Polymer‐Derived Ultra‐High Temperature Ceramics (UHTCs) and Related Materials - CNRS - Centre national de la recherche scientifique Accéder directement au contenu
Article Dans Une Revue Advanced Engineering Materials Année : 2019

Polymer‐Derived Ultra‐High Temperature Ceramics (UHTCs) and Related Materials

Résumé

Ultra-high temperature ceramics (UHTCs) represent an emerging class of materials capable of providing mechanical stability and heat dissipation upon operation in extreme environments, e.g., extreme heat fluxes, chemically reactive plasma conditions. In the last few decades, remarkable research efforts and progress were done concerning the physical properties of UHTCs as well as their processing. Moreover, there are vivid research activities related to developing synthetic access pathways to UHTCs and related materials with high purity, tunable composition, nano-scaled morphology, or improved sinterability. Among them, synthesis methods considering preceramic polymers as suitable precursors to UHTCs have received increased attention in the last few years. As these synthesis techniques allow the processing of UHTCs from the liquid phase, they are highly interesting, e.g., for the fabrication of ultra-high temperature ceramic composites (UHT CMCs), additive manufacturing of UHTCs, etc. In the present review, UHTCs are in particular discussed within the context of their physical properties as well as energetics. Moreover, various synthesis methods using preceramic polymers to access UHTCs and related materials (i.e., (nano)composites thereof with silica former phases) are summarized and critically evaluated.
Fichier principal
Vignette du fichier
AEM_versionHAL.pdf (1.78 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02396855 , version 1 (12-12-2020)

Identifiants

Citer

Emanuel Ionescu, Samuel Bernard, Romain Lucas, Peter Kroll, Sergey V. Ushakov, et al.. Polymer‐Derived Ultra‐High Temperature Ceramics (UHTCs) and Related Materials. Advanced Engineering Materials, 2019, 21 (8), pp.1900269. ⟨10.1002/adem.201900269⟩. ⟨hal-02396855⟩
88 Consultations
268 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More