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Abstract doi: 10.7185/geochemlet.1931

Forthcoming exploration of Mars aims at identifying fossil biosignatures within 
ancient clay-rich formations. The subsurface of Mars has mostly acted as a giant 
freezer for the last 4 Gyr, thereby preserving potential remains of martian life. 
Yet, volcanism and impactors have periodically triggered the circulation of hydro-
thermal fluids, inevitably causing alteration of potentially fossilised biogenic 
organic materials. It thus appears crucial to quantify the impact of hydrothermal 
processes on organic biogeochemical signals in the presence of clay minerals. 
Here, we submitted RNA to hydrothermal conditions in the presence of Mg-smec-
tites. Results show heterogeneous organo-mineral residues, with sub-micro-
metric phosphates, carbonates and amorphous silica particles together with 
Mg-smectites with interlayer spaces saturated by N-rich organic compounds. 
Although the chemical structure of RNA did not withstand hydrothermal condi-
tions, clay minerals efficiently trapped organic carbon, confirming the relevance 
of drilling for organic carbon in ancient martian sediments. In addition, the 

degradation of RNA in the presence of Mg-smectites led to the precipitation of a quite uncommon mineral assemblage that 
could be seen as a biosignature per se. Martian targets exhibiting this mineral assemblage will thus constitute high priority 
and highly relevant candidates for sample return.
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Letter

Life may have existed on Mars. In fact, some evidence suggest 
that conditions were favourable for life to exist on Mars during 
the Noachian (~4.1 to 3.7 Ga), from both the standpoints 
of liquid water availability and metabolic energy sources 
(Grotzinger et al., 2014; Kral et al., 2014). Following previous 
successful missions that visited the red planet, upcoming 
exploration of Mars aims at identifying potential fossilised 
biosignatures (Mustard et al., 2013; Westall et al., 2015; Vago 
et al., 2017), with organic carbon obviously constituting the 
grail to be sought after (Summons et al., 2008; McMahon et 
al., 2018). To date, although macromolecular carbon has been 
detected within most of the martian meteorites (Steele et al., 
2016, 2018), only small organic molecules including aromatic, 
aliphatic, chlorine- and sulfur-rich organic compounds have 
been measured on Mars (Biemann et al., 1977; Freissinet et al., 
2015; Eigenbrode et al., 2018).

Because of the lack of global plate tectonic processes, 
traces of this life could be preserved in martian sedimentary 
rocks despite the continuous UV irradiation of the surface 

(Cockell, 2002). In fact, the subsurface of Mars has acted as 
a giant freezer since the Noachian (3.7 Ga) (Clifford et al., 
2010). However, even if the surface of Mars has been relatively 
inactive compared to Earth, volcanism and impactors have 
periodically triggered the circulation of hydrothermal fluids, 
inevitably causing alteration of potentially fossilised biogenic 
organic materials (Abramov and Kring, 2005; Schwenzer and 
Kring, 2009; Osinski et al., 2013).

In the context of the massive international push for the 
astrobiological exploration of Mars, the forthcoming ExoMars 
and Mars2020 missions will explore the subsurface of ancient 
(>3.7 Ga) clay-rich martian terrains that likely formed in the 
presence of water (Ehlmann et al., 2008; Mustard et al., 2013; 
Westall et al., 2015; Vago et al., 2017). Clay minerals, and 
smectites in particular, are the prime target of these missions 
because of their strong absorption capacity, low reactivity, 
and low permeability when compacted (Kennedy et al., 2002; 
Naimark et al., 2016; McMahon et al., 2018), giving them a high 
‘potential of biopreservation’. The presence of these minerals 
at landing sites is thus believed to maximise the chances of 
detecting diagnostic organic molecules.
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Nevertheless, little is known regarding the interac-
tions between clay minerals and (biogenic or abiotic) organic 
compounds under hydrothermal conditions that may have 
existed in the subsurface of Mars. Better constraining the 
impact of hydrothermal processes on fossilised organic biosig-
natures thus appears fundamental in conducting the future 
search for traces of life on Mars with any reasonable degree 
of confidence. Only laboratory experiments can provide the 
necessary insights.

RNA is the most emblematic biogenic organic molecule 
used by all known living organisms, and potentially the most 
ancient replicating molecule on Earth according to the ‘RNA 
world’ hypothesis (Higgs and Lehman, 2014). Mg-smectites 
are one of the most widespread clay minerals present on Mars 
and on the future landing sites (Ehlmann et al., 2008; Vago et 
al., 2017). Here, we heated RNA at hydrothermal conditions 
in pure bi-distilled water in equilibrium with a CO2 atmos-
phere at 200 °C for 7 days in the presence of Mg-smectites. We 
conducted additional experiments under the same conditions 
with RNA in the absence of Mg-smectites and with Mg-smec-
tites in the absence of RNA to serve as controls. A CO2 atmos-
phere was used to simulate Noachian martian atmosphere 
(Wordsworth, 2016). The water insoluble experimental resi-
dues were characterised at different scales using X-ray diffrac-
tion and advanced microscopy and spectroscopy tools.

Results show that the presence of Mg-smectites consid-
erably impacts the amount of carbon and nitrogen retrieved 
in the residues after the experiments. While only 7.8 wt. % 
of the initial carbon and 1.7 wt. % of the initial nitrogen are 
found in the organic residues of experiments conducted in the 
absence of smectite, 36.5 wt. % of the initial carbon and 10.8 
wt. % of the initial nitrogen remain in the organo-mineral resi-
dues of the experiments conducted with Mg-smectites. These 
amounts correspond to a mean N/C of 0.11 for the organic 
component and to TOC values as high as 6.5 wt. % (Table 1), 
i.e. twice the values of most of the hydrocarbon source rocks 
on Earth (Bernard and Horsfield, 2014). As expected, the pres-
ence of clay minerals thus drastically maximises the chances 
of concentrating, preserving, and ultimately detecting organic 
molecules.

Table 1  Proportions of carbon and nitrogen (in mass).

Sample RNA

Mg-
smectites-

RNA-
CO2-200 °C

RNA-
CO2-200 °C

Initial mass of organic 
matter (mg)

- 150 150

Final mass of sample (mg) - 270 7.0

%wt C 31.6 (±0.07) 6.4 (±0.07) 52.9 (±0.07)

Initial mass of C (mg)  47.4 47.4

Final mass of C (mg) - 17.3 3.7

% of C preserved  36.5 7.8

%wt N 14.9 (±0.02) 0.9 (±0.02) 5.7 (±0.02)

Initial mass of N (mg)  22.3 22.3

Final mass of N (mg) - 2.4 0.4

% of N preserved  10.8 1.7

Surprisingly, even though the present experiments 
were conducted using pure Mg-smectites and pure RNA, 
the organo-mineral residues are highly heterogeneous. In 
addition to Mg-smectites, transmission electron microscopy 
investigations in STEM mode (scanning transmission electron 

microscopy) highlight the presence of Ca-carbonates and Mg, 
Ca and Al-phosphates, together with particles of amorphous 
silica (Fig. 1). This occurrence of phosphates is attested by 
diagnostic peaks observed in the XRD pattern (Fig. 2) and the 
presence of carbonates is confirmed by diagnostic features in 
the XANES and MIR spectra (Figs. 1 and 2).

The organic carbon of the residues appears essentially 
coupled with Mg-smectites and exhibits a XANES spectrum 
very different from that of RNA (Fig. 1). The XANES spec-
trum of RNA presents a series of peaks attributed to nucle-
obases (aromatic and olefinic carbons (285 eV), heterocycles 
(285.9 eV), ketone and phenol groups (286.7 - 287.4 eV)) and 
ribose (saturated carbons (288.0 eV) and hydroxyl groups 
(289.3 eV)). In contrast, the organic compounds coupled with 
smectites in the experimental residues mainly contain amide 
(288.2 eV) and saturated aliphatic (288.0 eV) groups, as well 
as aromatic and/or olefinic carbons (285 eV) and ketone and/
or phenol groups (287.4 eV). Occurrence of saturated aliphatic 
groups is also attested by diagnostic C-H stretching bands 
observed in the ATR-FTIR spectrum (Fig. 2).

In addition to the compounds found with smectites 
(N/C = 0.11), the experimental residues also contain some rare 
organic masses (N/C = 0.15) whose spectra display peaks of 
aromatic and olefinic carbons (285 eV), conjugated (hetero)
cycles (285.4 eV) and carboxylic groups (288.4 eV), as well as 
some even rarer aromatic particles (N/C < 0.05) whose spectra 
only display peaks of aromatic and olefinic carbons (285 eV) 
and conjugated (hetero)cycles (285.4 eV) (Fig. 1) (Le Guillou 
et al., 2018). These compounds are not present in high concen-
trations, the organic component of the residues essentially 
consisting of the compounds associated with Mg-smectites, 
explaining bulk N/C values.

The crystal structure of the Mg-smectites does not suffer 
significant transformation during the experiments (same hkl 
reflections on the XRD pattern and similar IR bands related to 
Mg-OH or Si-O vibrations; Fig. 2). However, the 001 reflection 
is shifted from 15.51 to 13.31 Å (Fig. 2), indicating a modifica-
tion of the interlayer spaces. The observed shift is consistent 
with the presence of organic molecules and/or a mixture of 
bi- and mono-hydrated cations in the interlayer space (Ferrage 
et al., 2005; Gautier et al., 2017). Bands at ~1440 and ~1580 cm-1 
in the FTIR spectrum of experimental residues are consistent 
with the presence of NH4

+ and R-NH3
+ groups, respectively.

The presence of ammonium in the interlayer spaces of 
smectites is excluded, however. In fact, for those exposed to 
high vacuum, the 001 reflections of the experimental resi-
dues and of the pristine Mg-smectites saturated with NH4

+ 
exhibit a markedly different behaviour (Fig. 2), showing that 
the interlayer spaces of these smectites are locked by N-rich 
organic compounds rather than by ammonium. Consistently 
with XANES data indicating N/C values of 0.11 for these 
compounds, XRD data show a 001 reflection at 13.55 Å for the 
Mg-smectites of the residues (Fig. 2) indicating the presence, 
within the interlayer spaces, of organic compounds containing 
up to 10 carbon atoms for 1 R-NH3

+ group (i.e. N/C values of 
about 0.1) according to the alkylammonium method (Laird 
et al., 1989). Assuming that R-NH3

+ groups totally compen-
sate the loss of Ca2+, the Mg-smectites contain 1.3 wt. % of 
nitrogen, and thus 10.9 wt. % of carbon (N/C = 0.1). Given 
that the residues exhibit a TOC of 6.5 wt. %, assuming that 
most of the organic compounds of the experimental residues 
are within the interlayer spaces of the Mg-smectites leads to a 
proportion of approximately 60 wt. % of Mg-smectites in the 
residues, which is quite consistent with TEM data.

The formation of the observed mineral assemblage can 
be explained as follows (Fig. 3). Under hydrothermal condi-
tions, the dissolution of the Mg-smectites, together with the 
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Figure 1  STEM and STXM characterisation of the experimental residues. (a) STEM image of the residues of experiments conducted 
under CO2 at 200 °C in the presence of Mg-smectites and RNA. (b,c) Maps of minerals and organic compounds (same area as a). (d) 
STEM images of Mg-smectites. (e) STEM image of sub-micrometric minerals embedded in organic masses. (f) XANES spectra of organic 
compounds encountered in the residues. The spectrum of RNA is shown for comparison.

interlayer cationic exchange, releases Al, Mg and Ca in the 
system. Ca-carbonates then precipitate, the carbon source 
being either RNA degradation products (Sagemann et al., 
1999) or the CO2 rich atmosphere (Viennet et al., 2017, 2019). 
Meanwhile, the phosphate mono-ester groups of RNA under-
went hydrolysis, leading to the precipitation of Al, Ca and 
Mg-phosphates (Fig. 3; Saxby, 2012). Amorphous SiO2 parti-
cles were formed, as in dissolution experiments (Robin et al., 
2016). In parallel, the N-rich aliphatic organic compounds 
produced by the degradation of RNA are trapped mainly in 
the interlayer spaces of the remaining Mg-smectites as a result 
of cationic exchange (Fig. 3). The NH3

+ groups of these organic 
compounds replace the initial Ca2+ cations in the interlayer 
spaces of the Mg-smectites (Laird et al., 1989).

Taken altogether, the results of the present experiments 
are of major importance for the upcoming astrobiological 
exploration of Mars. Although the organic compounds present 
in the residues do not carry any information on the chem-
ical structure of the organic starting material, these experi-
mental results demonstrate that clay minerals can efficiently 

trap organic carbon under hydrothermal conditions, providing 
strong support for the strategy of drilling for organic carbon 
in martian subsurface (Eigenbrode et al., 2018; McMahon et 
al., 2018).

As shown here, the hydrothermal degradation of 
(N, P)-rich organic molecules in the presence of Mg- smectites 
leads to the precipitation of a quite uncommon mineral assem-
blage comprising sub-micrometric Ca-carbonates and (Al, Mg, 
Ca)-phosphates, together with amorphous silica and clay-or-
ganic complexes. Such an assemblage will be stable under 
martian subsurface conditions for eons. Martian targets exhib-
iting this mineral assemblage will thus constitute high priority 
and highly relevant candidates for sample return because of the 
likelihood that they result from the hydrothermal degradation 
of (N, P)-rich biogenic organic molecules. As a corollary, the 
presence and the nature of organic materials within martian 
rocks should not be the only ‘biosignatures’ to consider when 
searching for traces of life: the nature of the mineral assem-
blage may be even richer in information.
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In summary, the pilot experiments reported here 
provide new leads for the (indirect) detection of (biogenic) 
organic carbon in the martian subsurface. Extrapolating labo-
ratory results to geological timescales is not straightforward 
(Alleon et al., 2017). Achieving a mechanistic understanding of 
biosignature taphonomy processes on Mars will require many 
additional experimental studies. 

In addition to offering new perspectives for the search 
for traces of life on Mars, the present study also provides a 
strong rationale for the search for potential biosignatures 
on other planetary bodies, including rocky and/or icy ones 
(such as Ceres, Enceladus or Europa) on which hydrothermal 
systems and/or N-rich clay minerals have recently been 
detected (Carrozzo et al., 2018; Nordheim et al., 2018; Marchi 
et al., 2019). As illustrated here, laboratory experiments are key 
steps to support astrobiological exploration seeking to provide 
evidence of the existence of extraterrestrial life.
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