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I. I NTRODUCTION

The active region of many modern electron devices consists
of semiconductors structured at truly nanometric dimensions,
either as ultra-thin-body FETs (UTB-FETs), or as 3D archi-
tectures such as Fin-FETs, multi-gate FETs (MuGFETs), and
nanowire (NW) FETs [1]. Quantum mechanical effects have
thus become prominent not only in terms of subband splitting
[2], but also in terms of source-drain tunnelling in CMOS
FETs [3], [4], [5], and band-to-band-tunnelling (BTBT) in
Tunnel FETs (TFETs) [6], [7]. The relevance of quantum
effects in nanoscale FETs is also witnessed by the fact that
CMOS based quantum dots have been proposed as a platform
for quantum computing [8].

The empirical tight-binding (TB) method is the most mature
method for full-band quantum transport simulations based
on the non-equilibrium Green’s function (NEGF) formalism
[9], [10], however an approach based on an Empirical Pseu-
dopotentials (EP) Hamiltonian and a plane-waves basis has
recently raised substantial interest, with contributionsreported
for carbon nanotubes [11], ultra-thin-body FETs [12], [13],
[14], [15], and graphene nanoribbon transistors [16], [17].

We have recently reported improved methods for full band,
EP based NEGF simulations of UTB-FETs [18]. In this
paper we first extend the methodology to nanowires and
then present complete, self-consistent simulations for nanowire
Tunnel FETs with a few nanometer diameter.

II. QUANTUM CONFINEMENT AND TRANSPORT

MODELLING

The formulation of the EP method for a bulk semiconductor
has been discussed by many authors [19]. We here focus on
the device structure shown in Fig. 1, namely a gate-all-around
(GAA) InAs NW Tunnel-FET, and our goal is to express
quantum confinement as a local operator in real space, because
our previous non local formulation set a lower limit to the
size of the blocks of the Hamiltonian matrix [15]. To this
purpose we introduce a pseudopotential model Hamiltonian
for a pseudo-oxide region, whose only purpose is to set a
conduction and valence band discontinuity with respect to
the semiconductor that effectively confines electrons in the
semiconductor region.

To this purpose we letVsc(r) andVox(r) denote the pseu-
dopotentials describing respectively the actual semiconductor

and the pseudo-oxide, and then define the overall pseudopo-
tentialV1D(r) for the 1D eletron gas in the NW as

V1D(r) = Vsc(r) + Vcnf(r) θ1D(y, z) , (1)

where Vcnf(r) is defined asVcnf(r)=[Vox(r)−Vsc(r)], and
θ1D(y, z) is a box function that is1 in the oxide region and
0 in the semiconductor.

Fig. 1: Sketch of the simulated gate-all-around nanowire FET, where x is
the transport direction and (y, z) the plane of quantum confinement.
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Fig. 2: Bandstructure of the pseudo-SiO2 (red) compared to that of bulk
InAs (blue). The corresponding material parameters for theEP model are
reported in Tab. I.

We here assumed that the pseudo-oxide has the same
lattice constanta0 as the semiconductor (hence also same
reciprocal lattice), and adjusted its EP parameters in order to



US3 US8 US11 UA3 UA4 UA11

ψ-SiO2 -0.64 0.0 0.14 0.225 0.14 0.08
InAs -0.220 0.0 0.050 0.080 0.050 0.030

TABLE I: EP parameters (Ry) for InAs and for the pseudo-
SiO2.

obtain the desired values for the conduction and valence band
discontinuity with respect to the semiconductor. Fig. 2 reports
the energy dispersion of InAs (in blue) and of a pseudo-SiO2

material (in red), showing that the pseudo-SiO2 has a direct
bandgap of about 9 eV, and that the conduction and valence
band discontinuity with InAs have the desired values of about
3.8 eV and 4.5 eV [2].

An important feature of theV1D(r) defined in Eq. (1) is
that it is by definition local in real space, and itsK space
representation can be obtained recalling that the real space
product Vcnf(r)θ1D(y, z) in Eq. (1) transforms into a con-
volution in reciprocal space. We here employ standard nota-
tion for wave-vectorsK=[(kx,kyz)+G], K′=[(kx,k

′

yz)+G
′],

where k=(kx,kyz) belongs to the reduced zone (same for
semiconductor and pseudo-oxide), andG=(Gx,Gyz) is a
reciprocal lattice vector [19]. In such notationV1D(K−K

′)
is given by

Vsc(G−G
′)δk,k′ +

∑

G′′

yz

Vcnf(Gx −G′
x,Gyz −G

′
yz −G

′′
yz)

×θ1D(Kyz −K
′
yz +G

′′
yz)δkx,k′

x
. (2)

The energy dispersion of the 1D electron gas is obtained by
the eigenvalues of the Hamiltonian matrix

Hkx
(K,K′) = T (k+G)δG,G′δ

kyz,k
′

yz

+V1D(K−K
′) (3)

wherekx varies in the 1D reduced zone andT (k+G) is the
well known kinetic energy term.

A real space discretization is indispensable for transport
modelling with the NEGF approach, and in this work we use a
simple second order, centered difference discretization of the
kinetic energy operator given by [15]

T (k+G) = 2t0
∑

s=x,y,z

{1− cos[(ks +Gs)d]} (4)

wheret0=~
2/2m0d

2. In all spatial directionss={x,y,z} we
employ the same discretization stepd=a0/Nd. As shown
in Fig. 3, in order to attain an accetable agreement of the
bandstructures obtained with a continuous and with a dis-
cretized kinetic operator, we used a largeNd = 30, which
also implies a larger number of Hamiltonian blocks. However,
this drawback is compensated by the reduction of the size of
the single block, which is the most relevant scaling parameter
describing the computational burden.

The use of a second order discretization and of the local
formulation of quantum confinement are the two key points
that allowed us to reduce the size of the blocks of the block
tridiagonal Hamiltonian matrix (compared to the formulation
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Fig. 3: Bandstructure of bulk InAs obtained with a continuous and a
discretized kinetic operator with different values ofNd.

in [15]), which is a crucial parameter for NEGF based simula-
tions. More specifically, the rank of the Hamiltonian blocksfor
the nanowire isM1D = (2NG/Nd)Nkz

Nky
, whereNky

and
Nkz

are the number of the wavevectors in the reduced zone
and are equal toNcy and2Ncz, respectively, withNcy (Ncz)
being the number of unit cells alongy (z) in the simulation
domain. Hence,M1D increases proportionally to the number
of unit cells in the confinement directions.

A further reduction of the computational complexity can
be achieved by employing a mode-space transformation [20],
[21], and then by keeping only the lowest energy transverse
modes, which are the most relevant for bandstructure and
transport calculations in semiconductors. The mode-space
Hamiltonian is obtained by means of a unitary transformation
for each section of the system alongx, namely for a single
discretization point for the methodology of this work. At any
discretization pointxl, the transformation matrix is equal to
U

(l) =
[

ξ
(l)
1 · · · ξ

(l)
Nmod

]

, whereξ(l)n is the eigenvector of the
eigenvalue problem

[

Hl,l +Hl,l+1 +H
†
l,l+1

]

ξ(l)n = E(l)
n ξ(l)n (5)

whereHl,l′ are the block matrices of the Hamiltonian in the
hybrid basis consisting of real space in the transport direction
x and plane waves in the(y,z) directions [15].

We found that the mode space approximation works well
and it allows one to reduce significantly the size of Hamil-
tonian blocks for the 1D electron gas. This is not surprising
because the off-diagonal blocks,Hl,l+1, of the Hamiltonian
matrix are diagonal matrices in the hybrid basis with a constant
term -t0 on the diagonal. In particular, theHl,l+1 blocks
are independent of the transverse Bloch wave-vectorkz (or
(ky,kz)), so that the transverse modes

[

ξ
(l)
n

]

obtained by
Eq. (5) are also eigenfunctions of the diagonal blocksHl,l.

We verified that, thanks to the mode space approach, the
size of the Hamiltonian blocks can be reduced toM1D =
NmodNkz

Nky
for a 1D gas, where, for the materials and de-

vices analyzed in this paper, anNmod of about 12 is sufficient
to have an agreement within a few percent between the mode



space results and the results obtained without introducingthe
mode-space approximation.

In our model the charge and current density are computed
in terms of the retarded,[Gxξ], and lesser-than,[G<

xξ], Green’s
functions in the hybrid basis consisting of real space in
the transport directionx and transverse modes in the lateral
directions. At a given energyE, Green’s functions are defined
as

[Gxξ(E)] = [EI− [Hxξ]− [Σ(E)]]
−1 (6)

and
[G<

xξ(E)] = [Gxξ(E)][Σ<(E)][Gxξ(E)]† (7)

where the retarded,[Σ]=[ΣL]+[ΣR]+[Σph], and lesser-than
self-energy[Σ<]=[Σ<

L ]+[Σ<
R]+[Σ<

ph] describe the connection
to contacts (i.e. left,L, and right lead,R), or a possible
interaction with phonons [22]. The self-energies for inelastic
electron-phonon in mode-space were discussed in [23], but in
this paper we do not address incoherent transport.

Moreover, because the periodicity of the unit cell isa0,
but two adjacent unit cells are connected only by the ki-
netic operator through the first and last discretization point,
we developed a new approach to compute the contact self-
energies that, for the case at study, is more effective than the
standard Sancho-Rubio algorithm [24]. More precisely, instead
of computing the surface Green’s function corresponding toa
the entire unit cell of lengtha0, as prescribed by the Sancho-
Rubio algorithm, we focus on the surface Green’s function
corresponding to a single discretization point alongx. Again,
this allows us to deal with Hamiltonian blocks of reduced
size and to significantly improve the computational efficiency.
Details on this iterative procedure are given in Ref. [25].

The correct electrostatics of the InAs NW Tunnel-FET was
simulated by self-consistently coupling the solutions of NEGF
equations (6-7) with that of the 3D Poisson equation

∇ · [ǫ(r)∇φ(r)] = −e [p(r)− n(r) +ND(r)−NA(r)] (8)

whereφ(r) is the electrostatic potential,ǫ(r) is the material-
dependent permittivity, andNA(r), ND(r) are the acceptor
and donor concentration, respectively. Before entering inthe
r.h.s. of Eq. (8), electron and hole concentrations were first
computed on a fine discretization grid with stepd = a0/Nd,
then, thanks to the fact that the electrostatic potential has fairly
slow spatial variations on the scale of the lattice constant, they
were interpolated on a coarser mesh with a discretization step
dc = a0/2.

III. N UMERICAL RESULTS AND DISCUSSION

The treatment of strain and arbitrary crystal orientations
in our EP based model has been discussed in [18]. Fig. 4
illustrates the bandstructure for an InAs nanowire either re-
laxed or subject to a tensile biaxial stress and having a square
cross-section with a 3.04 nm side. As expected the biaxial
strain reduces significantly the energy gap [26], which is
approximately 0.95 eV in the unstrained system.
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Fig. 4: Bandstructure in the 1D Brillouin zone of an InAs nanowire with
different tensile biaxial stress values in the (y,z) plane normal to transport
direction.
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Fig. 5: Transfer characteristics of an InAs nanowire Tunnel FET either
unstrained or for a tensile biaxial stress in the (y,z) plane normal to the
transport direction. The gate length isLG=15.2 nm and the cross section of
the semiconductor region is a square with a 3.04 nm side.
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Fig. 6: Spatial profiles of the lowest conducation and highest valence
subbands along the source to drain direction and current spectra for the InAs
nanowire in Fig. 5 and for different stress levels.



Fig. 5 reports the corresponding IDS versus VGS char-
acteristics at VDS=0.3 V and obtained by means of self-
consistent NEGF simulations. The metal gate workfunction
was adjusted so as to have approximately the same off current
IOFF =IDS [VGS=0]=10 pA/µm in all cases. As it can be seen
the biaxial tensile stress improves the on stateIDS at fixed
IOFF , without any sizeable change of the sub-threshold swing.
These features are consistent with previous results obtained
with a k·p Hamiltonian [26], which reinforces the confidence
in the results of this paper that, for the first time, were obtained
with a full band EP Hamiltonian.

Fig. 6 illustrates the subband profiles along the device
channel and the current spectra for the InAs nanowire in Fig.5
at VGS≈VDS=0.3 V. As it can be seen the biaxial stress
greatly increases the transmission across the channel region
and consequently the on current of the Tunnel FET.

IV. CONCLUSION

This paper has shown that the EP-NEGF methodology is a
viable approach to simulate narrow NW FETs, and may thus
deliver a good balance between physical accuracy and numer-
ical burden for electron devices analysis. We argue that our
transport formalism can be directly applied to plane-wavesab-
initio Hamiltonians, hence it may be an alternative approach to
the methods based on maximally localized Wannier functions.

REFERENCES

[1] (2015) The International Technology Roadmap for Semiconductors
(ITRS).

[2] D. Esseni, P. Palestri, and L. Selmi,”Nanoscale MOS Transistors - Semi-
Classical Transport and Applications”, 1st ed. Cambridge University
Press., 2011.

[3] R. Kim, U. E. Avci, and I. A. Young, “Comprehensive Performance
Benchmarking of III-V and Si nMOSFETs (Gate Length = 13 nm)
Considering Supply Voltage and OFF-Current,”IEEE Trans. on Electron
Devices, vol. 62, no. 3, pp. 713–721, 2015.

[4] D. Esseni, M. Pala, and T. Rollo, “Essential Physics of the OFF-State
Current in Nanoscale MOSFETs and Tunnel FETs,”IEEE Trans. on
Electron Devices, vol. 62, no. 9, p. 30843091, 2015.

[5] C. Grillet, D. Logoteta, A. Cresti, and M. G. Pala, “Assessment of the
Electrical Performance of Short Channel InAs and Strained Si Nanowire
FETs,” IEEE Trans. on Electron Devices, vol. 64, no. 5, pp. 2425–2431,
2017.

[6] A. Seabaugh and Q. Zhang, “Low-Voltage Tunnel Transistors for Be-
yond CMOS Logic,”Proceedings of the IEEE, vol. 98, no. 12, pp. 2095
–2110, dec. 2010.

[7] D. Esseni, M. Pala, P. Palestri, C. Alper, and T. Rollo, “Areview
of selected topics in physics based modeling for tunnel field-effect
transistors,” Semiconductor Science Technology, vol. 32, p. 083005,
2017.

[8] S. D. Franceschi, L. Hutin, R. Maurand, L. Bourdet, H. Bohuslavskyi,
A. Corna, D. Kotekar-Patil, S. Barraud, X. Jehl, M. S. Y.-M. Niquet,
and M. Vinet, “SOI technology for quantum information processing,” in
IEEE International Electron Devices Meeting, pp. 339–342, 2016.

[9] M. Luisier, A. Schenk, and W. Fichtner, “Atomistic simulation of
nanowires in the sp3d5s∗ tight-binding formalism: From boundary
conditions to strain calculations,”Phys. Rev. B, vol. 74, p. 205323, 2006.

[10] G. Klimeck, S.S. Ahmed, H. Bae, N. Kharche, R. Rahman, S.Clark,
B. Haley, S. Lee, M. Naumov, H. Ryu, F. Saied, M. Prada, M. Ko-
rkusinski, and T.B. Boykin, “Atomistic Simulation of Realistically Sized
Nanodevices Using NEMO 3D Part I: Models and Benchmarks,”IEEE
Trans. on Electron Devices, vol. 54, no. 9, pp. 2079–2089, 2007.

[11] H. J. Choi and J. Ihm, “Ab initio pseudopotential methodfor the
calculation of conductance in quantum wires,”Phys. Rev. B, vol. 59,
no. 3, pp. 2267–2275, 1999.

[12] Xiang-Wei Jiang, Shu-Shen Li, Jian-Bai Xia, and Lin-Wang
Wang, “Quantum mechanical simulation of electronic transport in
nanostructured devices by efficient self-consistent pseudopotential
calculation,” Journal of Applied Physics, vol. 109, p. 054503, 2011.
[Online]. Available: http://dx.doi.org/doi/10.1063/1.3208067

[13] A. Garcia-Lekue, M. Vergniory, X. Jiang, and L. Wang, “Ab initio
quantum transport calculations using plane waves,”Progress in Surface
Science, vol. 90, no. 3, pp. 292 – 318, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0079681615000209

[14] M. Pala, O. Badami, and D. Esseni, “NEGF based transportmodeling
with a full-band, pseudopotential Hamiltonian: Theory, Implementation
and Full Device Simulations,”in IEEE International Electron Devices
Meeting, pp. 35.1.1–35.1.4, 2017.

[15] M. G. Pala and D. Esseni, “Full-band quantum simulationof electron
devices with the pseudopotential method: Theory, implementation, and
applications,” Phys. Rev. B, vol. 97, p. 125310, Mar 2018. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevB.97.125310

[16] J. Fang, W. G. Vandenberghe, B. Fu, and M. V. Fischetti,
“Pseudopotential-based electron quantum transport: Theoretical
formulation and application to nanometer-scale silicon nanowire
transistors,”Journal of Applied Physics, vol. 119, p. 035701, 2016.
[Online]. Available: http://dx.doi.org/doi/10.1063/1.3208067

[17] J. Fang, S. Chen, W. G. Vandenberghe, B. Fu, and M. V. Fischetti, “The-
oretical Study of Ballistic Transport in Silicon Nanowire and Graphene
Nanoribbon Field-Effect Transistors Using Empirical Pseudopotentials,”
Electron Devices, IEEE Transactions on, vol. 64, no. 6, pp. 2758 – 2764,
2017.

[18] M. Pala, O. Badami, and D. Esseni, “Transport models based on NEGF
and empirical pseudopotentials: a computationally viablemethod for
self-consistent simulation of nanoscale devices,”in IEEE International
Electron Devices Meeting, pp. 33.1.1–33.1.4, 2018.

[19] M.L. Cohen and J.R. Chelikowsky,Electron Structure and Optical
Properties of Semiconductors. Springer Series in Solid-State Sciences.
Springer-Verlag Berlin Heidelberg New York London Tokyo, 1988.

[20] R. Venugopal, Z. Ren, S. Datta, and M. Lundstrom, “Simulating
quantum transport in nanoscale transistors: Real versus mode-space
approaches,”J. Appl. Phys., vol. 92, no. 7, pp. 3730–3739, 2002.

[21] S. Poli, M. G. Pala, T. Poiroux, S. Deleonibus, and G. Baccarani,
“Size Dependence of Surface-Roughness-Limited Mobility in Silicon-
Nanowire FETs,” IEEE Transactions on Electron Devices, vol. 55,
no. 11, pp. 2968–2976, Nov 2008.

[22] G.D. Mahan,Many-Particle Physics. New York: Plenum Press, 1988.
[23] K. Rogdakis, S. , E. Bano, K. Zekentes, and M. Pala, “Phonon-and

surface-roughness-limited mobility of gate-all-around 3C-SiC and Si
nanowire FETs,”Nanotechnology, vol. 20, no. 29, p. 295202, 2009.

[24] M. P. L. Sancho, J. M. L. Sancho, and J. Rubio, “Quick iterative
scheme for the calculation of transfer matrices: application to Mo
(100),” Journal of Physics F: Metal Physics, vol. 14, no. 5, p. 1205,
1984. [Online]. Available: http://stacks.iop.org/0305-4608/14/i=5/a=016

[25] M. G. Pala and D. Esseni, “Quantum transport models based on NEGF
and empirical pseudopotentials for accurate modelling of nanoscale
electron devices,”to be published, 2019.

[26] F. Conzatti, M. Pala, D. Esseni, E. Bano, and L. Selmi, “Strain-Induced
Performance Improvements in InAs Nanowire Tunnel FETs,”Electron
Devices, IEEE Transactions on, vol. 59, no. 8, pp. 2085–2092, 2012.


