. (3.1) so that the interaction

matrix K is replaced by Ky. However, totally removing

this effect from the convective equilibrium problem

would not be very realistic for reasons discussed in

section 4e.

d. Interaction matrix analysis

Another important aspect of the convective response

under the convective quasi-equilibrium closure is the

dominance of shallow plumes regardless of the vertical

extent of large-scale forcing. This is rather unintuitive.

However, one must remember that as a matter of prin-

ciple, large-scale forcing is projected to all the plume

modes by design, as explicitly shown by Fig. 1a. The

resulting spectrum of the convective response is rather

nontrivial, mathematically taking the form of a matrix

inversion. This character of the problem means that we

need to pay attention to the mathematical behavior of

the inversion calculation in order to better understand

the structural issues involved.

First, a singular-vector decomposition is performed on

the interactionmatrix in section 4b. The left-eigenvector

spectra are dominated by middle-height plume modes,

with maximum heights of 8–10km; thus, relatively deep

components of large-scale forcing lead to a strong re-

sponse by convection. On the other hand, the right-

eigenvector spectra are dominated by shallow plume

modes, and thus, relatively deep large-scale forcing

modes are strongly projected onto shallow convec-

tive modes.

This rather strong asymmetry between the left and the

right eigenvectors stems from a strong asymmetry in

the interaction matrix itself. In turn, the asymmetry of

the interaction matrix stems from the nature of the de-

trainment effect of a plume mode onto other plume

modes: only the deeper plume modes are affected by

detrainment from a given plume mode, and this gives

rise to the triangular structure apparent within the in-

teraction matrix (cf. Fig. 4b).

With increasing precipitating efficiency, the detrain-

ment effect becomes weaker as less cloudy air is avail-

able to detrain at plume top. In a fully precipitating limit

for all of the plume modes, then the asymmetry of the

interaction matrix would disappear, and the singular

response to the large-scale forcing would be removed.

However, additional calculations (not shown) indicate

that even a weak asymmetry of the interaction matrix

can lead to a singular response. A relatively strong

sensitivity of the convective response to the transition

scale «0 in precipitation efficiency [Eq. (2.5)] has also

been found because this parameter controls the relative

contribution of detrainment effects to the interaction

matrix.

An idealized 33 3 interaction matrix (sections 4c and

4d) is able to reproduce the character of these results. A

singular perturbation expansion is required for de-

scribing the convective quasi-equilibrium closure due

the fact that the matrix elements related to shallow

convection tend to be substantially smaller than those

for the interactions between deep convection. As a re-

sult, shallow convection tends to respond to large-scale

forcing in a singular manner.

e. Further physical implications

An important feature throughout the present analysis

is the strong cooling and moistening induced by reeva-

poration of the detrained cloudy air. When this contri-

bution is suppressed, the convective response under

the quasi-equilibrium closure becomes much more rea-

sonable. It is worth noting that some alternative for-

mulations of mixing, beyond the simple entrainment

formulation of pure Arakawa and Schubert (1974), may

help to alleviate the problem (de Rooy et al. 2013; Yano

2015). Another legitimate way of suppressing this effect

is to couple the convection parameterization with a

stratiform cloud representation, and to transfer the de-

trained cloudy convective air to form part of a stratiform

cloud rather than immediately reevaporating it into

the environment. The importance of this procedure

would probably be needless to emphasize, because

such a coupling of convection with stratiform clouds is
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accomplished in most of the operational global models

already. However, its significance, to the extent revealed

here, appears to be not widely appreciated.

At the same time, completely suppressing the evap-

orative cooling of the detrained cloudy air would likely

not be wise. Yano and Plant (2012b) suggest that the

resulting destabilization tendency of shallow convection

can be a key mechanism driving transformations from

shallow to deep convection. Two solutions may be

considered for this remedy. The first is to retain the

tendency explicitly for shallow convection, rather

than imposing a strict equilibrium constraint. In this

case, a singular response of shallow convection to

large-scale forcing associated with evaporative cool-

ing must be tamed in a different manner. The second

is to transfer the role of this destabilization tendency

to the stratiform cloud scheme: the mechanism may

be represented by the cloud-top entrainment process

(cf. Deardorff 1980; Randall 1980) under this re-

formulation, which is also expected to lead to an

equivalent destabilization.

Another important implication from the present study

is a much slower response time scale for the shallower

convective modes than for the deep convection, as in-

dicated by the relatively small elements in the interac-

tion matrix. This implication can be seen directly from

the prognostic equation for the cloud work function

spectrum A from which the quasi-equilibrium closure

(1.1) is derived:

›A

›t
5KM1F . (5.3)

The quasi-equilibrium closure has been justified based

on an argument that an overall time scale for the re-

sponse of convection to large-scale forcing is so short

that we can drop the time tendency of the cloud work

function on the left-hand side, which is expected to

evolve by following a slow large-scale time scale.

However, more precisely, the response time scale is

short only for deep convection, but not for shallow

convection. As a result, Eq. (5.3) may be approximated

by Eq. (1.1) for the deep convection part only. In other

words, the full convective ensemble does not immedi-

ately respond to any slow large-scale forcing, as origi-

nally envisioned by Arakawa and Schubert (1974).

Rather, a finite time scale for the convective response to

large-scale forcing should explicitly be taken into ac-

count by retaining the temporal tendency of the cloud

work function on the left-hand side of Eq. (5.3), so that

the closure becomes fully prognostic. Suitable formula-

tions are already in place (e.g., Pan and Randall 1998;

Yano and Plant 2012c). Here, we point out a solid reason

for moving toward this direction.

The issues appear to be further involved, because

observational analyses by Zhang (2002, 2003), Donner

and Phillips (2003) suggest that the boundary layer

processes controlling the evolution of the convective

available potential energy (CAPE), and thus also likely

of the cloud work functions, are of a much shorter time

scale than those found in the free atmosphere. Thus,

boundary layer processes, neglected in the analysis herein,

may further contribute to break down a strict application

of convective quasi-equilibrium closure. Those implica-

tions warrant further investigations.

The present study further suggests needs for recon-

sidering the mass-flux convection parameterization

formulation from more general perspectives. Such in-

vestigations are already under way (e.g., Yano et al.

2005b; Yano 2014b, 2016). These developments should

more seriously be considered in operational contexts.

APPENDIX

Scale Analysis

The purpose of this appendix is to estimate the order

of magnitude of cooling and moistening associated with

reevaporation of the detrained cloudy air.

We begin with the simple point that latent heating due

to the condensation of a unit of water vapor, q5 1gkg21,

leads to an increase of temperature by

qL/C
p
5 2:5K

using the latent heating, L 5 2.5 3 106 J kg21, and

the specific heat capacity, Cp 5 103 J kg21K21 for air

at constant pressure. A typical mass-flux value under

convective quasi equilibrium isM; 1022 kgm22 s21, or

M/r ; w0 5 1022m s21 in units of vertical velocity. At

the convective cloud top, all of the mass flux detrains

under the entraining-plume hypothesis. The associated

heat flux is thus

(M/r)(q
c
L/C

p
); 2:53 1022 3 q

c
Kms21

; 2:53 103 3 q
c
Kmday21 , (A.1)

where the detrained cloud water mixing ratio qc is ex-

pressed in units of g kg21. If the detrainment occurs

over a layer of, say, 1 km in depth, it will amount to a

cooling rate of 2.5Kday21 for qc 5 1 g kg21.

The last piece of estimate is the amount of cloud wa-

ter, qc, expected at the convective cloud top at the height

of, say,H; 10km. To obtain this, we note that within a

convective updraft, condensative heating is well bal-

anced by adiabatic cooling [a local realization of free-

ride state: cf. Eq. (5.1)]. Thus,
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L

C
p

dq
y*

dz
1

du

dz
’ 0:

This relation leads to an estimate for the rate of de-

crease of saturated water vapor with height,

dq*
dz

;2
C

p

L

du

dz
;21026 m21 .

Thus, neglecting fall out due to precipitation, the ac-

cumulation of condensed water in lifting through a

height H ; 10 km is estimated as

q*52H
dq

V
*

dz
; 1026 m21 3 104 m

; 1022 kg kg21 ; 10 g kg21 . (A.2)

Substitution of Eq. (A.2) into Eq. (A.1) leads to an es-

timate of the cooling rate of 25Kday21 for a 1-km-deep

detrainment layer.
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