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Abstract13

Classic coevolutionary theory predicts that if beneficial microbial symbionts improve host fitness, they14

should be faithfully transmitted to offspring. More recently, the hologenome theory of evolution predicts15

resemblance between parent and offspring microbiomes, and high partner fidelity between host species16

and their vertically transmitted microbes. Here, we test these ideas for the first time in multiple coexisting17

host species with highly diverse microbiota, leveraging known parent-offspring pairs sampled from eight18

species of wild marine sponges (Porifera). Contrary to the prediction that vertically transmitted microbes19

represent a completely random subset of the microbes found in the adults, we find indirect evidence that20

the processes governing vertical transmission are both neutral and selective. Specifically, over 40% of21

symbiotic microbes which are likely selected or maintained by individual adults occur more frequently22

than expected in larval offspring. In spite of this, we find that the signature of vertical transmission is23

detectable but incomplete; that is, larval offspring share only a fraction of their microbes with their parents24

that are not shared with adults of the same species. Furthermore, while we find that siblings consistently25

receive a set of identical microbes from their parents, this set of microbes is very small, and most of them26

are also detected in the environment. Finally, we did not find any evidence for host species fidelity; that27
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is, conspecific adults and larvae did not share more microbes than hosts from different species. Our study28

demonstrates that common predictions of vertical transmission that stem from species-poor systems are29

not necessarily true when scaling up to diverse and complex microbiomes.30

Introduction31

All animals are colonized by microbes. These microbes live in communities, called microbiomes, that can exhibit32

astonishing diversity and complexity and have profound effects on host health and fitness [1, 2, 3]. However, despite33

their importance, we still do not understand how most organisms acquire their microbiomes: are they largely inherited34

from parents via vertical transmission, or acquired horizontally from the environment? In the last five years, the35

literature has provided widely divergent answers to this question [4, 5, 6, 7]. A recent meta-analysis of 528 host-36

microbe symbioses found that 42.8% of symbioses were strictly vertical, 21.2% were strictly horizontal, and 36%37

exhibited a combination of transmission modes [7]. Understanding how animals acquire their microbiomes, especially38

microbial symbionts, is necessary to learn how environments shape host phenotypes via host-microbe interactions and39

whether hosts and their microbiomes represent an important unit of natural selection (i.e., the hologenome theory of40

evolution) [8, 9, 10, 11, 12].41

Classic coevolutionary theory predicts that: (i) if microbial symbionts are beneficial, they should be vertically42

transmitted (as the host is assured gaining a compatible partner), and (ii) the more a host depends on its microbial part-43

ners, the higher the expected incidence of vertical transmission [13, 14, 15, 16, 17, 18, 19, 20]. In support, many obli-44

gate insect-microbe interactions, such as those described between Buchnera-aphid [21], Wolbachia-nematode [22], and45

Ishikawaella-stinkbug [23] are transmitted from parents to offspring. Yet, despite this theory, evidence for symbioses46

involving horizontal transmission is common–at least in hosts with relatively simple microbiota [6, 19, 24, 25, 26, 27].47

Two examples include the faculative symbiosis between the luminescent Vibrio fischeri and the bobtail squid Eu-48

prymna scolopes [28], and the obligate symbiosis between chemolithoautotrophic bacteria and the hydrothermal vent49

tubeworm Riftia pachyptila [29]. Furthermore, Mushegian and colleagues recently demonstrated that, in water fleas50

(Daphnia magna), microbes that are essential to host functioning are acquired from the environment and not mater-51

nally derived [30]. However, we currently do not understand if the patterns and processes observed in these relatively52

species-poor systems can be extrapolated to highly diverse microbiomes. With increasing community complexity,53

do parents transmit a representative sample of the whole microbial community or select only a subset of the most54

beneficial microbes? How does vertical transmission interact with other community assembly processes shown to be55
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important in complex communities, including ecological drift, priority effects, and environmental selection?56

The present study is, to our knowledge, the first in-depth analysis of the strength and consistency of vertical57

transmission in multiple coexisting host species from an animal phylum with diverse and complex microbiomes. By58

characterizing signatures of vertical transmission in multiple, related host species, we also test, for the first time, part-59

ner fidelity between vertically transmitted microbes and their hosts. Partner fidelity is predicted by the hologenome60

theory of evolution because if vertically transmitted microbes occur in multiple host species, this weakens the coher-61

ence of the unit of selection [11]. Here we test these ideas in marine sponges, an evolutionary ancient phylum with62

a fossil record dating back over 600 million years [31]. Indeed, Porifera are the oldest metazoan group with known63

microbial symbioses [32]. Marine sponges are filter feeders with a simple body plan consisting of canals embedded64

in an extracellular matrix called the mesohyl. Within the mesohyl, sponges maintain diverse microbial communities65

that contribute to host functioning by e.g., cycling nitrogen, fixing carbon dioxide, producing secondary metabolites,66

and acquiring and converting dissolved organic matter–tasks that, in many cases, the sponge cannot perform without67

microbial symbionts [32, 33, 34]. Sponge larvae are lecithotrophic which means that they do not receive any external68

energy sources until they start filter feeding after metamorphosis and settlement [35]. However, some larvae travel69

long distances, much farther than what is expected from the energy content in their yolk. Evidence suggest that this is70

because some larvae have the capacity to phagocytose on vertically transmitted symbionts [36, 37].71

While the prevailing transmission model in marine sponges is a mixture of horizontal and vertical transmission72

[38], at least three lines of evidence suggest that vertical transmission plays an important role in the assembly of73

sponge microbiome. First, sponges appear to have coevolved with a unique set of microbial symbionts that form so-74

called sponge-enriched 16S rRNA gene sequence clusters [39, 40]. These sponge-enriched clusters span 14 known75

bacterial and archaeal phyla, many of which are highly specific to the phylum Porifera (e.g., phyla such as Poribacteria,76

Chloroflexi and PAUC34f) [39, 40]. Unlike any other group of animal associated microbial symbionts described to77

date, each sponge-enriched cluster is monophyletic, indicating that microbes assigning to these clusters have diverged78

from their free-living relatives [39, 40]. Second, electron micrographs have revealed that sponge oocytes, embryos,79

and larvae contain free-swimming or vacuole-enclosed endosymbotic bacteria that are morphologically identical to80

those found in the mesohyl of the parent [41, 42, 43, 44]. The mechanisms for microbial selection and transference to81

the oocytes can vary between sponge species [44], as does the density and diversity of microbes that are incorporated82

into the oocytes [36, 45, 46]. Third, multiple studies, largely based on non-high-throughput sequencing methods,83

have found similar microbial phylotypes in adults and larvae from the same species [47, 48, 38, 49, 50]. One study84

also found that three pre-selected bacterial taxa that were present in the embryos of the tropical sponge Corticium85
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sp. persisted throughout development and were consistently detected in adult samples over a period of three years86

[51]. These lines of evidence altogether strongly suggest that vertical transmission may be a frequent phenomenon87

that ensures the assembly of a functioning and beneficial microbiota in many species of marine sponges.88

Here we test four hypotheses of complex microbiome acquisition by hosts. We use high-throughput sequencing89

to test for evidence of vertical and horizontal transmission by comparing microbial sharing in known parent-offspring90

pairs from wild sponges that are generalizable to any host-microbe system. Our approach helps to shed light on the91

prevalence and role of both vertical and horizontal transmission in an animal phylum with diverse microbiota that92

has important ramifications for understanding coevolution between hosts and their associated microbiota in general.93

Firstly, we test whether the processes underlying vertical and horizontal transmission are neutral or selective. If the94

processes underlying vertical transmission are neutral, microbes that are abundant inside the adults are expected to95

be widespread among their offspring. Alternatively, if the processes underlying vertical transmission are selective,96

then microbes found inside larval offspring should occur more frequently than expected, given their abundances in97

adults. Secondly, we test the hypothesis that sponges exhibit comprehensive vertical transmission, such that microbiota98

in larval offspring are either a perfect replica or a substantial subset of the microbes found in their adult parents.99

Alternatively, vertical transmission might be incomplete or undetectable; if incomplete, larval offspring will share only100

a fraction of their microbes with their parents, but this proportion will be higher tan the proportion of microbes they101

share with other adults of the same species. If vertical transmission is undetectable, then larval offspring will be just as102

likely to share microbes with other conspecific adults as they are with their parents. Thirdly, we test the consistency of103

vertical transmission between parents and offspring. We hypothesize that if a specific set of symbionts has coevolved104

with their sponge host, and if it is adaptive for parents to transmit this set of symbionts, then all offspring from the105

same parent should receive an identical or highly consistent set of beneficial symbionts. Alternatively, if consistent106

vertical transmission is not important to parental fitness, or if parents benefit from transmitting different symbionts107

to each offspring (e.g., if larvae settle in variable environments where only a subset of symbionts is beneficial), then108

larvae might receive a variable or even random subset of microbes from their parents that is inconsistent between109

siblings. Finally, we test whether vertically transmitted taxa exhibit partner fidelity. If symbionts have coevolved110

with a particular sponge species, then conspecific sponge adults and larvae should share more vertically transmitted111

microbes with each other than with heterospecific hosts.112
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Results and Discussion113

Taxonomic diversity is distributed along a sponge-specific axis114

To establish parent-offspring relationships for wild sponges, we placed mesh traps around adult sponges living close115

to the Islas Medas marine reserve in the northwestern Mediterranean Sea. We sampled 24 adults from a total of eight116

sponge species spanning five orders (Figure S1; Table ??) and collected 63 larval offspring from 21 of these adults117

(1 to 5 larvae sampled per adult; Table ??). To control for environmental microbes as a potential source pool, we118

simultaneously collected seawater samples from seven locations within the area where the adult sponges were found119

(seawater samples were never taken in direct proximity to any sponge specimen).120

After quality control, we obtained 11,375,431 16S rRNA gene amplicon reads from these 94 samples (mean=121,015121

reads per sample; min=1116, max=668,100 reads), resulting in 12,894 microbial ASVs (Amplicon Sequence Variants).122

Of these, 9,030 ASVs were present in the 24 sponge adults, 5,786 were found in their 63 larval offspring, and 9,802123

ASVs occurred in the seven seawater samples. The 12,894 ASVs were classified to over 30 bacterial phyla and can-124

didate phyla, five of which were only detected in the surrounding seawater. One class of Proteobacteria was unique125

to sponge adults, and two phyla, Deferribacteres and Fibrobacteres, were especially enriched in larval offspring, but126

present in low abundances in the other two environments (Figure 1 A). While several phyla (classes for Proteobacteria)127

were shared between all three environments (circles close to the center in Figure 1 A), likely representing horizontally128

acquired ASVs, a large fraction of the observed taxonomic diversity was only shared between sponge adults and lar-129

vae, distributed along a sponge-specific axis (left-hand side of the ternary plot in Figure 1 A). These included many130

common sponge-associated phyla, such as Poribacteria, Chloroflexi, and PAUC34f, but also more arcane phyla like131

Tectomicrobia and SBR1093 (Figure 1 A). Many of the sponge-associated phyla include microbes with known symbi-132

otic features and functional capabilities. For example, members of Poribacteria and Chloroflexi harbor eukaryote-like133

protein domains which are suspected to be involved in preventing phagocytosis by the sponge host [52, 53]. Several134

genomic features in Chloroflexi are related to energy and carbon converting pathways, including amino and fatty acid135

metabolism and respiration, that directly benefit the sponge host [53]. Microbes from PAUC34f have the capacity to136

produce, transport and store polyphosphate granules, likely representing a phosphate reservoir for the sponge host in137

periods of deprivation [54]. This type of evidence strongly suggests that microbes from these phyla indeed represent138

beneficial symbionts for sponge hosts.139

The ASVs we found also assigned to 105 different sponge-enriched clusters from 13 different bacterial phyla,140

of which Proteobacteria, Chloroflexi and Poribacteria represented the three most common (PAUC34f came in 5th141
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Figure 1: Ternary plots indicating the fraction of microbial ASVs classifying to (A) phyla, and assigning to (B) sponge-
enriched clusters, present in three environments: seawater (bottom right corner); sponge adults (top corner); and larval
offspring (bottom left corner). Figure A shows the distribution of all microbial ASVs at the phylum level (class level
for Proteobacteria). Each circle represents a different phylum, and the size of the circle corresponds to the number
of reads all ASVs classifying to that particular phylum amounts to. The color legend for (A) is shown in Figure 4.
The phyla that lie along the sponge specific axis are listed in the grey table to the left of plot A. Figure B shows the
diversity of all ASVs assigning to sponge-enriched clusters. Each circle (and shade of green) represents a different
sponge-enriched cluster, and the size of the circle corresponds to the number of reads assigning to that particular
cluster. ASVs that classify to phyla and sponge-enriched clusters that are unique to any of the three environments
occur in their respective corners (100%); ASVs that classify to phyla and sponge-enriched clusters that are shared
between any two environments occur along their focal axis. ASVs that classify to phyla and sponge-enriched clusters
present in all three environments occur in the center of the ternary plots.

place) (Figure 1 B). These sponge-enriched clusters accounted for 9.6% of the total ASV richness and 25.5% of142

the total sequence count across samples. 94 sponge-enriched clusters were found in seawater, however, these only143

accounted for about 5% of ASV richness and 0.23% of sequences from seawater. Out of these 94 sponge-enriched144

clusters, only 4 were not detected in the sponge hosts, supporting the idea that a rare biosphere functions as a seed145

bank for colonization of sponge hosts [55, 56]. While very few sponge-enriched clusters were present in all three146

environments (circles close to the center in Figure 1 B), 62 were distributed along the sponge-specific axis (with a147
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relative abundance of <0.01% in the seawater). Sponge larvae do not filter feed prior to settlement and metamorphosis148

[35]. Concurrently, just one phyla and two sponge-enriched clusters, were shared between larvae and seawater only149

(bottom axis of Figure 1 B), showing that, at least at these higher taxonomic levels, there is a signature of microbial150

dispersal and subsequent enrichment between adults and larvae.151

The processes underlying symbiont acquisition are both neutral and selective152

To test whether the processes underlying horizontal and vertical transmission are neutral or selective, we fitted the153

neutral model developed by [57]. This model predicts the relationship between the occurrence frequency of microbes154

in individual hosts (here either adults or larvae), and their abundances in a larger metacommunity consisting of mi-155

crobes found in either (i) adults, including those that are shared with larvae and seawater (adults ∩ {larvae, seawater};156

Figure 2 A), or (ii) larvae, including those shared with adults and seawater (larvae ∩ {adults, seawater}; Figure 2157

B). Given neutral assembly processes, the model predicts that microbes with high abundances in the metacommunity158

should be frequently found in individual hosts. Microbes that fall above the neutral prediction occur more frequently159

than expected, indicating that they are selectively acquired and/or maintained by the sponge host, whereas microbes160

that fall below the neutral prediction occur less frequently than expected, and may therefore either be selected against161

or dispersal limited [58].162

In support of the hypothesis that neutral processes play an important role in vertical transmission in marine sponges,163

we found that the neutral model was a better fit to larval than the adult microbiota (R2 = 0.27 in adults vs 0.66 in larvae;164

Figure 2 C and Figure 2 D). This pattern suggests that the importance of non-neutral processes increase as the sponge165

host matures, including selective acquisition of symbionts, active curation of the microbiota, and microbe-microbe166

interactions within the host. In sponges, microbes are actively transmitted and incorporated into the oocytes [44],167

but these results suggest that the mechanisms underlying this process can be either neutral and/or selective. Indeed,168

recent evidence from electron micrographs suggests that this is in fact the case; if microbes are collected by amoeboid169

nurse cells and subsequently engulfed by the oocytes, the process is selective. However, in the absence of nurse cells,170

microbes are incorporated into the oocytes solely based on their abundance (i.e., neutral processes; Riesgo, personal171

communication).172

If the processes underlying vertical transmission are neutral, then microbes that are abundant across individual173

adults should be widespread amongst their larval offspring. To test this prediction, we examined whether microbes174

that fell above, within and below the neutral prediction across individual adults were also found within the same175

partition across individual larvae (transmission of microbes goes from parent to offspring, not vice versa). We found176
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Figure 2: Panels A and B illustrate conceptual diagrams of the constructed metacommunities for (A) adults and (B)
larvae. In the Venn diagrams, the microbial community associated to adults, larvae and seawater are depicted by circles
colored in peach, yellow, and turquoise, respectively. The focal metacommunity is circled by a dashed black line, and
the local host communities are represented as four circles below each Venn diagram, representing either individual
adults (peach) or larvae (yellow). The bottom panel shows the fit of the neutral model for adults (C) and larvae (D).
ASVs that fit the neutral model are colored gray; ASVs that occur more frequently than predicted by the model are
colored green; and ASVs that occur less frequently than predicted are colored purple. Dashed black lines represent the
95% confidence interval around the model prediction (solid black line). The R2 for the model fit is shown in the upper
left-hand corner of each plot. The percentage of microbes that fall above, within, and below the neutral prediction for
adults and larvae are 23.7%, 73.4%, 3%, and 20.4%, 78.8%, 0.8%, respectively. This indicates that both neutral and
non-neutral processes governs microbial acquisition in marine sponges.

evidence that vertical transmission is govern by both neutral and non-neutral processes. Owing to their filter feeding177

activities, adults harbor a large number of transient visitors, including food microbes. Congruently, we found that178

73.4% of the adult microbiota consisted of neutral ASVs (i.e., gray dots in Figure 2 C). However, larvae only shared179

41.7% of these ASVs; 10.7% and 88.5% fell above and within the neutral prediction. While this indicates that larvae180
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receives less of these neutral ASVs, it also suggests that microbes which are neutral in adults also tend to be neutral181

across individual larvae. Furthermore, of the 23.7% ASVs that fell above the neutral prediction in adults (i.e., green182

dots in Figure 2 C), 79% were present in larvae; 42.6% and 56.5% fell above and within the neutral prediction. While183

this indicates that symbionts which are selectively acquired and/or maintained by individual adults also are frequent184

across individual larvae, it also suggests that almost 43% are transmitted and incorporated into the oocytes by selective185

processes. The 10.7% that fell above the neutral prediction in larvae may represent symbionts that were haphazardly186

filtered by a few individual adults, and subsequently incorporated into the oocytes. Finally, of the 3% ASVs that fell187

below the neutral prediction in adults (i.e., purple dots Figure 2 C), 86.5% were present in larvae; 54.1% and 43.3%188

fell above and within the neutral prediction, suggesting that most of microbes that fall below the neutral prediction in189

adults represent dispersal limited symbionts.190

From Figure S2 A, an interesting pattern emerged: a “peak” consisting of microbes above the neutral prediction,191

which largely disappeared when microbes shared with the seawater were removed (Figure S2 B). Compared to adults,192

larvae do not filter feed prior to settlement and metamorphosis [35]. This, therefore, suggests that the “peak” consists193

of (i) a mixture of symbionts and other microbes that the adults acquire from the seawater (which are subsequently194

incorporated into the oocytes), and/or (ii) environmental microbes that populate the outer surface of the free-swimming195

larvae prior to settlement. While we can not exclude the latter, it is less likely for four reasons: (1) we rinsed sponge196

larvae with sterilized filtered seawater prior to DNA extraction; (2) evidence from electron micrographs suggest that197

microbes are not frequently present on the surface of sponge larvae [36, 59]; (3) most of the ASVs forming the “peak”198

are also present above the neutral prediction in adults, indicating that they are selectively acquired and/or maintained199

across individual adults (Figure S3); and (4) several of these ASVs assigned to sponge-enriched clusters (Figure S4).200

An interesting consequence of the above results is 1st and 2nd generation of vertically transmitted symbionts;201

that is, microbes which are acquired each generation by the adult and subsequently incorporated into the oocytes202

(1st generation), and vertically transmitted symbionts which originate from the adult’s parent (i.e., present in the203

larva from which the adult developed from; 2nd generation). For example, postulate that both symbiont A and B204

are present in an adult host, and transmitted to its offspring. While symbiont A were acquired from the seawater,205

symbiont B were vertically transmitted from the adult’s parent. Then, symbiont A and B can be said to represent a206

1st and 2nd generation of vertically transmitted symbionts, respectively. However, to fully verify the existence of 1st
207

and 2nd generation vertical transmission, it will be necessary to trace microbial transmission at the microbial strain208

level through multiple generations of sponge hosts. A strain level analysis rely on identity by common descent and209

require more extensive genetic data, generated by either shotgun metagenomic sequencing or whole microbial genome210
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sequencing from cultured microbes [60, 61].211
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Figure 3: The processes underlying vertical transmission is both neutral and selective. Both the top and bottom panel
corresponds to ASVs shared between parents and their offspring, but not detected in seawater. In the top panel (A-B),
orange dots correspond to ASVs that are above the neutral prediction in individual adults; 48.4% of these vertically
transmitted ASVs are also above the prediction in the larvae. In the bottom panel (C-D), purple dots correspond to
sponge-enriched clusters that are above the neutral prediction in individual adults; 51.7% of these vertically transmitted
sponge-enriched clusters are also above the prediction in the larvae. Microbes that fall within or below the neutral
prediction are colored in gray.

We next focused on the subset of ASVs in Figure 2 C and Figure 2 D that most closely correspond to 2nd generation212

vertically transmitted symbionts, i.e., those shared between any given parent-offspring pair but not detected in seawater213

(note that we only fitted the neutral model once for adults and larvae). We found that 50.0%, 44.1% and 5.9% of the214

ASVs fell above, within and below the neutral prediction across individual adults, suggesting that at least half of the215

vertically transmitted ASVs are selected and/or maintained by individual adults. Of these 50%, 48.4% and 51.1%216

fell above and within the neutral prediction in larvae (Figure 3 A and Figure 3 B). Interestingly, of the ASVs that fell217

above the neutral prediction in adults, 40.6% assigned sponge-enriched clusters, and of these, 51.7% and 48.3% fell218

above and within the neutral prediction in larvae (Figure 3 C and Figure 3 D), further indicating that adults transmit219

beneficial symbionts to offspring that may likely be important during microbiome assembly. Of the 44.1% ASVs that220
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were neutral across individual adults, 22.3% and 77.2% fell above and within the neutral prediction in larvae (Figure 3221

A and Figure 3 B), suggesting that offspring also receives microbes which likely serve as an additional energy reserve222

until larval settlement. Finally, of the 5.9% of ASVs that fell below the prediction across individual adults, 42.3% and223

53.8% fell above and within the neutral prediction in larvae (Figure 3 A and Figure 3 B). These percents are altogether224

very similar to the ones found for the overall microbiota. This indicates that the relative importance of the neutral and225

non-neutral processes that governs vertical transmission is similar regardless of whether microbes detected in seawater226

are considered or not. This further indicates that microbes associated to larvae which are also detected in seawater,227

does not represent environmental microbes populating the surface of the larvae.228

In the remaining series of analyses, we introduce one broad (overall) and one narrow (sponge-specific) definition229

of vertical transmission. In (1) overall vertical transmission, we consider all ASVs that are shared between parents230

and their offspring, whereas in the definition of (2) sponge-specific vertical transmission, we only include ASVs that231

are shared between parents and offspring, but not detected in seawater. The definition of sponge-specific vertical232

transmission is nested within the definition of overall vertical transmission. Specifically, the definition of sponge-233

specific vertical transmission is restricted to symbionts that are not detected (or under detection limit) in seawater,234

such as members of the rare biosphere, or symbionts which were present in the larval phase of the adult host. Apart235

from these symbionts, the definition of overall vertical transmission also encompasses transient microbes passing236

through the adult host, and symbionts which are selectively acquired from the seawater. This distinction allowed us to237

disentangle some of the processes underlying vertical transmission in marine sponges.238

Vertical transmission in sponges is detectable but incomplete239

We next tested whether patterns of vertical transmission were detectable in sponges, and if so, whether these patterns240

were comprehensive or incomplete. A visual inspection of taxonomic profiles of the microbiota between parents and241

offspring indicated that offspring often harbor similar microbial phyla to their parents, as well as to non-parental con-242

specific adults (Figure 4 A and Figure S5). Part of this similarity at the phylum level persisted when we refocused our243

analyses at the level of individual ASVs. For instance, across all sponge species, larval offspring shared, on average,244

44.8% of their overall ASVs with their adult parents (Figure 5 A and Figure S6). Parents and offspring also shared, on245

average, 60.7% of their overall sponge-enriched clusters (Figure S7 Aa and Figure S8). These results suggest that ver-246

tical transmission is comprehensive, at least when considering all microbes found in larvae. However, these percents247

of sharing were not different than the percents of ASVs and sponge-enriched clusters larvae shared with conspecific248

adults living nearby (ASVs: 44.8% vs 44.5%, ∆=-0.34, 95% CI [-4.49,3.87], Mann-Whitney U=3917.5, P>0.1, Fig-249
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Figure 4: The relative contribution of vertically transmitted ASVs classifying to different microbial phyla (classes for
Proteobacteria) in parents and the offspring of sponge species A. aerophoba. The top panel (A) shows the relative
contribution of phyla for the overall definition of vertical transmission, and the bottom panel (B) shows the relative
contribution of phyla for sponge-specific vertical transmission. Parents (in bold) and offspring are shown on the x-axis.
Note that when microbes detected in seawater are removed, this sometimes leaves no vertical transmitted ASVs for
the sponge-specific vertical transmission. Colors represent different microbial phyla (classes for Proteobacteria).

ure 5 A; sponge-enriched clusters: 60.7% vs 61.3% ∆=-0.36, 95% CI [-6.94,5.73], Mann-Whitney U=3916.5, P>0.1,250

Figure S7 Aa), indicating that, at the level of all the microbes found in larvae, the signature of vertical transmission is251

essentially undetectable.252
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However, the analysis above included ASVs found in seawater, which may represent transient microbes passing253

through the adult hosts that are not consistent or important members of the sponge microbiota. Removing ASVs de-254

tected in seawater not only reduced the taxonomic diversity found in larvae, but also decreased the overlap of microbes255

between adults and their larval offspring. On average, offspring only shared 11.3% and 18.6% of their sponge-specific256

ASVs (Figure 5 Ba and Figure S6) and sponge-enriched clusters (Figure S7 Ba and Figure S8) with their parents,257

indicating that, at the level of microbes found in larvae that are not detected in seawater, vertical transmission is very258

incomplete. Nevertheless, the detectability of vertical transmission increased as microbes detected in seawater were259

removed; the percent of sharing between parents and offspring was higher than the percent of ASVs larvae shared with260

the conspecific adults living nearby (11.3% vs 8.8%, ∆=2.23, 95% CI [0.00,5.00], Mann-Whitney U=4685, P=0.04;261

Figure 5 Ba). Conspecific larvae and adults shared, on average, 14.12% of their sponge-specific sponge-enriched262

clusters, but this percent of sharing was not different than from what offspring shared with their parents (18.6% vs263

14.12,∆=0.00, 95% CI [-0.00,0.00]; Mann-Whitney U=4388, P>0.1; Figure S7 Ba). We observed the same patterns264

in data where we applied more stringent filtering criteria of sequencing depths. However, with more samples lost, the265

power to detect differences decreases (see Supplementary material ??).266

To further characterize patterns of vertical transmission, we computed modularity (DIRT_LPA_wb_plus, [62])267

on bipartite networks constructed for each sponge species. In the ecological network literature, modules are groups of268

species that “interact” more among themselves than with groups of other species (e.g., flowers and their pollinators, or269

fruits and their seed dispersers). If modules are perfectly separated; that is, no species interact with species from other270

modules, they are called compartments. Weighted modularity has been shown to be positively correlated with network271

specialization (H ′2), reinforcing the idea that modules exist because species only interact with a small number of other272

coevolved species [63]. Computing modularity on weighted bipartite networks allows for weighting species by their273

relative abundances, such that rare microbes are down-weighted and modules are formed around the most common274

host–microbe associations [63, 62]. We computed modularity on two sets of bipartite networks: (1) the overall net-275

works which contain conspecific hosts and all ASVs detected in those hosts; (2) the sponge-specific networks that276

contain conspecific hosts and ASVs detected in those hosts, but not in seawater. The networks will be organized into277

compartments corresponding to parents and offspring if they harbor the same set of microbes at similar abundances,278

and if those microbes are unique to those parents and offspring. We tested whether the observed modules deviated from279

the prior expectation of perfectly separated parent-offspring compartments using the Normalized Mutual Information280

(NMI) criterion [64, 65, 66]. NMI ranges between 0 and 1, where 0 indicates complete dissimilarity between expected281

and observed modules, and 1 indicates that the observed modules only contain nodes corresponding to parents and282
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offspring. We found that, while both types of network were modular (overall: 0.48±0.17; sponge-specific: 0.57±0.14;283

Table ??), the observed modules were not comprised of nodes corresponding to parents and offspring (Figure S11).284

The sponge-specific networks had, on average, the highest NMI score but these networks were still quite far from285

the prior expectation of perfectly separated parent-offspring compartments (overall: 0.49±0.08 and sponge-specific:286

0.36±0.13; Figure S12 a). We also computed modularity on unweighted bipartite networks. While these results were287

quantitatively different (e.g., different modules formed) from the weighted analysis (this has been demonstrated by288

others, see e.g., [63, 62]), it did not change the overall conclusion (Figure S12 b).289
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Figure 5: Percent shared ASVs in the (A) overall and (B) sponge-specific definition of vertical transmission. Boxplots
(a) show the percent shared ASVs between sponge larvae and either (i) their known parents (yellow dots), or (ii)
non-parental conspecific adults (green dots). In boxplots (a), each dot represents one parent-offspring pair, or one
non-parent adult-larva pair across all sponge species (see Figure S6). For overall vertical transmission (A), parents
and offspring shared, on average, 44.8% of the ASVs, whereas non-parental conspecific adults and larvae shared,
on average, 44.5% of the ASVs (P>0.1). For sponge-specific vertical transmission (B), parents and offspring shared,
on average, 11.3% of the ASVs, whereas non-parental conspecific adults and larvae shared, on average, 8.8% of the
ASVs (P=0.04). Boxplots (b) show the percent shared vertically transmitted ASVs between (i) siblings (blue dots),
and (ii) non-siblings (purple dots). In boxplots (b), each dot represents one sibling pair, or one pair of non-siblings (see
Figure S9). For overall vertical transmission (A), siblings shared, on average, 17.0% of their vertically transmitted
ASVs, while non-siblings only shared 11.7% (P<0.001). For sponge-specific vertical transmission (B), siblings shared,
on average, only 2.4% of their vertically transmitted ASVs, whereas non-siblings shared 1.0% (P=0.001). While these
are significantly different, the effect size (i.e., the difference in location, ∆), is effectively zero.
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Vertical transmission is largely inconsistent; but each offspring receives a small set of identi-290

cal microbes from their parent291

If symbiotic microbes have coevolved with their sponge host, and if it is adaptive for parents to transmit these microbes,292

then we would expected all offspring from the same parent to receive an identical or highly consistent set of beneficial293

symbionts. Alternatively, if consistent vertical transmission is not important to parental fitness, or if parents benefit294

from transmitting different symbionts to each offspring, then we would expect larvae to receive a variable or even295

random subset of microbes from their parents that is inconsistent between siblings.296

We tested this prediction by calculating the proportion of overall and sponge-specific vertically transmitted ASVs297

shared between siblings and non-siblings. Across all sponge species, siblings shared, on average, 17.0% and 18.8%298

of their overall vertically transmitted ASVs (Figure 5 Ab and Figure S9 A) and sponge-enriched clusters (Figure S7299

Ab and Figure S10 A), respectively. These percents of sharing were higher than the percents of vertically transmitted300

ASVs and sponge-enriched clusters non-siblings shared (ASVs: 17.0% vs 11.7%, ∆=4.48, 95% CI [2.68,6.26], Mann-301

Whitney U=9145, P=<0.001, Figure 5 Ab; sponge-enriched clusters: 18.8% vs 12.4%, ∆=4.61, 95% CI [2.08,7.21],302

Mann-Whitney U=8531.5, P=<0.001, Figure S7 Ab), indicating that each offspring receives a small number of iden-303

tical microbes from their parent. However, when we removed ASVs detected in seawater, siblings and non-siblings304

only shared 2.4% and 1.0%, and 1.85% and 0.6% of their vertically transmitted ASVs (∆=0.00, 95% CI [-0.00,0.00],305

Mann-Whitney U=6383, P=0.001, Figure 5 Ab and Figure S9 A) and sponge-enriched clusters (∆=0.00, 95% CI [-306

0.00,0.00], Mann-Whitney U=6076, P=0.024, Figure S7 Ab and Figure S10 A), respectively. Note that while these307

differences are significant, the effect sizes are practically zero. Overall, the above results indicate that siblings receive308

a small set of identical symbionts, but that the majority of these microbes originate from the seawater where they have309

been selectively acquired by the adult parent prior of being transmitted to offspring.310

The absence of a large consistent set of microbes transmitted between a given parent and its offspring could have311

at least three explanations. First, perhaps only a few symbiotic microbes are required to establish a functioning and312

beneficial microbiota; hence, parents might only “selectively” transmit a few of the most important symbionts to313

offspring. Second, parents may benefit from varying the microbes transmitted to each offspring. Such variability314

might be important if offspring disperse long distances and settle in diverse and varying environments. In this case,315

the identity of the most favorable set of microbes may vary across environments. This explanation is analogous to the316

idea that a genetically diverse cohort of offspring is more likely to succeed than a genetically uniform cohort (in this317

case, the genetic diversity is microbial, and not from the host). Third, previous research have suggested that larvae318
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can phagocytose on vertically transmitted microbes [36, 37]. Thus, to maximize their offspring’s chances of survival319

until settlement, parents may “neutrally” transmit a large number microbes as an additional energy source. All of320

these explanations are congruent with the finding that the mechanisms underlying vertical transmission are likely both321

neutral and selective.322

Vertically transmitted microbes are not host species-specific323

At the time many sponge species reach adulthood, they have converged on highly similar and species-specific micro-324

biota [67, 68], including the eight sponge species analyzed here [69, 70, 67, 71]. Variation in the microbiota among325

conspecific hosts may reflect the nature and strength of host-microbe interactions. When the microbiota are highly326

similar among conspecific sponges, this may indicate strong selection for certain symbionts at the host species level.327

Furthermore, if this selection is a result of strong coevolution between microbes and hosts, then we would expect328

high levels of host species fidelity; that is, conspecific adults and larvae should share more vertically transmitted329

microbes than they do with individuals from different host species. While previous studies, largely based on non-high-330

throughput sequencing methods, have indeed found similar microbial phylotypes in adults and larvae from the same331

sponge species [47, 48, 38, 49, 50], little is known whether this is also the case when larvae from multiple species are332

compared.333

We tested this prediction by calculating the percent of shared vertically transmitted ASVs among offspring from334

all possible combinations of adults. We found that larvae were not more likely to share vertically transmitted ASVs335

or sponge-enriched clusters with larvae from their own species as compared to larvae of other species (ASVs: 17.4%336

vs 15.5%, ∆=1.72, 95% CI [-2.71,6.27], Mann-Whitney U=1928, P>0.1; Sponge-enriched clusters: 21.3% vs 18.6%,337

∆=2.81, 95% CI [-2.93,8.67], Mann-Whitney U=1966.5, P>0.1). This was also the case when we considered the338

relative abundances of the vertically transmitted ASVs in larvae (6.6% vs 6.2%, ∆=-0.05, 95% CI [-1.07,1.04], Mann-339

Whitney U=1691, P>0.1) and Sponge-enriched clusters (20.4% vs 15.6%, ∆=3.75, 95% CI [-1.04,15.20], Mann-340

Whitney U=1973, P>0.1). Removing microbes detected in seawater, conspecific larvae shared, on average, only341

3.5% and 9.5% of their sponge-specific vertically transmitted ASVs and sponge-enriched clusters, respectively. These342

percents of sharing were not different than the percent of vertically transmitted ASVs larvae from different species343

shared (ASVs: 3.5% vs 2.7%, ∆=-0.000, 95% CI [-0.41,0.00], Mann-Whitney U=1651, P>0.1; sponge-enriched344

clusters: 9.5% vs 8.6%, ∆=-0.000, 95% CI [-2.65,3.61], Mann-Whitney U=1696, P>0.1). Similar results were also345

observed when we considered the relative abundance of vertically transmitted ASVs (5.0% vs 1.8%, ∆=-0.000, 95%346

CI [-0.01,0.00], Mann-Whitney U=1614.5, P>0.1) and Sponge-enriched clusters (10.1% vs 8.5%, ∆=-0.000, 95% CI347
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[-0.07,0.01], Mann-Whitney U=1591, P>0.1).348
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Figure 6: Percent shared (A) overall and (B) sponge-specific vertically transmitted ASVs among offspring from all
possible combinations of adults calculated as either the (a) Jaccard index (see Figure S13 A and Figure S14 A), or (b)
Bray-Curtis similarity (see Figure S13 B and Figure S14 B). Each dot represents all offspring from either (i) adults
belonging to the same species (blue dots), or (ii) adults from different species (orange dots). While the Jaccard index
calculates similarity between two samples based on the presence-absence of taxa, Bray-Curtis similarity also weights
taxa by their relative abundance. For overall vertical transmission (A), conspecific larvae shared, on average, 17.4%
(Jaccard) and 6.6% (Bray-Curtis) of the ASVs, whereas heterospecific larvae shared, on average, 15.5% (Jaccard) and
6.2% (Bray-Curtis) of the ASVs (P>0.1). For sponge-specific vertical transmission (B), parents and offspring shared,
on average, 3.5% (Jaccard) and 5.0% (Bray-Curtis) of the ASVs, whereas non-parental conspecific adults and larvae
shared, on average, 2.7% (Jaccard) and 1.8% (Bray-Curtis) of the ASVs (P>0.1). Note that the group conspecific
larvae has much lesser number of observations (n) compared to the group heterospecific larvae.

To test this beyond pairwise comparisons, we computed weighted modularity on two bipartite networks: (i) the349

overall network which contains all hosts and ASVs detected in those hosts, and (ii) the sponge-specific network that350

contains all hosts and ASVs detected in those hosts, but not in seawater. If conspecific adults and larvae harbor the351

same microbes at similar abundances, and do not share those with other species, then the networks will be organized352

in compartments consisting of conspecific adults and larvae. While we found that both the overall and sponge-specific353

network were highly modular (Q=0.71 and Q=0.79), modules rarely consisted of adults and larvae from the same354

species (NMI=0.51 and NMI=0.41). For instance, in the overall network, apart from the two species A. aerophoba355

and I. oros that together formed one module, all other adults formed their own species-specific modules. While some356

modules containing adults also contained larvae, they rarely corresponded to offspring or even larvae of the same357
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species. Similarly, in the sponge-specific network, only adults from the species I. fasciculata and I. oros formed their358

own species-specific modules; instead modules consisted of either (1) adults and larvae from different species; (2)359

a mix of heterospecific larvae, (3) or single larva. We also computed unweighted modularity on the same bipartite360

networks. While these results were quantitatively different from the weighted analysis, it did not change the overall361

conclusion (table).362

Conclusion363

Vertical transmission is proposed to be a primary mechanism by which parents transmit assemblages of beneficial364

microbes to offspring in a way that maintains both these microbes’ interactions with each other and the beneficial365

functions that emerge from their interactions [17]. However, contrary to these theoretical expectations, evidence is366

mounting that this view of vertical transmission is rare in animal microbiomes–especially when microbiomes are367

highly diverse (see [72] for a review). We find that marine sponges also do not fit the classic mold. While previous368

research based on electron micrographs has detected mechanisms by which parents transmit microbes to offspring369

[43, 44], our results support the findings that these processes can be neutral and/or selective, and that this may help to370

explain why several of our findings cast doubt on the consistency and faithfulness of these transmissions. Specifically,371

across eight sponge species, we show that: (1) vertical transmission is detectable, but weak and incomplete such that372

offspring do not receive a replica of their parent’s microbiome; (2) parents do not transmit the same suite of microbes373

to each offspring; and (3) vertically transmitted microbes are not host species-specific and therefore unlikely to have374

coevolved with particular sponge species.375

Our findings highlight the need for new theory to explain how hosts ensure the faithful transmission of beneficial376

microbiomes (see e.g., [73]). While the classic model may sometimes work well when the microbial symbionts consist377

of just one or a few species [6, 26], when microbiomes are very diverse and complex, transferring thousands of micro-378

bial species such that their interaction structures and emergent functions are preserved seems highly improbable. So,379

how do sponge parents ensure that offspring get the microbes they need? We know that such mechanisms exist because380

by the time sponge juveniles reach adulthood, they have converged on highly similar and species-specific microbiomes381

[67, 68]. The application of the neutral model did not only highlight the potential importance of neutral processes,382

but deviations from the model’s prediction lead to a better understanding of the potential role of both horizontal and383

vertical transmission in shaping the sponge microbiome. Assuming that offspring do not acquire microbes indepen-384

dently from their parent [74], our results suggest that the “selective process” occurs when adults horizontally acquire385
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symbionts from the seawater. However, adults filter vast quantities of water, up to 24,000 liters (24 m3) of water per386

kilogram and day [75]. Thus, at any time, adults harbor a large number of transient visitors. However, once these387

microbes are inside the host, the innate immune defenses of some sponge species can differentiate between pathogens,388

food bacteria and symbionts in a manner similar to the adaptive immune system of vertebrates [76, 77, 78, 79, 80, 81].389

In addition, for some microbes the host niche also provides a more favorable environment than seawater; in turn,390

some symbionts have molecular structures that facilitate recognition by the sponge host [52, 82]. We found indirect391

evidence that the mechanisms by which microbes are incorporated into the oocytes are both neutral and selective. The392

direct consequences of this is first and second generation vertical transmission; that is, microbes that are acquired each393

generation by the adult and subsequently incorporated into the oocytes (first generation), and vertically transmitted394

symbionts which originate from the adult’s parent (second generation). Such mixture of microbes may have at least395

three advantages. First, as dispersing larvae may not settle for several days [83], it may provide larvae with an addi-396

tional nutritional boost until settlement. Second, evidence from other ecological communities, including the human397

gut microbiome, suggests that priority effects strongly influence community assembly [84, 85, 86, 87]. Therefore,398

a few symbionts may quickly reach carrying capacity while simultaneously modifying the initial host niche in their399

favor, thereby altering the ability of subsequent microbial immigrants to colonize. Hence, vertical transmission of a400

few beneficial symbionts may, via priority effects, help build the microbiome anew generation after generation. Third,401

it may provide a mechanisms by which adults transmit new “local” symbioses to offspring.402

Finally, some of our results are relevant to the predictions put forward by of the hologenome theory of evolution403

[8, 9, 12]. This theory proposes that there may be value in treating hosts and their microbiota as a single evolutionary404

unit. This comes with an important expectation: high partner fidelity–if the collection of genomes varies within and405

between host generations, then it is not a coherent unit of selection [10, 11]. Such tight partner fidelity is typically406

only found among host-microbe symbioses with obligate vertical transmission. On the contrary, we found that many407

vertically transmitted microbes, including many sponge-enriched clusters, were not faithfully transmitted by parents to408

offspring nor were they host species-specific. As such, their evolution is likely shaped by multiple host species across409

the phylum Porifera, as well as by the marine environment where the sponge hosts live. Overall, our study demonstrates410

that common predictions of vertical transmission that stem from species-poor systems are not necessarily true when411

scaling up to diverse and complex microbiomes.412
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Methods413

We collected sponge and seawater samples between July and August 2012, close to the Islas Medas marine reserve414

in the northwestern Mediterranean Sea 42◦3′0′′N , 3◦13′0′′E by SCUBA at depths between 5-15 m. The analyzed415

species are common Mediterranean sponges and were identified based on their distinct morphological features. The416

sampling site consisted of a relatively small bay (roughly 18,000 m2). All sampled sponge species live in rocky417

overlapping habitats, and all species could be found within the same depth range. However, some specimens were418

found in more shaded areas than others.419

Larval sponge collection420

We constructed larvae traps by modifying the traps used in [88] (Figure S18). In order to collect offspring from421

known parents, traps were mounted over individual adult sponges by SCUBA. To minimize stress to individual adults,422

traps were removed after one week. During this time, sample bottles were collected and replaced each day. Bottles423

were placed on ice in insulated coolers and transported to the laboratory (<2 hours). Larvae were identified using a424

stereolupe. In order to remove loosely associated microbes, larvae were carefully rinsed with filter-sterilized seawater425

(0.20 µm filter) before preservation in RNA later. All larval samples were stored at -80◦C until DNA extraction.426

Adult sponge collection427

After larvae offspring were collected, three adults per sponge species were sampled. These individuals corresponded428

to the same adults that larvae had been collected for. However, for a few species, larvae could only be collected for429

two adults. In these cases, a third adult was still sampled. Specimens were sub-lethally sampled by removing a small430

sample of tissue. Excised tissue was placed in separate plastic tubes and brought to the surface where they were431

preserved in RNA later and placed on ice in insulated coolers and transported to the laboratory (<2 hours). Seawater432

samples were collected at 5 m depth and at seven locations within the sampling area. The water was always collected433

at deeper locations (>5m) within the sampling area, and never in direct proximity to the benthic community. All434

seven water samples were poured into separate, sterile 5 L jars. Aliquots of seawater (300-500 mL each, 1 aliquot per435

sample jar) were concentrated on 0.2 µm polycarbonate filters, and submerged in lysis buffer. All samples were stored436

at -80◦C until DNA extraction.437
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DNA extraction and sequencing438

DNA was extracted from ≈0.25 g of adult sponge tissue using the PowerSoil DNA extraction kit (MoBio). DNA from439

larvae (one larva per adult) was extracted using the XS-RNA extraction kit (Macherey-Nagel) because of its capacity to440

extract DNA from small samples, i.e., one larva. All DNA extractions were performed according to standard protocols.441

The seven seawater samples were processed by passing 2 L (from the 5 L) of seawater through 0.2µm Sterivex filters,442

and DNA was extracted from these filters as described by [50]. All extractions included a negative control without443

sponge tissue, and the lack of amplified DNA was examined with the universal bacterial primers 27F and 1492R. The444

V4 region of the 16S rRNA gene was amplified using the primer set 515FB-806RB [89], and sequenced using the445

Illumina HiSeq2500 platform. Sequencing was performed by the Earth Microbiome Project [90].446

Sequencing analysis447

Illumina-sequenced, single-read fastq files were processed and cleaned in R [91] using the default settings in DADA2448

[92] to produce an amplicon sequence variant (ASV) table (Appendix ??), and Silva (v128) [93] was used to create449

the ASV taxonomy. The Phyloseq R package [94] was used to filter out sequences classifying to Archaea and450

Eukaryota. We also removed singleton ASVs, and phyla that occurred in less than two samples (Appendix ??). The451

analyzed dataset contained samples with at least 1,000 sequences.452

Identification of sponge-enriched clusters453

A representative sequence from each ASV was taxonomically assigned using a BLAST 62 search against a curated454

ARB-SILVA database containing 178 previously identified sponge-specific clusters [40]. For each BLAST search,455

the 10 best hits were aligned to determine sequence similarities. The most similar ASV sequence to the respective456

reference sequence within the database was then assigned to an sponge-specific clusters based on a 75% similarity457

threshold: (i) a sequence was only assigned to any given sponge-specific clusters if its similarity was higher to the458

members of the cluster than to sequences outside the cluster; and (ii) if its similarity to the most similar sequence459

within the cluster was above 75%. A majority rule was applied in cases where the assignment of the most similar460

sequences was inconsistent, and the ASV sequence was only assigned to the sponge-specific clusters if at least 60%461

of the reference sequences were affiliated with the cluster.462
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Data analyses463

To partition data into the different bipartite networks and to find vertically transmitted microbes, we used set theory464

(e.g., setdiff(x,y) and intersect(x,y) functions in R). Modularity was analyzed using the DIRT_LPA_wb_plus465

algorithm in R [62]. We further used Normalized Mutual Information (NMI) criterion, calculated through the NMI::NMI(x,y)466

function in R, to test whether observed modules deviated from prior expectations [64, 66]. In the few cases where467

statistical analyses were performed, we used estimation statistics to directly report and visualize effect sizes (point es-468

timates) and their confidence intervals (precision estimates) [95]. More specifically, we used DABEST (“Data Analysis469

with Bootstrap-coupled ESTimation”) to compute the 95% confidence interval of the mean difference by bootstrap re-470

sampling from the observed data, and to visualize the result in a Gardner-Altman comparison plot [96]. This allows for471

an intuitive and transparent way to compute and visualize the difference between two or more groups by focusing on472

the magnitude of the effect and its precision. Groups are deemed significantly different if the 95% confidence interval473

of the mean difference excludes zero; that is, the probability of the mean difference being significantly different from474

zero exceeds 95%. This was done using the DABEST Python package in R via the reticulate package. Lastly,475

we used the logit transformation as a variance-stabilizing transformation of proportions. The logit transformation is476

the log of the odds ratio; that is, the log of the proportion divided by one minus the proportion. In practice, the trans-477

formation expands the ends of the scale, such that small differences in the proportions have a larger difference on the478

logit scale.479
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Figure S1: The phylogenetic relationship between the analyzed sponge species. The thin branches display orders
within the class Demospongiae which contain over 75% of all sponges species worldwide. The eight analyzed sponge
species span two classes (Homoscleromorpha and Demospongiae) and five orders (Homosclerophorida, Dictyocer-
atida, Verongiida, Clionaida and Poecilosclerida). All of the eight sponge species have the core of their known species
range distribution within the Mediterranean Sea (which includes the Western Mediterranean Sea, the Adriatic Sea, the
Ionian Sea, the Aegean Sea, and the Levantine Sea). More specifically, Oscarella lobularis has its known distribution
in the Mediterranean Sea, part of the North Sea (the Swedish west coast), and part of the South Atlantic Ocean (the
Azores, the Canary Islands, and Cape Verde); Ircinia oros has its known distribution in the Mediterranean Sea, and part
of the south Atlantic Ocean (the Canary Islands); Ircinia fasciculata has its known distribution in the Mediterranean
Sea; Dysidea avara has its known distribution in the Mediterranean Sea, the Black Sea, and part of the South Atlantic
Ocean (the French coast); Aplysina aerophoba has its known distribution is in the Mediterranean Sea, and part of the
South Atlantic Ocean (the Azores, the Canary Islands, and Cape Verde); Cliona viridis has its known distribution in
the Mediterranean Sea, part of the South Atlantic Ocean (the Spanish and Portuguese coast, the Azores, the Canary
Islands, and Cape Verde); Hemimycale columella has its known distribution in the Mediterranean Sea, part of the
South Atlantic Ocean (the Spanish and Portuguese coast, the Azores, the Canary Islands, and Cape Verde), part of the
North Sea (the Swedish west coast), and the Celtic Sea, including the English Channel; and finally, Crambe crambe
has its known distribution in the Mediterranean Sea, and part of the South Atlantic Ocean (the Spanish and Portuguese
coast). Source for the species range distribution: World Porifera Database.

33

http://www.marinespecies.org/porifera/


Larvae

−4 −2 0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−4 −2 0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

A  Overall

B  Seawater microbes removed

O
cc

ur
re

nc
e 

fre
qu

en
cy

log(Mean relative abundance)

Figure S2: A “peak” consisting of taxa above the neutral prediction across individual larvae. In panel A, gray dots
correspond to the overall larval microbiota. In the bottom panel B, yellow dots correspond to microbes not detected in
seawater. When microbes detected in seawater are removed, much of the “peak” largely disapears.
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Figure S3: Most of the microbes forming the “peak” in the larval (B) are also present above the neutral prediction in
adults (A). In panel A, microbes that fall above the neutral prediction in adults are colored blue. In panel B, the same
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(B) Sponge−specific vertical transmission

(A) Overall vertical transmission
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See figure legend below

37



I. fasciculata

(B) Sponge−specific vertical transmission

(A) Overall vertical transmission
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C. crambe

(B) Sponge−specific vertical transmission

(A) Overall vertical transmission
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C. viridis

(B) Sponge−specific vertical transmission

(A) Overall vertical transmission
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D. avara

(B) Sponge−specific vertical transmission

(A) Overall vertical transmission
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See figure legend below
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H. columella

(B) Sponge−specific vertical transmission

(A) Overall vertical transmission
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(B) Sponge−specific vertical transmission

(A) Overall vertical transmission
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See figure legend below

Figure S5: The relative contribution of vertically transmitted ASVs classifying to different microbial phyla (classes
for Proteobacteria) in parents and the offspring of the remaining seven sponge species. The top panel (A) shows the
relative contribution of phyla for the overall definition of vertical transmission, and the bottom panel (B) shows the
relative contribution of phyla for sponge-specific vertical transmission. Parents (in bold) and offspring are shown on the
x-axis. Note that when microbes detected in seawater are removed, this sometimes leaves no vertical transmitted ASVs
for the sponge-specific vertical transmission. Colors represent different microbial phyla (classes for Proteobacteria).
Panels A-G corresponds to host species: I. oros; I. fasciculata; C. crambe; C. viridis; D. avara; H. columella; and O.
lobularis.
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ASVs Adult 1 Adult 2 Adult 3

A. aerophoba
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Figure S6: The average percent shared ASVs in the (A) overall and (B) sponge-specific definition of vertical trans-
mission across adults and sponge species. Barplots show the average percent shared ASVs between sponge larvae and
either (i) their known parents (yellow bars), or (ii) non-parental conspecific adults (green bars). Each row corresponds
to a sponge species, and each column one of the three adults for that focal species.
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Figure S7: Percent shared sponge-enriched clusters in the (A) overall and (B) sponge-specific definition of vertical
transmission. Boxplots (a) show the percent shared sponge-enriched clusters between sponge larvae and either (i)
their known parents (yellow dots), or (ii) non-parental conspecific adults (green dots). In boxplots (a), each dot rep-
resents one parent-offspring pair, or one non-parent adult-larva pair across all sponge species (see Figure S8). For
overall vertical transmission (A), parents and offspring shared, on average, 60.7% of the ASVs, whereas non-parental
conspecific adults and larvae shared, on average, 61.3% of the sponge-enriched clusters (P>0.1). For sponge-specific
vertical transmission (B), parents and offspring shared, on average, 18.6% of the sponge-enriched clusters, whereas
non-parental conspecific adults and larvae shared, on average, 14.12% of the sponge-enriched clusters (P>0.1). Box-
plots (b) show the percent shared vertically transmitted sponge-enriched clusters between (i) siblings (blue dots), and
(ii) non-siblings (purple dots). In boxplots (b), each dot represents one sibling pair, or one pair of non-siblings (see
Figure S9). For overall vertical transmission (A), siblings shared, on average, 18.8% of their vertically transmitted
ASVs, while non-siblings only shared 12.4% % (P<0.001). For sponge-specific vertical transmission (B), siblings
shared, on average, only 1.85% of their vertically transmitted ASVs, whereas non-siblings shared 0.6% (P=0.024).
While these are significantly different, the effect size (i.e., the difference in location, ∆), is effectively zero.
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Figure S8: The average percent shared sponge-enriched clusters in the (A) overall and (B) sponge-specific definition
of vertical transmission across adults and sponge species. Barplots show the average percent shared sponge-enriched
clusters between sponge larvae and either (i) their known parents (yellow bars), or (ii) non-parental conspecific adults
(green bars). Each row corresponds to a sponge species, and each column one of the three adults for that focal species.
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Figure S9: Percent shared ASVs of (A) overall and (B) sponge-specific vertical transmission between siblings and
non-siblings. Each cell represents a larva, and sets of siblings from the same parent are indicated by cells bordered by
the same color (green, purple, or red). In cases where parents only had one offspring, the diagonal is bordered by a
dashed line. Cells with no boarders correspond to the percent of vertically transmitted ASVs that are shared between
non-siblings, i.e., conspecific larvae that did not share the same parent. Solid gray cells (i.e., the diagonal) represent
the comparison with self. The white-blue continuous color legend corresponds to 0% (no ASVs shared) in white and
100% (all ASVs shared) in dark blue).
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Figure S10: Percent shared sponge-enriched clusters of (A) overall and (B) sponge-specific vertical transmission
between siblings and non-siblings. Each cell represents a larva, and sets of siblings from the same parent are indicated
by cells bordered by the same color (green, purple, or red). In cases where parents only had one offspring, the diagonal
is bordered by a dashed line. Cells with no boarders correspond to the percent of vertically transmitted ASVs that are
shared between non-siblings, i.e., conspecific larvae that did not share the same parent. Solid gray cells (i.e., the
diagonal) represent the comparison with self. The white-blue continuous color legend corresponds to 0% (no sponge-
enriched clusters shared) in white and 100% (all sponge-enriched clusters shared) in dark blue).
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See figure legend below
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See figure legend below
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See figure legend below
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H. columella

(A) Weighted
Parent 1
Offspring 1
Offspring 2
Offspring 3
Offspring 4
Parent 2
Parent 3
Offspring 1
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See figure legend below
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See figure legend below

Figure S11: Host composition of the identified modules. If parents and offspring harbor the same microbes and at
similar abundances, then parents and offspring would be expected to form perfect compartments (i.e., modules only
containing parents and their offspring). Panel A shows weighted modularity where ASVs have been weighted by their
relative abundances, while panel B shows unweighted modularity where only presences and absences of ASVs were
considered. Each color represent one parent and its offspring, and circles represent the identified modules (the number
of circles represent the number of identified modules). In the case of perfect parent-offspring compartments, the
number of modules would be three and they would contain multiple slices of the same color. Panels A-H corresponds
to host species: A. aerophoba, I. oros; I. fasciculata; C. crambe; C. viridis; D. avara; H. columella; and O. lobularis.
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Figure S12: Boxplots for Normalized Mutual Information (NMI) criterion calculated for (a) weighted and (b) un-
weighted networks only containing conspecific hosts and their ASVs for overall and sponge-specific vertical trans-
mission. Each colored dot corresponds to one sponge species. NMI ranges between 0 and 1, where 0 indicates
complete dissimilarity between expected and observed modules, thus values closer to 1 corresponds to host species
whose networks contain modules, and these modules contain nodes corresponding to parents and offspring.
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Overall vertical transmission (ASVs)

Jaccard index Bray-Curtis similarity

Figure S13: Similarity of overall vertically transmitted ASVs among all the offspring from to any given pair of adults.
The figure shows similarity both within and between host species calculated as the (A) Jaccard index, or (B) Bray-
Curtis similarity. In both panels, the diagonal corresponds to the average similarity among siblings (i.e., offspring from
the same adult). While the Jaccard index calculates similarity between two samples based on the presence-absence of
taxa, Bray-Curtis similarity also weights the coefficient by the number of individuals of each taxon. By converting the
similarity coefficients to percents, their values range between 0% (no taxa shared; white), and 100% (all taxa shared;
dark blue).
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Figure S14: Similarity of sponge-specific vertically transmitted ASVs among all the offspring from to any given pair
of adults. The figure shows similarity both within and between host species calculated as the (A) Jaccard index, or
(B) Bray-Curtis similarity. In both panels, the diagonal corresponds to the average similarity among siblings (i.e.,
offspring from the same adult). While the Jaccard index calculates similarity between two samples based on the
presence-absence of taxa, Bray-Curtis similarity also weights the coefficient by the number of individuals of each
taxon. By converting the similarity coefficients to percents, their values range between 0% (no taxa shared; white),
and 100% (all taxa shared; dark blue).
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Figure S15: Percent shared (A) overall and (B) sponge-specific vertically transmitted sponge-enriched clusters among
offspring from all possible combinations of adults calculated as either the (a) Jaccard index (see Figure S16 A and
Figure S17 A), or (b) Bray-Curtis similarity (see Figure S16 B and Figure S17 B). Each dot represents all offspring
from either (i) adults belonging to the same species (blue dots), or (ii) adults from different species (orange dots).
While the Jaccard index calculates similarity between two samples based on the presence-absence of taxa, Bray-Curtis
similarity also weights taxa by their relative abundance. For overall vertical transmission (A), conspecific larvae
shared, on average, 21.3% (Jaccard) and 20.4% (Bray-Curtis) of the ASVs, whereas heterospecific larvae shared, on
average, 18.6% (Jaccard) and 15.6% (Bray-Curtis) of the ASVs (P>0.1). For sponge-specific vertical transmission (B),
parents and offspring shared, on average, 9.5% (Jaccard) and 10.1% (Bray-Curtis) of the ASVs, whereas non-parental
conspecific adults and larvae shared, on average, 8.6% (Jaccard) and 8.5% (Bray-Curtis) of the ASVs (P>0.1). Note
that the group conspecific larvae has much lesser number of observations (n) compared to the group heterospecific
larvae.
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Figure S16: Similarity of overall vertically transmitted sponge-enriched clusters among all the offspring from to any
given pair of adults. The figure shows similarity both within and between host species calculated as the (A) Jaccard
index, or (B) Bray-Curtis similarity. In both panels, the diagonal corresponds to the average similarity among siblings
(i.e., offspring from the same adult). While the Jaccard index calculates similarity between two samples based on
the presence-absence of taxa, Bray-Curtis similarity also weights the coefficient by the number of individuals of each
taxon. By converting the similarity coefficients to percents, their values range between 0% (no taxa shared; white),
and 100% (all taxa shared; dark blue).
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Figure S17: Similarity of sponge-specific vertically transmitted sponge-enriched clusters among all the offspring from
to any given pair of adults. The figure shows similarity both within and between host species calculated as the (A)
Jaccard index, or (B) Bray-Curtis similarity. In both panels, the diagonal corresponds to the average similarity among
siblings (i.e., offspring from the same adult). While the Jaccard index calculates similarity between two samples based
on the presence-absence of taxa, Bray-Curtis similarity also weights the coefficient by the number of individuals of
each taxon. By converting the similarity coefficients to percents, their values range between 0% (no taxa shared;
white), and 100% (all taxa shared; dark blue).
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Figure S18: Sketch of the constructed traps that were used to capture dispersing larvae from adult sponges. Sketch by
J.R.B.
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