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Abstract14

Background In addition to the processes structuring free-living communities, host-associated microbial communi-15

ties (i.e., microbiotas) are directly or indirectly shaped by the host. Therefore, microbiota data have a hierarchical16

structure where samples are nested under one or several variables representing host-specific features. In addition, mi-17

crobiota data are often collected across multiple levels of biological organization. Current statistical methods do not18

accommodate this hierarchical data structure, and therefore cannot explicitly account for the effects of host-specific19

features on structuring the microbiota.20

Methods We introduce a unifying model-based framework developed specifically for analyzing host-microbiota21

data spanning multiple levels of biological organization. While we chose to discern among the effects of host species22

identity, host phylogeny, and host traits in structuring the microbiota, the presented framework can straightforwardly23

accommodate any recorded data that includes host-specific features. Other key components of our modeling frame-24

work are the powerful yet familiar outputs: (i) model-based ordination to visualize the main patterns in the data,25

(ii) co-occurrence networks to visualize microbe-to-microbe associations, and (iii) variance partitioning to asses the26

explanatory power of the included host-specific features and how influential these are in structuring the microbiota.27

Results The developed framework was applied to published data on marine sponge-microbiota. We found that a28

series of host traits that are likely phylogenetically conserved underpinned differences in both abundance and species29

richness among sites. When controlling for these differences, microbiota composition among sites was confounded by30

numerous site and host-specific features. At the host level, host traits always emerged as the prominent host-specific31

feature structuring the microbiota.32

Conclusions The proposed framework can readily be applied to a wide range of microbiota systems spanning mul-33

tiple levels of biological organization, allowing researchers to systematically tease apart the relative importance of34

recorded and/or measured host-specific features in structuring the microbiota. The study of free-living species com-35

munities have significantly benefited from the increase in model-based approaches. We believe that it is time for36

research on host-microbiota to leverage the strengths of a unifying model-based framework.37
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Introduction38

Ecological communities are the product of both stochastic and deterministic processes. While environmental factors39

may set the upper bound on carrying capacity, competitive and facilitative interactions within and among taxa deter-40

mine the identity of the species present in local communities. Ecologists are often interested in inferring ecological41

processes from patterns and determining their relative importance for the community under study ([39]). During the42

last few years, there has been a growing interest in developing new statistical methods aimed toward ecologists and the43

analysis of multivariate community data (see e.g., [17] and references within). There are many metrics for analyzing44

such data, however, these have a number of drawbacks, including uncertainty of selecting the most appropriate null45

models/randomization tests, low statistical power, and the lack of possibilities for making predictions. One framework46

which has become increasingly popular in ecology is joint species distribution models (JSDMs,[28, 40, 25]). JSDMs47

are an extension of generalized linear mixed models (GLMMs, [3]) where multiple species are analyzed simultane-48

ously, with or without measured environmental data, revealing community-level responses to environmental change.49

Because JSDMs are an extension of GLMMs, they can partition variance among fixed and random effects to assess the50

relative contribution of different ecological processes, such as habitat filtering, biotic interactions and environmental51

variability ([25]). Also, with the increase of trait-based and phylogenetic data in community ecology, together with the52

growing appreciation that species interactions are constrained by the “phylogenetic baggage” they inherit from their53

ancestors ([34]), this type of models can further accommodate information on both species traits and phylogenetic54

relatedness among species ([14, 15, 1, 25]). As such, JSDMs represents a rigorous statistical framework which allows55

ecologists to gain a more mechanistic view of the processes structuring ecological communities ([40]).56

In parallel to recent developments in community ecology, there is the growing field of microbial ecology studying57

both free-living and host-associated communities (i.e., microbiotas). While microbial ecologists can adapt many of the58

new statistical approaches developed for traditional multivariate abundance data (see e.g., [4]), researchers studying59

microbiotas need to consider an additional layer of processes structuring the focal community: microbiotas are also60

shaped directly or indirectly by their hosts. Interactions between hosts and microbes often involve long-lasting and61

sometimes extremely intimate relationships where the host animal may have evolved a capacity to directly control the62

identity and/or abundance of its microbial symbionts ([21]). Similarly to an environmental niche, host-specific features63

can be viewed as a multidimensional composite of all the host-specific factors governing microbial abundances and/or64

occurrences within a host. These may represent everything from broad evolutionary relationships among host species65

([11]) to distinct ecological processes, such as the production of specific biomolecules within a single host species66
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([18]). Furthermore, microbiotas often encompass multiple levels of biological organization, as e.g., samples may67

be collected from different body sites on numerous host individuals, and/or from different host species across larger68

spatial scales. At each level of biological organization, a different set of processes are likely to be influencing the69

microbiota.70

While a few recent JSDMs have been applied to microbiota data ([1, 5, 36, 44]), none of these models explicitly and71

transparently account for the aforementioned host-specific features. This extra layer of processes creates a hierarchical72

data structure where samples are nested under one or several nominal variables representing recorded and/or measured73

host-specific features. On the other hand, as JSDMs are naturally multi-levelled, they can easily account for such a74

hierarchical data structure, including the hierarchy implicit in data spanning multiple levels of biological organization75

([24, 20]). An example of such a data set is the gut microbiota of the Amboselli baboons (see e.g., [37]), where76

individual baboons are raised in matriarchal family groups which are part of larger social groups. Individuals may77

disperse from their family groups to other social groups when reaching adulthood. Individual baboons are therefore78

nested within both family and social groups, and researchers may want to investigate what processes acting on which79

social level of organization are most likely governed the gut microbiota.80

Discerning among processes through joint distribution models81

How processes related to host-specific features structure the microbiota are largely unknown. At the same time, to82

analyze such data requires a unifying, model-based framework capable of discerning amongst various host-specific83

features spanning multiple levels of biological organization. To fill this gap, we propose a novel JSDM framework84

specifically aimed at analyzing microbiota data which explicitly accounts for host-specific features across multiple85

levels of biological organization. Other key components of our proposed modeling framework include: (i) model-86

based ordination to visualize the main patterns in the data (ii) co-occurrence networks to visualize microbe-to-microbe87

associations, and (iii) variance partitioning to asses the explanatory power of the included host-specific features and88

their influence in structuring the microbiota (Figure 2). While our models can discern among the effects of host89

species identity, host phylogeny and host traits, they can straightforwardly accommodate any recorded and/or measured90

data on host-specific features. However, information on host phylogenetic relatedness and host traits are particularly91

useful in order to disentangle whether the microbiota under study is non-randomly structured among the branches of92

a host phylogeny such that related host species harbor more similar microbes (i.e., indicating vertical transmission) or93

whether the microbiota is non-randomly structured among environments reflecting different host traits (i.e., indicating94

horizontal transmission).95
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By applying our developed modeling framework to sponge-microbiota data, we set out to investigate a set of96

fundamental, but non-mutually exclusive questions of interest. Broadly, we are interested in whether the sponge97

microbiota are governed by processes at the site and/or host species level. More specifically we ask whether the98

microbiota associated with: (i) the same host species and/or (ii) phylogenetically closely related host species and/or99

(iii) host species with similar traits, are more similar irrespective of the spatial distance between the sites where they100

were collected. We also investigate whether host species in closely located areas harbor more similar microbiotas101

than host species collected in sites farther apart. Finally, we generate microbe-to-microbe association networks using102

our proposed framework, but acknowledge that we do not have any a-priori hypotheses regarding which microbes are103

more or less likely to be co-occur. To our knowledge, this is the first unifying model-based framework specifically104

developed for analyzing host-microbiota.105

Materials and methods106

Sponge microbiota as a case study107

To illustrate our modeling framework, we acquired data on marine sponge-microbiota from different host species108

collected at different geographic sites across the globe (Figure 1, Table S1). As marine sponges are commonly divided109

into two groups reflecting a suit of morphological and physiological traits– coined High and Low Microbial Abundance110

(HMA/LMA) sponges–collection sites are nested within host species which are further nested within one of the two111

traits. While the HMA-LMA division in a strict sense refers to the abundance of microbes harbored by the host, HMA112

sponges have a denser interior, including narrower aquiferous canals and smaller choanocytes compared to LMA113

sponges whose architecture are more fitted for pumping large volumes of water ([38]). As a consequence, HMA and114

LMA sponges tend to harbor different microbiotas, with the latter often showing a higher similarity to the free-living115

microbial community present in the surrounding sea water ([2, 33]).116

Data compilation117

To assess variation in microbial abundances and co-occurrences across different sponges species collected at different118

sites, we compiled a data set of sponge-associated bacterial 16S rRNA gene clone-library sequences published in119

NCBI GenBank (http://www.ncbi.nlm.nih.gov) between September 2007 and August 2014. All sponge species in120

the data set were required to be present in at least two different collection sites and be associated with at least 10121
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different sequences per site. The final data set contained a total of 3874 nearly full-length 16S rRNA gene sequences122

from 9 HMA and 10 LMA sponge species collected at 48 different sites (nHMA=28, nLMA=20) across the Atlantic,123

Pacific Ocean, Mediterranean and Red Seas (Figure 1, Table S1). The 16S rRNA gene sequences were aligned and124

clustered into operational taxonomic units (OTUs) representing family-level (at 90% nucleotide similarity, [42, 32])125

using mothur v.1.32.1 ([31]). At higher and lower sequence similarities, OTU clusters tended to become either too126

narrow or too broad, generating too sparse data for our models. Finally, as clone-libraries do not circumvent the need127

for cultivation, the OTUs modelled here correspond to the most common members of the sponge-microbiota.128

Phylogenetic reconstructions129

We retrieved nearly full-length sponge 18S rRNA gene sequences published in NCBI GenBank (http://www.ncbi.nlm.nih.gov)130

(see e.g., [10]). Sequences were aligned using the default options in ClustalW (1.83) ([16]). The phylogenetic relation-131

ship between the sponge species were reconstructed by implementing a HKY + �
4

substitution model using BEAST132

(1.7.4) ([6]). For a few host species (I. oros, H. simulans, M. methanophila and X. testudinaria), the 18S rRNA gene133

sequence was unavailable. In these cases, we constrained the sponge species to the clade containing its genera.134

A posterior distribution of phylogenies were sampled using Markov Chain Monte Carlo (MCMC) simulations as135

implemented in BEAST. We ran 4 independent chains each for 20 million generations saving every 4000

th
sample and136

discarding the first 25% as burn-in. This resulted in 20,000 generations from the posterior distribution. Convergence137

was evaluated using Tracer (v1.5) ([30]). We summarized the output of the four chains as a consensus phylogeny.138

Assumeing Brownian motion so that each covariance between host species i and host species j is proportional to their139

shared branch length from the most recent common ancestor ([7]), we used the variance-covariance matrix of the140

consensus phylogeny ⌃(phylo) as prior information in Equation 3, such that µ(phylo)s ⇠MVN (0,⌃(phylo)). Note141

that as the host species-specific variance i.e., the diagonal elements of the variance-covariance matrix is scaled to one142

by the construction of ⌃(phylo), we multiplied it with a scaling factor ⌧ as seen in the formulation in (3).143

Joint species distribution models144

We developed a Bayesian joint species distribution modeling framework to jointly model the abundance and co-145

occurrence of OTUs across multiple sites, while also accounting for host species identity, host phylogenetic related-146

ness, and host traits (HMA and LMA, hereafter termed ecotype). Another important feature of the models we propose147

is the inclusion of latent factors, serving three main purposes. First, they allow for a parsimonious yet flexible way148
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of modeling correlations between a large number of taxa. That is, given the number of taxa recorded often has the149

same order or exceeds the number of sites, as is characteristic of most multivariate abundance data including the one150

analyzed here, modeling the covariation between all taxa using an unstructured correlation matrix is often unreliable151

due to the large number of elements in the matrix that need to be estimated ([40]). Using latent factors instead of-152

fers a more practical solution, via rank reduction, to model correlations in such high dimensional settings. Second,153

latent factors allow for performing model-based unconstrained and residual ordination in order to visualize the main154

patterns in the data ([12, 13]). While traditional distance-based ordination techniques easily confound location and155

dispersion effects ([41]), model-based ordination properly models the mean-variance relationship, and can therefore156

accurately detect differences between the two. Third, latent factors allow for inferring associative networks identified157

by correlations and partial correlations ([24]).158

We considered two response types commonly encountered in ecology and biogeography; negative binomial re-159

gression for overdispersed counts and probit regression for presence-absence. As such, the response matrix being160

modelled consisted of either counts or presence-absence of n OTUs observed at m sites. The rows of the response161

matrix have a hierarchical structure typical for many microbiota data. Specifically, the m = 48 sites are nested within162

the s = 19 host species, with the 19 host species nested within one of r = 2 ecotypes (Figure 2). Due to their lack of163

information, OTUs with less than 5 presences across sites and with a total abundance of less than 5 were removed,164

resulting in 65 modelled OTUs.165

NB model: Due to the presence of overdispersion in the counts, a negative binomial distribution with a quadratic166

mean-variance relationship was assumed for the response matrix yij , such that Var(yij ) = �ij +�j�
2

ij where �j is the167

OTU-specific overdispersion parameter. The mean abundance was related to the covariates using a log link function.168

We denote the response and mean abundance of OTU j at site i by yij and �ij , respectively.169

Probit model: Presence (yij = 1) or absence (yij = 0) of OTU j at site i was modelled by a probit regression,170

implemented as yij = 1zij>0 where the latent liability zij is a linear function of the covariates, including the probit link171

function.172

Below, we present specifications for the negative binomial (NB) model only, as the probit model description is173

similar except the distribution assumed at the response level of the model (Equation S1).174

LetN (µ,�2

) denote a normal distribution with mean µ and variance �2

, and analogously, letMVN (µ,⌃) denote

a multivariate normal distribution with mean vector and covariance matrix ⌃. Then, we have the model formulation
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as follows

yij ⇠ Negative-Binomial(�ij ,�j ); i = 1, . . . ,48; j = 1, . . . ,65 (1)

log(�ij |zi ) = ↵i + �j +
2X

q=1

ZS
iq�

S
qj +

2X

q=1

ZH
s[i]q�

H
qj ; q = 1, . . . ,2 (2)

�j ⇠ Cauchy(0,2.5)

↵i ⇠N (µi ,�
2

(host))

µi = µ(host)s[r] + ⌧ ⇤µ(phylo)s; r = 1,2; s = 1, . . . ,19 (3)

µ(host)s[r] ⇠N (µ(ecotype)r ,�
2

(ecotype))

µ(ecotype)r ⇠ Cauchy(0,2.5)

µ(phylo)s ⇠MVN (0,⌃(phylo))

To clarify the above formulation, the subscript r indexes ecotype, s indexes host species and i indexes sites, such that175

“s[i]” and “s[r]” means “site i nested within host species s” and “host species s nested within ecotype r”, respectively.176

In Equation (2), the quantities ↵i and �j represent site and OTU-specific effects, respectively. The former adjusts for177

differences in site total abundance (species richness in the probit case), whereas the latter controls for differences in178

OTU total abundance (OTU prevalence across sites in the probit case). From a purely statistical point of view, this179

can be thought of as a model-based analog of studying alpha and beta diversity, respectively. The inclusion of ↵i180

serves two main purposes. First and foremost, including ↵i allows us to account for the hierarchical structure of the181

data and its effect on site total abundance (species richness in the probit case) specifically. In particular, to account182

for site i being nested within host species s which in turn is nested within ecotype r, the site effects ↵i ’s are drawn183

from a normal distribution with a mean that is a linear function of both a host-specific mean µ(host)s[r] and a host-184

specific phylogenetic effect µ(phylo)s (Equation 3). Furthermore, the host effects themselves are drawn from a normal185

distribution with a ecotype-specific mean µ(ecotype)r . Second, it means the resulting ordinations constructed by the186

latent factors at the site ZS
iq and host species ZH

s[i]q level are in terms of composition only, as opposed to a composite187

of site total abundance (species richness in the probit case) and composition (i.e. microbiota structure) when site188

effects are not included ([12]). In other words, by accounting for the hierarchical structure present in the data, the189

model-based ordinations are able to distinguish between microbiota composition and structure. It also means that the190

corresponding factor loadings �S
qj and �H

qj which quantify each OTU’s response to the latent factors and subsequently191
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the correlations among OTUs at the two different levels of biological organization are driven by OTU-specific effects192

only, as opposed to correlations additionally induced by site and host-specific features.193

Note that, in contrast to the means µ’s, the variance parameters �2

(host) and �2

(ecotype) are common across all194

hosts and ecotypes. This implies that, a-priori, hosts and ecotypes can differentiate in location (mean) but not in195

dispersion (variance). However, as we will see later in the Results section, the ordinations for hosts and ecotypes can196

still, a-posteriori, vary substantially in terms of location and dispersion. We fitted each model with and without site197

effects ↵i included, so that two types of ordinations and association networks were constructed. When site effects were198

included, the ordinations on both levels of biological organization are in terms of microbiota composition, whereas199

when site effects are not included, the ordinations represent microbiota structure. The inclusion of ↵i also allows us to200

discern among OTU-to-OTU correlations induced by OTU-specific effects from those induced by site and host-specific201

features. For the model without site effects ↵i included, its associated nested structure were removed from Equation202

(2), such that log(�ij |zi ) = �j +
2P

q=1
ZS
iq�

S
qj +

2P
q=1

ZH
s[i]q�

H
qj . As is conventional with ordination, we set q = 2 so that203

once fitted, the latent factors Zi,q = (Zi1,Zi2) were plotted on a scatter plot to visualize the main patterns in the data204

([12]). From the corresponding factor loadings �qj , a variance-covariance matrix was computed as ⌦ = �
1j (�2j )

T
,205

and subsequently converted to a correlation matrix and plotted as a OTU-to-OTU association network ([24]).206

To complete the above formulation, we assigned priors to the appropriate hyperparameters. For the OTU-specific207

overdispersion parameters �j (Equation 1), we chose to assign a weakly-informative Gamma prior, Gamma(0.1,0.1).208

The standard deviations for host �(host) and ecotype �(ecotype) in Equations (2)-(3) were assigned uniform priors209

Unif(0,30). The latent factors in Equation (2) on the site ZS
iq and host species ZH

iq level were assigned normal priors210

N (0,1). The corresponding OTU-specific coefficients, i.e., the �S
qj ’s and the �H

qj ’s in Equation (2) were assigned211

Cauchy priors with center and scale parameters of 0 and 2.5, respectively, while taking to account the appropriate212

constraints for parameter identifiability (see citeHui2015, for details). The Cauchy distribution was used because it is213

good example of a weakly-informative normal prior ([9]). Finally, the phylogenetic scale parameter ⌧ was drawn from214

a weakly-informative exponential prior with a rate parameter of 0.1.215

Variance partitioning216

One of the main advantages of the differing levels in the hierarchy in Equations (1)-(3) is that we can calculate the217

total variance of the µi ’s and partition this variance into components reflecting variation in site total abundance (species218

richness in the probit case) attributable to differences in host species identity µ(host)s, host phylogenetic relatedness219

µ(phylo)s and host traits µ(ecotype)r . This means that we can asses the explanatory power of the host-specific features220
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and how influential each of them are in structuring the microbiota. Such a variance decomposition is analogous to221

sum-of-squares and variance decompositions seen in Analysis of Variance (ANOVA) and linear mixed models ([23]).222

Let V
total

denote the total variance of the µi ’s, while V
host

, V
phylo

and V
ecotype

denote the variances due to host

species identity, host phylogeny and host ecotype, respectively. Then we have,

V
total

= V
host

+V
phylo

+V
ecotype

+ (µ(ecotype)LMA �µ(ecotype)HMA)
2, where (4)

V
ecotype

= �2

(ecotype) (5)

V
host

= �2

(host) (6)

V
phylo

= ⌧2 (7)

Where �2

(host) reflects the intraspecific variation among sites nested within host species with small values of V
host

/V
total

223

implying that sites nested within the same host species are more similar within than between host species. ⌧2 corre-224

sponds the intraspecific variation among sites nested within host species that can be attributed to hosts’ phylogenetic225

relatedness, meaning that small values of V
phylo

/V
total

provide evidence that the host phylogeny has little influence226

on variation in site total abundance (species richness in probit case). �2

(ecotype) accounts for intraspecific variation227

among host species nested within the two ecotypes, whereas (µ(ecotype)LMA � µ(ecotype)HMA)
2

is the difference in228

variation between the two ecotypes. Therefore, (µ(ecotype)LMA�µ(ecotype)HMA)
2/V

total

represents the proportion of229

total variation in site total abundance (species richness in the probit case) driven by ecotype. That is, if the proportion230

V
ecotype

/V
total

is small compared to (µ(ecotype)LMA�µ(ecotype)HMA)
2/V

total

, then host species’ microbiota are more231

similar within rather than between ecotypes.232

We used Markov Chain Monte Carlo (MCMC) simulation method by running JAGS ([26]) in R ([29]) through233

the rjags ([19]) package to sample from the joint posterior distribution of the model parameters. We ran 1 chain with234

dispersed initial values for 100,000 iterations saving every 10

th sample and discarding the first 50% of samples as235

burn-in. We evaluated convergence of model parameters by visually inspecting trace and density plots using the R236

packages coda ([27]) and mcmcplots ([22]).237

Results238

We did not observe any large qualitative differences between the negative binomial (NB) and probit models of our239

framework. As noted above, an interesting difference between the two models is the interpretation of the row and240
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column totals. Modeling counts means that row and column totals correspond to site and OTU total abundance,241

respectively, rather than species richness and OTU prevalence across sites as in the case of presence-absences. Even if242

the two are very similar, the latter has a more straightforward interpretation as alpha and beta diversity. We present the243

main results for both models below, but relegate figures associated to the probit model to the supplementary material.244

At the site level, without adjusting for differences among sites (i.e. not including ↵i ), host ecotype appeared as the245

major host-specific feature driving differences in microbiota structure (Figure 3A-B, S2A-B). After adjusting for site246

effects, while simultaneously accounting for host species identity, host phylogenetic relatedness and host ecotype, sites247

clustered, i.e., they harbored similar microbiota composition, to a lesser extent by host ecotype (Figure 3C-D, S2C-248

D). The variance partitioning showed that differences among sites in terms of abundance and richness were largely249

driven by host phylogenetic relatedness (Figure 4, S3), suggesting that ecotype is phylogenetically conserved within250

Porifera. It also indicates that composition among sites, similarly to abundance and richness, is confounded by site251

and host-specific features, such as geographic distance, host species identity, host phylogenetic relatedness and host252

ecotype. For example, a few sites clustered by host species (e.g., HMA hosts Aplysina cualiformis, Aplysina fluva,253

Ircinia felix, and Ircinia oros), but at closer inspection, the geographic distance between several of these sites were254

low (Figure 3C, Figure S2C). At the host-species level, hosts always clustered according to ecotype, indicating that255

the set of traits encompassing HMA and LMA hosts are indeed important for structuring the microbiota (Figure 5A-B,256

S4A-B).257

A closer look at ↵i , the parameter adjusting for site effects, showed that sites belonging to the same host species and258

sites belonging to either of the two host ecotypes often had similar posterior means, with HMA hosts typically having259

narrower credible intervals (Figure 6A, S5A). However, these differences were not present in the mean parameter260

of ↵i , i.e., the µ(host)s[r] (Figure 6B, S5B), further indicating that microbiota composition, more than differences in261

abundance and richness, is driving the observed HMA-LMA dichotomy.262

We did not find any distance-decay relationship where microbiota similarity among sites decrease with increasing263

geographic distance. However weak, we observed that HMA and LMA hosts had opposite slopes in the model not264

controlling for site effects, indicating that LMA microbiota may be more influenced by local environmental conditions265

(Figure S1, S6). Interestingly, for the NB model, the slope of LMA hosts switched sign in the model adjusted for site266

effects. (Figure S1).267

We generated OTU-to-OTU association networks where links between OTUs represented either positive and nega-268

tive abundance correlations and co-occurrences with at least 95% posterior probability. On one hand, by not adjusting269

for site effects, correlations between OTUs are induced by not only OTU-specific effects, but also by site and host-270
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specific features. We found many more correlations in the model not controlling for site effects (Figure 7A-B, S7A-B)271

compared to the model that did (Figure 7C-D, S7C-D). The site level (Figure 7A-C, S7A-C) generally had more cor-272

relations compared to the host species level (Figure 7B-D, S7B-D). On the site level, correlations were likely induced273

by, in addition to host-specific features, site effects such as geographic distance, coexisting host species and/or sim-274

ilar environmental preferences among OTUs, whereas on the host species level, correlations were only induced by275

host-specific features. The probit model detected more correlations on both levels compared to the NB model (Fig-276

ure S7). This is likely due to the difference in the nature of the correlations, i.e., co-occurrences (probit model) versus277

abundance correlations (NB model).278

Discussion279

Discerning amongst the many processes structuring microbiotas is one of the big new challenges facing ecology280

and evolution. However, the complexity of these communities often preclude their understanding, and we currently281

lack a mechanistic view of the processes structuring these systems. Motivated by these challenges, we developed a282

joint species distribution modeling (JSDM) framework to enhance our understanding of how host-specific features283

influence and structure the microbiota, both in terms of the abundance/species richness and composition of microbes.284

The presented framework builds upon and extends existing JSDMs by specifically targeting the hierarchical structure285

typically characterizing microbiota data. For example, our framework can be seen as microbiota adapted phylogenetic286

generalized linear mixed models where we model host species traits and phylogenetic relatedness on the rows of the287

response matrix, as opposed to on the columns as seen in the typical specification of these models ([14]).288

Whether host phylogeny and/or host traits structure the microbiota reveal important information about the under-289

lying processes. We found a strong phylogenetic signal on microbial abundance and species richness among hosts,290

but at the same time, we did not observe a clear clustering by host phylogeny. Instead, the sponge-microbiota always291

showed a strong clustering by host traits (i.e. HMA/LMA), indicating (1) that host traits may be phylogenetically292

conserved within Porifera and/or (2) that the microbiota may be adapted to the different host environments associated293

with the two traits. Traditional ordination methods, such as principal coordinate analysis (PCoA) and non-metric mul-294

tidimensional scaling (NMDS) does not allow for such a systematic dissection of the patterns and the likely processes295

structuring host-microbiotas.296

Other advantages compared to traditional ordination methods are that model-based ordination is implemented and297

developed by directly accommodating the statistical properties of the data at hand ([12]). Failure to account for, e.g.,298
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the mean–variance relationship can lead to misleading results (see [41] for details and discussion). Another advantage299

of our modeling framework is that the constructed ordinations are able to distinguish between microbiota composition300

and structure. For instance, we found that on the host species level, ecotype (HMA/LMA) emerged as the major host-301

specific feature driving microbiota structure and composition, whereas on the site level, structure and composition302

was confounded by numerous factors. Furthermore, calculating total variance and partitioning this into components303

reflecting variation attributable to different host-specific features, such as host traits and phylogenetic relatedness,304

allows researchers to assess the relative importance of possible ecological processes.305

It has become increasingly popular in microbial ecology to visualize OTU-to-OTU association networks from306

correlations (e.g. [8, 43]). A key feature of the presented framework is the use of latent factors as a parsimonious307

approach for modeling correlations between a large number of taxa. Beyond OTU-specific effects, such as e.g.,308

interspecific interactions, correlations amongst OTUs may be induced by site and/or host-specific features. Therefore,309

by modeling the microbiota on multiple levels of biological organization, while simultaneously controlling for site310

effects and its hierarchical structure (i.e. the host-specific features), it is possible to gain a better understanding of the311

possible interaction structures. However, as these associations are of correlative nature, they should not be regarded as312

ecological interactions, but merely as hypotheses of such ([24, 35]).313

Finally, the presented framework can readily be applied to a wide range of microbiota systems spanning multiple314

levels of biological organization, where the main interest lies in teasing apart the relative importance among host-315

specific features in structuring the microbiota. It can further be adapted to accommodate additional information, such316

as e.g., phylogenetic relatedness among microbes, spatial distance between sites, and/or environmental covariates317

directly acting on the hosts. Such a flexible modeling framework offers many exciting avenues for methodological318

advancements that will help to enhance our understanding of the numerous processes structuring host-microbiotas.319
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Figure 1: Overview of the broad spatial scale for which the data is distributed. Each point represents a collection site

and each color represents a host species. Note that some host species coexist within the same site. See Table S1 for

more detailed information.
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Figure 2: Conceptual figure of the modeling framework. Panel A shows a schematic figure of the response matrix.

While columns correspond to OTUs, rows have a hierarchical structure where sites are nested within host species which

are further nested within host traits (High Microbial Abundance (HMA) and Low Microbial Abundance (LMA)). At

the host species level, the framework also accounts for phylogenetic relatedness. Panel B shows the two different

joint species distribution models (JSDMs) with latent factors for site (S) and host species (H) level, each representing

a different level of biological organization. The g(·) represents the different link function associated to the different

response types. Panel C shows the corresponding output; because model (1) does not include site effects, its resulting

ordination constructed from the latent factors are in terms of microbiota structure (i.e., a composite of abundance

and composition), and because model (2) includes site effects, its resulting ordination constructed from the latent

factors are in terms of microbiota composition only. The OTU-to-OTU association networks constructed from the

corresponding factor loadings also differ for the two JSDM models. Note that ordinations and association networks

are produced both on the site and host species level, respectively. Finally, as the site effects are nested within the host-

specific features, model (2) partition variance in microbiota abundance or species richness into components directly

reflecting the included host-specific features.
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Figure 3: Model-based ordinations on the site level. Panel A and B show the model-based unconstrained ordination

without site effects included. In panel A, sites are colored by host species and ecotype are depicted by different shapes

(HMA=circles, LMA=diamonds), while in panel B sites are colored by ecotype only (HMA=blue, LMA=green). Panel

C and D show the model-based unconstrained ordination with site effects included. In panel C, sites are colored by

host species and ecotype is depicted by different shapes (HMA=circles, LMA=diamonds), while in panel D sites are

colored by ecotype only (HMA=blue, LMA=green).
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Figure 4: Explanatory power of the included host-specific features. The proportion of variance in terms of total

abundance among sites explained by the included host-specific features. Yellow corresponds to variance explained

by host species identity, blue to host phylogenetic relatedness, green to variance within ecotypes, and finally red

corresponds to variance explained by differences among the two ecotypes.
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Figure 6: Variation in OTU abundance across sites and host species. Panel A shows a caterpillar plot for the parameter

controlling the site effects, i.e., ↵i . Each row correspond to a sites, colored by host species. The colored shape represent

the posterior mean (± SD). The two ecotype are depicted by different shapes (HMA=circles, LMA=diamonds). Panel

B shows a caterpillar plot for ↵i ’s mean parameter, i.e., the µ(host)s[r]. Rows correspond to host species colored by

ecotype (HMA=blue, LMA=green). The vertical dashed lines correspond to the grand mean of each ecotype. Panel C

shows the posterior probability distribution of µ(host)s[r] for HMA (blue) and LMA (green), respectively.
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Figure 7: OTU-to-OTU association networks. Nodes represent OTUs with assigned taxonomy at the phylum-level,

and links correspond to abundance correlations with at least 95% posterior probability. The top panel (A & B) shows

networks generated from the model without site effects, thus correlations between OTUs are induced by both site and

host-specific features as well as OTU-specific effects. The bottom panel (C & D) shows networks generated from the

model with site effects included, thus correlations between OTUs are only OTU-specific effects. Panel A & C shows

the association network for the site level and panel B & D shows the network for the host species level.
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