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Abstract 

Neuronal Cl- homeostasis is regulated by the activity of two cation chloride co-transporters 1 

(CCCs), the K+-Cl- cotransporter KCC2 and the Na+-K+-Cl- cotransporter NKCC1, which are 2 

primarily extruding and importing chloride in neurons, respectively. Several neurological and 3 

psychiatric disorders including epilepsy, neuropathic pain, schizophrenia and autism are 4 

associated with altered neuronal chloride (Cl-) homeostasis. A current view is that the 5 

accumulation of intracellular Cl- in neurons as a result of KCC2 down-regulation and/or 6 

NKCC1 up-regulation may weaken inhibitory GABA signaling and thereby promote the 7 

development of pathological activities. CCC activity is determined mainly by their level of 8 

expression in the plasma membrane. Furthermore, CCCs undergo “diffusion-trapping” in the 9 

membrane, a mechanism that is rapidly adjusted by activity-dependent post-translational 10 

modifications i.e. phosphorylation / dephosphorylation of key serine and threonine residues. 11 

This represents probably the most rapid cellular mechanism for adapting CCC function to 12 

changes in neuronal activity. Therefore, interfering with these mechanisms may help restoring 13 

Cl- homeostasis and inhibition under pathological conditions. 14 

 15 
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Introduction 22 

The main inhibitory neurotransmitter receptors in the central nervous system (CNS) are type A 23 

γ-aminobutyric acid receptors (GABAAR) and glycine receptors (GlyR). Upon activation, 24 

GABAAR and GlyR selectively conduct Cl- - and, to a lesser extent, bicarbonate - through their 25 

pore. The direction of Cl- flux through the channels depends on the transmembrane 26 

electrochemical chloride gradient. Two members of the cation-chloride co-transporter (CCC) 27 

family (which is composed of nine members encoded by the genes Slc12a1-9) play a prominent 28 

role in controlling intra-neuronal chloride concentration ([Cl-]i): the Na+/K+/2Cl- co-transporter 29 

1 (NKCC1) and the K+/Cl- co-transporter 2 (KCC2). NKCC1 and KCC2 are secondary active 30 

transporters, using the electrochemical gradients generated by the Na+/K+ ATPase (Figure 1). 31 

Therefore, the net ion flux they carry primarily depends on transmembrane Na+, K+ and Cl- 32 

gradients and should be expected to be reversible. However, whereas KCC2 functions near 33 

thermodynamic equilibrium and may extrude or import chloride depending on extracellular K+ 34 

and intracellular Cl- concentration, NKCC1 mediates ion influx in most cell types and under 35 

most physiological conditions (Russell, 2000). Therefore, it is generally assumed that NKCC1 36 

and KCC2 are primarily a chloride importer and extruder, respectively, at least under resting 37 

conditions. 38 

The structural organization of KCC2 and NKCC1 is similar and comprises 12 transmembrane 39 

domains (TMs), six extracellular loops (ECL), as well as intracellular N- and C- termini 40 

(Hartmann and Nothwang, 2015) (Figure 1). TMs are required for ion translocation and are 41 

therefore highly conserved in KCC2 and NKCC1 (Gamba, 2005; Payne et al., 1995; 1996; 42 

Somasekharan et al., 2012). In contrast, KCC2 and NKCC1 differ by the position of a long 43 

extracellular loop (LEL) between TM5 and TM6 in KCC2, and between TM7 and TM8 in 44 

NKCC1 (Gamba, 2005; Payne et al., 1995; 1996). The intracellular N- and C-termini of KCC2 45 

https://en.wikipedia.org/wiki/Ion_channel


4 
 

and NKCC1 carry regulatory sequences and phosphorylation sites. In addition, the C-terminus 46 

of KCC2 contains a motif responsible for the isotonic activity of the transporter (Acton et al., 47 

2012; Bergeron et al., 2006; Mercado et al., 2006). KCC2 and NKCC1 N- and C- termini also 48 

participate in the regulation of membrane trafficking (Lee et al., 2010, 2007; Zhao et al., 2008), 49 

basolateral and apical sorting in polarized cells (Carmosino et al., 2008) and oligomerization 50 

(Casula et al., 2009, 2001; Parvin et al., 2007; Simard et al., 2004; Warmuth et al., 2009). 51 

Furthermore, two KCC2 and NKCC1 (a and b) isoforms have been identified, which differ by 52 

the presence of additional amino acid sequences in KCC2a and NKCC1a on their N- and C- 53 

termini respectively (Figure 1).  54 

While other CCCs such as NKCC2 and NCC are mostly expressed in the kidney where they 55 

regulate salt re-absorption (Kahle et al., 2010; Russell, 2000), NKCC1 is ubiquitously expressed 56 

(Plotkin et al., 1997). In the CNS, NKCC1 is highly expressed in immature neurons and its 57 

expression level decreases during neuronal maturation in some but not all brain regions 58 

including the hippocampus (reviewed in Watanabe and Fukuda, 2015). In fact, the relatively 59 

high level of NKCC1 detected at adult stage is contentious with the global idea of a 60 

downregulation of NKCC1 during development (Yamada et al., 2004, reviewed by Kaila et al., 61 

2014). In contrast to other KCCs, KCC2 is almost exclusively restricted to the CNS and is 62 

constitutively active under isotonic conditions (Acton et al., 2012; Mercado et al., 2006; Strange 63 

et al., 2000). The developmental upregulation of KCC2 expression is responsible for the early 64 

postnatal depolarizing shift in the polarity of GABAergic and glycinergic transmission in the 65 

CNS (Rivera et al., 1999). In addition to its function in inhibitory neurotransmission, KCC2 has 66 

been shown to play a role in dendritic spine formation and maturation (Li et al, 2007; Fiumelli 67 

et al 2015; Awad et al 2018) as well as in excitatory glutamatergic synaptic transmission and 68 

plasticity (Gauvain et al 2011; Chevy et al 2015). 69 

https://www-frontiersin-org.gate2.inist.fr/articles/10.3389/fncel.2014.00470/full#B16
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In the adult CNS, pathological alterations of KCC2 and NKCC1 expression and/or function 70 

lead to a depolarizing shift in GABA signalling, which may underlie anomalous network 71 

activities. Several studies have reported a down-regulation of KCC2 and an up-regulation of 72 

NKCC1, resulting in increased [Cl-]i that promote depolarization/excitation in several 73 

neurological disorders such as neuropathic pain, spinal cord injury and epileptic disorders 74 

(reviewed in (Di Cristo et al., 2017)). Drugs aimed at reducing neuronal [Cl-]i therefore 75 

represent a promising therapeutic strategy. Although the expression of CCCs is regulated both 76 

at the transcriptional and posttranslational levels, mechanisms controlling their membrane 77 

stability also rapidly influence their net function and therefore offer novel opportunities for 78 

pharmacological intervention. Here we will review experimental evidence supporting the role 79 

of lateral diffusion and clustering in the functional regulation of the KCC2 transporter and 80 

discuss how similar mechanisms may apply to other CCCs such as NKCC1.   81 

1. KCC2 clustering  82 

KCC2 is clustered in the somato-dendritic plasma membrane of cortical neurons (Gauvain et 83 

al., 2001; Barthó et al., 2004; Chamma et al., 2013, 2012; Gulyás et al., 2001; Heubl et al., 84 

2017; Hübner et al., 2001; Watanabe et al., 2009). In these cells, most clusters are found near 85 

both excitatory and inhibitory synapses, with no preferential enrichment at one vs. the other 86 

(Chamma et al., 2013). Ultrastructural studies reported transporter accumulation at the 87 

periphery of excitatory synapses within dendritic spines as well as along the dendritic shaft 88 

(Báldi et al., 2010; Gulyás et al., 2001). However, these studies lacked a quantitative analysis. 89 

The use of quantitative electron microscopy or super-resolution microscopy is thus required to 90 

more precisely evaluate the subcellular localization of KCC2 in the neuronal membrane. 91 

 92 
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1.1 Clustering mechanisms 93 

1.1.1. Oligomerization and actin-binding 94 

Several mechanisms may account for KCC2 aggregation. Oligomerization-induced trapping 95 

was proposed to be involved in - or result from - protein activation (for review see (Kusumi et 96 

al., 2005)). KCC2 is known to form homo- and hetero-oligomers with other CCC family 97 

members (Blaesse et al., 2006; Simard et al., 2007; Uvarov et al., 2009). The expression of 98 

KCC2 Tyrosine 1087 phosphorylation mutants induced a loss of transporter oligomerization 99 

and function without a change in its membrane expression (Watanabe et al., 2009), suggesting 100 

a link between oligomerization, clustering and function. Multimeric assembly of KCC2 with 101 

other membrane proteins via low-energy interactions could also regulate KCC2 function in 102 

neuronal plasma membrane (Goldman et al., 2004; Marguet et al., 2006). For instance, KCC2 103 

assembly with the kainate-sensitive glutamate receptor GluK2 subunit or with Neuropilin and 104 

tolloid like-2 (Neto-2), the auxiliary subunit of the kainate receptor, increases its 105 

oligomerization and Cl- transport function in hippocampal neurons (Ivakine et al., 2013; 106 

Mahadevan et al., 2014; Pressey et al., 2017). However, it is difficult to conclude that the 107 

formation of a multimeric complex increases KCC2 function since it is always associated with 108 

an increase of its surface expression.  109 

KCC2 binds to the actin cytoskeleton in neurons through interaction of its carboxy-terminal 110 

domain (CTD) with protein 4.1N  (H. Li et al., 2007). The relief of KCC2 diffusion constraints 111 

observed upon either 4.1N knockdown by RNA interference, overexpression of the KCC2-112 

CTD, or actin depolymerisation with Latrunculin A suggests that a sub-population of 113 

transporters may be anchored near excitatory synapses via KCC2-4.1N-actin interaction 114 

(Chamma et al., 2013). However, cytoskeleton tethering to the membrane does not appear to be 115 
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responsible for KCC2 cluster formation per se, and might instead influence the specific 116 

localization of a sub-population of KCC2 clusters (Chamma et al., 2013).  117 

1.1.2. Lipid rafts 118 

What molecular mechanism other than actin anchoring may be responsible for KCC2 119 

clustering? KCC2 has been shown to associate with lipid rafts (Hartmann et al., 2009; Watanabe 120 

et al., 2009), as do numerous synaptic transmembrane proteins such as GABAARs (Li et al., 121 

2007) or AMPARs (Hou et al., 2008). Lipid raft-dependent segregation is thought to provide 122 

mobile signaling platforms that influence clustering and function of plasma membrane 123 

molecules (Pike, 2009; Tillman and Cascio, 2003). A study on the modulation of the serotonin 124 

reuptake transporter (SERT) by lipid raft association and cytoskeleton tethering showed 125 

increased transport activity when SERT was localized into lipid rafts. Interestingly, actin 126 

filament disruption increased the lateral diffusion of the transporter that however remained 127 

localized in lipid rafts (Chang et al., 2012). The cytoskeleton anchoring of SERT-containing 128 

lipid rafts was shown to rely on SERT interaction with intracellular partners, which can be 129 

modulated by phosphorylation. Hence, a complex interplay between phosphorylation, 130 

cytoskeleton tethering and lipid raft association seems to regulate the localization, diffusion and 131 

function of the transporter. Regarding KCC2, two studies focused on the interplay between 132 

KCC2 clustering and lipid raft association (Watanabe et al., 2009; Hartmann et al., 2009). Both 133 

groups found the transporter within lipid rafts but reached opposing conclusions regarding its 134 

functional impact. Thus, Watanabe et al. showed that KCC2 distribution in neurons switched 135 

from punctate to diffuse upon lipid raft disruption while KCC2 activity decreased, suggesting 136 

that localization in lipid rafts increases KCC2 transport activity (Watanabe et al., 2009). 137 

Hartmann et al. on the other hand observed increased KCC2 transport and aggregation upon 138 

lipid raft disruption in HEK-293 cells (Hartmann et al., 2009). In these cells, however, lipid raft 139 

disruption also increased KCC2 surface expression, which complicates the interpretation of 140 
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these observations. Therefore, how KCC2 clustering in lipid rafts influences its transport 141 

function remains unclear.  142 

Collectively, these data suggest that distinct KCC2 subpopulations may differentially associate 143 

with lipid rafts. In addition, interaction between KCC2 and actin cytoskeleton may tether 144 

KCC2-containing lipid-raft platforms to specific plasma membrane domains where local 145 

molecular partners form functional complexes. Phosphorylation of the transporter may then 146 

regulate KCC2 binding to intracellular partners and targeting to lipid rafts. It would be 147 

interesting to characterize in more detail how and under which conditions KCC2 accumulates 148 

in lipid rafts and whether KCC2-containing lipid rafts are associated with synaptic or 149 

extrasynaptic markers, as shown for GABAARs (X. Li et al., 2007).  150 

1.2. Clustering function  151 

Clustering may help to localize and/or stabilize transporters in sub-membrane compartments 152 

e.g. near excitatory synapses or to form a barrier in dendritic spines surrounding glutamatergic 153 

PSDs. The enrichment of KCC2 near excitatory synapses raises the question of whether the 154 

transporter is active in dendritic spines? Addressing the function of an electroneutral transporter 155 

at the subcellular level is extremely challenging. However, we have obtained indirect evidence 156 

that KCC2 is functional in dendritic spines. In experiments where KCC2 function was blocked 157 

using a specific KCC2 antagonist, we observed spine head swelling with no change in spine 158 

length or density (Gauvain et al., 2011). This effect is consistent with local changes in osmotic 159 

pressure due to the loss of solute export in spine heads. Importantly, this effect was independent 160 

of the structural role of KCC2 on spine actin cytoskeleton, as this effect was not observed by 161 

preventing KCC2 interaction with actin. Whether and to which extent dendritic shaft chloride 162 

concentration is influenced by KCC2 function in spines remains unknown. However, it is 163 

remarkable that modeling data suggest the presence of dendritic spines impacts chloride 164 



9 
 

diffusion in dendritic compartments (Mohapatra et al., 2016). How KCC2 further contributes 165 

to this effect remains unknown. 166 

Could KCC2 clustering modulation account for local changes in intra-neuronal chloride 167 

concentrations? Chloride is not uniformly distributed along neurites (Doyon et al., 2011; Price 168 

and Trussell, 2006; Waseem et al., 2010). Using computational models and N-169 

(ethoxycarbonylmethyl)-6-methoxy-quinolinium bromide (MQAE) - based fluorescence life 170 

time imaging microscopy (FLIM) in mature neurons, Doyon et al. showed that [Cl-]i increased 171 

proportionally to the distance from the soma. They suggested that the specific geometry of the 172 

dendrites may hinder chloride diffusion, while chloride concentration at the soma remains 173 

clamped. This somato-dendritic chloride gradient was abolished by inhibition of KCC2 or 174 

blockade of GABAergic neurotransmission (Doyon et al., 2011), suggesting that KCC2 175 

function is necessary to establish the gradient.   176 

Simulation of intra-neuronal chloride concentrations suggested that the activation of a single 177 

GABAergic synapse can lead to a local change in [Cl-]i of about 5 mM (Doyon et al., 2011). A 178 

single focal synapse activation at 50 Hz could therefore influence the response of neighbouring 179 

GABAergic synapses within a distance of 50 µm (Doyon et al., 2011; Jedlicka et al., 2010). In 180 

these simulations however chloride diffusion was assumed to be similar to that measured in 181 

water (2.03 µm²/ms). In addition, the influence of intracellular or extracellular matrix proteins 182 

on [Cl-]i via the Gibbs-Donan effect (Glykys et al., 2014) as well as local chloride attraction by 183 

positive charges such as polyamines were ignored. Estimated diffusion may then be 184 

overestimated in these models, suggesting that even stronger local chloride accumulation may 185 

occur near activated inhibitory synapses. Therefore, increasing or decreasing CCC clustering 186 

near synapses may rapidly and efficiently modulate [Cl-]i.   187 

2. Lateral diffusion regulates membrane protein trafficking 188 
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Protein diffusion in the neuronal plasma membrane was first evidenced for neurotransmitter 189 

receptors and this mechanism was shown to be of particular interest in the context of synaptic 190 

transmission and plasticity (Choquet and Triller, 2013; Triller and Choquet, 2008). In brief, 191 

receptors are randomly exocytosed in the plasma membrane where they diffuse until they get 192 

trapped by the postsynaptic scaffold that anchors them to the sub-membrane cytoskeleton. Pools 193 

of synaptic and extrasynaptic receptors undergo a continuous and reciprocal exchange that can 194 

be rapidly regulated by neuronal activity, thereby modulating the density of synaptic receptors. 195 

Here, we will discuss the relevance of lateral diffusion as a novel mechanism to regulate KCC2 196 

activity, and the importance of cluster formation and maintenance in this context. 197 

2.1. Brownian-type motion and confinement 198 

KCC2 membrane diffusion was studied using quantum-dot-based single particle tracking (QD-199 

SPT) (Chamma et al., 2013). SPT is an immunocytochemistry-based method which allows 200 

following the movements of individual molecules at the surface of living cells, and to detect 201 

heterogeneities in the diffusion behaviors of independent molecules. This technique therefore 202 

provides accurate information about the influence of microstructures that restrict diffusion, and 203 

of local interactions that retain proteins and confines them to a given space (Triller and Choquet, 204 

2008). SPT consists in following fluorescent markers that are bound to the protein of interest 205 

in a specific manner through a linker, usually an antibody recognizing an extracellular epitope 206 

of the endogenous protein or a tag (e.g. HA, Flag, GFP) inserted in the extracellular region of 207 

the recombinant protein. Several criteria are required for efficient protein-linker coupling: 208 

nanomolar affinity between the protein, the linker, and the marker to ensure the stability of the 209 

protein-linker-marker complex, and a stoichiometry that enables one-to-one interaction 210 

between the protein of interest and the marker (Triller and Choquet, 2008; Pinaud et al., 2010). 211 

Moreover, the photostability of the fluorescent marker determines the maximal time of 212 

acquisition (due to photobleaching). The high photostability and signal-to-noise-ratio of QDs 213 
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allow to follow single molecules for long duration with a QD localization accuracy of 5-10 nm 214 

(Dahan et al., 2003). Following QD labeling, real time movies are acquired and QD tracking 215 

and trajectory reconstructions are performed with homemade software (MATLAB; 216 

MathWorks) as described previously (Bonneau et al., 2005). Then, the center of the 217 

fluorescence spots is determined with a spatial accuracy of 5-10 nm by cross-correlating the 218 

image with a Gaussian fit of the point spread function (for details, see Triller and Choquet, 219 

2008). Trajectories are classified as synaptic when they overlapped with the synaptic mask of 220 

gephyrin or homer1c fluorescent clusters to identify excitatory and inhibitory synapses, 221 

respectively, or extrasynaptic for spots two pixels (~380 nm) away. Analysis of reconstructed 222 

trajectories gives access to diffusion speed, confinement index and dwell time of tracked 223 

molecules in a given sub-cellular compartment.  224 

Analysis of hundreds of KCC2 trajectories at the surface of hippocampal cultured neurons 225 

revealed a reduced diffusion coefficient and an increased confinement of the transporter near 226 

both excitatory glutamatergic and inhibitory GABAergic synapses as compared to 227 

extrasynaptic areas where transporters display Brownian-type motion (Chamma et al., 2013, 228 

2012; Heubl et al., 2017) (Figure 2). Transporters are temporarily immobilized near synapses 229 

and can escape the perisynaptic zone by lateral diffusion to explore neighboring membrane 230 

areas. This is reminiscent of the neurotransmitter receptors diffusive behaviour (Choquet and 231 

Triller, 2013; Triller and Choquet, 2008). KCC2, however, diffused faster at excitatory and 232 

inhibitory synapses (~1.9 fold and 1.6 fold, respectively) as compared to AMPARs and 233 

GABAARs (Table 1).  234 

Increased confinement near excitatory and inhibitory synapses may lead to local KCC2 235 

accumulation. Interestingly, the vast majority of KCC2 clusters are detected near synapses, 236 

where KCC2 confinement is also the highest (Chamma et al., 2013). Furthermore, most 237 

experimental paradigms (see below) known to increase KCC2 diffusion also induce cluster 238 
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dispersion and loss. Therefore, KCC2 clustering requires a constant exchange between pools of 239 

mobile transporters in the extrasynaptic membrane and pools of less mobile transporters near 240 

synapses. A dynamic equilibrium between these pools of transporters may be rapidly modified 241 

to locally increase or decrease transporter clustering and thereby influence local, intra-neuronal 242 

chloride levels.  243 

2.2. Molecular crowding and anchoring to cytoskeleton  244 

Several factors are hindering the diffusion of trans-membrane proteins in biological 245 

membranes. These include transient interactions with proteins present in the membrane 246 

(Marguet et al., 2006), direct immobilization through stable molecular interactions (Gerrow and 247 

Triller, 2010), and/or corralling of membrane proteins by matrix-bound or aggregating proteins 248 

(Lippincott-Schwartz et al., 2001). Lateral diffusion of a protein also depends on its size 249 

(Ramadurai et al., 2009). Thus, the diffusion of a protein within an oligomeric complex will be 250 

reduced compared to that of a freely-moving molecule. Furthermore, lateral diffusion is limited 251 

by the concentration of obstacles in the plasma membrane (Saxton and Jacobson, 1997). In a 252 

very crowded environment, such as the postsynaptic membrane, most particles are slowed down 253 

and confined (Renner et al., 2012; M. L. Renner et al., 2009). Some proteins may also undergo 254 

specific interaction with scaffolding molecules that anchor them to the sub-membrane 255 

cytoskeleton. In this case, diffusion speed is also reduced, and confinement increased (Choquet 256 

and Triller, 2013).  257 

To gain insight into the influence of obstacles and interactions with scaffolding molecules on 258 

KCC2 diffusion, the diffusion properties of KCC2 were compared to that of NCAM120, a 259 

glycosylphosphatidyl inositol (GPI)- anchored neural cell adhesion protein, that lacks 260 

intracellular domain (Rønn et al., 1998) and displays no preferential synaptic accumulation. 261 

Compared to KCC2, NCAM120 diffusion coefficient was increased by ~2 fold near 262 
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glutamatergic and GABAergic synapses, but NCAM120 still showed reduced diffusion and 263 

increased confinement at inhibitory and excitatory synapses as compared to extrasynaptic zone, 264 

indicative of molecular crowding (Renner et al. 2009; Renner et al. 2012) (Table 1). The 265 

synaptic dwell time which informs on protein-scaffold tethering (Renner et al., 2012) revealed 266 

that KCC2 spends more time near excitatory synapses than near inhibitory synapses, suggesting 267 

higher tethering near glutamatergic synapses. Compared to NCAM120, which is not 268 

specifically enriched at excitatory synapses, KCC2 dwell time was drastically increased (~5 269 

fold), indicating KCC2 tethering near glutamatergic synapses. Although the diffusion 270 

coefficient of KCC2 was significantly (~2 fold) higher than that of AMPARs, KCC2 dwell time 271 

was only slightly lower (~1.6 fold) than that of AMPARs. There is no correlation between the 272 

diffusion coefficient and the dwell time (Renner et al., 2012). The lateral diffusion of a protein 273 

is hindered by the presence of diffusion barriers such as pickets and fences. The explored area 274 

and dwell time, but not diffusion coefficient, are correlated with the synaptic trapping and 275 

concentration of molecules. This means that although KCC2 moves rapidly in the membrane 276 

(faster than AMPARs), transporters are captured by the scaffold enriched at/near excitatory 277 

synapses (almost as efficiently as AMPARs which are known to interact with actin scaffold). 278 

In contrast, the dwell times of KCC2 and of NCAM120 did not significantly differ near 279 

inhibitory synapses (Table 1). Collectively, these results show that KCC2 specifically interacts 280 

with scaffolding molecules at excitatory glutamatergic synapses. Therefore, KCC2 undergoes 281 

a diffusion-trapping mechanism at/near excitatory synapses but not at/near inhibitory synapses. 282 

This is consistent with the recent characterization of the KCC2 interactome showing that KCC2 283 

interacts with more proteins located at excitatory synapses than at inhibitory synapses 284 

(Mahadevan et al., 2017).  285 

Excitatory and inhibitory synapses differ in the composition of their associated cytoskeleton, 286 

with filamentous actin highly enriched in dendritic spines, which harbour most excitatory 287 
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synapses (Korobova and Svitkina, 2010). Interactions with sub-membrane actin cytoskeleton 288 

likely contributes to hinder KCC2 diffusion near excitatory synapses. An initial study by Li et 289 

al. showed that the CTD of KCC2 interacts with actin via protein 4.1N and that this interaction 290 

is involved in spine morphogenesis (H. Li et al., 2007). Overexpression of KCC2-CTD as a 291 

dominant negative inhibitor of KCC2-4.1N interaction, knockdown of 4.1N by RNA 292 

interference or inhibition of actin polymerization using Latrunculin A increased KCC2 293 

diffusion and decreased its dwell time near excitatory (~2 to 5 fold) but not inhibitory synapses 294 

(Chamma et al., 2013). This indicates that KCC2 is tethered near excitatory synapses and in 295 

dendritic spines, but not near inhibitory synapses, via interaction of its CTD with 4.1N and the 296 

actin cytoskeleton. Since the discovery of the KCC2-4.1N interaction, several actin-related 297 

proteins have been shown to interact with KCC2 (Chevy et al., 2015; Llano et al., 2015; 298 

Mahadevan et al., 2017), suggesting that additional KCC2 interactors may participate in KCC2 299 

recruitment at excitatory synapses at rest and upon synaptic activity.  300 

What is the implication of a dynamic regulation of KCC2 tethering at the periphery of 301 

glutamatergic synapses? This may contribute to both dendritic spine morphology and excitatory 302 

synaptic function and plasticity. Direct KCC2 interaction with actin-associated proteins (such 303 

as 4.1N) contributes to form a molecular barrier hindering the lateral diffusion of 304 

transmembrane proteins within dendritic spines (Gauvain et al., 2011). Disrupting this barrier 305 

by knocking down KCC2 expression or preventing its interaction with intracellular partners 306 

promotes AMPA receptor lateral diffusion and disperses the perisynaptic reserve pool of 307 

receptors and, subsequently, the synaptic pool, leading to reduced efficacy of glutamatergic 308 

synapses. On the other hand, KCC2 binding to proteins controlling actin polymerization (such 309 

as the guanine exchange factor βPIX) controls spine actin cytoskeleton (Chevy et al., 2015; 310 

Llano et al., 2015). Changes in KCC2 diffusion and clustering near excitatory synapses are then 311 

likely to further influence synaptic plasticity at active synapses (Chevy et al., 2015). Therefore, 312 
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the dynamic regulation of KCC2 may be particularly relevant for the physiological regulation 313 

of excitatory glutamatergic transmission. 314 

3. Activity-dependent regulation of KCC2 315 

KCC2 expression and function are regulated by both excitatory and inhibitory synaptic activity. 316 

In most cases, enhanced physiological (Lee et al., 2011; Kitamura et al., 2008; Wang et al., 317 

2006a; 2006b; Fiumelli et al., 2005; Woodin et al., 2003) or pathological  (Shimizu-Okabe et 318 

al., 2011; Li et al., 2008; Pathak et al., 2007; Rivera et al., 2004; Reid et al., 2001) neuronal 319 

activity have been shown to down-regulate KCC2 expression and activity, further altering the 320 

excitation/inhibition balance and promoting pathological activities. Recently, KCC2 down-321 

regulation was also observed in conditions of reduced GABAergic inhibition in mature neurons 322 

(Heubl et al., 2017). Several cellular and molecular mechanisms underlying activity-dependent 323 

KCC2 down-regulation have been identified and lateral diffusion was shown to represent a 324 

rapid mechanism for adapting cell surface KCC2 function to changes in activity (Chamma et 325 

al., 2013; Heubl et al., 2017).  326 

3.1. Regulation by glutamatergic activity  327 

KCC2 is rapidly down-regulated by enhanced neuronal activity and glutamatergic 328 

neurotransmission in mature hippocampal neurons (Chamma et al., 2013; Lee et al., 2011; 329 

Wang et al., 2006). NMDAR-induced Ca2+-influx leads to PP1-dependent KCC2 Serine 940 330 

(S940) dephosphorylation and KCC2-CTD cleavage by Ca2+-activated protease calpain (Lee et 331 

al., 2011; Puskarjov et al., 2012; Zhou et al., 2012). This in turn increases endocytosis and 332 

degradation of KCC2 and intra-neuronal chloride concentration. In this context, lateral 333 

diffusion contributes to the regulation of KCC2 membrane stability and neuronal Cl- 334 

homeostasis (Chamma et al., 2013) (Figure 3). Increasing glutamatergic synaptic activity 335 
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enhanced KCC2 mobility within minutes while reducing its confinement. This effect was 336 

blocked by preventing S940 dephosphorylation or calpain-dependent cleavage of the 337 

transporter, suggesting S940 dephosphorylation and dispersion of KCC2 clusters may be a 338 

prerequisite for Ca2+-activated calpain cleavage. Interestingly, even in the presence of a 339 

membrane-permeable dynamin inhibitory peptide which blocked KCC2 endocytosis, KCC2 340 

diffusion still increased upon enhanced glutamatergic synaptic activity, indicating that altered 341 

transporter diffusion precedes its removal from the membrane.  342 

3.2. Regulation by GABAergic inhibition  343 

A rapid regulation of KCC2 membrane trafficking and function by GABAAR-dependent 344 

inhibition was also recently demonstrated in hippocampal neurons (Heubl et al., 2017). 345 

GABAAR activation decreases KCC2 diffusion coefficient thereby increasing its membrane 346 

confinement and stability. Conversely, GABAAR blockade increases KCC2 mobility while 347 

reducing its surface clustering, stability and activity (Heubl et al., 2017). This mechanism may 348 

serve for “self-tuning” GABAergic signaling via rapid regulation of KCC2-mediated Cl- export 349 

(Figure 3). The underlying molecular mechanism was shown to be independent of Ca2+ 350 

signaling and KCC2 S940 phosphorylation but instead involved Cl- itself acting as a second 351 

intracellular messenger in this regulation. Thus, increasing [Cl]i using the selective KCC2 352 

inhibitor VU0463271 or local photo-stimulation of the chloride pump halorhodopsin confined 353 

KCC2 in the neuronal membrane. Reciprocally, lowering [Cl]i by substituting extracellular Cl- 354 

with methanesulfonate relieved KCC2 diffusion constraints. Since KCC2 confinement 355 

increased within tens of seconds after halorhodopsin photo-stimulation (Heubl et al., 2017), 356 

lateral diffusion is probably among the first cellular mechanisms modulating chloride 357 

homeostasis. GABAAR-dependent modulation of KCC2 diffusion involved the Cl--sensing 358 

serine/threonine kinase WNK1 (With No lysine (K) serine-threonine kinase 1) and its effectors, 359 

the kinases SPAK (STE20/SPS1-related, proline alanine-rich kinase) and OSR1 (Oxydative 360 
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stress response 1). The GABAAR-mediated activation of the WNK1/SPAK/OSR1 signaling 361 

pathway in turn promoted the phosphorylation of KCC2 at positions T906 and T1007 (Heubl 362 

et al., 2017), which is known to result in KCC2 inhibition (Rinehart et al 2009, Inoue et. al. 363 

2012, de Los Heros et al 2014). 364 

Therefore, enhanced NMDAR-mediated excitation or reduced GABAAR-mediated inhibition 365 

both act to increase KCC2 lateral diffusion through altered phosphorylation of specific residues 366 

(S940 dephosphorylation upon increased excitation; T906/1007 phosphorylation upon 367 

GABAAR blockade). KCC2 phosphorylation/dephosphorylation may then induce 368 

conformational changes (Groban et al., 2006), thereby altering transporter-scaffold interactions 369 

and promoting cluster dispersion. This may in turn facilitate KCC2 interaction with the 370 

endocytic machinery, a process that occurs at distance from the postsynaptic zone (Blanpied et 371 

al., 2002). Endocytosed transporters may then be recycled back to the membrane or sent to 372 

lysosomes for degradation. Inversely, KCC2 confinement in the plasma membrane may protect 373 

transporters from endocytosis. Interfering with transporter diffusion/endocytosis may then help 374 

to restore KCC2 membrane expression and function under pathological conditions (Figure 3).  375 

3.3. Putative contribution of NKCC1 lateral diffusion to chloride homeostasis 376 

The increase in [Cl–]i and subsequent depolarizing shift in the reversal potential of GABAAR-377 

mediated currents (EGABA) observed in the epileptic brain is most often attributed to a reduction 378 

in KCC2-dependent Cl- export (reviewed in (Di Cristo et al., 2017)). However, an up-regulation 379 

of NKCC1 may also contribute to increased [Cl–]i and depolarized EGABA (Kourdougli et al., 380 

2017; Wang et al., 2017). Although the mechanisms regulating KCC2 membrane expression 381 

and function have been extensively studied, the cellular and molecular mechanisms controlling 382 

NKCC1 membrane turnover are less well understood. Phosphorylation-dependent alteration of 383 

NKCC1 diffusion may regulate its membrane turnover and function. QD-SPT experiments in 384 
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mature hippocampal neurons support a contribution of lateral diffusion to NKCC1 regulation 385 

at the plasma membrane (unpublished work from our laboratory). SPT experiments require 386 

labeling live neurons with an antibody targeting an extracellular epitope of NKCC1. In the 387 

absence of such antibody, we expressed a recombinant human NKCC1a transporter bearing a 388 

2xHA tag at position Histidine 398 in its second extracellular loop (i.e. the NT931 construct in 389 

Somasekharan et al., 2013). The recombinant transporter also carries a 3xFlag tag and a 390 

monomeric Venus tag inserted at the N-terminus after the initiation codon (Somasekharan et 391 

al., 2013). The insertion of these tags did not alter the membrane expression and transport 392 

function of the NKCC1 protein as checked by HA surface labeling and 86Rb influx studies in 393 

HEK 293 cells (Somasekharan et al., 2013). In agreement with these results, we reported using 394 

surface labeling that the recombinant transporter is well expressed in mature hippocampal 395 

cultured neurons and is targeted to both the axonal and somato-dendritic plasma membrane 396 

(Figure 4), in a similar way than the endogenous protein (not shown). Confocal microscopy 397 

further indicated that the recombinant NKCC1a transporter formed clusters near both excitatory 398 

and inhibitory synapses (Figure 4). The cellular and sub-cellular distributions of NKCC1b were 399 

indistinguishable from that of NKCC1a (data not shown). We thus focused on NKCC1a. We 400 

explored the membrane dynamics of NKCC1a by QD-SPT. As shown in Figure 4, NKCC1a 401 

transporters explored large areas of the axonal and somato-dendritic extrasynaptic plasma 402 

membrane while others were confined near excitatory and inhibitory synapses. The transporter 403 

mobility was significantly higher at the surface of the axon as compared to the dendrites, 404 

suggestive of lower diffusion constraints in the axon. Transitions between significant NKCC1 405 

confinement at/near synapses and less constrained diffusion in extrasynaptic areas is 406 

reminiscent of KCC2 diffusion behavior (Chamma et al., 2013, 2012; Heubl et al., 2017). 407 

Therefore, we concluded that NKCC1 also responds to the diffusion-trapping mechanism. 408 

Unlike KCC2, we found that NKCC1 diffused along the axon (Figure 4) suggesting functional 409 
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differences between the two transporters. This is in agreement with the fact that EGABA is 410 

depolarized at the axon initial segment (AIS) due to NKCC1 expression (Khirug et al., 2008) 411 

and KCC2 exclusion from CNS axons (Hübner et al. 2001; Williams et al. 1999). Clearly, more 412 

work is needed to examine whether NKCC1a and NKCC1b membrane dynamics and clustering 413 

are modulated by normal and pathological activities in the axonal and somato-dendritic 414 

compartments. An activity-dependent regulation of NKCC1 diffusion/clustering, similar to that 415 

described for KCC2, may then locally affect its function, and in turn chloride homeostasis and 416 

GABA signaling.  417 

In conclusion, different subpopulations of CCCs exist in the plasma membrane: freely moving 418 

transporters outside of clusters and confined transporters in clusters near synapses. KCC2 and 419 

NKCC1 clustering probably result from accumulation in lipid-rafts, interaction with the 420 

cytoskeleton via scaffolding proteins and oligomerization. Freely moving transporters are 421 

probably more susceptible to interaction with molecules involved in clathrin-dependent 422 

endocytosis. The balance between “freely moving” and “clustered” pools of KCC2 and NKCC1 423 

might be rapidly changed by activity through phosphoregulation and impact the overall density 424 

of transporters at the plasma membrane. Since activity-induced changes in KCC2 mobility 425 

occurs within seconds - i.e. well before transporter internalization, which occurs within tens of 426 

minutes - lateral diffusion is probably among the first cellular mechanism modulating chloride 427 

transporter membrane stability.  428 
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 773 

Figure legends 774 

Figure 1. CCC activity influences the direction of chloride flux through GABAARs.  775 

A, KCC2 extrudes chloride out of the cell using the electrochemical potassium gradient 776 

generated by the Na+/K+ ATPase. NKCC1, in contrast, transports chloride into neurons using 777 

the electrochemical gradient of sodium ions. In mature neurons, KCC2 transport dominates 778 

over NKCC1 function, leading to low intra-neuronal chloride concentration. Hence, under 779 

resting conditions in most neurons, GABAAR activation usually induces a hyperpolarizing 780 

influx of chloride ions. B, KCC2 (left) and NKCC1 (right) structure, key phosphorylation 781 

residues and domains. KCC2 and NKCC1 a and b isoforms differ by the presence of additional 782 

amino acid sequences in KCC2a and NKCC1a (exon 21). Note that most regulatory domains 783 

and phosphorylation sites of KCC2 are present in the large intracellular C-terminal domain 784 

while those of NKCC1 are located in the N-terminus. The ISO-domain, calpain and AP-2 785 

binding domains in KCC2 are highlighted in orange, pink and salmon respectively. Key KCC2 786 

and NKCC1 Serine (S), Tyrosine (Y) and Threonine (T) phosphorylation residues are shown. 787 

They are targeted by PKC and PP1 (green), Src family kinase (dark blue) and WNK-SPAK-788 

OSR1 kinases (yellow). SPAK-binding domains in KCC2 and NKCC1 are also highlighted 789 

(blue).  790 

Figure 2. KCC2 membrane dynamics studied with QD-based SPT.  791 
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A, Representative trajectory (red) of QD-bound Flag-tagged recombinant KCC2 overlaid with 792 

fluorescent clusters of recombinant gephyrin–mRFP (green) to identify inhibitory (IS) 793 

synapses. The white spot indicates the starting point of the trajectory. Scale bar, 0.5 μm. B, 794 

Median QD diffusion coefficients D values ± 25-75% IQR in the extrasynaptic membrane 795 

(black) or near excitatory (green) or inhibitory (red) synapses identified by homer1c–GFP and 796 

gephyrin–mRFP clusters, respectively. Note the reduced diffusion near synapses (**p = 2 × 797 

10−3, ***p < 10−3). C, Decreased size of the confinement domain L for synaptic versus 798 

extrasynaptic QDs (***p < 10−3). D, Mean KCC2 dwell times near excitatory synapses (green) 799 

and inhibitory synapses (red) showing increased time spent near excitatory synapses (*p < 5 × 800 

10−2). Adapted from (Chamma et al., 2013).  801 

Figure 3. Regulation of KCC2 membrane trafficking.  802 

A, KCC2 is mobile outside of clusters and confined within clusters. KCC2 clustering probably 803 

involves a multiple step process including transporter oligomerization, accumulation in lipid-804 

rafts, and cytoskeleton interaction. Freely moving transporters are more susceptible to interact 805 

with molecules implicated in endocytosis. B, Activity-dependent tuning of KCC2 membrane 806 

trafficking: the balance between “freely moving” and “clustered” KCC2 pools can be rapidly 807 

modified by neuronal activity. Changes in the phosphorylation state of the transporter then 808 

influence its clustering and internalization rate, and in turn affect intracellular chloride 809 

concentration. C, clustered; D, diffusing; E, endocytosed transporters.  810 

Figure 4. NKCC1 also undergoes diffusion-trapping at the plasma membrane.  811 

A, Total (Venus) and surface (HA tag) labeling of recombinant HA-Venus-NKCC1 transporter 812 

in 21 DIV hippocampal neurons showing that a large amount of the recombinant transporter 813 

traffics to the somato-dendritic and axonal plasma membrane. Scale bar, 10 μm. B, NKCC1-814 

HA surface staining (red) in neurons cotransfected with gephyrin-FingerGFP (green) and 815 
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homer1c-mRFP (blue), two markers of inhibitory (IS) and excitatory (ES) synapses. Scale bar, 816 

2 μm. Note that some NKCC1 clusters are surrounding inhibitory (open arrows) and excitatory 817 

(closed arrows) synapses, whereas others are associated with the extrasynaptic membrane 818 

(crossed arrows). C, Representative trajectories (white) of QD-bound HA-tagged recombinant 819 

NKCC1 overlaid with either cytoplasmic eGFP (red) to identify axons, or with recombinant 820 

homer1c–GFP (green) and gephyrin–mRFP (red) to identify ES and IS, respectively. Scale bars, 821 

0.5 μm.  D, Instantaneous diffusion coefficients of the trajectories shown in (C). E, Median 822 

diffusion coefficient D values ±25–75% IQR in axons (white), dendrites (grey), extrasynaptic 823 

(extra, black), at/near excitatory synapses (red), and at/near inhibitory synapses (green). Axon, 824 

n = 94 QDs, dendrite, n = 234 QDs, extra, n = 153 QDs, ES, n = 47 QDs, IS, n = 36 QDs, 2 825 

cultures. axon vs. dendrite KS test p <0.001, extra vs. ES KS test p = 0.05, extra vs. IS KS test 826 

p = 0.4. F, Time-averaged MSD functions of axonal QDs (dashed), extrasynaptic QDs (black), 827 

QDs at ES (red), and QDs at IS (green). The MSD versus time relationships show a steeper 828 

initial slope for axonal vs extrasynaptic trajectories and for extrasynaptic vs synaptic 829 

trajectories, suggesting that trajectories are less confined. G, Median explored area EA ±25–830 

75% IQR in axons (white), dendrites (grey), extrasynaptic (black), at/near ES (red), and at/near 831 

IS (green). Axon, n = 276 QDs, dendrite, n = 408 QDs, extra, n = 488 QDs, ES, n = 89 QDs, 832 

IS, n = 95 QDs, 2 cultures. axon vs. dendrite KS test p <0.001, extra vs. ES KS test p = 0.001, 833 

extra vs. IS KS test p = 0.001. Note that NKCC1 moved faster and explored a larger surface of 834 

the axonal membrane compared to the extrasynaptic dendritic membrane. NKCC1 is also 835 

slower and more confined near synapses as compared to extrasynaptic sites.  836 



Table 1. KCC2 diffusion properties compared to that of AMPAR, GABAAR and 

NCAM120. 

Molecules Location Median D (10-2 µm²s-1) Mean DT (s) 

 ES. 2.7 (281, 5) 11.9 ± 0.8 

KCC2 IS. 2.5 (202, 5) 9.4 ± 0.8 

 Extra. 3.3 (367, 5) N.A. 

 ES. 1.4 (40, 2) 19.5 ± 2.6 

AMPAR GluA1 IS. 1.6 (39, 2) 14.5 ± 2.6 

 Extra. 2.1 (126, 2) N.A. 

 ES. N.D.  

GABAAR γ2 IS. 1.6 (171, 4) 15.5 ± 0.9 

 Extra. 3.1 (546, 4) N.A. 

 ES. 5.9 (76, 2) 2.8 ± 0.6 (380) 

NCAM120 IS. 5.8 (68, 2) 6.2 ± 1.2 (288) 

 Extra. 8.1 (183, 2) N.A. 

Quantifications from 2-5 independent experiments. Numbers between brackets indicate the 

numbers of QDs and experiments analyzed. Data for KCC2 and GABAAR are from (Chamma 

et al., 2013; Lévi et al., 2015); those for NCAM120 and AMPAR (unpublished data from our 

laboratory). N.D. not determined; N.A. not applicable.  
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