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Abstract 19 

This study presents a comprehensive and quantitative evaluation of the mean state of 20 

summer atmospheric circulation over East Asia. Attention is paid to the South Asian high 21 

(SAH), western North Pacific subtropical high (WNPSH) and Indian low (IL) at the upper, 22 

middle and lower troposphere, respectively. A total of 31 state‐of‐the‐art climate models 23 

from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are used as examples 24 

for the analysis. Most models can basically simulate the three closed‐circulation systems 25 

(CCSs), although there is a certain inter‐model spread and an underestimation of their 26 

intensity. In terms of geographic location, models demonstrated the best performance for 27 

SAH and the poorest performance for WNPSH. The latter shows a generally south‐28 

westward shift compared to the National Centers for Environmental Prediction (NCEP) 29 

reanalysis. Five atmospheric fields (zonal and meridional wind at 850 hPa, geopotential 30 

height at 500 and 100 hPa and sea level pressure) are inspected and generally well 31 

reproduced in models, with Taylor‐S indices all larger than 0.84 for 90% of the models. 32 

The best performance is for the geopotential height of 500 hPa with an average Taylor‐S 33 

index of 0.98. Models’ skill in simulating the sea level pressure is the lowest. However, a 34 

significant positive correlation with models' resolution is observed. Almost all models 35 

underestimate the 100 hPa geopotential height over East Asia, mainly due to the common 36 

cold bias in the troposphere. As a whole, CCSM4, CNRM‐CM5, CESM1‐CAM5 and 37 

NorESM1‐M are identified as high‐skill models for simulating the East Asian atmospheric 38 

circulation. High‐skill models also show better simulation of precipitations in East China, 39 

with a 21.3% decrease of dry biases in Southeast China. The physical explanation for this 40 
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linkage is also reported to reside in the central position of the WNPSH, which determines 41 

the quality of 850 hPa winds and water vapour transport in Southeast China. 42 

Key words atmospheric circulation, closed-circulation systems, CMIP5 models, western 43 

North Pacific subtropical high, Indian low, South Asian high, monsoon precipitation 44 

1 Introduction 45 

Atmospheric general circulation, allowing energy and water vapour to be redistributed 46 

over the Earth, is the most important factor controlling climate variation at both the global 47 

and regional scales. It contains a certain number of closed‐circulation systems (CCSs) that 48 

can be either permanent or temporary and can exert profound impacts on regional climate. 49 

Many studies in the literature use this concept to investigate regional climate variability (e.g., 50 

Rossby, 1939; Akiyama, 1975; Khon and Mokhov, 2006; Han and Wang, 2007; Gamble et 51 

al., 2008; Li et al., 2011; Hameed and Reimer, 2012; Wang et al., 2012; Seo et al., 2013; Sun 52 

et al., 2017). 53 

For East China, past studies demonstrated three dominant CCSs in summer. They are 54 

the Indian low (IL), western North Pacific subtropical high (WNPSH) and South Asian high 55 

(SAH). They have significant impacts on the regional precipitation. For example, moisture 56 

from the tropical oceans is transported to East China through the southerly flow at the western 57 

periphery of the WNPSH. Rainfall occurs at the north‐western margin of the WNPSH, where 58 

warm moisture and cold air from high latitudes converge (Meehl et al., 2005; Zhou and Yu, 59 

2005; Han and Wang, 2007; Liu et al., 2014; Preethi et al., 2017). A stronger IL, accompanied 60 
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by stronger water vapour transport at low latitudes, leads to increased rainfall in North China 61 

(Zhang, 2001; Liu and Ding, 2008; Ren et al., 2011). 62 

Global climate models (GCMs) are primary tools for climate predictions and future 63 

climate projections. Evaluating the performance of atmospheric circulation in GCMs can 64 

increase our confidence in future projection. Much research directly considered atmospheric 65 

fields when evaluating model performance for the Asian monsoon (e.g., Duan et al., 2013; 66 

Gong et al., 2014; Jiang and Tian, 2013; Jiang et al., 2015; 2016; Li et al., 2018; Song and 67 

Zhou, 2014a, 2014b; Sperber et al., 2013; Xu et al., 2017; Wei et al., 2014; Zhou et al., 2018a). 68 

However, they rarely paid attention to model performance in terms of CCSs and their 69 

consistency with the relevant atmospheric fields. For those studies focusing on the SAH and 70 

the WNPSH (Liu et al., 2014; Qu and Huang, 2014; He and Hu, 2015; Tian et al., 2016; Xue 71 

et al., 2016), there is a general lack of consideration of models’ systematic cold biases, which 72 

lower the geopotential height. It is worth noting that some recent studies used eddy 73 

geopotential height to measure the WNPSH, which partially overcomes the issue of 74 

geopotential height rise under global warming (He et al., 2015; Huang and Li, 2015; Huang 75 

et al., 2015; Wu and Wang, 2015; He et al., 2018). However, all types of biases cannot be 76 

corrected for using the concept of eddy geopotential height. 77 

Wang et al. (2007, 2010) proposed an alternative algorithm dealing with a CCS, which 78 

provides a unified definition of indices, including centre position and intensity, to suitably 79 

describe CCSs. The algorithm, together with a few adaptations and ameliorations, is 80 

described in next section. 81 
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The main objective of this study is twofold. First, we aimed to document CMIP5 model 82 

performance in simulating the mean state of atmospheric fields and main CCSs over East 83 

Asia and to study models consistency among different evaluated targets. Second, we wanted 84 

to investigate how biases in atmospheric circulation exert impacts on biases in precipitation. 85 

This paper is organized as follows: Section 2 shows the data and methodology. Section 86 

3 presents a comprehensive assessment and consistency comparison of the atmospheric fields 87 

and the major CCSs. Section 4 discusses the influence of simulated atmospheric fields and 88 

CCSs on the simulated precipitation in eastern China. Section 5 presents final conclusions 89 

for the whole work.  90 

2 Data and Methods 91 

2.1 Models, Simulations and Reference Data      92 

Our study area covers a large zone in East Asia, 10–70°N, 60–160°E. The regional mean 93 

state of atmospheric circulation is evaluated for 45 years, from 1961 to 2005. Variables from 94 

31 CMIP5 models are used in this study, including monthly geopotential height at 100 hPa 95 

(Z100) and 500 hPa (Z500), zonal (U850) and meridional (V850) wind at 850 hPa, sea level 96 

pressure (SLP), atmospheric temperature and daily precipitation accumulation. Only one 97 

historical run is chosen for each model (r1i1p1) to ensure that the evaluation is unbiased. 98 

Table 1 shows the relevant basic information of these CMIP5 models. To facilitate the 99 

comparison, a bilinear interpolation scheme was used to transform variables from their native 100 

grids to a 2.5 × 2.5° common grid. The three CCSs evaluated in this study are listed in Table 101 

2. 102 
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Table 1 Acronyms, resolutions and institutions of the 31 CMIP5 Models. The first 103 

column shows models serial number in this paper, listed in alphabetic order. Expansions of 104 

model acronyms are available at http://www.ametsoc.org/PubsAcronymList 105 

No. Models name LON. × LAT. Modeling center or group 

1 ACCESS1.0 1.875°×1.25° Commonwealth Scientific and Industrial Research 

Organization and Bureau of Meteorology 2 ACCESS1.3 1.875°×1.25° 

3 BCC-CSM1.1 ～2.8125°×2.8125° Beijing Climate Center, China Meteorological 

Administration 4 BCC-CSM1.1(m) ～1.125°×1.125° 

5 BNU-ESM ～2.8°×2.8° Beijing Normal University 

6 CanESM2 ～2.8125°×2.8125° Canada Center for Climate Modeling and Analysis 

7 CCSM4 0.9°×1.25° US National Centre for Atmospheric Research 

8 CESM1-CAM5 0.9°×1.25° Commonwealth Scientific and Industrial Research 

Organization and Bureau of Meteorology 

9 CMCC-CM 0.75°×0.75° Centro Euro-Mediterraneo per Ⅰ Cambiamenti 

Climatici 10 CMCC-CMS 1.875°×1.875° 

11 CNRM-CM5 ～1.4°×1.4° Centre National de Recherches Meteorologiques-

CERFACS 

12 EC-EARTH ～1.125°×1.125° EC-EARTH consortium 

13 FGOALS-g2 2.8125°×2.8125° Institute of Atmospheric Physics, Tsinghua 

University 

14 FGOALS-s2 2.81°×1.66° Institute of Atmospheric Physics, Chinese Academy 

of Sciences 

15 GFDL-CM3 ～2.5°×2.0° NOAA Geophysical Fluid Dynamics Laboratory 

16 GFDL-ESM2G ～2.5°×2.0° 

17 GFDL-ESM2M ～2.5°×2.0° 

18 HadCM3 3.75°×2.5° Met Office Hadley Centre 

19 HadGEM2-CC 1.875°×1.25° 

20 HadGEM2-ES 1.875°×1.25° 

21 IPSL-CM5A-MR 1.25°×2.5° Institut Pierre Simon Laplace 

22 IPSL-CM5A-LR 1.5°×3.75° 

23 MIROC4h 0.5625°×0.5625° University of Tokyo, National Institute for 

Environmental Studies Japan Agency for Marine -

Earth Science and Technology 
24 MIROC5 1.40625°×1.40625° 

25 MIROC-ESM 2.8125°×2.8125° 

26 MIROC-ESM-CHEM 2.8125°×2.8125° 

27 MPI-ESM-LR ～1.8°×1.8° Max Plank Institute for Meteorology 

28 MPI-ESM-MR ～1.8°×1.8° 

29 MPI-ESM-P ～1.8°×1.8° 

30 MRI-CGCM3 1.125°×1.125° Meteorological Research Institute 

31 NorESM1-M 2.5°×1.9° Norwegian Climate Centre 
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Table 2 Closed-circulation systems and their corresponding original fields from which they 106 

are deduced.  107 

Acronyms Closed-circulation systems Original fields 

IL India Low sea level pressure 

WNPSH 
western North Pacific subtropical 

high 
500hPa geopotential height  

SAH South Asian High 100hPa geopotential height  

In terms of observations used as a reference, we use reanalysis data from the National 108 

Centers for Environmental Prediction ‐ National Center for Atmospheric Research 109 

(NCEP/NCAR), with a resolution of 2.5 × 2.5°. For precipitation, a high‐quality gridded 110 

dataset deduced from surface stations in China with a resolution of 0.5 × 0.5° is used as the 111 

reference (Chen et al., 2010).  112 

2.2 Model Performance Metrics     113 

2.2.1 Taylor Diagram       114 

Taylor Diagram (Taylor, 2001) is designed to assess the matching degree of spatial 115 

pattern between models and the reference. It is a diagram summarizing the centered (spatial 116 

mean removed) root-mean square error (RMSE), correlation coefficient R and ratio 𝜎𝑓 of 117 

standard deviations (RSD) between models and the reference. Two of the three parameters 118 

are independent and the third one can be deduced. Taylor-S index (Taylor, 2001) uses the 119 

two independent parameters to form a combined indicator useful for quantitative evaluation: 120 

( ) ( )
2

0

4(1 )

1/ 1f f

R
S

R 

+
=

+ +

                                                      (1) 121 
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where R0 is the maximum correlation attainable (R0 = 1 in this study). 122 

2.2.2 Indices for describing closed-circulation systems   123 

A complete set of Closed-Circulation-System Indices (CCSI) proposed by Wang et al. 124 

(2007, 2010) is used to quantitatively describe closed-circulation systems, including center 125 

position ( c , c ) and intensity P. In previous studies using CCSI, the critical isobar (the 126 

largest closed iso-line) f0 in the calculation of CCSI was generally determined by a 127 

predefined climatological value (e.g. Ren et al., 2011; Sun et al., 2013, 2017; Wang et al., 128 

2012). In order to reduce the bias of f0 selection, the most outside closed iso-line of the 129 

closed-circulation system is defined as the critical isobar f0 in this study. Ω is the domain 130 

where the main body of the closed circulation system locates. Computational domain D is 131 

the common area of Ω and f0. Take the western North Pacific subtropical high from NCEP 132 

data as an example, the geopotential height at 500hPa is shown in Fig. 1. Ω is the blue box 133 

domain (110-180°E，0-40°N), critical isobar f0 is the outer edge of the cyclone circulation 134 

(5860gpm shown here as bold black contour), and D is the shaded domain. For the South 135 

Asian high and the Indian low, the search domains Ω are (110-180°E, 10-50°N) and (30-136 

100°E, 10-40°N) respectively. 137 

 138 
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Figure 1. WNPSH from NCEP represented by climatological geopotential height at 500hPa as 139 

example to show the critical isobar f0, search domain Ω, and computational domain D 140 

By denoting r as the positions vector for the grid ( ),   on the Earth sphere, ( )rf  141 

represents the geopotential height at gird ( ),  , and f0 represents the value of critical isobar. 142 

The intensity index P is the area integral of the values of geopotential height difference 143 

fields ( 
0( )rdf f f= − ) in domain D. The center position index ( c , c ) is the barycenter of 144 

the difference fields df. The position vector for ( c , c ) is represented by rc. P and c , c  can 145 

be calculated from the following equation:   146 

( ) 0,
D

P f f ds 
 

= − 
 
                                                         (2) 147 

 ( ) 0 ( ) 0r r rc

D

f f ds− −  =                                                               (3) 148 

The value of P is positive for high-pressure center, and negative for low-pressure center. 149 

For the high-pressure center, larger the value of P, stronger the closed-circulation system is, 150 

the low-pressure center converses. We define the radius of the earth as a unit radius, so unit 151 

of P is Pa•rad2 for the Indian Low and gpm•rad2 for the South Asian high and western North 152 

Pacific subtropical high. A square of 1 rad2 corresponds to Earth surface area of 40.6 million 153 

km2 at equator, and decreases with cosine of the latitude. 154 

For the evaluated models, Ω is the same as in NCEP for each circulation system, but 155 

the critical isobar f0 varies from one model to another. f0 of each model shows its 156 

systematical bias. It can be considered as a comprehensive parameter of each individual 157 

model. By using the last closed iso-line of a closed-circulation system as its critical isobar, 158 
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we can easily deduce that the intensity parameter actually reveals the spatial gradient of the 159 

closed-circulation system, an important measure for any geophysical flow. It is clear that 160 

the proposed CCS indices can objectively represent the properties of any closed-circulation 161 

systems in climate models. 162 

2.2.3 Comprehensive Ranking Measure MR   163 

To assess model’s performance and consistency among multiple properties and indices, 164 

the comprehensive ranking measure MR as defined in Radić and Clarke (2011) is used in this 165 

study: 166 

 
( ) 1

1
1

m

R i

i

M rank
n m =

= −


                                                          (4) 167 

where m is the number of indices entering into the calculation, n is the number of 168 

evaluated models. ranki is the model performance rank for the index i. The closer the value 169 

of MR to 1, the better the model comprehensive performance is (Chen et al., 2011; Jiang et 170 

al., 2012, 2015; You et al., 2018). 171 

3 Models Performance in the Mean State of Atmospheric Circulation 172 

This section gives firstly models performance in simulating the mean state of five 173 

atmospheric fields with the Taylor-S index. It pursues by a presentation of models 174 

performance in simulating the mean state of three closed-circulation systems with CCS 175 

indices. Finally, models consistency and comprehensive capabilities are evaluated with MR 176 

index.  177 
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3.1 Evaluation of Atmospheric Fields         178 

Figure 2 displays the Taylor diagram showing the performance of models in simulating five 179 

atmospheric fields with NCEP data as reference. The number next to each point corresponds 180 

to models order listed in Table 1. We can see that the five atmospheric fields are well 181 

reproduced, with correlation coefficients all larger than 0.6. Models have the best skill in 182 

simulating the geopotential height, especially the 500hPa geopotential height (Z500), for 183 

which models also show the smallest inter-model spread. Such a result is in agreement with 184 

previous studies (e.g. Belleflamme et al., 2013; Gong et al., 2014; Tian et al., 2016).   185 

 186 

Figure 2. Taylor diagram obtained from five atmospheric fields, Sea Level Pressure (SLP), zonal 187 

(U850) and meridional wind (V850) at 850hPa, and geopotential height at 100hPa (Z100) and 500hPa 188 

(Z500), and from 31 CMIP5 models. Radial lines emanating from the origin (0.0, 0.0) display the 189 

spatial correlation coefficients between simulations and the reference NCEP, radial circles show 190 
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models standard deviations normalized by their counterpart from NCEP, and solid circles indicate the 191 

root-mean square difference between models and NCEP field. The number next to each point 192 

corresponds to the model number listed in Table 1. 193 

The Taylor-S index for Z500 varies from 0.93 to 0.998, with the average value of 0.98. 194 

For 100hPa geopotential height (Z100), the Taylor-S index ranges from 0.72 to 0.995 with 195 

average value of 0.92. Most models have their spatial correlation coefficients with NCEP 196 

larger than 0.9. However, there is a large inter-model spread for the spatial variance, with the 197 

normalized standard deviations from 0.4 to 1.51. In addition, all models, except 198 

CanESM2(6#), have negative bias (lower height) for Z100 compared with NCEP. The 199 

underestimation of Z100 is not a local manifestation in East Asia, but occurs over the globe. 200 

The vertically averaged temperature (VAT) between the surface and isobaric surface p = 100 201 

hPa are calculated for NCEP data and CMIP5 models outputs. Results show that all models 202 

have a globally-averaged cold bias. The inter-model correlation between the bias of VAT 203 

and the bias of 100hPa geopotential height is 0.55, as shown in FIG. 3.  204 

 205 
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Figure 3. Scatter diagram showing the globally-averaged biases of tropospheric temperature 206 

(abscissa-axis) and the globally-averaged biases of 100hPa geopotential height (ordinate-axis) from 207 

the 31 models. R is the inter-model correlation coefficient between the two biases. The red solid line 208 

is the linear regression. 209 

Models have the lowest skill in simulating sea level pressure (SLP), with average 210 

Taylor-S index of 0.79. There is a large inter-model spread and the correlation coefficients 211 

with NCEP vary from 0.6 to 0.95. Models performance in simulating SLP seems largely in 212 

connection with models resolution. The inter-model rank correlation coefficient between the 213 

Taylor-S index for SLP and models resolution is as high as 0.6. Another feature revealed by 214 

the Taylor diagram is that all models overestimate the spatial variance of SLP, since the 215 

normalized standard deviations (radial circles) against NCEP data are all above 1.0. Models 216 

can reasonably reproduce 850hPa zonal and meridional wind. Correlation coefficients with 217 

NCEP vary from 0.75 to 0.95. Models have a similar performance in zonal and meridional 218 

winds, their Taylor-S indices being of 0.89 and 0.88 respectively.  219 

Table 3 Spearman rank correlation coefficients for each pair of two rankings among the five 220 

atmospheric fields (SLP, U850, V850, ZG500 and ZG100) and the three closed-circulation 221 

systems. Bold figures show the statistical significance at  = 0.05 level (tα,31 = 0.344). The 222 

ranking for the atmospheric fields was based on their Taylor-S values, and the ranking for 223 

the closed-circulation systems was based on their absolute biases evaluated through the close-224 

circulation-system indices.  225 

  SLP U850 V850 ZG500 ZG100 WNPSH SAH 
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U850 0.37       

V850 0.43 0.73      

ZG500 0.24 0.38 0.35     

ZG100 0.27 0.31 0.43 0.26    

WNPSH 0.28 0.11 0.27 0.07 0.31   

SAH 0.27 0.26 0.43 0.34 0.53 0.44  

IL 0.44 0.01 0.13 0.27 0.09 0.08 0.24 

To evaluate models consistency among the five atmospheric fields, inter-model rank 226 

correlation is calculated and shown in Table 3. Models rank was determined with the Taylor-227 

S index, higher Taylor-S index corresponding to higher rank. We can see that models have 228 

the best consistency between zonal wind and meridional wind, with the rank correlation 229 

coefficient reaching 0.73. Moreover, models rank for 850hPa meridional wind has a good 230 

correlation with the rank from other fields. Although models rank can be divergent among 231 

different atmospheric fields, the high-skill models, such as CCSM4 (7#) and CNRM-CM5 232 

(11#), have an excellent behavior for almost all variables.  233 

3.2 Evaluation of closed-circulation systems  234 

Center location and intensity of the South Asian high (SAH), Indian low (IL) and western 235 

North Pacific subtropical high (WNPSH) simulated by CMIP5 models and from NCEP data 236 

can be assessed with the closed-circulation-system indices which allow the removal of 237 

models systematic but less-or-not-relevant biases such as too-low geopotential height in 238 

models. Results are shown in FIG. 4.  239 
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 240 

 241 

Figure 4. The three closed-circulation systems represented in the upper panel for the South Asian 242 

high (SAH) and in the lower panel for the Indian low (IL) and western North Pacific subtropical high 243 

(WNPSH). Solid contours show their limitation boundaries as depicted in NCEP reanalysis: the line 244 

16750 gpm at 100 hPa for SAH, the line 1004 hPa at sea level for IL, and 5860 gpm at 500 hPa for 245 

WNPSH. Dashed contours are the counterpart from models as an ensemble mean. Center position 246 

and intensity for each CMIP5 individual model are plotted for the three closed-circulation systems 247 

respectively. Position is marked by either triangles or inverted triangles. Intensity is shown with the 248 

size and form of the symbols: an inverted triangle if | P_model | < | P_ncep | and a triangle if | P_model 249 

| > | P_ncep |. The size of the symbols represents amplitude of the deviation. The position of the multi-250 

model ensemble is marked by a solid and black inverted triangle, and the position of NCEP by a solid 251 

black circle. 252 
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It can be seen that, although there is a large inter-model spread for the simulated center 253 

location, all models have the basic capability of simulating the three closed-circulation 254 

systems. Models have the best performance and the smallest inter-model spread in simulating 255 

the location of SAH, the average value and standard deviation of distances between models 256 

and NCEP being 599 km and 418 km respectively (Table 4). Most models simulate a 257 

southeast-shifted center of SAH compared with NCEP (FIG.4). The inter-model correlation 258 

coefficient between simulated bias in center latitude and longitude of SAH is -0.6. 71% of 259 

models underestimate the intensity of SAH. The inter-model rank correlation coefficient 260 

between the center position and intensity of SAH is 0.67. It indicates that, for SAH, models 261 

with high skill in simulating the center location usually have good performance for intensity. 262 

Table 4 Average distance of simulated closed-circulation system from their counterpart 263 

in NCEP, together with the standard deviation among models. Unites: km. 264 

  Indian Low South Asian high western North Pacific subtropical high 

Average distance  952 599 805 

Standard deviation  505 418 586 

There is a large inter-model spread for the location of IL. Two-thirds of the models 265 

simulate a northeast-ward shift compared with NCEP. Inter-model correlation coefficient 266 

between biases in center latitude and those in longitude is 0.89, which explains why models 267 

tend to be on a diagonal line from southwest to northeast. It is also interesting to note that 268 

those models situated in the northeast side of NCEP in Fig. 4b all underestimate the intensity. 269 

The largest inter-model spread for center position is from WNPSH (Table 4). Most models 270 

have a southwest-shifted center. Only 4 models simulate a north-shifted center of WNPSH 271 
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compared with NCEP. Nearly half of the models simulate a stronger WNPSH, but most of 272 

the positive deviations are small.  273 

 274 

Figure 5. Three-dimensional scatterplot for the three comprehensive indices MR from ranking 275 

performed on the three closed-circulation systems, Indian low (IL), South Asian high (SAH) and 276 

western North Pacific subtropical high (WNPSH) respectively. Numbers over each point are 277 

consistent with models serial number shown in Table 1. Following their comprehensive performance 278 

ranking, models in the top third are plotted in red color, while those in the bottom third are in blue. 279 

Figure 5 shows the scatterplot of comprehensive indices MR for the Indian low (IL), 280 

South Asian high (SAH) and western North Pacific subtropical high (WNPSH). The 281 

performance of models is quite divergent among the three closed-circulation systems. The 282 

rank correlation coefficient between WNPSH and IL is only 0.08 (Table 3) indicating almost 283 

no correlation at all. It is to be noted that, despite divergent performance for CMIP5 models 284 

in simulating the three closed circulation systems, top ranked models and bottom ranked 285 

models have good consistency respectively. For example, BCC-CSM1.1 (m) (4#) and 286 
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CCSM4 (7#) have an excellent performance for all the three closed circulation systems. 287 

CMCC-CM (9#) and CMCC-CMS (10#) have the poorest performance for the circulation 288 

systems.  289 

3.3 Comprehensive Performance and Consistency 290 

To evaluate models consistency among different variables, Figure 6 shows models rank for 291 

each evaluated variable by color blocks. For atmospheric fields, models are ranked by their 292 

Taylor-S index, with high value corresponding to good rank. For closed-circulation systems, 293 

models are ranked according to their absolute biases of the relevant indices. In Fig. 6, models 294 

rank is consistently indicated with colors as in the color bar. From top to bottom, models 295 

comprehensive performance determined by multiple MR goes from the best to the worst. It 296 

can be seen that the rank of a model depends on the selection of assessment variables. This 297 

result seems in agreement with a few previous studies (Gleckler et al., 2008; Jiang et al., 298 

2016; Ou et al., 2013; Radić et al., 2011; Sheffield et al., 2013a, 2013b; Su et al., 2013; Xu 299 

et al., 2017). We can note, however, that top ranked models and bottom ranked models have 300 

good consistency. Bad consistency is mainly manifested in the models at middle levels of the 301 

ranking. Results shown in Fig. 6 can serve as guidance for selecting global models outputs 302 

for regional climate downscaling, and can provide useful information for climate projection 303 

within a framework of multi-model ensemble, models ranking being useful in assigning 304 

weight for each model.  305 
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 306 

Figure 6. Portrait diagram with color blocks showing models ranking (as indicated by the color label 307 

bar) performed separately on the five atmospheric fields: sea level pressure (SLP), zonal (U850) and 308 

meridional (V850) wind at 850hPa, and geopotential height at 500hPa (ZG5) and 100hPa (ZG1); and 309 

on the three closed-circulation systems: western North Pacific subtropical high (WNPSH), South 310 

Asian high (SAH) and Indian low (IL). Models acronyms listed on the right follow their total record 311 

of ranking. From top to bottom, models go with decreasing performance.  312 

Inter-model correlation between each pair of two rankings are calculated and shown in 313 

Table 3 which allows us to examine the consistency between closed-circulation systems and 314 

their original atmospheric fields from which they are deduced (listed in Table 2). The South 315 

Asian high has the best consistency with 100hPa geopotential height, the rank correlation 316 

coefficient being 0.53. The Indian low shows a rank correlation coefficient of 0.44 with the 317 
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sea level pressure. Finally, the western North Pacific subtropical high has the poorest 318 

correlation with 500hPa geopotential height, the rank correlation being only 0.07.  319 

 320 

Figure 7. Scatter diagram for models comprehensive index from atmospheric fields (x axis: including 321 

sea level pressure, geopotential height at 100hPa and 500hPa, zonal wind and meridional wind at 322 

850hPa) and that from closed-circulation systems (y axis: Indian low, South Asian high and western 323 

North Pacific subtropical high). Number next to each point is consistent with models serial number 324 

shown in Table 1. R is the correlation coefficient between the two measures in X axis and Y axis.  325 

Let us now examine how the comprehensive index MR from the closed-circulation 326 

systems is consistent with that from the corresponding atmospheric fields. The scatter 327 

diagram in Fig. 7 displays each model as a point with its ordering number, the x-axis being 328 

the comprehensive index MR from all atmospheric fields, and the y-axis being that from all 329 

closed-circulation systems. Models situated in the upper right corner have the best 330 

performance in the two indices from both the closed-circulation systems and their 331 

corresponding atmospheric fields, while converse in the bottom left corner. There would be 332 

a perfect consistency between the models performance in simulating the two properties if all 333 
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dots in Fig. 7 were on the diagonal. The actual inter-model correlation coefficient between 334 

the two is 0.41. It would be significantly increased (value =0.62) if models BCCCSM1.1(m) 335 

(4#), CMCC-CMS (10#) and GFDL-CM3 (15#) (at the periphery of the collection of points) 336 

were kicked off from the ensemble. Figure 7 can also allow us to select high-skill models 337 

(red dots) and low-skill ones (blue dots) in a highly-synthetic way with consideration of MR 338 

from both atmospheric fields and closed-circulation systems. Red dots in Fig. 7 have MR 339 

values larger than 0.65. They are from CCSM4, CNRM-CM5, CESM1-CAM5 and 340 

NorESM1-M respectively. They can be qualified as high-skill models within our evaluation.  341 

4 Influence of atmospheric circulation on precipitation at inter-model level 342 

In observation as well as in numerical models, East Asian monsoon precipitation is 343 

closely related to atmospheric circulation in the region (He and Zhou, 2014; Song and Zhou, 344 

2014; Zeng et al., 2012; Zhou et al., 2018b). For example, there is a significant correlation 345 

between the low-level meridional wind jet and precipitation over East China. The western 346 

North Pacific subtropical high largely determines the East Asian summer monsoon rainfall 347 

band (He and Zhou, 2014; Song and Zhou, 2014). In this section, we want to check if similar 348 

relations exist between rainfalls in East Asia and regional atmospheric circulation within the 349 

framework of inter-model variability. In other words, we want to check if good models for 350 

circulation are also good for rainfalls. Since monsoon precipitation is dependent on many 351 

circulation factors, it is thus preferable to choose models following their comprehensive 352 

performance. High-skill models and low-skill models, as selected in the previous section, can 353 

be used to explore the impacts of atmospheric circulation biases on precipitation biases. As 354 

shown earlier, four models (CCSM4, CNRM-CM5, CESM1-CAM5 and NorESM1-M) are 355 
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selected for the high-skill models ensemble (HME), and FGOALS-g2, MIROC-ESM, 356 

MIROC-ESM-CHEM and IPSL-CM5A-LR are included in the low-skill models ensemble 357 

(LME). 358 

 359 

Figure 8. Taylor diagram for the five atmospheric fields (AFs) over East Asia and the precipitation 360 

distribution in East China. The assessment was done for the high-skill models ensemble (HME, in 361 

red) and the low-skill models ensemble (LME, in blue) respectively. The reference for atmospheric 362 

fields was from NCEP, and that for precipitation from surface observation. 363 

Figure 8 displays the Taylor diagram showing precipitation (solid symbols) in East 364 

China and atmospheric circulation fields (hollow symbols) over East Asia in HME (in red) 365 

and LME (in blue) respectively. For precipitation in East China, it is easy to see that HME 366 

remarkably reduces the deviation compared to LME, which obviously underestimates the 367 

spatial variability of precipitation. The standard deviation in HME is much closer to 368 

observation than in LME, their normalized standard deviations being 0.9 and 0.6 respectively. 369 
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In terms of geographic distribution of precipitations in East China, we perform an inter-370 

model empirical orthogonal function (EOF) analysis on the precipitation biases of 31 models 371 

in East China, to analyze the dominant modes of inter-model variations in the average 372 

precipitation bias. Figure 9 shows the first inter-model EOF mode which accounts for most 373 

(53.5%) of the total inter-model variance. It is characterized by the “wet-north and dry-south” 374 

structure of precipitation biases for the most models. Such a result that dry biases in Southeast 375 

China and wet biases in Northeast China is in agreement with previous studies (Chen et al., 376 

2014; Ou et al., 2013; Jiang et al., 2015). For PC1, all models from HME and LME have 377 

positive value. Such a situation is visible for both HME and LME as well, shown in Figure 378 

10. The dry biases in the south are smaller in HME than in LME by about 21.3%.  379 

 380 
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Figure 9. Upper panel shows the first EOF mode of the climatology precipitation bias in East China 382 

calculated by inter-model EOF from 31 models. Lower panel shows the corresponding PC, with red 383 

for positive value and blue for negative value. 384 

 385 

 386 

Figure 10. Distribution maps of average precipitation in summer in East China (contours, mm/day) 387 

from (a) observation, (b) high-skill models ensemble (HME) and (c) low-skill models ensemble 388 

(LME). Deviations from the observation are shown in shaded for HME and LME. 389 

 After exploring behaviors of the regional precipitation, we pursue our analyses on 390 

atmospheric fields and closed-circulation systems which can behave differently in HME and 391 

LME. Figure 8 shows clearly that there is a better performance for atmospheric fields in HME 392 

than in LME. The most obvious improvement is for 850hPa zonal and meridional wind 393 

(crosses and rhombuses). HME also has a better performance for all the three closed-394 

circulation systems. In particular, it shows prominent advantages for intensity of the Indian 395 

low and position of the western North Pacific subtropical high (Table 5). Compared to NCEP, 396 
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LME shows a westward shift about 9 degrees in longitude for the center of the western North 397 

Pacific subtropical high. LME also has a weaker Indian low, as the difference of intensity 398 

with NCEP is 31.21 Pa•rad2 (for low-pressure system, the intensity index is smaller than zero). 399 

For the South Asian high, LME has only a little decrease of performance compared to HME. 400 

Table 5 401 

Center Coordinates, Intensity (P) and critical isobar (f0) of the Indian low (IL), South Asian 402 

high (SAH) and western North Pacific subtropical high (WNPSH) from NCEP, and 403 

deviations from NCEP in HME and LME. Latitude is positive northward and longitude is 404 

positive eastward. Unites of P: Pa•rad2 for IL, gpm•rad2 for SAH and WNPSH. 405 

  

IL   SAH   WNPSH 

center P f0  center P f0  center P f0 

NCEP 
(66.1, 26.1) -54.3 1004  (73.3,33.3) 15.3 16750  (164.5, 27.8) 4.1 5860 

HME-NCEP (-1.9, -0.3) -5.2 0  (-0.1, -0.8) -0.8 -150  (0.2, -1.8) -1.1 0 

LME-NCEP (-6.7, -2.4) 31.21 4  (-2.3, -1.8) -0.8 -1400  (-8.7, -1.8) -3.6 -10 



Accepted manuscript, International Journal of Climatology, https://doi.org/10.1002/joc.6205 

 26 / 42 

 

 406 

Figure 11. Upper panel (a) shows 850hPa wind vectors (ms-1), 500hPa geopotential height (contours) 407 

and sea level pressure (shading) as depicted in NCEP reanalysis. Middle panel (b) shows 850hPa 408 

wind vectors (ms-1), the critical lines f0 to delimit the outside edge of the western North Pacific 409 

subtropical high (solid line in red) and the Indian low (dotted line in red) as depicted in HME (critical 410 

lines of NCEP reanalysis are also marked in black contours). Shading represents 850hPa meridional 411 
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wind deviation from NCEP (ms-1). Lower panel (c) is the same as (b), but for LME (critical lines are 412 

in blue instead of red). 850hPa wind vectors are omitted when smaller than 3 m/s in the three panels. 413 

From the above analyses, we can see that HME, with an improvement of the 414 

atmospheric circulation, does improve precipitations in East China. Similarly, LME with a 415 

deterioration of the atmospheric circulation shows bad performance for the regional 416 

precipitation. We want now to confirm this conclusion through compositing all models for 417 

HME and LME. We also want to investigate the relevant physics behind this relationship, in 418 

particular, how water vapor transport can influence wetness or dryness in the region. Figure 419 

11(a) shows 850hPa wind fields representing the low-level water vapor paths over and 420 

surrounding East Asia from NCEP data. It can be seen that, the main components of the water 421 

vapor paths for East China include the southwesterly flows along the east coast of the Arabian 422 

Peninsula, the southwesterly flows and westerlies extending from the Arabian Sea to the 423 

Philippines, the southerlies from the South China Sea, and the southeasterly flows along west 424 

flank of the Western North Pacific Subtropical High. Previous studies show that this water 425 

vapor path from the Arabian Sea to East China exerts an important influence on the 426 

precipitation in East China (Jiang et al., 2015; Simmonds et al., 1999; Tao and Chen, 1987; 427 

Xu et al., 2008).  428 

HME depicts well these water vapor paths. The southwesterly flows in East China are 429 

well reproduced, especially for the meridional wind fields in Southeast China (shaded in FIG 430 

11b), which are very close to what depicted in NCEP data. Moreover, HME has an excellent 431 

performance for both intensity and location of the Indian low and the western North Pacific 432 

subtropical high. The accurate simulation of the closed-circulation systems in the region can 433 
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certainly explain the good simulation of 850hPa wind fields. For LME, the western boundary 434 

of the western North Pacific subtropical high locates westward to around 110°E, shifted 435 

nearly 9 degrees in longitude compared with NCEP (FIG.11c). This situation, that is, under 436 

control of the high-pressure system and with too-strong southwest flows, is not favorable to 437 

generate precipitation in Southeast China. Hence, LME shows large dry biases in this region. 438 

This result is in agreement with our expectation. An accurate simulation of the regional 439 

closed-circulation systems, especially the western North Pacific subtropical high, is a 440 

guarantee to produce good precipitations in East China.  441 

5 Conclusion  442 

In this paper we revisited the issue about CMIP5 models capability of simulating the 443 

regional atmospheric general circulation in East Asia during summer when the summer 444 

monsoon plays a dominant role. The particularity of our investigation resides in the 445 

utilization of closed-circulation systems, a concept fully relevant and applicable in the region, 446 

but insufficiently explored until now in evaluation of climate models. We paid attention on 447 

three closed-circulation systems: the South Asian high (SAH), the western North Pacific 448 

subtropical high (WNPSH) and the Indian low (IL) at upper, middle and lower troposphere. 449 

All models can basically simulate the three closed-circulation systems, although there is a 450 

certain inter-model spread and most models underestimate the intensity of the three closed-451 

circulation systems. For the center location, models have the best performance for the South 452 

Asian high and the poorest performance for the western North Pacific subtropical high. The 453 

latter shows a westward shift by about 6 degrees in longitude in multi-model ensemble 454 

average, compared to NCEP reanalysis. 455 
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With a set of quantitative measures served as assessment tools, high-skill models which 456 

have good comprehensive performance for atmospheric circulation and low-skill models 457 

which have the opposite properties are identified respectively. The identification of models 458 

capability of simulating the regional atmospheric general circulation has a very pragmatic 459 

utility for climate downscaling, since it allows us to select driving models with an adequate 460 

consideration for uncertainties in climate simulation. Although the ranking of models 461 

depends on the actual measures used for assessment, both groups of high-skill models and 462 

low-skill models show consistent behaviors and performances among models for all 463 

measures. With our comprehensive and quantitative evaluation, CCSM4, CNRM-CM5, 464 

CESM1-CAM5 and NorESM1-M are identified as the high-skill models for simulating the 465 

East Asian atmospheric circulation. 466 

The investigation presented here also constituted an occasion for us to check the 467 

consistency between models biases in circulation and those in precipitation in East China. 468 

This issue is not a trivial question and very few works in the literature investigated it. We 469 

analyzed the atmospheric circulation and precipitation in East China from the high-skill 470 

models ensemble (HME) and the low-skill models ensemble (LME). This analysis helps us 471 

to confirm that biases in the atmospheric circulation impacts biases in precipitations. HME 472 

(selected from models performance on atmospheric circulation over East Asia) shows a better 473 

simulation of precipitations in East China as well, with 21.3% decrease of dry biases in 474 

Southeast China. It was also shown that the physical explanation for this linkage resides in 475 

the center position of the western North Pacific subtropical high which determines the quality 476 

of 850hPa winds and water vapor transport in Southeast China.  477 
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Our quantitative evaluation also reveals some other findings as summarized in the 478 

following. CMIP5 models that we examined in this work have generally a suitable capability 479 

of simulating the mean state of atmospheric circulation over East Asia. Our five inspected 480 

atmospheric fields are well reproduced as a whole. Their Taylor-S indices are larger than 481 

0.84 for 90% of the models. The best performance is for the 500hPa geopotential height with 482 

an average Taylor-S index of 0.98. Models skill in simulating the sea level pressure is the 483 

lowest, with a Taylor-S index of 0.79. It shows however a significant positive correlation 484 

with models resolution. Almost all models underestimate 100hPa geopotential height over 485 

East Asia, mainly due to the quite common cold bias in the troposphere. 486 

In terms of methodology, the algorithm that we used to determine indices for closed-487 

circulation systems has the advantage to be applicable for future global warming scenarios. 488 

In fact, the critical value dynamically selected as the most outside closed iso-line allows us 489 

to deal with models systematic errors in relation to cold biases of the troposphere, as well as 490 

to deal with the rising trend of geopotential height in global warming scenarios. He et al. 491 

(2018) showed that an 80% fraction of geopotential height rise is attributable to zonal 492 

uniform warming through a calculation with the hypsometric equation. Our calculation of 493 

closed-circulation-system indices shows very good properties, although an advanced 494 

comparison with the algorithm using the concept of eddy geopotential height (He et al., 2018) 495 

needs to be done in the future.  496 

Finally, we look forward to applying our diagnostics to new CMIP6 simulations which 497 

will be soon available. We believe that what we developed in this paper will provide a 498 
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quantitative measure in the assessment of forthcoming CMIP6 simulations, with a 499 

meaningful comparison to CMIP5 simulations. 500 
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