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ON THE BEILINSON-BLOCH-KATO CONJECTURE FOR
RANKIN-SELBERG MOTIVES

YIFENG LIU, YICHAO TIAN, LIANG XIAO, WEI ZHANG, AND XINWEN ZHU

ABSTRACT. In this article, we study the Beilinson—Bloch—Kato conjecture for motives correspond-
ing to the Rankin—Selberg product of conjugate self-dual automorphic representations, within the
framework of the Gan—Gross—Prasad conjecture. We show that if the central critical value of the
Rankin—Selberg L-function does not vanish, then the Bloch-Kato Selmer group with coefficients
in a favorable field of the corresponding motive vanishes. We also show that if the class in the
Bloch—Kato Selmer group constructed from certain diagonal cycle does not vanish, which is conjec-
turally equivalent to the nonvanishing of the central critical first derivative of the Rankin—Selberg
L-function, then the Bloch-Kato Selmer group is of rank one.
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1. INTRODUCTION

In this article, we study the Beilinson—Bloch—Kato conjecture for motives corresponding to
the Rankin—Selberg product of conjugate self-dual automorphic representations of GL,(Ag) X
GL,+1(Ap) for a CM number field F', within the framework of the Gan—Gross—Prasad conjecture
[GGP12] for the pair of unitary groups U(n) x U(n + 1). For the background on the Beilinson—
Bloch—Kato conjecture, which is a generalization of the famous Birch and Swinnerton-Dyer con-
jecture from elliptic curves to higher dimensional algebraic varieties, we refer to the introduction
of [Liul6].

1.1. Main results. Let F//F™ be a totally imaginary quadratic extension of a totally real number
field. We first state one of our main results that is least technical to understand.

Theorem 1.1.1 (Corollary 8.2.5). Let n > 2 be an integer. Let A and A’ be two modular elliptic
curves over F'* such that End(Agz) = End(A%) = Z. Suppose that

(a) Az and A% are not isogenous to each other;
(b) both Sym" ' A and Sym™ A’ are modular; and
(c) [F*:Q]>1ifn>3.
If the (central critical) L-value L(n,Sym™ * Ap x Sym™ A%) does not vanish, then the Bloch—Kato
Selmer group
H}(Fv Symn_l Hét(Af7 @f) ®q, Symn Hét (Alfﬁ Qf) (n))

vanishes for all but finitely many rational primes £.

Remark 1.1.2. The finite set of rational primes ¢ that are excluded in Theorem 1.1.1 can be
effectively bounded. We now explain the three conditions in Theorem 1.1.1.

(a) is necessary for ¢ to satisfy (L3) and (L5) in Definition 8.1.1. Otherwise, there might be
no rational primes ¢ satisfying (L3) and (L5).

(b) is necessary since our approach only applies to Galois representations arising from au-
tomorphic representations. We summarise the current knowledge on the modularity of
symmetric powers of elliptic curves in Remark 8.2.6.

(c) is necessary only for technical reasons. First, we do not know Hypothesis 3.2.9, which
concerns cohomology of unitary Shimura varieties, yet for N > 4 if F'* = Q. Second, we
do not have (an appropriate replacement for) Theorem D.1.3, a result generalizing [CS17],
when F* = Q since the corresponding Shimura variety is not proper. Indeed, as long as
we have these results as expected, (c¢) can be lifted.

Theorem 1.1.1 is a special case of a more general result concerning the Bloch—Kato Selmer
groups of Galois representations associated to conjugate self-dual automorphic representations.
To reduce the burden of long and technical terminology in the future, we first introduce the
following definition, which will serve for the entire article.

Definition 1.1.3. We say that a complex representation Il of GLy(Ag) with N > 1 is relevant if

(1) II is an irreducible cuspidal automorphic representation;

(2) Mo c ~ 11V, where ¢c € Gal(F/F™) is the complex conjugation;

(3) for every archimedean place 7 of F', Il is isomorphic to the (irreducible) principal se-
ries representation induced by the characters (argV¥ =1 arg¥=3 ... arg® " arg!™"), where
arg: C* — C* is the argument character defined by the formula arg(z) := z/v/2Z.

Now we can state our main result in the context of automorphic representations, of which
Theorem 1.1.1 is a special case. Till the end of the next subsection, we will take an integer n > 2,
and denote by ng and n; the unique even and odd numbers in {n,n + 1}, respectively.
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Theorem 1.1.4 (Theorem 8.2.1). Let Iy and I1; be relevant representations of GL,,(Ar) and
GL,, (AR), respectively. Let E C C be a strong coefficient field of both Il and 11y (Definition
3.2.5). Suppose [F*: Q| > 1 ifn > 3. [fL(%,HO x I1;) # 0, then for all admissible primes A of E
with respect to (Ily,I1y), the Bloch-Kato Selmer group Hy(F, puyx ®p, pu, a(n)) vanishes. Here,
pii.. 8 the Galois representation of F' with coefficients in E\ associated to 11, for a = 0,1, as
described in Proposition 3.2.4 and Definition 3.2.5.

In fact, Theorem 8.2.1 is slightly stronger than the one stated here.

Remark 1.1.5. The notion of admissible primes appeared in Theorem 1.1.4 is introduced in Defi-
nition 8.1.1, which consists of a long list of assumptions, some of which are rather technical. Here,
we would like to comment on the essence of these assumptions.

(L1) is elementary and excludes only finitely many primes A.

(L2) is elementary and excludes only finitely many primes A.

(L3) is expected to hold for every prime A if and only if the (conjectural) automorphic prod-
uct I X II;, which is an irreducible admissible representation of GLyn41)(Ar), remains
cuspidal.

(L4) is expected to hold for all but finitely many primes A.

(L5) is basically saying that, under (L4), the image of the pair of residual Galois representations
(Prip.x» Py x) contains an element of a particular form. It is expected to hold for all but
finitely many primes A if the two automorphic representations Iy and II; are not correlated
in some manner. For example, when n = 2, we expect that as long as II; is not an
automorphic twist of Sym®II, after any base change, then (L5) holds for all but finitely
many primes \.

(L6) is a technical assumption that is only used in the argument of an R=T theorem concerning
Galois deformations in Appendix E. It is expected to hold for all but finitely many primes
A (see Conjecture E.8.1 and Theorem E.8.4).

(L7) is a technical assumption for the vanishing of certain Hecke localized cohomology of unitary
Shimura varieties off middle degree. In fact, when [F" : Q] > 1, (L7) holds for all but
finitely many primes A by Corollary D.1.4.

In fact, we have dedicated ourselves to obtaining the following family of abstract examples in
which all but finitely many primes are admissible. Note that neither the following theorem nor
Theorem 1.1.1 implies the other.

Theorem 1.1.6 (Corollary 8.2.3). Let Iy, I1;, and E be as in Theorem 1.1.4. Suppose that

(a) there exists a very special inert prime p of F™ (Definition 3.3.4) such that Iy, is Steinbery,
and 11y, is unramified whose Satake parameter contains 1 exactly once';
(b) for a = 0,1, there exists a nonarchimedean place w, of F such that 11, ,,, is supercuspidal;
(c) [FT:Q] >11ifn>3.
If L(%, Iy x I1;) # 0, then for all but finitely many primes \ of E, the Bloch—-Kato Selmer group

H}(F, puiy» @k, prya(n)) vanishes.

Remark 1.1.7. In (a) of Theorem 1.1.6, if the CM field F' is Galois or contains an imaginary
quadratic field, then a very special inert prime of F'* is simply a prime of F'™ that is inert in F,
of degree 1 over Q, whose underlying rational prime is odd and unramified in F.

Now we state our result in the (Selmer) rank 1 case. Let IIy and II; be relevant representations
of GL,,,(Ar) and GL,,, (Ap), respectively. Let E C C be a strong coefficient field of both Iy and IT;

!Note that the Satake parameter of I1; , has to contain 1 at least once by Definition 1.1.3(2).
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(Definition 3.2.5). Suppose that the global epsilon factor of Iy x II; is —1. Then the Beilinson—
Bloch-Kato conjecture predicts that if L’ (%,HO x II1) # 0, then the Bloch—Kato Selmer group
H}(F, priy» ®p, piyA(n)) has rank 1. However, what we can prove now is half of this implication.
Namely, for every prime A of E, we will construct explicitly an element A, in (the direct sum of
finitely many copies of) H(F, pri,» @, o, A(n)) in Subsection 8.3 (more precisely, Ay is the class
in (8.9)). In fact, by Conjecture 8.3.1 and Beilinson’s conjecture on the injectivity of the f-adic
Abel-Jacobi map, the nonvanishing of A is equivalent to the nonvanishing of L'(3, I, x II;).
Then our theorem in the rank 1 case reads as follows.

Theorem 1.1.8 (Theorem 8.3.2). Let 11y and I1; be relevant representations of GL,,(Ar) and
GL,, (AR), respectively. Let E C C be a strong coefficient field of both 11y and I1y (Definition
3.2.5). Suppose [FT : Q] > 1 if n > 3. For all admissible primes \ of E with respect to (Ily, 1),
if Ax # 0, then the Bloch-Kato Selmer group Hy(F, pry, » @, pim, A(n)) is of dimension 1 over E.

In fact, Theorem 8.3.2 is slightly stronger than the one stated here. We also have an analogue
of Theorem 1.1.6 in the rank 1 case, whose statement we omit.

Remark 1.1.9. In both Theorem 1.1.4 and Theorem 1.1.8, the assumption that [F'* : Q] > 1 if
n > 3 can be lifted once Hypothesis 3.2.9 is known for N > 4 when F'T = Q.

1.2. Road map for the article. The very basic idea of bounding Selmer groups as in our
main theorems follows from Kolyvagin [[Kol90], namely, we construct a system of torsion Galois
cohomology classes serving as annihilators of (reduction of) Selmer groups. However, our system is
not a generalization of the Euler—Kolyvagin system originally constructed by Kolyvagin. Instead,
our system is constructed via level-raising congruences, which was first introduced by Bertolini and
Darmon in the case of Heegner points in the study of certain Iwasawa main conjecture of elliptic
curves [BD05]. The first example where such level-raising system was used to bound Selmer groups
beyond the Heegner point case was performed by one the us in [Liul6], for the so-called twisted
triple product automorphic motives. In the sequels [Liul9] and [I'T], the case of the so-called
cubic triple product automorphic motives was also studied. From this point of view, our current
article is a vast generalization of the previous results mentioned above. We have to point out that,
although the fundamental ideas do not vary too much, the level of difficulty of realizing all the
steps in our current work is tremendously higher than all of the past ones. In fact, in order to
study the arithmetic level-raising for unitary groups of even ranks at least 4, we have to use the
theory of Galois deformations, which seems to be a new application of the latter.

The following is a road map for reading the main part of the article, where we indicate the need
from the five appendices in the parentheses.

§8.1 & §8.2
(D.1)

End of the rank 0 case |l Continue to the rank 1 case
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The proof of Theorem 1.1.8 is based on the proof of Theorem 1.1.4. We may regard the transition
from the rank 0 case to the rank 1 case as an induction step. As seen from the road map, for the
rank 0 case alone, Section 4, Subsection A.1, Subsection 7.3, and, of course, Subsection 8.3 are
not needed. However, we strongly recommend the readers to go through Section 4 even if they
are only interested in the rank 0 case, as Section 4 is an appropriate warm-up for reading Section
5, which is parallel but much more complicated.

In what follows, we explain the main steps in the proof of Theorem 1.1.4. Some of the notations
in the rest of this subsection are ad hoc, only for the purpose of explaining ideas, hence will be
obsolete or differ from the main text.

The initial step (which although will not appear until Subsection 8.2) is to translate the condition
that L(3,IIp x II;) # 0 into a more straightforward statement. This is exactly the content of
the global Gan—Gross—Prasad conjecture [GGP12]. In fact, as stated in Lemma 8.2.2, we may
construct a pair of hermitian spaces (V;,V; ) over F' (with respect to F//F") in which V; is
totally positive definite of rank n, and V;_ ; = V) @ F' -1 where 1 has norm 1. For a = 0,1,
put Sh(Vy ) = U(V; )J(F)\U(V; )(A¥,) as a Shimura (pro-)set. We may further find cuspidal
automorphic representations my and m; contained in the space of locally constant functions on
Sh(V;,) and Sh(V;, ) satisfying BC(m) ~ Ily and BC(m;) ~ IIy, respectively, such that

(1.1) Plfo, f1) ::/ fo(h) f1(R)dh # 0

Sh(V3)

for some fy € my and f; € m valued in Og. Such result was first obtained by one of us [Zhal]
under some local restrictions. Those restrictions are all lifted till very recently through some new
techniques in the study of trace formulae [BPLZZ7]. In what follows, we will fix open compact
subgroups of U(V;, )(A%,) and U(V; )(A¥,) that fix fy and fi, respectively, and will carry them
implicitly in the notation.

The next step is to bring the set Sh(V} ) into arithmetic geometry so that the period (1.1)
can be related to certain Galois cohomology classes. Now we choose a special inert prime p
of F'™ (see Definition 3.3.4) with sufficiently large underlying rational prime p, so that all data
appeared so far are unramified above p. For a = 0,1, we attach to V) canonically a strictly
semistable scheme M, (V; ) over SpecZ, of relative dimension n, — 1, whose complex generic
fiber is non-canonically isomorphic to the disjoint union of finitely many Shimura varieties attached
to the nearby hermitian space of V] by changing local components at p and one archimedean
place. Moreover, we can write its special fiber M,(V} ) over SpecF,: as a union of Mp(V; )
and My (V7 ), in which Mg (Vy ) is geometrically a P~ '-fibration over the Shimura set Sh(Vy, ).
However, the reality is much more intricate, as the geometry of the other stratum M3 (V7 ), which
is rather mysterious, will also involve in the later computation. In fact, one key effort we pay is
to show that only the basic locus of the stratum M3 (V> ) will play a role in the computation. For
the basic locus, we show that its normalization is geometrically a fibration over the Shimura set
Sh(V; ) (but with a slightly different level structure at p) by certain Deligne-Lusztig varieties of

dimension r, = [%*], introduced in Subsection A.2. The study of various geometric aspects of
the scheme M, (V;, ), including its associated Rapoport-Zink spectral sequence and its functorial

behavior from n to n + 1, will be carried out in Section 5.

The automorphic input will be thrown into the scheme M, (V;, ) from the third step, in Section
6, where we study the local Galois cohomology of certain cohomology of M, (Vs ) localized at
some Hecke ideals. More precisely, we fix an admissible prime A of E with respect to (IIg, II;), and
denote by O, and k) the ring of integers and the residue field of F), respectively. For a = 0,1,
the Satake parameters of 11, induce a homomorphism ¢, : T, — k) with kernel m,, where T, is
certain abstract spherical Hecke algebra for unitary groups of rank n,. When a = 0 (resp. a = 1),
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we need to study the singular (resp. unramified) part of the local Galois cohomology
(1.2) HY (Qpe, Hy ™ (My(V5,), RZOA(ra) ).

where M, (V5 ) :== M,(Vy) ®F F,, and Hs denotes certain invariant part of the étale cohomology
(a subtlety that can be ignored at this moment). The question boils down to the arithmetic level-
raising phenomenon (resp. existence of Tate cycles) when o« = 0 (resp. @ = 1). However, in both
cases, we have to rely on the recent progress on the Tate conjecture for Shimura varieties achieved
by some of us [X7]. Now we would like to continue the discussion on the case where a = 0, since
it is more interesting and more involved, and omit the case where o = 1. The first key point is to
figure out the correct condition so that the level-raising phenomenon (namely, from unramified to
mildly ramified at the place p) happens on the cohomology (1.2) in a way that can be understood:
we say that p is a level-raising prime with respect to X if £ f p(p® — 1), and the mod A Satake
parameter of IIy, contains the pair {p, p~'} exactly once and does not contain the pair {—1, —1}.
Suppose that p is such a prime, we show that there is a canonical isomorphism

(1.3) (Qpe, Hy* (My(V7,), RPO(ro)) /mo) == OA[Sh(V7, )] /mo

smg

of O)-modules of finite length. Note that by our condition on p, the right-hand side of (1.3) is
nonvanishing, which implies that the left-hand side is also nonvanishing; in other words, we see
the level-raising phenomenon in HE* ™' (M, (V2 ), R¥Ox(ro)). The proof of (1.3) is the technical
heart of this article (for example, it uses materials from all of the five appendices). Through
studying the geometry and intersection theory on the special fiber M,(V; ) in Section 5 and
some of the appendices, we can conclude that O,[Sh(V; )]/mg is canonlcally a subquotient of

He (Qpe, HE™ Y(M,(Ve,), RUO,(rg))/mp). Thus, it remains to show that the two sides of (1.3)
have the same cardinality. For this, we use the theory of Galois deformations. We construct a
global Galois deformation Oy-algebra R™* with two quotient algebras R™ and R™®, together
with a natural R"™-module H"™ and a natural R™"-module H™™. They satisfy the following
relation: if we put R®"® := R"™ ®grmix R™™, which is an Artinian Oy-algebra, then we have natural
isomorphisms

Hunr ®R Rcong ~ O)\[Sh( no)]/rn07
H™™ @geam R o H (@2, Hy ™ (M, (V5 ), REO(rg)) /m).

sing

Thus, we only need to show that H*™" and H™™ are both finite free over R"™" and R*™™ respectively,
of the same rank. The finite-freeness follows from an R=T theorem, proved in Appendix E. It
is worth pointing out that our R=T theorem is over the initial base field F', that is, we do not
take a favourable CM extension of F' as people usually do like in [CHT08, Thol2], for example in
particular, we have to deal with certain ramification at nonsplit places of F*. The comparison of
ranks can be performed over E), which turns out to be an automorphic problem and is solved in
Subsection 6.4 based on Subsection D.2. Therefore, we obtain (1.3). In practice, we also need a
mod A™ version of (1.3).

The fourth step is to merge the study of (1.2) for ny and n; together, to obtain the so-called
first explicit reciprocity law for the Rankin—Selberg product of Galois representations. As an
application, we construct a system of torsion Galois cohomology classes whose image in the singular
part of the local Galois cohomology at p of the product Galois representation is controlled by the
period integral (1.1). This step is sort of routine, once we have enough knowledge on (1.2); it is
completed in Subsection 7.2.

The final step of the proof of Theorem 1.1.4 will be performed in Subsection 8.2, where we use
the system of torsion Galois cohomology classes constructed in the previous step, together with
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some Galois theoretical facts from Section 2, to bound the Selmer group, which is possible due to
the nonvanishing of (1.1).

1.3. Notations and conventions. In this subsection, we setup some common notations and
conventions for the entire article, including appendices, unless otherwise specified. The notations
in the previous two subsections will not be relied on from this moment, and should not be kept
for further reading.

Generalities:

O Denote by N =1{0,1,2,3,...} the monoid of nonnegative integers.

O We only apply the operation / to positive real numbers, which takes values in positive
real numbers as well.

O For a set S, we denote by 1g the characteristic function of S.

O The eigenvalues or generalized eigenvalues of a matrix over a field k£ are counted with
multiplicity (namely, dimension of the corresponding eigenspace or generalized eigenspace);
in other words, they form a multi-subset of an algebraic extension of k.

O For every rational prime p, we fix an algebraic closure Q, of Q, with the residue field F,,.
For every integer 7 > 1, we denote by @, the subfield of Q, that is an unramified extension
of Q, of degree r, by Z, its ring of integers, and by IF,- its residue field.

O For a nonarchimedean place v of a number field K, we write ||v|| for the cardinality of the
residue field of K.

O We use standard notations from the category theory. The category of sets is denoted by Set.
For a category €, we denote by €°P its opposite category, and denote by €4 the category
of morphisms to A for an object A of €. For another category ©, we denote by Fun(€&, D)
the category of functors from € to ©. In particular, we denote by P& := Fun(€°P, Set)
the category of presheaves on €, which contains € as a full subcategory by the Yoneda
embedding. Isomorphisms in a category will be indicated by ~~.

O All rings (but not algebras) are commutative and unital. For a ring L and an L-algebra
L', we denote by Mod(L’) the category of left L'-modules.

O If a base ring is not specified in the tensor operation ®, then it is Z.

O For a ring L and a set S, denote by L[S] the L-module of L-valued functions on S of finite
support.

Definition 1.3.1. Let K be a subfield of C. We say that an intermediate extension K C K’ C C
is K-normal if K'/K is finite, and every automorphism in Aut(C/K) stabilizes K.

Algebraic geometry:

O We denote by the category of schemes by Sch and its full subcategory of locally Noetherian
schemes by Sch’. For a scheme S (resp. Noetherian scheme S), we denote by Sch/g (resp.
Sch’g) the category of S-schemes (resp. locally Noetherian S-schemes). If S = Spec R is
affine, we also write Sch/p (resp. Sch’) for Sch/g (resp. Schl).

O For a scheme X over an affine scheme Spec R and a commutative R-algebra S, we write
X ®gr S or even Xg for X Xgpec g SpecsS.

O For a scheme S in characteristic p for some rational prime p, we denote by o: S — S the
absolute p-power Frobenius morphism. For a perfect field x of characteristic p, we denote
by W (k) its Witt ring, and by abuse of notation, o: W (k) — W (k) the canonical lifting
of the p-power Frobenius map.

O For a scheme S and a locally free Og-module V of finite rank, we denote by P(V) — S
the moduli scheme of quotient line bundles of V over S, known as the projective fibration
associated to V.
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O For a scheme S and (sheaves of) Og-modules F and G, we denote by Hom(F,G) the
quasi-coherent sheaf of Og-linear homomorphisms from F to G.

O For two positive integers r, s, we denote by M, ; the scheme of r-by-s matrices, and put
M, = M,, for short; we also denote by GL, C M, the subscheme of invertible r-by-r
matrices. Then GL; is simply the multiplicative group G,, = Z[T,T~!]; but we will
distinguish between GL; and G,,, according to the context.

O For a number field K, a commutative group scheme G — S equipped with an action by
Ox over some base scheme S, and an ideal a C Ok, we denote by G|a] the maximal closed
subgroup scheme of GG annihilated by all elements in a.

O By a coefficient ring for étale cohomology, we mean either a finite ring, or a finite extension
of Qy, or the ring of integers of a finite extension of QQ,. In the latter two cases, we regard
the étale cohomology via suitable ¢-adic formalism. We say that a coefficient ring L is
n-coprime for a positive integer n if n is invertible in L in the first case, and ¢ { n in the
latter two cases.

Group theory: Let G and I be groups, and I' a subgroup of . Let L be a ring.

O Denote by I'*? the maximal abelian quotient of T

O For a homomorphism p: I' = GL,(L) for some r > 1, we denote by p¥: I' — GL,(L) the
contragredient homomorphism, which is defined by the formula p"(z) = *p(z)~! for every
rel.

O For a homomorphism p: I' — G and an element v € T that normalizes T, we let p7: T — G
be the homomorphism defined by p?(z) = p(yzy™!) for every x € T.

O We say that two homomorphisms py, po: I' — G are conjugate if there exists an element
g € G such that p; = gopyog™', that is, p1(x) = gpa(z)g" for every x € T

O The L-module L[G] is naturally an L-algebra, namely, the group algebra of G' with coeffi-
cients in L.

O Suppose that G is a locally compact and totally disconnected topological group. For an
open compact subgroup K of G, the L-module L[K\G/K] (of bi-K-invariant compactly
supported L-valued functions on () is naturally an L-algebra, where the algebra structure
is given by the composition of cosets. In particular, the unit element of L[K\G/K] is
always 1.

O For every integer » > 1, we denote by .J, the standard upper triangular nilpotent Jordan
block

or size r-by-r.

Combinatorics:

Notation 1.3.2. We recall the A-analogue of binomial coefficients:

0x=1, [n])= (]! = [n]x - [n—1]x- - 1), [n] T - [”]?
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for integers 0 < m <n. For r > 0 and ¢ € N, we put

" 2 1
e D A RSl W
6=0 r—= —q
(=g -1

a =——»|4q, D@+ (& t+1)).
im o (St CL T 0@ ) )

Ground fields:

O Let ¢ € Aut(C/Q) be the complex conjugation.

O Throughout the article, we fix a subfield F' C C that is a number field and is stable under
c; it is assumed to be a CM field except in Section 2.

O Let F™ C F be the maximal subfield on which ¢ acts by the identity.

O Let F be the Galois closure of F in C. Put I'p :== Gal(F/F) and T'p+ == Gal(F/FT).

O Denote by ¥, (resp. 31 ) the set of complex embeddings of F' (resp. F*) with 7, € X
(resp. 7o, € X1 the default one. For 7 € ¥, we denote by 7¢ the its complex conjugation.

O For every rational prime p, denote by E;r the set of all p-adic places of F't.

O Denote by ¥, the union of ¥ for all p ramified in F.

O Denote by ng/p+: 'p+ — {F1} the character associated to the extension F/F'*.
O For every prime ¢, denote by €,: '+ — Z; the f-adic cyclotomic character.

For every place v of '™, we

O put F, == F®p+ F,7; and define §(v) to be 1 (resp. 2) if v splits (resp. does not split) in F;

O fix an algebraic closure I of I containing F'; and put I+ = Gal(F;/F,") as a subgroup
of I’ F+;

O for a homomorphism r from I'z+ to another group, denote by r, the restriction of r to the
subgroup I'p+.

For every nonarchimedean place w of F, we

O identify the Galois group I'p,, with I+ NI'p (vesp. c(I'+ NI'p)c), where v is the underlying
place of F'*, if the embedding F' < F; induces (resp. does not induce) the place w;

O let Ig, C I'p, be the inertia subgroup;

O let Ky, be the residue field of F,,, and identify its Galois group I'y, with I'r, /IF,;
O denote by ¢, € ', a lifting of the arithmetic Frobenius element in T, .

Definition 1.3.3. We say that two subsets ¥{ and X of nonarchimedean places of F't are
strongly disjoint if there is no rational prime underlying places from both sets.
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2. GALOIS COHOMOLOGY AND SELMER GROUPS

In this section, we make the Galois theoretical preparation for the proof of the main theorems.
Most discussions in this section are generalizations from [Liu16,Liu19]. The material of this section
will not be used until Section 6. In Subsection 2.1, we collect some lemmas on f-adic modules
with certain group actions. In Subsection 2.2, we study local Galois cohomology. In Subsection
2.3, we perform the discussion that is typical for Kolyvagin’s type of argument. The Selmer group
and its variant will be introduced in Subsection 2.4. In Subsection 2.5, we study localization of
Selmer groups. In Subsection 2.6, we study an example related to the Rankin—Selberg product.

We will start from a more general setup in order to make the discussion applicable to the
orthogonal case as well, which may be studied in the future. Thus, we fix a subfield F' C C that
is a number field, not necessarily CM.

We fix an odd rational prime ¢ that is unramified in F', and consider a finite extension F)/Qy,
with the ring of integers O, and the maximal ideal A of O,. Recall that ¢: I'p+ — Z; is the
(-adic cyclotomic character.

2.1. Preliminaries on adic modules. Let [ be a profinite group and L a commutative topo-
logical Z,-algebra.

Notation 2.1.1. We denote by Mod(T", L) the category of finitely generated L-modules equipped
with a continuous action of I'; and by Mod(I", L), (resp. Mod(I", L)g) the full subcategory of
Mod(T", L) consisting of those whose underlying L-module is torsion (resp. free).

For the rest of this subsection, we further assume that I' is a topologically finitely generated
abelian group and L is Noetherian.

Definition 2.1.2. We say that an L[['|-module M is weakly semisimple if

(1) M is an object of Mod(I', L); and
(2) the natural map M' — My is an isomorphism.

Lemma 2.1.3. Let M be an L[I'|-module that is an object of Mod(I', L). Then

(1) My =0 implies M" = 0;
(2) M is weakly semisimple if and only if (M/M")r = 0.

Proof. For (1), for every maximal ideal m of L, let m’ be the maximal ideal of L[[I']] topologically
generated by m and I". As Mp = 0, we have M ®r) (L[[I']]/m’) = 0 hence M, = 0 by Nakayama’s
lemma since L[[[']] is Noetherian. Thus, we have (M"),, = (M%) = 0, which implies M* = 0.

For (2), consider the short exact sequence 0 — MY — M — M/M" — 0. Suppose that
M is weakly semisimple. Then the natural map (MY)r — Mp is an isomorphism. Thus, we
have (M/M")r = 0. Conversely, suppose (M/M")r = 0. Then we have H'(I', M/M") = 0, and
HO(T', M/M") = 0 by (1). From the exact sequence

HO(T, M/M"Y) — HYT, M") — HY (T, M) — H T, M/M"),

we know that natural map MT — My, which coincides with HY(T', M') — HY(I", M) is an isomor-
phism.
The lemma is proved. H

Lemma 2.1.4. We have

(1) A finite direct sum of weakly semisimple L[I']-modules is weakly semisimple.
(2) A subquotient LI'|-module of a weakly semisimple L[I'|-module is weakly semisimple.
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Proof. Part (1) is obvious.

For (2), we take a weakly semisimple L[I']-module M. By Lemma 2.1.3(2), we have (M/M")r =
0.

Let N be an L[[']-submodule of M. Since L is Noetherian, N is an object of Mod(T, L).
As N¥' = N n MY, we have an inclusion N/NV < M/MY. Since (M/NM")r = 0, we have
H(T, M/NM") = 0 by Lemma 2.1.3(1), which implies (N/N')r = 0. By Lemma 2.1.3(2) again,
we know that V is weakly semisimple.

Let N be a quotient L[[']-module of M. Then we have a quotient map M/M" — N/NT. Thus,
we have (N/NT)r = 0. By Lemma 2.1.3(2) again, we know that N is weakly semisimple.

Part (2) is proved. O

Lemma 2.1.5. Let M be an O,[L'|-module that is an object of Mod(L', Oy)g. Suppose that M ®o,
O,/ is weakly semisimple, and dimg, (M ®0, Ex)" > dimo, /x(M @0, Ox/A\)'. Then M is weakly
semisimple as well, and dimg, (M ®o, E\)" = dimo, )\(M ®0, Ox/A)'.

Proof. Since M is a finitely generated free Oy-module, both M' and M/M?" are finitely generated
free Oy-modules. In particular, the map M" ®p, Ox/X — (M ®0, Ox/A)! is injective. As we have

dimoA/)\ MF ®O)\ O)\/)\ = rankOA MF = dlmE)\ (M (80A E)\)F7
the map M' ®0, Ox/A — (M ®0, Ox/A\)! is an isomorphism. Thus, we have
dimEAU\/[ Ko, E/\)F = dimOA/A<M XKo, O)\/)\)F
and
(M/M") @0, Ox/A = (M ®0, Ox/N)/(M @0, Ox/N)'".
As M ®0, Oy/) is weakly semisimple, we have ((M/M") ®o, Ox/A)r = 0 by Lemma 2.1.3(2).

By Nakayama’s lemma, we have (M/M")r = 0, which implies that M is weakly semisimple by
Lemma 2.1.3(2). The lemma is proved. O

To end this subsection, we record the following definition which slightly generalizes [Liul0,
Definition 5.1], which will be used in later sections.

Definition 2.1.6. Consider an Oy-module M and an element x € M. We define the exponent
and the order of x to be

expy(z, M) = min{d € Z>o U {oc} | Xz = 0},
ordy(z, M) = sup{d € Zso | 2 € XM} € Z>o U {o0},
respectively.

2.2. Local Galois cohomology. In this subsection, we study Galois cohomology locally at nonar-
chimedean places of F'. Let w be a nonarchimedean place of F'.

Notation 2.2.1. For a commutative topological Z-algebra L and ? € { | tor, fr}, we

(1) put Mod(F,,, L)7 := Mod(T'f,,, L)+;
(2) denote by —(j): Mod(F,, L) — Mod(F, L), the functor of j-th Tate twist for j € Z; and
(3) denote by =Y: Mod(F,,, L)" — Mod(F,,, L)» the functor sending M to Hom (M, L).

We also denote
—q: Mod(F,, Oy) = Mod(F,, E))
the base change functor sending M to M ®o, E\, and

—*: Mod(F,,, 04)°® — Mod(F,, O)
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the E)-Pontryagin duality functor sending M to Homop, (M, E\/O,). For every pair m,m’ €
{1,2,...,00} with m’ > m, we have a “reduction modulo A™” functor

=M = = @0, Ox/A™: Mod(F,, Ox/A™) — Mod(F,,, Oy /A™).
We usually write = for =),
Recall that for every object R € Mod(F,, O, ), we have a local Tate pairing
2.1) (Yot HY(E,, R) x HY(F,, R¥(1) % B2(F,, By /Oy) ~ Ey /Oy,

which we will study in the following.
First, we study the case where ¢ is invertible in k.

Definition 2.2.2. For every object R in either Mod(F,,, E\) or Mod(F,,, O,), we put
H; (FUM R) = H1<1Fw7 R)Fﬁw;

sing
and denote by H}(Fw, R) the kernel of the canonical map
Oy: HY(F,,R) — H!

sing

(Fuw, R),
called the finite part of H'(F,, R).

By the inflation-restriction exact sequence (see, for example, [[Liu19, Lemma 2.6]), we know that
s is surjective, and H}(F,,R) is canonically isomorphic to H' (x,, R'").

Lemma 2.2.3. For R € Mod(Fy,O\)ior, the finite parts Hy(Fy, R) and Hy(F,,R*(1)) are the
exact annihilators of each other under the local Tate pairing { , ), (2.1).

Proof. This is well-known. In fact, the cup product of H;(F,, R) and H}(F,,, R*(1)) factors through

H? (4, RPw @ R*(1)'Pw), which is the zero group. The lemma then follows from an easy compu-
tation of length and the fact that the pairing ( , ), is perfect. O

Second, we study the case that x,, has characteristic £. In particular, F,, is a finite unramified
extension of Q;. Denote by —¢: Mod(F,, Oy) — Mod(F,,, Z,) the obvious forgetful functor.

Definition 2.2.4. Let a < b be two integers.

(1) For an object R € Mod(Fy, Z¢)ior, we say that R is crystalline with Hodge—Tate weights
in [a,b] if R = R”/R’ where R’ C R” are two I'p, -stable Z,-lattices in a crystalline Q-
representation of I'p, with Hodge—Tate weights in [a, b].

(2) For an object R € Mod(F,,Z,), we say that R is crystalline with Hodge—Tate weights in
[a,b] if R/¢™R is a torsion crystalline module with Hodge-Tate weights in [a, b] for every
integer m > 1.

(3) For an object R € Mod(F,,, O,), we say that R is crystalline with Hodge—Tate weights in
[CL, b] if RO is.

Definition 2.2.5. For an object R € Mod(F,, O,) that is crystalline with Hodge—Tate weights
in [a, ], we define H}(F,,R) to be the subset of H'(F,,R) = H'(F,, Ro) consisting of elements s
represented by an extension

0—>Ry—>R;—~7Z,—0

in the category Mod(F,,, Z,) such that Ry is crystalline with Hodge—Tate weights in [a, b].
It follows that H}(F,, R) is an Ox-submodule of H'(F,, R).
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Lemma 2.2.6. Suppose that the integers a,b satisfy a < —1, b >0, and b —a < % Then for
every R € Mod(Fy, O))ior that is crystalline with Hodge—Tate weights in [a,b], the restriction of
the local Tate pairing ( , )u (2.1) to Hi(Fy,R) x Hy(Fy, R*(1)) takes values in 0,1/0,, where
0\ C O, is the different ideal of Ey/Qy.

Proof. We have a canonical map Tr: (R*)y — (Ro)* in the category Mod(F,,,Z,) induced by
the trace map Trg, /g,, which induces a map H'(F,,R*(1)) — H'(F,, (Ro)*(1)) under which
the image of H}(F,, R*(1)) is contained in H}(F,, (Ro)*(1)). Take elements x € H(F,,R) and
y € H}(F,,R*(1)). Then we have for every a € O,

Trp, jo.(a{z,y)w) = Tre, g, (a2, y)w = {0z, Tr(y))w € Qo/Zy.
However, (az, Tr(y)), = 0 by [Niz93, Proposition 6.2]. The lemma follows. O
2.3. Some Galois-theoretical lemmas. In this subsection, we generalize some lemmas from

[Liul6]. For a finite set ¥ of places of F', we denote by ['ry the Galois group of the maximal
subextension of F/F that is unramified outside 3.

Notation 2.3.1. For a commutative topological Z-algebra L and ? € { ,tor, fr}, we put
MOd(F, L)? = ml MOd(Fﬂz, L)j?,
D)

where the colimit is taken over all finite sets X of places of F' with inflation as transition functors.
We have functors —(j), =", =g, =*, and =(™) similar to those in Notation 2.2.1. For an object
R € Mod(F, L) and i € Z, we put

H'(F,R) = lim H' (T gy, R).
i

Moreover, for every place w of F', we have the restriction functor Mod(F, L) — Mod(F,,, L); and
denote . .
loc, : H'(F,R) — Hi(F,,R)

the localization map.
Definition 2.3.2 ([Liul6, Definition 5.1]). Let G be a profinite group. For an object R €
Mod(G, O, )or, we define its reducibility depth to be the smallest integer tg > 0 such that

(1) if R" is a G-stable O)-submodule that is not contained in AR, then R’ contains A\"™*R;

(2) for every positive integer m, the group Endo, (R™)/O, - id is annihilated by A®®.

Note that if R/AR is absolutely irreducible, then tg = 0.

Lemma 2.3.3. Let R € Mod(F,O,) be an object such that Rg is absolutely irreducible. Then
there exists an integer vg depending on R only, such that R has reducibility depth at most vy
for every positive integer m.

Proof. The same argument in [L.iul6, Lemma 5.2] apply to our case as well, with Z/p™ replaced
by Ox/\™. O

Now we fix a positive integer m. Consider an object R € Mod(F,O0,/A\™)s. We denote by
p: I'r — GL(R) the associated homomorphism. Let F,/F be the Galois extension fixed by the
kernel of p, and G = Gal(F,/F’) the image of p. we have the restriction map

22) Res,: H'(F,R) = H'(E,, R)® = Homg (T2, R),

where T'5> == Gal(F3"/F,) with F;> C F the maximal abelian extension of £, which is equipped
with the natural conjugation action by G' = Gal(F,/F).
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Lemma 2.3.4. Suppose that either one of the following two assumptions holds:

(a) the image of T'r in GL(R) contains a nontrivial scalar element;
(b) dimo, nR < min{%1, ¢ — 3}, R is a semisimple Ox/A'r]-module, and moreover

HomoA/)\[pF](End(R), R) =0.
Then the map Res, (2.2) is injective.

Proof. By the inflation-restriction exact sequence, it suffices to show that H(G,R) = 0.

In the situation (a), it follows that G contains a nontrivial scalar element of order coprime to
(. Then by the same argument in [Gro91, Proposition 9.1], we have H(G,R) = 0.

Now we consider the situation (b). We prove by induction that H'(G,R®) = 0 for 1 < i < m.
Suppose H'(G, R(j)) =0 for 1 < j <i < m. By the short exact sequence

0 — RV @0, jpier AYATE = ROFD 5 RO — 0

of 0,[G]-modules, in which RV ®0, /31 AY/AT*! is isomorphic to R, we know that H! (G, R0+V) =
0. Therefore, it remains to check the initial step that H'(G,R) = 0.

Let G C G be the kernel of the composite homomorphism G — GL(R) — GL(R®) for
1 < i < m, so we obtain a filtration 0 = G™ C G™! C G' C G of normal subgroups of
G. We prove by induction that H'(G/G*,R) = 0. For i = 1, since R is a faithful semisimple
O,/A[G/GY-module, G/G* has no nontrivial normal (-subgroup. As dimp, /R < £ — 3, we have
H'(G/G',R) = 0 by [Gur)9, Theorem A]. Suppose H'(G/G7 R) =0 for 1 < j <i < m. By the

inflation-restriction exact sequence
0 — HY(G/G'R) - H(G/G"™ R) — Homg(G'/G™ R),
it suffices to show that Homg(G?/G™*! R) = 0, or equivalently, Homo, /xjq)(G'/G @ Oy /A, R) =

0. Note that G*/G"*! is an IF,[G]-submodule of End(R), hence (G*/G*™) ® Ox/X is an Ox/A[G]-

submodule of End(R) ® (O5/)) ~ End(R)4, where d := [0/ : F(] is the degree. Since R is a
semisimple O, /A[G]-module and 2 dimo, » R < £+2, by [Ser94, Corollaire 1], we know that End(R)
is a semisimple O, /A[G]-module. In particular, we have Homo, /xc)(G'/G™ @ Oy/A,R) = 0 as

Homg(End(R),R) = 0.
The lemma is proved. O

Remark 2.3.5. In Lemma 2.3.4, assumption (a) is well-known to deduce the injectivity, and in fact
the surjectivity as well, for the map Res,; this is the assumption in all previous works concerning
Selmer groups of elliptic curves or their products and symmetric powers. However, for reduction of
general automorphic Galois representations, assumption (a) is very hard to verify. Thus, we find
an alternative, namely, assumption (b) for the injectivity of Res,; it looks much more complicated
than (a), nevertheless can be achieved under certain mild conditions; see Corollary 8.2.3.

The map Res, (2.2) induces an Oy-linear pairing
[, ]: HY(F,R) x TP =R,

such that the action of G' on F}‘; is compatible with that on R. Let S be a finitely generated O, /\™-
submodule of H'(F,R), and let Fs/F, be the finite abelian extension such that Gal(F3"/Fg) is
the subgroup of I“}bp consisting of v satisfying [s,v] = 0 for every s € S. As in [Liul6, Section 5.1],
we introduce a sequence f that is given by §(0) = 1, (1) = 1, f(2) =4, f(r + 1) = 2(f(r) + 1) for
r>2.
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Lemma 2.3.6. Let the notation be as above. Suppose that either one of the two assumptions in
Lemma 2.5.4 is satisfied. Then the induced pairing

[,]: S x Gal(Fs/F,) = R

induces an injective map 0s: Gal(Fg/F,) — Homg, (S, R) of abelian groups that is compatible with
G-actions. Moreover, if S is a free O\/N""™ -module of rank rs for some integer 0 < m' < m,
then the Ox-submodule of Homo, (S, R) generated by the image of 05 contains NS Homy, (S, R),
where tg < m is the reducibility depth of R.

Proof. The same argument in [Liul6, Lemma 5.4] apply to our case as well, with Z/p™ replaced
by O,/ A" Note that the proof only uses the injectivity, not the surjectivity, of the map Res,,
(2.2). O

2.4. Reduction of Selmer groups. We recall the following definition of the Bloch-Kato Selmer
group from [BIK90].

Definition 2.4.1 (Bloch-Kato Selmer group). For an object R € Mod(F, E)), we define the
Bloch~Kato Selmer group H(F,R) of R to be the Ej-subspace of H'(F,R) consisting of elements
s such that

(1) locw(s) € Hy(Fy, R) (Definition 2.2.2) for every nonarchimedean place w of F'; and
(2) locy(s) € Hy(Fy,R) = ker (H'(F,,R) = H'(F,, R ®q, Beis)) for every place w above £,
where B, is Fontaine’s crystalline period ring for Q.
Definition 2.4.2. Consider an object R € Mod(F, O, )y,.
(1) We define the (integral) Bloch-Kato Selmer group Hi(F,R) of R to be inverse image of
H}(F,Rg) under the obvious map H'(F,R) — H'(F, Rg).
(2) For m € {1,2,...,00}, we define Hi g (F, R(™) to be the image of H}(F,R) under the
obvious map H*(F,R) — H'(F,R™).
Lemma 2.4.3. Consider an object R € Mod(F,O))s. Suppose that we are in one of the two
following cases

(1) w is a nonarchimedean place of F' not above £ at which R is unramified.
(2) w is a place of F' above ¢ at which Ry is crystalline with Hodge—Tate weights in [a, b] with
a<0<bandb—a</l-2.

Then for every positive integer m, we have
(2.3) loc,(H} i (F,R™)) C Hy(F,,,R™).
Proof. For (1), as R is unramified at v, the natural map
H'(Ir,,R) = Hom(If,,R) — H'(If,, Rg) = Hom(If,, Rg)
is injective. We deduce from the following map of exact sequences

0 —— H}(F,,R) — H'(F,,,R) — H} (Fy,R) —0

| |

0 — H}(F,, Rg) — H'(F,, Rg) — H!

sing

(Fy,Rg) —=0

that H}(F,, R) consists of exactly the elements of H'(F,, R) whose image in H'(F,, Rg) belongs
to Hy(F., Rg). From this, we conclude that loc,, sends Hy(F,R) into H}(F,, R). Moreover, it is
clear that the image of H}(F,, R) under the reduction map H'(F,, R) — H'(F,, R(™) is contained
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in H}(F,,,R(™). (In fact, the image is exactly equal to H}(F,,, R™).) The desired inclusion (2.3)
follows from this by the definition of H}p (F, R™).

For (2), by the main result of [Liu07], Hi(F,,R) is exactly the preimage of H(F,, Rg) via
the natural map H*(F,, R) — H*(F,, Rg). It is clear then from the definition that the image of

H}(F,, R) in H'(F,,R™) lies in H}(F,, R(™). .
We recall the notion of purity for a local Galois representation.

Definition 2.4.4. Let w be a nonarchimedean place of F' not above ¢. Consider an object
R € Mod(F,, Ey). Let WD(R) be the attached Weil-Deligne representation, and gr,, WD(R) be
the n-th graded piece of the monodromy filtration on WD(R). For u € Z, we say that R is pure
of weight p if gr, WD(R) is pure of weight 1 + n for each n, that is, the eigenvalues of ¢, on
gr, WD(R) are Weil [|w||~**™-numbers.

From now to the end of this section, we suppose that the complex conjugation c restricts to an
automorphism of F' (of order at most two). We adopt the notation concerning ground fields in
Subsection 1.3; in particular, we put F* := F°=!. We also have a functor

—°: Mod(F, L) — Mod(F, L)
induced by the conjugation by c.

Lemma 2.4.5. For every object R € Mod(F, Ey), the functor =° induces an isomorphism
H}(F, R) ~ H}(F,R°)
of Selmer groups.

Proof. Regard elements in H!(F, =) as extensions. Then applying —° to extensions induces maps
H'(F,R) — H'(F,R®), H'(F,R°) — H'(F,R)

which are inverse to each other. It is clear that conditions (1) and (2) in Definition 2.4.1 are
preserved under such maps. The lemma follows. U

Proposition 2.4.6. Let R be an object in Mod(F,Oy)g satisfying R§ ~ Rg(1) and such that
Rq is pure of weight —1 at every nonarchimedean place w of F' not above (. Take a finite set
Y of places of F'. Then there exists a positive integer msy,, depending on R and X, such that for
every free Ox-submodule S of Hy(F,R) that is saturated in Hy(F,R)/H}(F,R)iox and every integer
m > my, we have:

(1) S'™, the image of S in Hj g (F, R™), is a free Ox/N"-module of the same rank as S;

(2) loc,(A™=S™) = 0 for every nonarchimedean place w € ¥ not above /.

Proof. Part (1) follows from the same argument for [[.iul6, Lemma 5.9].
For (2), we look at the map
loc: Hig(FLR™) —» @  HY(F,,R™).
weX, wiool

For every w { oof, since Rg is of pure weight of —1 at w, R§ and Rg(1) are of pure weight
of —1 at w as well. Thus, we have H(F,,,Rq) = 0 and H*(F,,Rq) ~ H°(F,,Ry(1))" = 0,
hence H'(F,,, Rg) = 0 by the Euler characteristic formula (see also the proof of [Nek(7, Proposi-
tion 4.2.2(1)]). Thus, H'(F,, R) is annihilated by A™ for some integer m,, > 0. We may enlarge
M., 50 that X™» also annihilates H*(F,,, R)o;. Then it follows that H'(F,,, R(™) is annihilated by
A¥mw - Now if we put my = max{2m,, | w € X, w { oofl}, then (2) follows. This completes the
proof of the proposition. O
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To end this subsection, we recall the extension along j-polarization. This has been introduced in
[CHTO8, Section 1] when [F : F*] = 2. We introduce the group scheme ¥y. When [F : F*] = 1,
it is just GLy x GLy. When [F : F'T] = 2, it is the one in Notation E.1.1.

Definition 2.4.7. For a commutative topological Z,-algebra L, an integer j, and an object R in
Mod(F, L), a j-polarization of R is an isomorphism

=: RS RY(%)
in Mod(F, L), such that Z%V(j) = pz - (=1)"*! - Z for some puz € {£1}. We say that R is
j-polarizable if there exists a j-polarization.

Construction 2.4.8. Let R be a nonzero object in Mod(F, L)s with the associated continuous
homomorphism p: I'r — GL(R), equipped with a j-polarization Z: R® = RY(j). Choose an
isomorphism R ~ L®Y of the underlying L-modules for a unique integer N > 1.
(1) When [F': F*] =1, we let
pi: Tpv — 9n(L)
be the continuous homomorphism sending g € I'r+ = I'r to (p(g), €(g)).
(2) When [F : F] = 2, the j-polarization = gives rise to an element B € GLy (L) as in Lemma
E.1.3(2) for the pair (p, nﬁF+eZ). We let

be the continuous homomorphism given in Lemma E.1.3(2).
In both cases, we call p, an extension of p, which depends on the choice of a basis of R.

2.5. Localization of Selmer groups. In this subsection, we study the behavior of Selmer groups
under localization maps.

Notation 2.5.1. We take a nonzero object R € Mod(F, O, ) with the associated homomorphism
p: Tr — GL(R), together with a j-polarization Z: R¢ = RV(j). We fix an isomorphism R ~ O¢".
Let

P+ FF+ — gN(O,\)

be the extension of p from Construction 2.4.8. For every integer m > 1, we have the induced
homomorphisms

p™: Tp — GL(R™) ~ GLNx(0x/A™),
P T — Dn(ON/N™),
and we omit the superscript (m) when m = 1.
We denote by F™ = F Hem) and FJ(rm) the subfields of F fixed by ker p(™ and ker ,a(f”), respec-
tively. In particular, we have F C F(™) C FJ(rm) C F™)(Lpm).
Notation 2.5.2. For a positive integer m and an element v € (GLy(O5/A™) x (Ox/N")*)c C
X

Gn(0x/N™), we denote by h, € GLy(Ox/A™) the first component of Y] € GLy(0y/A™)
(Ox/A™)*.

Now we fix a positive integer m and an element v € (GLy(Ox/A™) X (Ox/AN"™)*)c C Gn(Ox/ ™).
The following definition is essentially [I.iu16, Definition 5.6].

Definition 2.5.3. We say that a place w(f” of FJ(rm) is y-associated if it is coprime to oof, unrami-

fied over F'*, unramified in Fs, and such that its Frobenius substitution in Gal(FJ(rm) /F1) ~im p(ﬁ)
coincides with 7.
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Consider a finitely generated Ox-submodule S of Hj g (F, R(™). We have the finite abelian

extension Fg/F™) from Subsection 2.3. Suppose that either one of the two assumptions in Lemma
2.3.4 is satisfied. Then by Lemma 2.3.6, we have an injective map

0s: Gal(Fs/F™) — Homo, (S,R™)

of abelian groups, equivariant under the action of Gal(F™ /F). Take a vy-associated place wim)

of FJ(rm), and denote by its underlying places of F(™ and F by w(™ and w, respectively. Since
Fg/F'™ is abelian, w™ has a well-defined Frobenius substitution ¥, ), € Gal(Fgs/F)). Denote
by Gs,, the subset of Gal(Fs/F ™) of elements W, for all y-associated places w(j”).

On the other hand, as ¢,, acts on R(™ by h., we have an isomorphism
(2.4) H}(F,, R™) = H'(ky, R™) = R™ /(h, — 1)R™

that sends a 1-cocycle on I'y, to its image of ¢,,. By Lemma 2.4.3 and the fact that the underlying

place of F'* of wi’”) is inert in F, we have the localization map

loc,: Hy g (F,RM™) — H}(F,, RI™).
From (2.4), we know that loc,(s)(W,,m ) is a well-defined element in (R™)" for every s € S.

Lemma 2.5.4. Suppose that either one of the two assumptions in Lemma 2.5.4 is satisfied.

(1) If wim) is a y-associated place of FJ(rm), then we have Os(V  m))(s) = locy(8)(V,,mm) for
every s € S.

(2) Suppose v € im [)(fl), and that the order of h, is coprime to £. Then we have

Gs~ = 05" Hom(S, (R™)").

Proof. The same arguments in [Liul6, Lemma 5.7 and Lemma 5.8] apply to the current case as
well with Q replaced by F'. OJ

By Lemma 2.5.4, for every r € N, we have a map

05 G, — Homo, (S, (R"™)™)#")

of abelian groups induced by #g.

Proposition 2.5.5. We make the following assumptions:

(1) Ry is absolutely irreducible;

(2) either one of the two assumptions in Lemma 2.3.4 is satisfied;
(8) the order of h. is coprime to {; vy belongs to im ﬁim),

(4) (R s free over Oy/A™ of rank r., for some 1, € N; and

(5) S is a free Oy/N™" "™ -module of rank rs for some my € N and rg € N.
Then there exists an element (¥q,..., ¥, o) € Gg ”TS such that the image of the homomorphism

050 (U1, ..., ¥, ) contains Xm0 rs)m ((R(m)h )@T’S, where tg and f(rs) are the integers appear-
ing in Lemma 2.3.3 and Lemma 2.5.6, respectively.

Proof By Lemma 2.3.3 and Lemma 2.3.6, the O,-submodule generated by the image of 5 contains
M) Homg, (S, R(™). Since k., has order coprime to £, Homo, (S, (R™)") is a direct summand
of Homo, (S, f{(m)). It follows from Lemma 2.5.4(2) that the Oy-submodule generated by 0s(Gs.)
contains Ns)** Homg, (S, (R™)A). As (R(™)M is free Oy /A™-module of rank ., and S is a free
O, /N -module of rank rg, the proposition follows immediately. O
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Definition 2.5.6. Let the notation be as in Proposition 2.5.5. We say that an r,rg-tuple
(U1,..., U, pg) € G 7 is (S, 7)-abundant if the image of the homomorphism 6% (1, ..., U, .. )

) T‘—y’r‘s | T’Yrs
contains Ao+ (rs)tr ((f{(m))h7 )ors,

Remark 2.5.7. In the applications later, we will use Proposition 2.5.5 with 7, = 1 and rg € {1, 2}.

2.6. A Rankin—Selberg example. In this subsection, we discuss an example that is related to
the Rankin—Selberg motives, which will be considered later. We take objects R, € Mod(F, Oy )g:
for @« = 0,1 of rank n, > 0 with the associated homomorphism p,: I'r — GL(R,), together with
a (1 — a)-polarization Z,: RS = RY(1 — a). We fix isomorphisms R, =~ OY" for a = 0, 1.

We assume that ng = 21 is even and n; = 2r;+1isodd. Put R := Ro®o, Ri; p == po®@p1: I'r —
GL(R); and = := Zy ® Z1: R® = RVY(1) which is a 1-polarization of R.

For a homomorphism p from I'r and a place w of F', we write p, for the restriction of p to
the subgroup I'r,. Moreover, for clarity, we denote by €§m): [p+ — (On/A™)* the reduction of ¢

modulo A for a positive integer m, and put €, = €§1) for simplicity.

Lemma 2.6.1. Let the notation be as above. Take a totally real F™-normal intermediate extension
F*+ C F' C C (Definition 1.5.1) and a polynomial P(T) € Z[T]. The following three statements
are equivalent:

(1) There exists a nonarchimedean place v of F* inert in F (under the unique place w of F)
and splits completely in F' such that
(a) € does not divide ||v||2(||v]);
(b) both po. and py., are unramified and semisimple;
(c) the trivial character appears in each of pow, prw, and p, with multiplicity one;
(d) if [F : F*] = 2, then the unramified character sending ¢,, to —1 does not appear in
ﬁO,w;
(e) if [F : Ft] =2, then the unramified character sending ¢,, to —||v|| does not appear in
ﬁl,w-
(2) For every positive integer m, the image of the restriction of the homomorphism

(P50, D &™) Tt = g (Ox/A™) X Gy (02 A™) X (O3 /X™)*

(see Notation 2.5.1 for the notation) to Gal(F/F') contains an element (7o, 71, &) satisfying
(a) (&) is invertible in O\/\™;

(b) for ao=0,1, v, belongs to (GL,, (Ox/A™) x (Ox/A™)* )¢ with order coprime to ¢;

(c) the kernels of h,, — 1, hy, — 1, and h,, @ h,, — 1 (Notation 2.5.2) are all free over

O,/\™ of rank 1;
(d) if [F: F*] =2, then h,, does not have an eigenvalue that is equal to —1 in Oy/\;
(e) if [F: F™| =2, then h,, does not have an eigenvalue that is equal to —& in Oy/A.
(8) Part (2) holds for m = 1.

Proof. For a nonarchimedean place v of F'*, we choose an arithmetic Frobenius element ¢, in I’ o

First, we show that (1) implies (3). Let v be such a place in (1). Then (the conjugacy class
of) ¢, belongs to (the normal subgroup) Gal(F/F’) as v splits completely in F’. Let (yo,71,&) be
the image of ¢, under the homomorphism (pg+, p14, €), which is well-defined by (1b). Then (2a)
follows from (1a); (2b) follows from the fact that v is inert in F' and (1b); (2¢) follows from (1c);
(2d) follows from (1d); and (2e) follows from (1e).

Second, we show that (3) implies (2). Suppose that (70,71,&) is an element in the image
of (Po+, P1++ €0)|qaF/pry Satistying (2a)-(2e). For every given positive integer m, take an element

(76,71, €') in the image of (,5(()?, p&“j), Eém)) | Gai(F ) Whose reduction is (70,71, §). Then after raising

sufficiently large ¢-power, (), 71, &) will satisfy (2a)—(2e).
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Last, we show that (2) implies (1). Take an element (v, 71,&) is an element in the image of
(Po+: P14+ €0)| g7 ) Satistying (2a)-(2d). By the Chebotarev density theorem, we can find a
nonarchimedean place v of F'* coprime to ¢, unramified in F', and splits completely in F’, such
that (poy, P14, €) is unramified at v and sends ¢, to (79,7,£). Then v is inert in F' by (2b).
Moreover, (1a) follows from (2a); (1b) follows from (2b); (1c) follows from (2¢); (1d) follows from
(2d); and (1e) follows from (2e).

The lemma is proved. 0

Lemma 2.6.2. Tuke a positive integer m. Let v be a nonarchimedean place of F* coprime to
¢ and inert in F, such that the homomorphism (ﬁéﬁ),ﬁﬁ), ém)) is unramified at v and sends an
arithmetic Frobenius element in T+ to an element (y0,71,§) satisfying (2a)—-(2c) in Lemma 2.6.1.
Then all of H}(F,, oo, H(Fy, ™), and H}(F,, p'™) are free Ox/A™-modules of rank 1, where

w is the place of F' above v.

Proof. We only consider H}(F,, p™); and the other two cases are similar. By (2b), we may write

pim) ~ @N | ph where each p} is residually irreducible. By (2c), we know that the trivial represen-
tation appears in {p;}¥, exactly once, say p}j. Moreover, for i > 1, the residual representation of

pj is not trivial, hence we have H}(F,, p;) = 0. Therefore, we have
HY(Fuy 5™) = HY Py ) = H}(Fuy 02/ A7)

which is a free O, /A™-module of rank 1. O

In the remaining part, we discuss an example in the Rankin—Selberg case using elliptic curves.
Let Ap and A; be two elliptic curves over F'*. For a rational prime ¢ (that is odd and unramified
in F'), we put

R = (Symze ™ He(Aag, Ze))(ra)

as a Z¢[I'p|]-module for a = 0,1. Then R,, is an object in Mod(F, Zy)y, of rank n, with a canonical
(1 — a)-polarization Z,: RS = RY(1 — a). Put R := Ry ®z, R; and = := 5 ® E; as above.

Proposition 2.6.3. Suppose that Ay and A1 are not isogenous to each other and End(Agg) =
End(A15) = Z. Take a totally real FT-normal intermediate extension F* C F' C C and a
polynomial P (T') € Z[T). Then for sufficiently large ¢, we have that

(1) the image of p: I'r — GL(R ® Fy) contains a nontrivial scalar element;
(2) all of po, p1, and py @ p1 are absolutely irreducible; and
(8) Lemma 2.6.1(3) holds for F', P (T), and the coefficient field IF,.

Proof. For a = 0,1 and every ¢, we have the homomorphism
pa,e: Dp — GL(HE (Aaz, Fr)) =~ GLy(Fy).

Then we have p, = (Sym™ ™' pa, ¢)(ra) for a = 0,1. By our assumption on Agz and A;%, and
[Ser72, Théoreme 6], for sufficiently large ¢, the image of the homomorphism

(Pag.es Pay ey €0): T'p — GLo(IFy) x GLo(Fy) x F)f

consists exactly of the elements (go, g1, &) satisfying det gy = det g; = £~!. Then both (1) and (2)
follow immediately.
For (3), take an element g € I'r such that its image under (pa, s, pa, e, €) is in the conjugate

class of
a 0 ab 0 -
0 1/°\0 1)

for a,b € F satisfying
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O Z(a™') #0,

O (a2 (ab®)2FF £ 1 for (i,7) € {ro,ro—1,...,1 —ro} x {r1,r1 —1,...,—r1} except for
(0,0),

O (a® HFFT £ 1 fori € {ro,ro—1,...,1 — 70}, and

O (a(ab®)>FFT £ 1 for j € {ry,r —1,...,—r}.

Such pair (a,b) always exists for sufficiently large ¢. Then it is straightforward to check that

the image ¢! lc under (o, p14, &) (under the notation of Lemma 2.6.1) satisfies (2a)—(2e) of

Lemma 2.6.1. In particular, (3) follows. O

3. PRELIMINARIES ON HERMITIAN STRUCTURES

In this section, we collect some constructions and results concerning objects with certain hermit-
ian structure. In Subsection 3.1, we introduce hermitian spaces, their associated unitary groups
and unitary Hecke algebras. In Subsection 3.2, we introduce unitary Shimura varieties and unitary
Shimura sets. In Subsection 3.3, we review the notion of (generalized) CM types. In Subsection
3.4, we collect some facts about abelian schemes with hermitian structure, which will be pa-
rameterized by our unitary Shimura varieties. In Subsection 3.5, we introduce a moduli scheme
parameterizing CM abelian varieties, which is an auxiliary moduli space in order to equip our
unitary Shimura variety a moduli interpretation.

Let N > 1 be an integer.

3.1. Hermitian spaces and unitary Hecke algebras. We start by recalling the notion of the
coefficient field for an automorphic representation of GLy(Ar). Let II be an irreducible cuspidal
automorphic (complex) representation of GLy(Ap).

Definition 3.1.1. The coefficient field of 11 is defined to be the smallest subfield of C, denoted
by Q(II), such that for every p € Aut(C/Q(1I)), II and Il ®¢,, C are isomorphic.

For a nonarchimedean place w of F' such that II,, is unramified, let
a(ll,) = {a(lly),...,a(ll,)n} € C

be the Satake parameter of II,, and Q(II,) C C be the subfield generated by the coefficients of

the polynomial
N

N-1
[1(7 - o) /lol ) el
i=1
Lemma 3.1.2. The coefficient field Q(I1) is the composition of Q(IL,) for all nonarchimedean
places w of F such that 11, is unramified.

Proof. Let Q(II)" be the composition of Q(II,) for such w. By the construction of unramified
principal series, it is clear that for every v € Aut(C/Q(II)") and every w, II, and II, ®c C have
the same Satake parameter hence are isomorphic. By the strong multiplicity one property, we
know that for v € Aut(C/Q(1I)’), II and II ®¢,, C are isomorphic. Thus, Q(II) is contained in
Q(II)". Conversely, for v € Aut(C/Q(1I)), I1,, and II,,®¢ ,C must have the same Satake parameter
for every w, which implies that « fixes Q(II,) for every w. Thus, Q(IL,) is contained in Q(II) for
every w, which implies Q(IT) C Q(IT). The lemma follows.

Definition 3.1.3 (Abstract Satake parameter). Let L be a ring. For a multi-subset o =
{ai,...,an} C L, we put
N
P (T) =[](T — o) € L[TY.
i=1
Consider a nonarchimedean place v of F* not in X7,

ram*
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(1) Suppose that v is inert in F'. We define an (abstract) Satake parameter in L at v of rank
N to be a multi-subset @ C L of cardinality N. We say that a is unitary if Po(T) =
(=)™ - Po(T).

(2) Suppose that v splits in F'. We define an (abstract) Satake parameter in L at v of rank N
to be a pair a = (a; ) of multi-subsets a, s C L of cardinality N, indexed by the
two places wy, wy of F above v. We say that ac is unitary if Py, (T) = c- TV - P, (T71) for
some constant c € L*.

For two Satake parameters oy and «; in L at v of rank ng and ny, respectively, we may form their
tensor product ag ® a; which is of rank ngn; in the obvious way. If ag and a; are both unitary,
then so is oy @ a;.

Notation 3.1.4. We denote by X the smallest (finite) set of nonarchimedean places of F*
containing X such that II,, is unramified for every nonarchimedean place w of F not above Y.
Take a nonarchimedean place v of F'+ not in 3.
(1) If v is inert in F', then we put a(Il,) = a(Il,) for the unique place w of F' above v.

(2) If v splits in F' into two places w; and ws, then we put a(1l,) = (a(Ily,); a(Ily,)).
Thus, a(I1,) is a Satake parameter in C at v of rank V.

Definition 3.1.5. Let v be a nonarchimedean place of F* inert in F', and L a ring in which [Jv||
is invertible. Let P € L[T] be a monic polynomial of degree N satisfying P(T') = (—=T)" - P(T™1).
(1) When N is odd, we say that P is Tate generic at v if the constant term of T~ P(T +1) is
invertible in L.
(2) When N is odd, we say that P is intertwining generic at v if P(—|v||) is invertible in L.
(3) When N is even, we say that P is level-raising special at v if P(||v||) = 0 and the constant
term of T-'P(T + ||v||) is invertible in L.
(4) When N is even, we say that P is intertwining generic at v if P(—1) is invertible in L.

Remark 3.1.6. Suppose that L is a field in the above definition. Note that when N is odd, 1
appears in the Satake parameter and all other elements appear in pairs of the form {a,a™!'};
when N is even, elements in the Satake parameter appear in pairs of the form {a,a™'}. Then

(1) means that 1 appears exact once in the Satake parameter;

(2) means that the pair {—||v||, —||v||~'} does not appear in the Satake parameter;
(3) means that the pair {||v]|, ||v]| "'} appears exactly once in the Satake parameter;
(4) means that the pair {—1, —1} does not appear in the Satake parameter.

We now introduce hermitian spaces.

Definition 3.1.7 (Hermitian space). Let R be a commutative Op+[(Xf ) ~']-algebra. A hermitian
space over Op ®o,, R of rank N is a free O ®o,,, R-module V of rank N together with a perfect
pairing

(, )VIVXV—>OF®OF+R

that is Op®o,., R-linear in the first variable and (Or®o,, R, c®idg)-linear in the second variable,
and satisfies (z,y)v = (y,2)y, for z,y € V. We denote by U(V) the group of Op ®o_, R-linear
isometries of V, which is a reductive group over R.

Moreover, we denote by V; the hermitian space V& Op ®o,, R-1 where 1 has norm 1. For an
Or ®o,, R-linear isometry f: V. — V' we have the induced isometry f;: V; — Vi.

Let v be a nonarchimedean place of F'* not in ¥t . Let Ay, be the unique up to isomorphism

hermitian space over Or, = O ®0,., Op+ of rank N, and Uy, its unitary group over Op+. Under
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a suitable basis, the associated hermitian from of Ay, is given by the matrix

Consider the local spherical Hecke algebra

Trw = Z[Unw(Op \Unw(E)) /Unw(Ops )]

Note that according to our convention, the unit element is HUN,U(OF +)- Let Ay, be the maximal

split diagonal subtorus of Uy, and X, (Ay,) be its cocharacter group. Then there is a well-known
Satake transform

(3.1)

T = Z[I= ) [Axo(F) /AN (Opp)] = Z[[0[ =) [X.(Ay )]

as a homomorphism of algebras. Choose a uniformizer w, of F.'.

Construction 3.1.8. Let L be a commutative Z[||v|

|i5(”)/2]—algebra. Let a be a unitary Satake

parameter in L at v of rank N. There are two cases.

(1)

Suppose that v is inert in F". Then a set of representatives of A, (F,")/An(Op+) can be
taken as

{(@h, ..., @N) |y, ...ty € Z satisfying t; + tyy1 s =0 forall 1 <i < N}.

v
Choose an order in a as (aq,...,ay) satisfying c;ayi1-; = 1; we have a unique homo-
morphism

L[| Ao (F) [ Ano(Op)] = L

N
of Z[||v]|F°)/2]-algebras sending the class of (w'!, ..., @) to HitjlJ ot Composing with
the Satake transform (3.1), we obtain a ring homomorphism
(ba: TN,U — L.

It is independent of the choices of the uniformizer =, and the order in c.
Suppose that v splits in F' into two places w; and ws. Then a set of representatives of

ANo(FS)/ANw(Op+) can be taken as

t1 —tN
wU wU

) 2(;1’"'7tN€Z’ )

tN —t1
w'U wv

where the first diagonal matrix (resp. the second diagonal matrix) is regarded as an
element in Ay, (Fy,) (resp. Any(Fu,)). Choose orders in ¢ and as as (aq1,...,00N)
and (ag,...,aq y) satisfying oy ;a0 y41-; = 1; we have a unique homomorphism

Z[[o 2 Ao (F) [Ano(Op)] = L

of Z[||v||**)/%)-algebras sending the class of (ww!!,...,@!¥;w, ™, ... @, ") to [II, af;.
Composing with the Satake transform (3.1), we obtain a ring homomorphism
¢a3 TN,v — L.

It is independent of the choices of the uniformizer w,, the order of the two places of F'
above v, and the orders in a; and a.
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Definition 3.1.9 (Abstract unitary Hecke algebra). For a finite set 1 of nonarchimedean places
of F* containing XF  we define the abstract unitary Hecke algebra away from X+ to be the

ram’
DL o\
TN — ® TN,’U
v

restricted tensor product
over all v € X7 UXT with respect to unit elements. It is a commutative Z-algebra (that is, a ring
under our convention).

Construction 3.1.10. Suppose that IT satisfies [T o ¢ ~ IIV. For v € 3}, the Satake parameter
a(I1,) is unitary. Thus by Construction 3.1.8, we have a homomorphism

+
QZ)H = ® Qba(l'[v): Tiﬂ —C

vgSLUSH

which takes value in Q(IT) by Lemma 3.1.2. Here, we regard C as a Z[|Jv||*°®)/2]
+4(v)
sending ||v]|F0®)/2 to /||v]] . If moreover II is regular algebraic, then it is cohomological

[C1090, Lemme 3.14]; hence Q(IT) is a number field and ¢ takes value in Og).

-algebra by

At last, we introduce some categories of open compact subgroups, which will be used later.

Definition 3.1.11. Let V be a hermitian space over F' of rank N. Let [J be a finite set of
nonarchimedean places of F't.

(1) (Neat subgroups [Lan13]) We consider U(V)(A%;"”) as a subgroup of GLp(V)(AX") (by
choosing an arbitrary basis). For a nonarchimedean place v of F* not in [J and an element
go € U(V)(E;), it makes sense to talk about the eigenvalues of g, in F, which contains
Q. Let I'(g,) be the subgroup of (F)* generated by the eigenvalues of g,. Note that the
torsion subgroup I'(g, )ors lies in Q%. We say an element g = (g,) € U(V)(AX:") is neat if
Nugo T'(go)tors = {1}, and a subgroup K C U(V)(AY) is neat if all its elements are neat.

(2) We define a category K(V)” whose objects are neat open compact subgroups K of
U(V)(A%7), and a morphism from K to K’ is an element g € K\U(V)(AX")/K' sat-
isfying g 'Kg C K’. Denote by &(V)Y the subcategory of (V)" that allows only identity
double cosets as morphisms.

(3) We define a category £(V)g, whose objects are pairs K = (K, Ky) where K, is an object of

R(V)” and Kj; is an object of £(V;)" such that K, C Ky N U(V) (A%O;D), and a morphism
from K = (K,,K;) to K" = (K[, K}) is an element g € K,\U(V)(A%:7) /K] such that
9 'K,g € K{ and g~ 'Kyg C Kj. We have the obvious functors

= R(V)g, = RV)7, = &(V)g, — &(Vy)”
sending K = (K,, Kj) to K, and Ky, respectively. Note that ﬁ(V)Ep is a non-full subcategory
of R(V) x R(Vy)"~.
When [ is the empty set, we suppress it from all the notations above.
3.2. Unitary Shimura varieties and sets. We introduce hermitian spaces over F' that will be
used in this article.

Definition 3.2.1. Let V be a hermitian space over F' of rank N.

(1) We say that V is standard definite if it has signature (N, 0) at every place in X1 .
(2) We say that V is standard indefinite if it has signature (N —1,1) at 7, and (N, 0) at other
places in X1 .
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First, we introduce unitary Shimura varieties. Take a standard indefinite hermitian space V
over F' of rank N. We have a functor
Sh(V,=): &(V) — Sch,p
K +— Sh(V,K)
of Shimura varieties associated to the reductive group Resg+ /o U(V) and the Deligne homomor-
phism
h: RGSC/R G, — (RGSF+/Q U(V)) 0200) R

N-1 Loo h -
TEXL,THT o
where we have identified U(V)(F}" ) with a subgroup of GLy(C) via the complex embedding 7.
of F.
Second, we introduce unitary Shimura sets. Take a standard definite hermitian space V over F
of rank N. We have a functor

Sh(V,=): (V) — Set
K+ Sh(V,K) = U(V)(FH)\U(V)(A%)/K.
Remark 3.2.2. Whether the notion Sh(V, =) stands for a scheme or a set depends on whether V is
standard indefinite or standard definite; so there will be no confusion about notation. Of course,

one can equip with Sh(V, =) a natural scheme structure when V is standard definite; but we will
not take this point of view in this article.

We now recall the notion of global base change.

Definition 3.2.3 (Global base change). Let V be a hermitian space over I of rank N, and 7 a
discrete automorphic representation of U(V)(Ap+).

(1) We define a global base change of 7 is an automorphic representation BC(7) of GLy(AF)
that is a finite isobaric sum of discrete automorphic representations such that BC(7), ~
BC(m,) holds for all but finitely many nonarchimedean places v of F* such that m, is
unramified. By the strong multiplicity one property for GLy [PS579], if BC(7) exists, then
it is unique up to isomorphism.

(2) We say that 7 is stable if BC(r) exists and is cuspidal.?

Proposition 3.2.4. Let I1 be a relevant representation of GLy(AR).

(1) For every nonarchimedean place w of F, 11, is tempered.
(2) For every isomorphism v,: C = Qy, there is a semisimple continuous homomorphism

P, - FF — GLN(@Z))
unique up to conjugation, satisfying that for every nonarchimedean place w of F', the Frobe-

nius semisimplification of the associated Weil-Deligne representation of p,,|r,, corre-

1N
sponds to the irreducible admissible representation vll,|det |w? of GLy(F,) under the
local Langlands correspondence. Moreover, p;,, and pyy, (1 — N) are conjugate.

Proof. Part (1) is [Carl2, Theorem 1.2]. For (2), the Galois representation py,, is constructed in
[CH13, Theorem 3.2.3], and the local-global compatibility is obtained in [C'ar12, Theorem 1.1] and
[Carl4, Theorem 1.1]. The last property in (2) follows from the previous one and the Chebotarev
density theorem. 0

2This is slightly more restrictive than the usual definition of stable representations by requiring BC(x) discrete.



ON THE BEILINSON-BLOCH-KATO CONJECTURE FOR RANKIN-SELBERG MOTIVES 27

Definition 3.2.5. We say that a subfield £ C C is a strong coefficient field of Il if E is a number
field containing Q(II) (Definition 3.1.1); and for every prime A\ of E, there exists a continuous
homomorphism

PILA: FF — GLN(E)\),

necessarily unique up to conjugation, such that for every isomorphism ¢,: C = Q inducing the
prime A, pp ) ®g, Q; and prr,, are conjugate, where prr,, is the homomorphism from Proposition
3.2.4(2).

Remark 3.2.6. By [CH13, Proposition 3.2.5], strong coefficient field of II exists. Moreover, under
Hypothesis 3.2.9 below, Q(II) is already a strong coefficient field of II if II is isomorphic to BC(7)
for a relevant pair (V, ) (see Definition 3.2.7 below) in which V is standard indefinite.

Definition 3.2.7. Consider a pair (V,7) where V is a hermitian space over F', and 7 a discrete
automorphic representation of U(V)(Ap+). We say that (V,m) is relevant if either one of the
following two situations happens:

(1) V is standard definite, and 7 appears in
lim  C[Sh(V, K)};

Kes/(V)
(2) V is standard indefinite, and 7> appears in

ling ¢ "He, (Sh(V, K)7, Q)

Kes/ (V)
for some isomorphism ¢,: C = Q, and some i € Z.
Proposition 3.2.8. Let (V, ) be a relevant pair. Then BC(7) exists.

Proof. When V is standard definite, this is proved in [Lab, Corollaire 5.3]. When V is standard
indefinite, this is proved in [Shi, Theorem 1.1].% |

Hypothesis 3.2.9. Consider an integer N > 1. For every standard indefinite hermitian space V
over F' of rank N, every discrete automorphic representation 7w of U(V)(Ag+) such that BC(m)
exists and is a relevant representation of GLy(Ar), and every isomorphism ¢,: C = Q, the
semisimplification of the Q[T #]-module

W () = Homg, jyv)ace, (Woo7 ;%) HE ' (Sh(V, K)7, @e))

is isomorphic to the underlying Q,[I"r]-module of PBC () e
Proposition 3.2.10. Hypothesis 3.2.9 holds for N < 3, and for N > 3 if [F* : Q] > 1.

Proof. By Proposition C.3.1, we know that W~~!(r) is of dimension N.
The case for N = 1 follows directly from the definition of the canonical model of Shimura

varieties over reflex fields. The case for N = 2 is proved in [Liu, Theorem D.6(2)]. The case
for N = 3 when F* = Q follows from the main result of [Rog92]. The case for N > 3 when
[FT: Q] > 1 will be proved in [[XSZ]. O

3In fact, in [Shi], the author considers the case for unitary similitude group and assumes that F' contains an
imaginary quadratic field. However, we can obtain the result in our setup by modifying the argument as in the
proof of Theorem D.1.3.
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3.3. Generalized CM type and reflexive closure. We denote by N[X,]| the commutative
monoid freely generated by the set ¥, which admits an action of Aut(C/Q) via the set Y.

Definition 3.3.1. A generalized CM type of rank N is an element
U= Y r7eNZD

Tezoo
satisfying r, + r,« = N for every 7 € ¥,. For such ¥, we define its reflex field Fy C C to be the
fixed subfield of the stabilizer of ¥ in Aut(C/Q). A CM type is simply a generalized CM type of
rank 1. For a CM type ®, we say that ® contains 7 if its coefficient r, equals 1.

Definition 3.3.2. We define the reflexive closure of F', denoted by Fiqx, to be the subfield of C
generated by F and Fp for every CM type ® of F. Put Ff = (Fia) "

rflx

Remark 3.3.3. It is clear that Figy is a CM field, and is F-normal (Definition 1.3.1); F.f_ is the
maximal totally real subfield of F,qy, and is F'"-normal. In many cases, we have F,g, = F hence

FL = FT; for example, when F is Galois or contains an imaginary quadratic field.

Definition 3.3.4. We say that a prime p of F'* is special inert if the following are satisfied:
(1) p is inert in F}
(2) the underlying rational prime p of p is odd and is unramified in F;
(3) p is of degree one over Q, that is, F,f = Q,.
By abuse of notation, we also denote by p for its induced prime of F'.
We say that a special inert prime p of F't is very special inert if there exists a prime p’ of Fii
above p satisfying (Fj, )y = F;F (= Q).

rflx

Remark 3.3.5. In Definition 3.3.4, (3) is proposed only for the purpose of simplifying computations
on Dieudonné modules in Sections 4 and 5; it is not really necessary as results in these two sections
should remain valid without (3). However, dropping (3) will vastly increase the burden of notations
and computations in those two sections, where the technicality is already heavy.

In what follows in this article, we will often take a rational prime p that is unramified in F,
and an isomorphism ¢,: C = Q,. By composing with ¢,, we regard Y., also as the set of p-adic
embeddings of F. We also regard Q, as a subfield of C via ¢, L

Notation 3.3.6. We introduce the following important notations.

(1) In what follows, whenever we introduce some finite unramified extension Q of Q,, we
denote by Z? its ring of integers and put F? := Z /pZ5.

(2) For every 7 € ¥, we denote by Q] C C the composition of 7(F) and Q,, which is
unramified over Q,. For a scheme S € Sch/z; and an Og-module F with an action
Or — Endpg(F), we denote by F, the maximal Og-submodule of F on which Of acts via
the homomorphism 7: O — Z; — Os.

(3) We denote by @Y C C the composition of Q7 for all 7 € ®, which is unramified over
Q,. We can identify ¥, with Hom(Op, ZI?) = Hom(OF,IFI?). In particular, the p-power
Frobenius map o acts on Y.

(4) For a generalized CM type W of rank N, we denote by Qg’ C C the composition of Q,, F,
and Fy, which is contained in Qg.

(5) For a (functor in) scheme over Z; written like Xo(- - -), we put Xo(- - ) = Xo(- - ) @52 F3
and X7(- - -) = Xo(- - ) ®z Q;. For a (functor in) scheme over F; written like X3(- - D), we
put X3(- ) = X3(- - ) ®FZFP' Similar conventions are applied to morphisms as well.
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3.4. Unitary abelian schemes. We first introduce some general notations about abelian
schemes.

Notation 3.4.1. Let A be an abelian scheme over a scheme S. We denote by AY the dual abelian
variety of A over S. We denote by H{®(A/S) (resp. Liea,s, and wa,s) for the relative de Rham
homology (resp. Lie algebra, and dual Lie algebra) of A/S, all regarded as locally free Og-modules.
We have the following Hodge exact sequence

(3.2) 0 — wavys — H{Y(A/S) — Lieass — 0

of sheaves on S. When the base S is clear from the context, we sometimes suppress it from the
notation.

Definition 3.4.2 (Unitary abelian scheme). We prescribe a subring P C Q. Let S be a scheme
in SCh/p.

(1) An Op-abelian scheme over S is a pair (A,7) in which A is an abelian scheme over S and
i: O — Endg(A) ® P is a homomorphism of algebras.

(2) A unitary Op-abelian scheme over S is a triple (A,4,\) in which (A,d) is an Op-abelian
scheme over S, and \: A — AV is a quasi-polarization such that i(a®)Y o A = X o i(a) for
every a € Op, and there exists ¢ € P* making c) a polarization.

(3) For two Op-abelian schemes (A, i) and (A’,4") over S, a (quasi-)homomorphism from (A, )
to (A’,7") is a (quasi-)homomorphism ¢: A — A’ such that ¢ o i(a) = i'(a) o ¢ for every
a € Op. We will usually refer to such ¢ as an Op-linear (quasi-)homomorphism.

Moreover, we will usually suppress the notion ¢ if it is insensitive.

Definition 3.4.3 (Signature type). Let W be a generalized CM type of rank N (Definition 3.3.1).
Consider a scheme S € Sch /Oy ®P- We say that an Op-abelian scheme (A, i) over S has signature
type W if for every a € Op, the characteristic polynomial of i(a) on Liey/g is given by

I (T —7(a))" € Os[T].
Tezoo
Construction 3.4.4. Let K be an Op, ® P-algebra that is an algebraically closed field. Suppose
that we are given a unitary Op-abelian scheme (Ag, ig, \g) over K of signature type ® that is a
CM type, and a unitary Op-abelian scheme (A, 4, \) over K of signature type W. For every set
[ of places of Q containing co and the characteristic of K, if not zero, we construct a hermitian
space
Homy?? o (Hi' (Ao, A7), H'(4, A7)
over F ®g A” = F @p+ (F+ ®g A"), with the underlying F ®¢ A”-module

HOIHF@@AD (H’it <A07 Am)v H?t (A7 AD))
equipped with the pairing
(,9) =ig" (o) 0y’ 0\ o) € iy Endpgoun(Hf'(Ag, A7) = F @g A”.

Now we take a rational prime p that is unramified in /', and take the prescribed subring P in
Definition 3.4.2 to be Z,). We also choose an isomorphism ¢,: C ~ Q,, and adopt Notation 3.3.6.

Definition 3.4.5. Let A and B be two abelian schemes over a scheme S € Sch/Z<p). We say
that a quasi-homomorphism (resp. quasi-isogeny) ¢: A — B is a quasi-p-homomorphism (resp.
quasi-p-isogeny) if there exists some ¢ € Z(, such that cp is a homomorphism (resp. isogeny).
A quasi-isogeny ¢ is prime-to-p if both ¢ and ¢! are quasi-p-isogenies. We say that a quasi-
polarization A of A is p-principal if A is a prime-to-p quasi-isogeny.
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Note that for a unitary Og-abelian scheme (A, i, \), the quasi-polarization X is a quasi-p-isogeny.
To continue, take a generalized CM type ¥ = 3 .y 1,7 of rank N.

Remark 3.4.6. Let A be an Op-abelian scheme of signature type ¥ over a scheme S € Sch z; for
some T € Y. Then (3.2) induces a short exact sequence

0— WwAav/sr —7 H?R(A/S)T — LieA/S,T — 0

of locally free Og-modules of ranks N — r,, N, and r,, respectively. If S belongs to Sch JZ8 then
we have decompositions

H"(A/S) = D HI"(A/S)-,

TEY o
Liea/s = € Lieass,
TEY o
wass = P wasss
TEEOO

of locally free Og-modules.

Notation 3.4.7. Take 7 € X. Let (A, \) be a unitary Op-abelian scheme of signature type ¥
over a scheme S € Sch /zz- We denote

() Yar: HR(A/S), x HI®(A/S) e — Og
the Og-bilinear pairing induced by the polarization A, which might be degenerate. Moreover,

for an Og-submodule F C H{E(A/S),, we denote by F* C HI®(A/S),« its (right) orthogonal
complement under the above pairing, if A is clear from the context.

Next we review some facts from the Serre-Tate theory [Kat&1] and the Grothendieck—Messing
theory [Mes72], tailored to our application. Let W be a generalized CM type of rank N such
that 7,7 = 0 for every 7 not above 7. Consider a closed immersion S < S in Sch jzy With
an ideal equipped with a locally nilpotent PD-structure, and a unitary Op-abelian scheme (A, \)
of signature type U over S. We let H&S(A/S) be the evaluation of the first relative crystalline

homology of A/S at the PD-thickening S — S, which is a locally free O¢ ® Op-module. The
polarization A\ induces a pairing

(3.3) (LS, - Hi™(4/9),

s X HES(A/8), — Oy
We define two groupoids

O Def(S, S: A, A), whose objects are unitary Op-abelian schemes (A, 5\) of signature type W
over S that lift (A, \);

O Def'(S, S: A, A), whose objects are pairs (O, &r¢ ) where for each 7 = 7,75, & C
HS(A/S), is a subbundle that lifts wav/sr © H{®(A/S),, such that (©r, 0 )SE = 0.

Proposition 3.4.8. The functor from Def(S, S: A, A) to Def’(S,ﬁ;A,/\) sending (121, 5\) to

(WAv /8 7 s WAv /5.0¢ ) B8 a natural equivalence.

Proof. By étale descent, we may replace S < S by S Rzy Z}? — S Rzy Zz?' Then we have a
decomposition
HS™S(A4/8) = P H{™(A/S) S),
TEX o
similar to the one in Notation 3.3.6. Note that for 7 & {7, 7%}, the subbundle wsv /g, has a
unique lifting to either zero or the entire H{"™(A/ S’)T Thus, the proposition follows from the
Serre-Tate and Grothendieck—Messing theories. O
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To end this subsection, we review some notions for abelian schemes in characteristic p.
Notation 3.4.9. Let A be an abelian scheme over a scheme S € Sch/r,. Put
AP = A xg, S,
where o is the absolute Frobenius morphism of S. Then we have
(1) a canonical isomorphism H{®(A® /S) ~ ¢*H{®(A/S) of Og-modules;
(2) the Frobenius homomorphism Fr,: A — A® which induces the Verschiebung map
Vy = (Fry),: H®(A/S) - HIR(AP)/9)
of Os-modules;
(3) the Verschiebung homomorphism Ver 4 : AP — A which induces the Frobenius map
Fu = (Very),: H®(AP/S) — HIR(A/S)
of Og-modules.

For a subbundle H of H{®(A/S), we denote by H® the subbundle of H{®(A®) /S) that corresponds
to o* H under the isomorphism in (1). In what follows, we will suppress A in the notations F4 and
V4 if the reference to A is clear.

Remark 3.4.10. In Notation 3.4.9, we have kerF = imV = WA®) /S and kerV=1im€F.
If S = Speck for a field k of characteristic p, then we have a canonical isomorphism

HIR(AP) /i) ~ HI®(A/K) @, k. Thus, by abuse of notation, we have

O the (k, o)-linear Frobenius map F: H®(A/k) — H®(A/k) and

O if k is perfect, the (k, o~ !)-linear Verschiebung map V: H{®(A/k) — H{E(A/k).
Suppose that  is perfect. Recall that we have the covariant Dieudonné module D(A) associated
to the p-divisible group A[p>], which is a free W (k)-module, such that D(A)/pD(A) is canonically
isomorphic to H{®(A/k). Moreover, again by abuse of notation, we have

O the (W (k), o)-linear Frobenius map F: D(A) — D(A) lifting the one above, and

O the (W(k), o~ !)-linear Verschiebung map V: D(A) — D(A) lifting the one above,
respectively, satisfying FoV=VoF = p.

Remark 3.4.11. Take 7 € ¥ . For a scheme S € Sch/FZ and an Op-abelian scheme A over S, we

have (H{®(A/S),)®) = HI®(AP) /S),. under Notations 3.3.6 and 3.4.9.

If S = Speck for a perfect field x (containing F7), then applying Notation 3.3.6 to the W (x)-
module D(A), we obtain W (x)-submodules D(A),:, C D(A) for every ¢ € Z. From Remark 3.4.10,
we obtain

O the (W (k), o)-linear Frobenius map F: D(A), — D(A),, and
O the (W(k), o~ !)-linear Verschiebung map V: D(A), — D(A)s-1,

by restriction. We have canonical isomorphisms and inclusions:
VD(A),, /pD(A); ~ wav, € D(A),/pD(A), ~ HE(A),.
Notation 3.4.12. Take 7 € . Let (A, \) be a unitary Op-abelian scheme of signature type W
over Spec k for a perfect field x containing F,. We have a pairing
(, )ar: D(A); x D(A)re = W(k)

lifting the one in Notation 3.4.7. We denote by D(A)Y the W (k)-dual of D(A),, as a submodule
of D(A). ® Q. In what follows, unless we specify, the dual is always with respect to the default
quasi-polarization.

The following lemma will be repeatedly used in later discussion.
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Lemma 3.4.13. Suppose that F'* is contained in Q, (via the embedding 7: F* — C ~ Q,) with
p the induced p-adic prime. Let w € Op+ be an element such that val,(w) = 1. Consider two
Op-abelian schemes A and B over a scheme S € Schyg ,. Let oz A — B and §: B — A be two

Op-linear quasi-p-isogenies (Definition 3./.5) such that foa = w -ids (hence ao f = w -idp).
Then

(1) For 7 € {7, 75}, the induced maps
. H®(A/S), — HE(B/9),,
Bur: HTR(B/S)T - H?R(A/S)T
satisfy the relations ker o, ; = im 3, ; and ker 8, ; = im «, ,; and these kernels and images

are locally free Og-modules.
(2) We have

rankog Lieg)s . —rankog Liea/g -, = rankog(ker o, - ) — ranko, (ker oy ¢ ).

(3) Let Ay and Ap be two quasi-polarizations on A and B, respectively, so that (A, Ax) and
(B, A\g) become unitary Op-abelian schemes of dimension n[F* : Q]. Suppose that o’ o
Apoa = wAy.

(a) If both Aa and \g are p-principal, then we have

rankog (ker o ;) + rankeg (ker o, < ) = n.
(b) If A is p-principal and ker A\g[p™] is of rank p*, then we have
rankog (ker o - ) 4+ rankog (ker o ¢ ) =n — 1.
(c) If ker A4 [p™] is of rank p* and \p is p-principal, then we have
rankog (ker o, ;) + rankog (ker a, 7<) = n + 1.
(d) If both ker A\ 4[p>] and ker Ag[p™] are of rank p?, respectively, then we have
rankog (ker oy ;) + rankeg (ker o, < ) = n.

(4) Let A and Ap be two quasi-polarizations on A and B, respectively, so that (A, A4) and
(B, Ag) become unitary Op-abelian schemes of dimension n[F* : Q]. Suppose that o o
Apoa = A4 If ker A\g[p™] is of rank p* and \p is p-principal, then we have

rankog (ker ov - ) + rankog (ker o, ¢ ) = 1.

Proof. We may assume S connected; and up to replacing a, f and @ by a common Z(Xp)—multiple,
we may also that a and 3 are genuine isogenies.
For (1), it suffices to show that the induced maps

a.: HY(A/S) ®o,, Z, — H{}(B/S) ®o,, Ly,
B.: H{Y(B/S) ®o,., Z, = H{"(A/S) @o,., Zy

satisfy the relations ker o, = im (3, and ker 8, = im «; and these kernels and images are locally
free Og-modules.

Note that A[p], B[p], ker a[p], and ker B[p] are all locally free finite group schemes over S with
an action by Opr/pOp. By the relation among «, 3, ww, we may assume that A[p] and Bp] have
degree p*?; ker afp] has degree p”; and ker 3[p] has degree p?*~". As f,0a, =0 and a, 03, = 0, it
suffices to show that both ker a,, and im S, (resp. both ker 8, and im «,) are locally direct factors
of HI*(A/S) ®o, ., Z, (resp. H{¥(B/S) ®o,, Z,) of rank r (resp. 2d — r), which will follow if we
can show that coker a, and coker 3, are locally free Og-modules of rank r and 2d — r, respectively.
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We now prove that coker a, is a locally free Og-modules of rank r; and the other case is similar.
We follow the argument in [1.J93, Lemma 2.3]. Consider the big crystalline site (S/Z,)cns with the
structural sheaf OF®. Let D(A[p>]) and D(B[p>]) denote by the covariant Dieudonné crystals on
(S/Zy)cis of p-divisible groups A[p>] and B[p>], respectively. They are locally free OZ*-modules.
We have a short exact sequence

(34) 0= o D(A[p™])/@D(B[p>]) = D(Blp™])/@D(B[p™]) = D(B[p™]) /. D(A[p™]) = 0
and a surjective map
(3.5) a.: D(A[p~])/B.D(B[p™]) = a.D(A[p™])/@D(B[p™])

of OF-modules. To show that coker ., is a locally free Og-module of rank r, it suffices to
show that D(B[p™])/a.D(A[p™]) is a locally free OF/pOFs-module of rank r. By [BBMS2,
Proposition 4.3.1], D(B[p>])/@D(B[p*]) is a locally free OFS/pOFS-module of rank 2d. Thus,
by (3.4) and (3.5), it suffices to show that the OF* /pOFS-modules o, D(A[p*])/wD(B[p>]) and
D(B[p™])/a.D(A[p]) are locally generated by r and 2d — r sections, respectively. However, this
can be easily checked using classical Dieudonné modules after base change to geometric points of
S. Thus, (1) is proved.

For (2), we know from (1) that both ker o, and ker a ;o are locally free Og-modules. We
may assume that S = Speck for a perfect field x containing F,.. Put r = dim, Liey. ., and
s = dim,, Liep/y .. Then we have

, . VD(B), , . VD(A),
=d Ve )=d -~ /' =d vie.c)=d /T
s im, (wWpv /x,re ) im,, PD(B)re r imy (wav /rre ) im,, PD(A) e
Thus, we obtain
VD(B).. . VD(A),
3.6 s —r =dim, ————= — dim,, ————=.
30 DB ™ DA
Regarding D(A) as a submodule of D(B) via a, it follows that
. VDB).. .. pD(B) .. DB).. .. DB
3.6) = dim, ————= — dim,, ————=* = dim, = — dim, -
(B0 = dimyp ), — W p iy, = MM piay,. M p(a),.

= dim, (ker o, ) — dim, (ker a, - ).

Thus, (2) is proved.
For (3), by assumption on A4, the alternating paring

()5 H{™(A/S)r, x H{™(A/S)re, — Os

induced by A4 is perfect.

In case (a), we have ker v, . = (ker a, ;¢ )*, the orthogonal complement of ker av, ;e = im 3, rc.
under (, )% since A is also p-principal.

In case (b), ker v, ;. is a subbundle of (ker a, ¢ )* of corank 1. The identity follows immediately
from the identity ranko, ((ker c. ;¢ )*) + rankeg (ker a, ¢ ) = n.

In case (c), (ker o -, )" is a subbundle of ker v, < of corank 1. The identity follows immediately
from the identity ranko, ((ker av, ,_)*) + rankepg (ker o, . ) = n.

In case (d), we have both situations in (b) and (c), and the identity follows by a similar reason.

The proof for (4) is similar to (3). We leave the detail to readers. O
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3.5. A CM moduli scheme. In this subsection, we introduce an auxiliary moduli scheme pa-
rameterizing certain CM abelian varieties, which will be used in Sections 4 and 5.

Definition 3.5.1. Let R be a commutative Z[(disc F)~!]-algebra.

(1) A rational skew-hermitian space over Op ® R of rank N is a free Op ® R-module W of
rank N together with an R-bilinear skew-symmetric perfect pairing

<,>W2WXW—>R

satisfying (ax,y)w = (x, ay)w for every a € Or ® R and =,y € W.

(2) Let W and W’ be two rational skew-hermitian spaces over O ® R, a map f: W — W' is
a similitude if f is an Op ® R-linear isomorphism such that there exists some ¢(f) € R*
satisfying ((x), /(y))w = c(f)(@, yhw for every @,y € W.

(3) Two rational skew-hermitian spaces over Or ® R are similar if there exists a similitude
between them.

(4) For a rational skew-hermitian space W over Or ® R, we denote by GU(W) its group of
similitude as a reductive group over R; it satisfies that for every ring R’ over R, GU(W)(R')
is the set of self-similitude of the rational skew-hermitian space W @ R’ over Or ® R'.

We define a subtorus Ty € (Reso,/z Gn) ® Z[(disc F)~'] such that for every commutative
Z|(disc F')~']-algebra R,

To(R) = {a € OF QR | NmF/F+ a € RX}

Now we take a rational prime p that is unramified in F. We take the prescribed subring P in
Definition 3.4.2 to be Z).

Remark 3.5.2. Let Wy be a rational skew-hermitian space over Op ® Z,) of rank 1. Then GU(W,)
is canonically isomorphic to Ty ®z(dgisc 7)-1] Z(p). Moreover, the set of similarity classes of rational
skew-hermitian spaces W over Op ® Zy) of rank 1 such that Wy Rz, A is similar to W, 2z, A
is canonically isomorphic to

kel"l(To) = ker (Hl(@7T0> — H HI(QWTO)) )

<00

which is a finite abelian group.

Definition 3.5.3. Let ® be a CM type. We say that a rational skew-hermitian space W, over
OF ® Zy of rank 1 has type ® if for every x € Wy and every totally imaginary element a € F*
satisfying Im 7(a) > 0 for all 7 € ®, we have (az, x)w, > 0.

Definition 3.5.4. For a rational skew-hermitian space Wy over Op ® Z,) of rank 1 and type @
and an open compact subgroup Kfj € To(AP), we define a presheaf T,(Wo, Kf) on Sch'/OF<I> Oy
as follows: for every S € SCh//qu) @2y e let T, (Wo,K{)(S) be the set of equivalence classes of
triples (Ag, Ao, n5) where

O (Ao, Ao) is a unitary Op-abelian scheme of signature type ® over S such that \g is p-
principal;

O nf is a Kh-level structure, that is, for a chosen geometric point s on every connected
component of S, a (S, s)-invariant K5-orbit of similitude

T]gl WO ®Q AP H(it(AOS, Aoo,p)

of rational skew-hermitian spaces over F' ®g A°?, where H{*(Ags, A>P) is equipped with
the rational skew-hermitian form induced by Ag.
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Two triples (A, Ao, 75) and (A), Ny, nh') are equivalent if there exists a prime-to-p Op-linear quasi-
isogeny pg: Ag — A carrying (Ao, n8) to (e\), nf') for some ¢ € Zyy-

For an object (Ag, Ao, 75) € T (Wo, K)(C), its first homology Hy(Ag(C), Z)) is a rational skew-
hermitian space over Op ® Z,) induced by Ao, which is of rank 1 and type ®, and is everywhere
locally similar to Wq. Thus, by Remark 3.5.2, we obtain a map

w: T1 (W, KE)(C) — ker'(Ty)

sending (Ao, Ao, 75) € T)(Wo, Kf)(C) to the similarity class of Hy(Ag(C), Q).

It is known that when K is neat, T)(W,Kf) is a scheme finite and étale over Op, ® Zg,.
We define T,(Wo,K§) to be the minimal open and closed subscheme of T,(Wy, Kf) containing
w1 (Wy). The group To(A>?) acts on T, (W, KE) via the formula

a-(AU) AU) 778) = (A07 >\07 775 © CL)
whose stabilizer is To(Z,))K§. In fact, To(A%P)/To(Z))Kp is the Galois group of the Galois

morphism

T, (Wo, K§) — Spec(Op, ® Zgy)).
b

Definition 3.5.5. We denote by T the groupoid of To(A>?)/T((Z,))KG, that is, a category with
a single object % with Hom(x, x) = To(A*?)/To(Z))KS.

Remark 3.5.6. As T,(Wo, Kf) is object in Schjo,, oz, with an action by To(A>?)/To(Z,))KF,
it induces a functor from < to Sch /Org ®Zpy> which we still denote by T,(Wy,K§). In what

follows, we may often have another category € and will regard T,(Wy,K§) as a functor from
¢ x % to Sch/qu)@Z(p) as the composition of the projection functor € x T — ¥ and the functor
Tp(Wo, Kg) T — SCh/OFq>®Z(p) .
Notation 3.5.7. For a functor X : ¥ — Sch and a coefficient ring L, we denote

He (X, (7)) € Hey (X (%), L(5)),  He (X, L(5)) € Hyy (X (+), L(5))

ét,c
the maximal L-submodules, respectively, on which To(A?)/To(Z,))K§ acts trivially.

Definition 3.5.8. Let x be an algebraically closed field of characteristic p, and L a p-coprime
coefficient ring. For a functor X : ¥ — Sch,, such that X (x) is smooth of finite type of dimension
d, we define the T-trace map

/;: H2L (X (), L(d)) — L

to be the composite map
HEL(X (), L(d)) < H2(X (=), L(d)) — @ HA(Y, L(d)) =" I,
Y

where {Y'} is a set of representatives of T-orbits on the connected components of X (x), and the
second map is the natural projection. It is clear that the above composite map does not depend
on the choice of {Y'}.
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4. UNITARY MODULI SCHEMES: SMOOTH CASE

In this section, we define and study certain smooth integral moduli scheme whose generic fiber is
the product of a unitary Shimura variety and an auxiliary CM moduli. Since the materials in this
section are strictly in the linear order, we will leave the summary of contents to each subsection.

We fix a special inert prime (Definition 3.3.4) p of F* (with the underlying rational prime p).
We take the prescribed subring P in Definition 3.4.2 to be Z,. We choose the following data

O a CM type ® containing 7.;

O a rational skew-hermitian space Wq over Op ® Z) of rank 1 and type ® (Definition 3.5.3);

O a neat open compact subgroup K C To(A>P);

O an isomorphism ¢,: C ~ Q, such that ¢, o 7.,: F'* — Q, induces the place p of F'T;

O an element w € Op+ that is totally positive and satisfies val,(w) = 1, and valy(w) = 0 for

every prime q # p of F'™ above p.

We adopt Notation 3.3.6. In particular, ]F;f contains [F2. Since Wy and K{ are insensitive and will
never be changed in the remaining part of this section, we will not include them in all notations.
However, we will keep the prime p in notations as, in later application, we need to choose different
primes in a crucial step. Put Ty, := T,(Wo, Kf) @0y, 0z, Zp -

4.1. Construction of moduli schemes. In this subsection, we construct our initial moduli
schemes. We start from the datum (V, {Aq}qp) where

O V is a standard indefinite hermitian space (Definition 3.1.7) over F' of rank N > 1, and
O A, is a self-dual Op,-lattice in V ®p F for every prime q of F'* above p.

Before defining the moduli functor, we need the following lemma to make sense of the later
definition.

Lemma 4.1.1. The field Qg’ contains Fy with ¥V = N® — 7, + 75, which is a generalized CM
type of rank N, for every N > 1.

Proof. Take p € Aut(C/Q5) C Aut(C/F). Then we have p® = ® and pro = Too. Thus, we have
PIND — 7o +75) = NO — 7o + 75, for every N > 1. The lemma follows. O

Recall that we have the category Sch’/Zg of locally Noetherian schemes over Zg’, and PSch’/Zg

the category of presheaves on Sch'/Zg.

Definition 4.1.2. We define a functor
M, (V,=): R(V)? x T — PSch s
K i M, (V, KP)

such that for every S € Sch'/Zg, M, (V,KP)(S) is the set of equivalence classes of sextuples
(A07 )\07 ngu A7 )\7 77p) where

O (Ao, No,m5) is an element in T, (.S);

O (A, )) is a unitary Op-abelian scheme of signature type N® — 7, + 75, over S (Definitions

3.4.2 and 3.4.3) such that \ is p-principal;

O nP is a KP-level structure, that is, for a chosen geometric point s on every connected
component of S, a (S, s)-invariant KP-orbit of isomorphisms

PV @g AP — Hompi yoes (T (Ags, ASP), HS' (A, A™P))

of hermitian spaces over F' ®g A®? = F ®@p+ A", See Construction 3.4.4 (with O =
{00, p}) for the right-hand side.
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Two sextuples (Ag, Ao, 7h; A, X\, nP) and (Ah, Xy, nh'; A', N nP") are equivalent if there are prime-to-p
Op-linear quasi-isogenies ¢g: A9 — A and ¢: A — A’ such that

O ¢y carries 75 to nh';

O there exists ¢ € Z(Xp) such that ¢y o Aj 0 g = cAg and p¥ o X 0 p = c);

O the KP-orbit of maps v — p, 0 nP(v) o (pg.) ! for v € V ®g A®P coincides with 7.
On the level of morphisms,

O a morphism g € KP\U(V)(AZF?)/K of &(V)? maps M,(V,KP)(S) to M,(V,K")(S) by

changing n” to n? o g; and
O a morphism a of T acts on M, (V,K?)(S) by changing nf to nf o a.

We have apparently the forgetful morphism
in Fun(R(V)? x T, PSch’/Zg), the category of functors from (V)P x ¥ to PSch’/Zg. Here, we regard
T, as an object in Fun(K(V)? x ¥, Sch'/Zg) as in Remark 3.5.6. According to Notation 3.3.6,
we shall denote by the base change of (4.1) to Fy by My(V,=) — T,, which is a morphism in
Fun(R(V)? x ¥, PSch’/Fg,).

Theorem 4.1.3. The morphism (4.1) is represented by a quasi-projective smooth scheme over T,
of relative dimension N — 1. Moreover, for every KP € R(V)P, we have a canonical isomorphism
for the relative tangent sheaf

TMP(V,KP)/T,D ~ Hom (WAV,TW H(liR(A)Too /WAV,TOO)

where (Ao, Ao, 03 A, A\, nP) is the universal object over My (V,KP). Moreover, (4.1) is projective if
and only if its base change to Qg’ is.

Proof. This is well-known. We sketch the computation on the tangent sheaf hence the proof of
the smoothness for readers’ convenience. Take an object K? € &(V)?. Since both Kfj and K? are
neat, M, (V, KP) is an algebraic space. Thus, we have the universal object (Ao, Ao, 70; A, A, *) over
M, (V,KP). By a standard argument in deformation theory, using Proposition 3.4.8, we know that
the morphism M, (V,K?) — T, is separated and smooth; and we have a canonical isomorphism
for the tangent sheaf

T, v,y T, =~ Hom (WAV,Tooa H®(A),, /WAV,TOO>

which is locally free of rank N — 1. Moreover, the canonical sheaf of M,(V,KP?) is ample; hence
M, (V,KP) is a quasi-projective scheme. The theorem is proved. O

Let Ky be the stabilizer of A, for every q | p; and put K, = [I;, Kq. As show in [R57,
Section 3.2], there is a canonical “moduli interpretation” isomorphism of varieties over Q;’

(42) MQ(V, —) 1) Sh(\/, —Kp) XSpeCF Tg

in Fun(R(V)? x T, Schqe ) /rn, where T acts on Sh(V, =K,) Xspecr Ty through the second factor.
See also Remark 4.1.5 below.

Lemma 4.1.4. Let L be a p-coprime coefficient ring. The two specialization maps
Hi‘I,c(MP(Vv _) ®Zg’ @pv L) — H‘iZ,c(MP(Vv _)’ L)’
H‘%(MP<V7 _> ®Z§ @IN L) — H‘%(MP<V7 _)7 L)7
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are both isomorphisms. In particular, (4.2) induces isomorphisms
ert c(Sh(V’ _KP)F’ L) = Hii,c(ip (Va _)7 L)7
Hét(Sh(V> _Kp)f7 L) = H%(MP (V’ _>7 L)?
in Fun(R(V)?, Mod(L[Gal(Q,/Q?)])) for every i € Z. Here, Gal(Q,/Qy) is regarded as a subgroup
of Gal(F'/F) under our fized isomorphism t,: C ~ Q,.

Proof. Since M, (V, =) is smooth over Zg’, we have a canonical isomorphism L ~ RWL. When
M, (V,=) is proper, this is simply the proper base change. When M,(V, =) is not proper, this
follows from [.518, Corollary 5.20]. O

Remark 4.1.5. For readers’ convenience, we describe (4.2) on complex points, which determines
the isomorphism uniquely. It suffices to assign to every point

x = (Ao, Mo, mb; A, A 1P) € M,(V,KP)(C).
a point in
Sh(V,K"K,)(C) = U(V)(F)\ (V((C)f/(cX x U(V)( %O+)/Kpr)
where V(C)_/C* is the set of negative definite complex lines in V @y C. Put
V, = Homp(H,(4(C),Q), Hi(A(C),Q))

equipped with a pairing in the way similar to Construction 3.4.4, which becomes a hermitian
space over F' of rank N. Moreover, it is standard indefinite. By the comparison between singular
homology and étale homology, we have a canonical isometry of hermitian spaces

p: V, ®g AP = HomF® poor (HS (Ag, AP), HSH (A, AP))

which implies that V, ®g AP ~ V ®g A>" by the existence of the level structure n”. On the
other hand, we have a canonical decomposition

Homo,.gz, (H{"(A0, Z,), H (A, Z,)) = P Asy

qlp

of Op ® Z,-modules in which A, is a self-dual lattice in V ®@p F; for every prime q of F'* above
p. Thus, by the Hasse principle for hermitian spaces, this implies that hermitian spaces V, and
V are isomorphic. Choose an isometry 7,,¢: V, — V. Thus, we obtain an isometry

& =0 p Lo Vg AP — V ®g A®P

as an element in U(V)(AZ”). For every q above p, there exists an element g, € U(V)(F,;") such
that goAq = MratNa,q. Together, we obtain an element g, = (¢, (gq)qp) € U(V)(AY,). Finally,

l, = {a € Homp(H{®(Ay/C),H®(A/C)) | O‘(WAX,TOO) Cwav .}
is a line in V,(C) such that n,.¢(l,) is an element in V(C)_/C*. It is easy to check that the coset

U(V) <F+) (nrat(lz)> ngpr)

does not depend on the choice of 7., hence gives rise an element in Sh(V, KPK,)(C). It is clear
that the action of a morphism a of ¥ on x does not change the above coset.



ON THE BEILINSON-BLOCH-KATO CONJECTURE FOR RANKIN-SELBERG MOTIVES 39

4.2. Basic correspondence on special fiber. In this subsection, we construct and study the
basic correspondence on the special fiber M,(V,=). Recall that we have chosen an element w €
Op~+ that is totally positive and satisfies val,(w) = 1, and valy(w) = 0 for every prime q # p of
F* above p.

Definition 4.2.1. We define a functor
Sp(V.=): R(V)? x T — PSchlz
K? s S,(V, K?)

such that for every S € Sch'/]Fg, Sp(V,KP)(S) is the set of equivalence classes of sextuples
(A07 )\07 776’ A*7 )\*7 77p*) where

O (Ao, Ao, 1) is an element in T, (S);

O (A*, X*) is a unitary Op-abelian scheme of signature type N® over S such that ker \*[p™]

is trivial (resp. contained in A*[p] of rank p?) if N is odd (resp. even);

O nP* is, for a chosen geometric point s on every connected component of S, a m(S,s)-
invariant KP-orbit of isomorphisms

1V @g AP — Homg o, (HS' (Ao, A7), HiY (A%, A7)
of hermitian spaces over F' ®gA™? = ' ®@p+ A7’ Note that here we are using w, rather

that >\0.

The equivalence relation and the action of morphisms in R(V)? x T are defined similarly as in
Definition 4.1.2.

We have apparently the forgetful morphism
in Fun(R(V)? x ¥, PSch'/Fg) which is represented by finite and étale schemes.

Now we take a point s* = (Ao, Ao, 75; A*, A, nP*) € Sy(V,KP)(k) where & is a field containing
F?. By Remark 3.4.10, we have the (k, 0)-linear Frobenius map

F: Hi%(A"/k),, = YA /K)o, = H{™ (A" /K)o .
We define a pairing
{ Yot HYY(AYR)re x HYY(A/K)r, — &
by the formula {z,y}s = (Fz,y)r < (Notation 3.4.7). To ease notation, we put
Voo = HI(A* ).
Lemma 4.2.2. The pair (Ve,{, }s+) is admissible of rank N (Definition A.1.1). In particular,
the Deligne-Lusztig variety DLy == DL(¥, { , }o, [F52]) (Definition A.1.2) is a geometrically
irreducible projective smooth scheme in Sch,. of dimension L%J with a canonical isomorphism
for its tangent sheaf
ToL.. jw = Hom (H/H, (¥ )o,. /H)

where H C (%*)DLS* 1s the universal subbundle.

Proof. 1t follows from the construction that { , }s is (k, o)-linear in the first variable and k-linear
in the second variable. By the signature condition Definition 4.2.1(2), the map F: H® (A4*/k), —
H{®(A*/k).c is an isomorphism, and the pairing (F , )« e has kernel of rank 0 (resp. 1) if N is
odd (resp. even). Thus, by Proposition A.1.3, it suffices to show that (¥, {, }s) is admissible.

Note that we have a canonical isomorphism (¥ )z = H®(A*/k), @, F ~ HI®(AL/R), , and
that the (%,o)-linear Frobenius map F: H{®(A%/R),  — H{®(AL/R),. and the (R,o!)-linear

Too
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Verschiebung map V: H{®(A%/R), — H{®(A%/R),. are both isomorphisms. Thus, we obtain
a (%, 0?)-linear isomorphism V-'F: HI®(A%/R),. — H¥(A%/R),.. Denote by ¥, the subset of
HIR(A%/R),.. on which V7!'F = id, which is an F,2-linear subspace. Since the p-divisible group
A[p®] is supersingular, by Dieudonné’s classification of crystals, the canonical map % ®F, K =
H{R(A* /R),.. = (¥ )z is an isomorphism. For z,y € ¥, we have

{x,y}s* = <Fx7y>)\*ﬂ'§c = <x7vy>c)\r*,7—oo = <$=Fy>§*,-roo = _<Fyvx>i*,rm - —{y,x};'*.
Thus, (¥,{, }s) is admissible. The lemma follows. O
Definition 4.2.3. We define a functor
K? s B,(V,K?)
such that for every S € Sch’/Fg, B,(V,K?)(S) is the set of equivalence classes of decuples
(A07 )\07 nga A7 >\7 77p; A*7 >\*7 T]p*; Oé) where
O (Ao, Mo, mb; A, A, mP) is an element of M, (V,KP)(S);
O (Ao, Ao, mb; A, A\*,nP*) is an element of S,(V,KP)(S);
O a: A — A* is an Op-linear quasi-p-isogeny (Definition 3.4.5) such that
(a) ker a[p™] is contained in Al[p];
(b) we have @ - A = @Y o A\* o r; and
(c) the KP-orbit of maps v — au o nP(v) for v € V ®g AP coincides with nP*.
Two decuples (Ag, Ao, 7h; A, X\, nP; A, X 0P a) and (A, Ny, mh s AN P! A N s o) are e-
quivalent if there are prime-to-p Op-linear quasi-isogenies ¢o: A9 — Aj, ¢: A — A’, and
e A* — A* such that
O ¢y carries 175 to nh';
O there exists ¢ € Z(Xp) such that ¢y o A\jo @y = cAg, p” 0N o = cA, and p*¥ o \* 0 p* = cA*;
O the KP-orbit of maps v + ¢, 0 nP(v) o (pg.) ! for v € V ®g A*? coincides with 7¥';
O the KP-orbit of maps v + % o nP*(v) o (¢o) " for v € V. ®g A®? coincides with nP*;
O ¢*oa = a oy holds.
On the level of morphisms,
O a morphism g € KP\U(V)(AZ")/KP of K(V)? maps B,(V,K?)(S) to B,(V,K")(S) by
changing n?, n”* to n? o g,n?* o g, respectively; and
O a morphism a of T acts on M,(V,K?)(S) by changing 75 to n o a.
We obtain in the obvious way a correspondence
(4.3) Sp(V, =) == By(V, =) —=My(V, =)
in Fun(&(V)? x T, PSchie ), -

Definition 4.2.4 (Basic correspondence). We refer to (4.3) as the basic correspondence* on

M, (V, =), with S,(V, =) being the source of the basic correspondence.
Theorem 4.2.5. In the diagram (4.3), take a point
s = (Ao, Ao, s A, N 0%) € Sp(V, KP) (k)

where k is a field containing IF;’. Put By = 771(s*), and denote by (A, \,n";a) the universal
object over the fiber By«.

4We adopt this terminology since the image of ¢ is in fact the basic locus of M, (V,=).
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(1) The fiber By is a smooth scheme over k, with a canonical isomorphism for its tangent
bundle
To = Hom (wav r. ker o 7 Jwav r.) -

(2) The restriction of v to Bg« is locally on Bg a closed immersion, with a canonical isomor-
phism for its normal bundle

Ny, ~ Hom (wav r,ima, ;).

(3) The assignment sending a point (Ag, Xo, Nh; A, X, nP; A* N nP*; ) € By (S) for every S €
Sch’,, to the subbundle

H = (G r.) ' wavssm, C HI(AY/9),, = HIYN(A/K)r, @k Os = (Yar)s,

where &: A* — A is the (unique) Op-linear quasi-p-isogeny such that & o a = w - idy,
induces an isomorphism

(oo By = DL = DL(74,{, }s, [%D

In particular, By is a geometrically irreducible projective smooth scheme in Sch, of di-

mension | X=1] by Lemma 4.2.2. In particular, v is of pure codimension |3 |.

Proof. For an object (Ao, Ao, 1m0; A, A, nP; A, N 0% a) € By(V, KP)(S), Definition 4.2.3(a) implies
that there is a (unique) Op-linear quasi-p-isogeny &: A* — A such that & o a = w - id4 hence
aoa = w -idg«. Moreover, we have the following properties from Definition 4.2.3:

(a’) ker a[p™] is contained in A*[p];

(b’) we have @ - \* = &Y o Ao &; and

(¢’) the KP-orbit of maps v — @&, o n*?(v) for v € V ®g A®* coincides with 7?.

First, we show (1). It is clear that By« is a scheme of finite type over x. Consider a closed
immersion S — § in Sch'/ﬁ defined by an ideal sheaf Z satisfying Z> = 0. Take a point z =
(Ao, Ao, 3 A, X\, P A* N, P%: ) € By (S). To compute lifting of  to S, we use the Serre-Tate
and Grothendieck—Messing theories. Note that lifting a is equivalent to lifting both o and &,
satisfying (b,c) in Definition 4.2.3 and (b’,c’) above, respectively. Thus, by Proposition 3.4.8, to
lift x to an S-point is equivalent to lifting

O wav/s.r,. to a subbundle @av .. of H™S(A/S),.. (of rank 1),
O wav/ssc to a subbundle Wav ¢ of HF™(A/S),e (of rank N — 1),
subject to the following requirements

(a”) ©av r, and Oav re are orthogonal under (, ) (3.3); and

(b)) G pe HES(A*/S) e s contained in @av e .

Since (, )§%®_is a perfect pairing, Gav ., uniquely determines Gav < by (a”). Moreover, by

Property (b’) above, we know that ker .,  and imd, . are orthogonal complement to each

cris

other under (, )§ . Thus, (b”) is equivalent to
(¢”) Qav ., is contained in the kernel of a, ,_: HES(A/S),  — HES(A*/S), .
To summarize, lifting x to an S-point is equivalent to lifting wav/s-., to a subbundle

7 Of keray .. In other words, the subset of BS*(S) above z is canonically a torsor over
Homep, (wav -, (ker a ., /wav ,.) ®og Z). Thus, (1) follows.
Next, we show (2). By Theorem 4.1.3, we have a canonical isomorphism

(:)Av

[/,:TMP(V,KP)/H‘BS* ~ Hom (wAV,Too7 H?R(A)Too /WAV,TOO) )
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and the induced map Tg_. /v — ¢ Tn, (v kr) /|B,. 1s identified with the canonical map
Hom (WAV,Tom ker Qs 7o /(A}A\/ﬂ—oo) — Hom (CUA\/’TOO7 H?R(A)TOO /wAV,Too) .
It is clearly injective, with cokernel canonically isomorphic to

Hom (Wav ry,im o r) .

Thus, (2) follows.

Finally, we show (3). We first show that (,~ has the correct image, namely, H is a locally free
Og-module of rank [YF], and satisfies (FH®)* C H. Lemma 3.4.13(1,2,3) implies that H is
locally free, and

)

rankoy (ker o, ;) — ranko, (ker ay < )

=1
ranko, (ker a, ) + ranko, (ker o, ¢ ) = 2[5] — 1.

Thus, we have ranko, (ker o, ) = [§] and

rankog (ker &, - ) = N — rankog (ker ., ;) = [251].
On the other hand, as wsv/s . has rank 1 and wasv /s has rank 0, wav/s . is contained in the
kernel of c, ,_ hence in the image of &. .. Together, we obtain ranko, H = [#41]. From the

equalities

o o o _ () o 9 _
Oé*,fgo (FH(p)> = a*,TgOFA* ((a*,Too) 1WAV/S,TOO) == a*,rgoFA* (O(Ekz,?—go) 1WA(P)V/S,T§o

_r <@ (x@ -1 _ _
= FAOC*,Tgo (Oé*,rgo) WA@YV /S e, = FAWA(MV/S,T;O =0

and the fact that FH® and ker &, ;. are both subbundles of H{®(A*/S), of rank [2F], we
know FH® = ker ¢, . By Definition 4.2.3(b) and the definition of &, we have
(ke Cty re , i iy 7 Y ar re. = (Care ket G re , HIV(A/S)r )are =0,
which implies
ker (v ro = iman . C (ker e )= = (FH®)L,
As both sides are subbundles of H{®(A*/S),_ of rank [¥+1], we must have ker &, . = (FH®)..
In particular, we have (FH®)* C H. Thus, (- is defined as we claim.

Since the target of (;+ is smooth over x by Lemma 4.2.2, to see that (4« is an isomorphism, it
suffices to check that for every algebraically closed field s’ containing x

(3.1) (s~ induces a bijection on x’-points; and

(3.2) (s induces an isomorphism on the tangent spaces at every x/'-point.

To ease notation, we may assume that " = x hence is perfect in particular.

For (3.1), we construct an inverse to the map (s (k). Take a point y € DL (k) represented
by a k-linear subspace H C ¥ = HI®(A*/k),.,. We regard F and V as those sesquilinear maps
in Remark 3.4.10. In particular, we have (FH): C H. For every 7 € ¥, we define a W (k)-
submodule Dy, C D(A*), as follows.

O If 7 & {7, 75}, then Dy, = D(A*),.
O We set Dy, = V- 'H¢, where H® is the preimage of H' under the reduction map
D(A%)rs, = D(A%)r, [PD(A%)rg, = H®(A") 1.
O We set Dy .o = FH, where H is the preimage of H under the reduction map D(A*),.. —
D(A%)r.. /pD(A*)r., = H{H (A",
Finally, put D4 := @,cx_ Da, as a W(k)-submodule of D(A*). We show that it is stable under

F and V. It suffices to show that both F and V stabilize D4, ® D4 . , which breaks into checking
that
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O FDa,.. C Da,e, that is, FV"'H° C FH. Tt suffices to show that V"'(H*) (as a subspace
of H{®(A*),..) is contained in H. However, V"1(H1) = (FH)*, which is contained in H.
O FDaye, € Dy, that is, FFH C V- 'He. It suffices to show pFH C H*®, which obviously
holds.
O VD4, € Dare, that is, VV1H® C FH. it suffices to show H+ C FH as subspaces of
H{®(A*),c , which follows from (FH)*- C H.
O VD e CDa,., that is, VFH CV-1Hc. It is obvious as V"' contains pD(A*),...
Thus, (Dy,F,V) is a Dieudonné module over W (x). By the Dieudonné theory, there is an Op-
abelian scheme A over xk with D(A), = Da, for every 7 € Y, and an Op-linear p-isogeny
a: A — A* inducing the inclusion of Dieudonné modules D(A) = Dy C D(A*). Moreover, since
pD(A*) C D(A), we have ker a[p>] C Alp].
Let A\: A — AY be the unique quasi-polarization such that @\ = a¥ o \* o a. We claim that A
is p-principal. It is enough to show the induced pairing

P Iare: D(A)r X D(A)re, = W(k)

(Notation 3.4.12) is non-degenerate. Since H is W (k)-dual to p~'H¢, hence D(A),. = FH is dual
to V1(p~1H®) = p W 'H® = p~'D(A),._, the above pairing is non-degenerate.

It is an easy consequence of Lemma 3.4.13(2,3) that the Op-abelian scheme A has signature
type N® — 7o + 75. Finally, let n? be the unique KP-level structure such that Definition 4.2.3(c)
is satisfied. Putting together, we obtain a point x = (Ag, Ao, 75; A, A\, nP; A*, \*, nP*; ) € By (k)
such that (s (z) = y. It is easy to see that such assignment gives rise to an inverse of (. (k); hence
(3.1) follows immediately.

For (3.2), let T, and 7T, be the tangent spaces at x and y as in (3.1), respectively. By (1) and
Lemma 4.2.2, we have canonical isomorphisms

Te ~ Hom, (wav ., ket au, fwav,.), T, ~Hom,(H/(FH)" H{}(A*), /H).
Moreover, by the definition of (s, the map ((s).: T, — T, is induced by the following two maps
H/(FH)" = (Gur) ‘wavr, [ ker dy r, IEN WAV 7o s
HY™ (A" /H = HY(A") 7 /(G )" wav
both being isomorphisms. Thus, (3.2) hence (3) follow. O

d*,To@
—= ker o 1 Jwav o,

yToo

Remark 4.2.6. In Theorem 4.2.5, when KP is sufficiently small, the restriction of ¢ to B« is a closed
immersion for every point s* € S,(V,K”)(k) and every field £ containing Fy .

4.3. Source of basic correspondence and Tate cycles. In this subsection, we study the source
Sy(V, =) of the basic correspondence. We will describe the set S,(V,=)(F,) in terms of certain
Shimura set and study its Galois action. Such a description is not canonical, which depends on
the choice of a definite uniformization datum defined as follows.

Definition 4.3.1. We define a definite uniformization datum for V (at p) to be a collection of
(V*, i, {A;}q‘p) where
O V™ is a standard definite hermitian space over F' of rank N;
O 1: Vg A®P = V* ®g AP is an isometry;
O for every prime q of F* above p other than p, A} is a self-dual Op,-lattice in V*®p Fy; and
O A} is an Op,-lattice in V* @ F, satisfying pA; C (A;)" such that (A})Y/pA; has length 0
(resp. 1) if N is odd (resp. even).
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By the Hasse principle for hermitian spaces, there exists a definite uniformization datum for
which we fix one. Let Kj be the stabilizer of Ay for every q over p; and put Kj = [, Kj. The

isometry i induces an equivalence of categories i: K(V)? = K(V*)P.

Construction 4.3.2. We now construct a uniformization map, denoted by the Greek letter up-
silon

(4.4) v: Sy (V,=)(IF,) — Sh(V*, (i=)K3) x Ty(F,)

in Fun(&(V)? x T, Set) 1 5,), which turns out to be an isomorphism.

Take a point s* = (Ao, Ao, 75; A, A, %) € Sp(V, KP)(F,). Let
Vs = Homgp,(Ap, A*) @ Q
be the space of Op-linear quasi-homomorphisms. We equip with V.« a pairing
(z,y) =@ - Ag oy o XN o € Endg (Ag) @ Q = F,

which becomes a hermitian space over F. Note that we have an extra factor ! in the above
pairing. Moreover, for every prime q of F'* above p, put

As*,q = HOIHOF (Ao[qoo], A*[qoo])

which is an Op,-lattice in (V)4 since A* is isogenous to AY.
Now we construct v, whose process is very similar to Remark 4.1.5. Note that we have an
isometry

p: Ve Qg A®P = Hom?ggg;,p(H?(AO’Aoo,p)y e (AY, A7),
By Lemma 4.3.3 below, we can choose an isometry 7,.: Vs« — V*. Thus, we obtain an isometry
G = N0 p o 017 VE@g ANP — VE @g AP

as an element in U(V*)(A%”). By Lemma 4.3.3(1,2), for every q above p, there exists an element
9q € U(V*)(F;") such that gqA; = Mg q. Together, we obtain an element g« = (g7, (gq)qpp) €
U(V*)(A%,) such that the double coset U(V*)(F)g(iK?)K} depends only on the point s*. Thus,
it allows us to define

o(s*) = (U(VH)(F)gs- (K7, (Ao, Ao, 7)) € Sh(VY, (AKP)KS) x T, (F, ).

Lemma 4.3.3. The hermitian spaces Vg and V* are isomorphic. Moreover,

(1) for every prime q of 't above p other than p, the lattice Ay 4 is self-dual;
(2) the lattice Ay, satisfies pAgsp C (Agep)Y such that (Mg )Y /pAge p has length O (resp. 1) if
N is odd (resp. even).

Proof. We first prove (1) and (2).

For (1), note that A*[q™] is isomorphic to (Ao[q>])", equipped with the polarization \*[q™]
that is principal. Thus, A 4 is self-dual as A\g[q™] is principal and valy(w) = 0.

For (2), note that A*[p] is isomorphic to (Ae[p>])", equipped with the polarization A\*[p]
satisfying such that ker \*[p>°] is trivial (resp. contained in A*[p] of rank p?) if N is odd (resp.
even). Thus, the statement follows as Ao[p>°] is principal and val,(w) = 1.

Now to prove the main statement, it suffices to show that

(i) Vg is totally positive definite; and
(ii) the hermitian spaces Vg ®g A*P and V ®g AP are isomorphic.
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For (i), it follows from the same argument in [[KR 14, Lemma 2.7].
For (ii), we have a map

Ve ®g A%P — HomFah., (HE'(Ag, A7), HEE (A, A7)

of hermitian spaces, which is injective. As both sides have rank N and the right-hand side is
isomorphic to V ®g A>P, (ii) follows. O

Proposition 4.3.4. The uniformization map v (4.4) is an isomorphism. Moreover, the induced
action of Gal(F,/Fy) on the target of v factors through the projection map

Sh(V*, (i=)K}) x Ty(F,) — To(F,).
Proof. We first show that v is an isomorphism. Take a point ¢ = (Ag, Ao, 7)) € Tp(F,). It suffices
to show that, for every K € R(V)?, the restriction
v: S,(V,KP)(Fp) ;e — Sh(V*, (iKP)K)
to the fiber over ¢ is an isomorphism. The injectivity follows directly from the definition. For
the surjectivity, it suffices to show that for every g € U(V*)(AR}"), there is an object s* =
(Ao, No, mh; A* )\*, n"*) € Sp(V,KP)(F,) » whose image under v is the image of g in Sh(V* (iKP)K3).

To construct s*, we take an Op-lattice A* in V* satisfying Or @F F, = A}, Put A* := Ay ®o, A ,
which is equipped with a unique quasi-polarization A\* such that the Canonical isomorphism

V* ®g AP =~ Hom pgacer (HS' (Ao, A%P), H' (A%, AP))
of F' ®g A*P-modules is an isometry of hermitian spaces. We let n”* be the map
o oi * co,p __ wAg,A* é 00, é * A OO,
V ®g AP Z5 V* ©g AP = Hompgpe, (H (Ao, AP), HF (A%, A7),
Then v(s*) = g in Sh(V*, (iK?)K¥). Thus, v is an isomorphism.

Since v is an isomorphism, the Galois group Gal(F,/Fy) acts on the target of v. We show
that it acts trivially on the first factor of the target of v. Take an element ¢ € Gal(F,/F})
and a point s* = (Ao, Ao, mb; A, N, 7)€ Sy(V,KP)(F,). Then ¢s* is simply represented by
(AG, A5, o s A*, A nP*), the ¢-twist of the previous object. We then have a canonical isomorphism

Vs« = Homg,. (Ay, A*) ® Q ~ Homg, (Ag, A*) @ Q = V-
of hermitian spaces. Unraveling the definition, we see that g, = g.s«. Thus, we have
v(ss*) = (U(V*)(F)ge (iKP)K}, (A5, X5, 11)) -
The proposition follows. ]

Next, we define an action of the Hecke algebra Z[K;\U(V*)(F.\)/K;] on S;(V, =) via finite étale
correspondences, that is compatible with the uniformization map (4.4).

Construction 4.3.5. For every element g € K;\U(V*)(F,")/K}, we define a functor
K? — S,(V,KP),
such that for every S € Schl/p, Sp(V,KP),(S) is the set of equivalence classes of decuples
(A07 )\07 T]Ou A* /\*7 77p* A* )‘97 779 ) ¢*) where
O (Ao, Ao, mh; A%, )\*,np*) and (Ao, Ao, m; Af, A, mb*) are both elements in S,(V,K?)(S); and
O ¢*: A* — Ay is an Op-linear quasi-isogeny such that

(a) ¢ o Ajo " = A,
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(b) ¢*[p>]: A*[p™] — A[p>] is a quasi-isogeny of height zero under which the two lattices
Homo,, (Aos[p™], A5[p™]) and Homp, (Aos[p™], Ay [p>]) are at the relative position
determined by g for every geometric point s of S

(c) ¢*[g>] is an isomorphism for every prime q of F above p that is not p; and

(d) the KP-orbit of maps v + ¢} o nP*(v) for v € V ®g A>P coincides with nP*.

The equivalence relation and the action of morphisms in K(V)? x T are defined similarly as in
Definition 4.2.3. Then we construct the Hecke correspondence (of g) to be the morphism

(4.5) Hkg: 5p(V, =)y = Sp(V, =) x 5y (V, =)
in Fun(R(V)P x T, PSch’/]Fg)/Tp induced by the assignment
(AOa )‘Oa ng7 A*v )‘*7 np*; A;a )‘;7 n§*7 ¢*) = ((AOa )‘Oa 77(13)7 A*v )‘*7 np*)’ (AOa )‘Oa 7](]3)7 A;a )‘;7 775*))

Here, the product in (4.5) is also taken in the category Fun(&(V)P x ¥, PSch'/]Fg)/Tp, that is,
Sp(V, =) xSy (V, =) is a functor sending K to S,(V,K?) x1, S,(V,K?) on which T acts diagonally.
Proposition 4.3.6. For every g € K;\U(V*)(F,7)/K}, we have

(1) The morphism Hk, (4.5) is finite étale; in particular, it is a morphism in Fun(K(V)? x

‘I, SCh/IFg))/Tp .
(2) The uniformization map v (4.4) lifts uniquely to an isomorphism making the diagram

Sp(V, =)(Fp) : Sh(V*, (i=)(9K597 ' NK})) x Ty(F,)

vXU

Sp(V, =)(Fy) X1, 5, Sp(V, =) (Fp) = (Sh(V*, (i=)K}) x Sh(V*, (i=)K})) x Ty(F,)

in Fun(R(V)? x ¥, Set) /T, (F,) commulative, where the right vertical map is induced by the
set-theoretical Hecke correspondence of g.

Proof. For (1), it suffices to consider those KP € K(V)? that are sufficiently small. Then the
morphism Hk,: S,(V,K?), — S,(V,K?) x1, S,(V,KP) is closed, hence represented by a finite étale
scheme. Part (2) follows directly from the definition. O

Remark 4.3.7. In fact, the proof of Proposition 4.3.6(1) together with Proposition 4.3.4 imply that
Hk, is a local isomorphism.

Remark 4.3.8. Note that since K} is a special maximal open compact subgroup of U(V*)(F;"),
the algebra Z[K;\U(V*)(F,")/K}] is commutative. Moreover, when N is odd, A, is a self-dual
lattice under the pairing @ (, )v+; hence Z[K;\U(V*)(F,")/K}] is canonically isomorphic to Ty
Let L be a p-coprime coefficient ring. The uniformization map (4.4) induces an isomorphism

in Fun(&(V)?, Mod(L[K;\U(V* @F F,)/K;])) by Proposition 4.3.6. Recall from Theorem 4.2.5(3)
that the morphism ¢ in (4.3) is of pure codimension % ].
Construction 4.3.9. Put r := L%J > 0. We construct a pair of maps
incy’: L[Sh(V*, (i=)K})] = Hy(S,(V, =), L)

— H%(BP(V7 _)7 L) i> H‘2ZT<MP(V7 _)7 L(T))7
inc - HE ™Y (My(V, =), LIV = 7 = 1) 5 HET Y (By(V, =), LIV =7 = 1))

= Hg(S,(V, =), L) = L[Sh(V*, (i=)K})],
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in Fun(R(V)?,Mod(L)).

Theorem 4.3.10. Suppose N = 2r + 1 odd with r > 0. Then the composite map inc} o incj is
equal to the Hecke operator

-
* —
TN,p = Z dr—sp* Tvpis € TN,P
6=0

in which the numbers d,_s, are introduced in Notation 1.3.2, and the Hecke operators Ty .5 are
introduced in Notation B.2.1 (as Ty ;).

Note that by Remark 4.3.8, L[Sh(V*, (i=)KJ)] is a Ty y-module when N is odd.

Proof. This is [X7, Theorem 9.3.5]. O

4.4. Functoriality under special morphisms. In this subsection, we study the behavior of
various moduli schemes under the special morphisms, which is closely related to the Rankin—
Selberg motives for GL,, x GL,11.

We start from the datum (V,, {A,q}qp) as in the beginning of Subsection 4.1, but with V,, of
rank n > 1. We then have the induced datum

(Vita, {An+1,q}q|p) = ((Vn)ﬂv {(An,q)ﬁ}qlp)

of rank n + 1 by Definition 3.1.7. For N € {n,n + 1}, we let Ky 4 be the stabilizer of Ay,4, and
put Ky = [y, Kng- Recall the category £(V,,)L, and functors —;, = from Definition 3.1.11. To
unify notation, we put =, = =, and =,;; := =;. There are five stages of functoriality we will
consider.

The first stage concerns Shimura varieties. The canonical inclusions

Vn — Vn—i—h {An,q — An+1,q}q\p
induce a morphism
(46) ShT: Sh(Vn, _TLKTL,p) — Sh(vn+1, _1’L+1Kn+1,p)

in Fun(R(V,)%,, Sch,r), known as the special morphism.

For the second stage of functoriality, we have a morphism
(4.7) my: My(Vi, =n) = Mp(Vig1, —nt1)

in Fun(&(V,)5, x T,Sch)ze)/r, sending an object (Ao, Ao, 755 A, A, 7P) € My(Vy, KB)(S) to the

object (Ao, Ao, 13 A X Aoy A X Ao, P @ (id 4, )s) € Myp(Vig1, K2 1)(S). We then have the following
commutative diagram

(4.2)
(48) Mg(vn-l—la _n—i-l) Sh(vn-i—la _n+1Kn+1,p) XSpec F Tg
m¥ T T shq xid
(4.2)
Mg (VTH _n) Sh(va _nKn,p> ><SpecF Tg

in Fun(&(V,)5, x T, Sch/qe) oo
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At the third stage of functoriality, we study the basic correspondence (4.3) under the special
morphisms. We will complete a commutative diagram in Fun(&(V,), x ¥, Sch/pe) /7, as follows

(4.9) Sp(Vig1, =n+1) e By (Vg1 =nt1) Rk My (Vg1 =n+1)
TST Tb»r
SP (Vn, _)Sp = BP (Vm _>SP e
lsi O ib‘t
Sp(Vin, =n) By(Vi, =n) M, (Vi, =)

in which the lower-left square is Cartesian; and the lower (resp. upper) line is the basic correspon-
dences on M, (V,,, =) (resp. My(Vy41, =n+1)) as introduced in Definition 4.2.4.

Definition 4.4.1. We define a functor
Sp (Vs =)sp: A(V)8, X T — PSch’/Fg
KP — Sy (V,, KP)sp
such that for every S € Sch'/]Fg, Sp(Vi, KP)g,(S) is the set of equivalence classes of decuples
(A07>\07773§A*7)\*>77p*5 Ev E7n§*75*) where
O (Ao, Ao, 705 A, A*, %) is an element in S,(V,,, K2)(S);
O (Ao, o, nb; A5, Xy, mf”) is an element in Sy(Viqr, K74 ) (S);
O §*: A* x Ay — Al is an Op-linear quasi-p-isogeny (Definition 3.4.5) such that
b
(a) ker 6*[p>] is contained in (A* x Ag)[p];
(b) we have \* X @wAg = §*¥ o \J 0 0*; and
(c) the K? . -orbit of maps v — 6} o (n"*@® (ida, )«)(v) for v € V, 11 ®g AP coincides with
Dx
-
The equivalence relation and the action of morphisms in &(V,)5, x T are defined similarly as in
Definition 4.2.3.

We have apparently the forgetful morphism
SP(Vm _)Sp - TP

in Fun(R(V,,)L, x T, PSch’/Fg)) which is represented by finite and étale schemes. By definition, we
have the two forgetful morphisms

8.1 Sp(Vi, =)sp = Sp(Vie, =),
$t:8p (Vi =)sp = Sp (Vg 1, =n1)
in Fun(&(V,)5, x T, Sch/pe) /-
Lemma 4.4.2. We have the following properties concerning s, .
(1) When n is odd, s is an isomorphism, and the morphism
5108, Sp(Vi, =n) = Sp(Viug1, =ns1)
s given by the assignment
(Ao, Ao, b A%, X5 nP*) = (Ao, Ao, mh; A X Ag, ' X g, 17 X (ida, )« )-
(2) When n is even, s| is finite étale of degree p + 1.
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Proof. Take an object K? of &(V,)2,, and a point 2 = (Ag, Ao, np; A*, A, 77*) € Sp(Vy, K2)(k) for
some perfect field £ containing F} .

For (1), it suffices to show that the fibre s, '(x) consists of the single point with the extra
datum (A7, \f, nf";0%) = (A" x Ag, \* X wAo, n”* x 15;id). This follows from the fact that 6* as in
Definition 4.4.1 induces an equivalence between (Af, AJ, nﬁ’ *) and (A* x Ag, \* X @A, P* X 1h).

For (2), we note first that a point in the fibre sjl(x) is determined by the quasi-p-isogeny
0*, which is in turn determined, up to equivalence, by a totally isotropic (Op/p)-subgroup of
ker(A\*x @) of order p*. We classify such subgroups by using Dieudonné theory. Let D(A*x Ag)Ye
be the dual lattice of D(A* x Ag).c (Notation 3.4.12) but with respect to the quasi-polarization
N x wXg. The quotient #, = D(A* x Ay)L /D(A* x Ap),. is k-vector space of dimension
2 equipped with an induced nondegenerate hermitian pairing. Then the hermitian space %, is
admissible in the sense of Definition A.1.1 with underlying hermitian space over F,. given by
Weo = %Vﬁlel. Then %, is an F2-vector space of dimension 2. By the classical Dieudonné
theory for finite group schemes over &, the set of totally isotropic (O /p)-subgroups of ker(A\*xw)
of order p? is in natural bijection with the set of isotropic F-lines in #; o, which has cardinality

p+ 1 O

Definition 4.4.3. We define B,(V,,, =)sp to be the fiber product indicated in the following Carte-
sian diagram

Bp(vn7 _)sp = SP(Vna _)sp
bil \LSL
BP (Vm _n) o Sp (Vna _n)

in Fun(ﬁ(\/n)gp X I, SCh/F%)/Tp‘
Lemma 4.4.4. The assignment sending an object

((A07 >‘07 nga A7 >\7 npa A*a >‘*7 77p*§ Oé), (AOa )‘Oa 7757 A*v )‘*7 T]p*; Ea ga T/é)*a 5*))
of By(Vy, KP)sp (S) to
(4.10) (Ao, Mo, mbs A x A, A X o, 0P @ (idag )w; A, A 105 0% 0 (a X id )
defines a morphism

by Bp(Vn, _>sp — Bp<vn+1, —nt1)

m FUH(ﬁ(Vn)gp X ‘Z, SCh/Fg)/Tp-
Proof. The lemma amounts to showing that (4.10) is an object of B,(V,11, Kb, 1)(S). Put ay =
0% o (a x ida,): A x Ag — Aj. The only nontrivial condition in Definition 4.2.3 to check is that
ker ayy[p™°] is contained in (A x Ap)[p]. For this, we may assume S = Specx for a perfect field x

containing Fy.
Consider the following injective maps of Dieudonné modules

ax,+ Di * 6:,7 *
D(A), & D(4y), 2225 D(A%), @ D(A). —5 D(AL),
for every 7 € Xi. We have the inclusion D(Af), € D(A*)). © w "D(Ag)- (Notation 3.4.12).
Thus, it suffices to show pD(A*)Y. C D(A), for every 7 € Y. For 7 & {7.,75}, we have

D(A*)Y. = D(A),. It remains to show pD(A*)Y. C D(A), for 7 € {7,75}. Recall the subspace
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H = (Gur.) 'wavmr, C HE(A*/K),, from Theorem 4.2.5. Under the notation in proof of
Theorem 4.2.5, since (FH)* C H, we have pD(A*)Y. C H hence pD(A*)Y_ C H¢. Thus, we have

C
TOO

pD(A")Ye = pV ! (D(A")Y ) CV'H® = D(A),,

PD(A)L, = pF(D(A")% ) € FH = D(A)se.
The lemma follows. 0
By the above lemma, we obtain our desired diagram (4.9). Moreover, we have the following
result.
Proposition 4.4.5. When n is even, the square

ln41

Bp<vn+la —nt1)

.

Bp (vrw _)sp

Mp(vn+17 —n+1)

fme

MP (Vn, _n)

Lnobi

extracted from the diagram (4.9) is Cartesian.
We remark that the above proposition is not correct on the nose when n is odd and at least 3.
Proof. The square in the proposition induces a morphism

tsp® Bp(Vi, =)sp = Bp(Vir1, =nt1) XMp (Vs 1,=nt1) M, (Vi, =n)-

We need to prove that i, is an isomorphism. By Theorem 4.2.5, we know that ¢y, is locally for
the Zariski topology on the source a closed immersion, such that both the source and the target
are smooth. Thus, it suffices to show that for a given algebraically closed field k containing IF;’,
we have that

(1) tsp(r) is an isomorphism in Fun(&(V,)5 x T, Set); and

(2) for every KP € &(V,,)5, and every z € By(V,,, KP)s, (%), the induced diagram

n+41x
(4.11) Tor (@) Tini1(b4(2))
b T TmT*
Ln*obi,*
Ta Titoy @)

of tangent spaces is a Cartesian square of xk-modules.

For (1), we take an object KP € (V)% and construct an inverse of 1y,(x). Take a point
(A07 >\07 ng’ A7 >\7 T]pa A*7 E? T]é)*7 O‘h)
in the target of tg,(k). Then a4 induces an inclusion
D(A), ® D(Ag)- € D(A})-
of Dieudonné modules, which is an equality if 7 & {7, 75 }. We put

DA* = @ DA*,T
TGEOO
where Dp , = D(A), for 7 & {7, 75} and Das, = D(A}), Np~"D(A); for 7 € {7, 75 }. Then
D4+ is a Dieudonné module containing D(A). By the Dieudonné theory, there is an Op-abelian
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scheme A* over k with D(A*), = D, for every 7 € ¥, and an Op-linear isogeny a: A — A*
inducing the inclusion of Dieudonné modules D(A) C D(A*). We factors oy as

’ *
Ax Ag S50 A% Ay 5 A7

It is clear that there is a unique quasi-polarization A\* of A* such that \* x wAy = §*V o Aj 0 0%
Let n?* be the KP-level structure induced from n” under a. We claim that the datum

((A07 >‘07 nga A7 >\7 npa A*a >‘*7 77p*§ Oé), (AOa )‘Oa 7757 A*v )‘*7 T]p*; Ea g7 T/é)*a 5*))

gives rise to an element in B, (V,,KP)s, (k). It suffices to show that (Ag, Ao, 70; A%, A*, nP*) is an
element in S,(V,,K?)(x). Moreover precisely, we need to show that

(1.1) the Op-abelian scheme A* has signature type n®; and
(1.2) ker \*[p™] is contained in A*[p] of degree p?.
To prove these, we add two auxiliary properties
(1.3) the composite map D(Af), € p~'D(A), @ p~'D(Ag), — p~'D(Ag)- is surjective for 7 €
{Toe 75} and

(1.4) the cokernel of the inclusion D(A*),&D(Ap), € D(A}) is isomorphic to x for 7 € {70, 75}

For (1.3), if not surjective, then we have D(A}). € p~'D(A), ® D(Ay)- for both 7 € {7, 75}
As wA X wAg = ahv o Aj o oy, this contradicts with the fact that A} is p-principal.

For (1.4), it follows (1.3) and the fact that the kernel of D(A;), — p~'D(A), is D(A*), for
T € {Too, TS, -

For (1.1), it amounts to showing that F: D(A*), — D(A*),. is an isomorphism for every 7 €
®. This is obvious for 7 # 7. When 7 = 7, this follows from (iv) and the fact that both
F: D(A;), — D(A})7e and F: D(Ap), — D(Ag)se are isomorphisms.

For (1.2), it follows from (1.4) and the fact that A} is p-principal.

Thus, (1) is proved.

For (2), the diagram (4.11) is identified with

Hom,, (wav r.,ker oys r /wav .. ) — Hom, (wAvaoc, H{R(A x AO)TOO/WA\/J—OO)

|

Hom,, (wAv oy HIR(A) /WAV,TOO)

Hom, (wav r. ., ker o /wav.r.)

by Theorem 4.1.3 and Theorem 4.2.5. However, it is an easy consequence of (1.3) that ker oy, . N
H{®(A),. = ker a, .. Thus, the above diagram is Cartesian; and (2) follows. O

At the fourth stage of functoriality, we compare the special morphisms for basic correspondences
and for Deligne-Lusztig varieties. Take a point

s* = (Ao, Ao, b3 A%, N5 AL AL 75 0%) € Sp(Vin, KP)sp ()
for a field x containing Fy. Put

sp=8(s"), span = sp(sY);
and denote by By, By, and By« » their preimages under 7, m,, and 7,41, respectively. By Lemma
4.2.2, we have admissible pairs (¥;,{, }s;) and (¥, . {, }s,,)- As in Construction A.1.5, we
extend the pair (¥,{ , }s) to (%41, tssg). Then the homomorphism 0*: A* x Ay — Af
induces a k-linear map
Og : %Zvﬁ - 4//8:1_‘_1
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satisfying {0s+ (), 05+ (y) }sr ., = {2, y}ss 4 for every x,y € ¥ ;. By Construction A.1.5, we obtain
a morphism

Ogr: DLy = DL(¥, {, Yoy ["57]) = DLy, = DL(%; s Bopyo [%521)

2
of corresponding Deligne—Lusztig varieties.

Proposition 4.4.6. Let the notation be as above. The following diagram

s
+1
B~ - DL+
n+1 >~ n+1
bTT Tds*fr
CS* ObJ’
B.- " DLy

in Schy,, commutes, where (s and CSZH are the isomorphisms in Theorem 4.2.5(3). In particular,
by: By — BSZH s an isomorphism if n is odd, and is a reqular embedding of codimension one if
n 1S even.

Proof. Note that by Lemma 4.4.2, the restricted morphism by : By« — B, is an isomorphism.
Thus, the last claim follows from the commutativity and Proposition A.1.6.
When n is odd, the commutativity is obvious. When n is even, it suffices to show that for every
point
<A07 /\07 7767 A? /\7 77p7 A*7 )\*7 77p*§ O[) € BS* (S>7

we have
(4.12) 02 s ((Gre) 0¥ 57 @ HIF(A0/S) 1 ) = (G ) "WVt /511
in view of the diagram
Ax Ag—— A x A
axidAOl lahzzé*o(axid,qo)

*

A% x Ay As

OUszidAOl idh

AXAQiAXAD

in which ¢ oav = w -id4 and &y 0 &y = @ - idax4,. Since both sides of (4.12) have the same rank,
it suffices to show that

Qg o (51,700 ((d*,Too)_lwAv/S,Too D H?R(AO/S)TOJ) C WAYXAY /8,700

which is obvious as @ annihilates H{®(A4,/9),... The proposition is proved. O

At the final stage of functoriality, we relate the special morphisms for sources of basic corre-
spondences to Shimura sets under the uniformization map v (4.4).

Notation 4.4.7. As in Definition 4.3.1, we choose a definite uniformization datum
(Vi in, A} g Fapp) for V. We also fix a definite uniformization datum (V3 in41, {A} 1 4 qp) for
V.11 satisfying

O Vi = (Vi) and inp1 = (in)y;

O A= (A;7q)ﬁ for q # p; and

O (A:z,p%i - A:Hrl,p C p_1<A¢L,p>;1/'
Let K}, be the stabilizer of A}, ; for every q over p; and put K7, , = [1q, K}, ;- Moreover,

we put K3, , =K}, NK},,, (as a subgroup of K}, ) and K, , == K, , X [15, K, -
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Remark 4.4.8. When n is odd, since (A}, )" = pA;, ,, we must have Ay, , = (A}, )y as well hence
K5, = K, - When n is even, the number of choices of A}, is p+1.
Similar to Construction 4.3.2, we may construct a uniformization map

(4.13) Vsp: Sp(Vin, =)sp(Fp) — Sh(VE, (1n=n)KE ) x Tp(F,)

in Fun(8(V,)L, x T, Set) 1, 5, which is an isomorphism, whose details we leave to readers.

Sp,p

Proposition 4.4.9. The following diagram

Sy (Vosts =) () — e SB(VE (L= K1) X T (F)

(4.9)

smmT Tshwd
So(Vins =)sp (F) = Sh(VZ,, (1=K, ) % Ty(F)
| Jaga
S(Var: =) (F,) SV (1=K, X Ty(Fy)

in Fun(R(V,)E, x T, Set) p, &, commutes, where sh] and sht are obvious maps on Shimura sets.
Moreover, the induced actions of Gal(F /Iﬁ‘g’) on all terms on the right-hand side factor through
the projection to the factor T,(F,).

Proof. The commutativity follows directly from definition. The proof of the last claim is same to
Proposition 4.3.4. 0

4.5. Second geometric reciprocity law. In this subsection, we state and prove a theorem we
call second geometric reciprocity law, which can be regarded a geometric template for the second
explicit reciprocity law studied in Subsection 7.3 once throw the automorphic input.

We keep the setup in Subsection 4.4. However, we allow — = (—,,—,11) to be an object of
R(Vp)P X &(Vpq1)P, rather than K(V,)2,. Denote by ng and n; the unique even and odd numbers
in {n,n + 1}, respectively. Write no = 2ry and ny = 2r; + 1 for unique integers 9,7, > 1. In
particular, we have n = rq + 1. Let L be a p-coprime coefficient ring.

To ease notation, we put X/ = X/(V,,,=y,) for meaningful triples (X,?,a) € {M, M, B, S} x

{ > {0, 1},

Construction 4.5.1. We construct two maps and two graphs.

(1) For every integers i, j, we define
lOC;: Hét<Sh(vn0> _noKnovp) X Spec I Sh<vn17 _n1Kn1,p)’ L(])) — H‘iZ(Mno X, Mn17 L(]))
to be the composition of the localization map
IOCP : Hét(Sh<Vn07 _HOKTLO,P) X Spec F Sh<vn1= _me,P)? L(]))
— Hlét((Sh(vnov _noKnmp) X Spec Sh(vma _n1Kn17P>) ®F @57 LO))?

the pullback map
Hét((Sh(Vnoa _n no p) X Spec F Sh(an, _me,p)) QF Q ( )) — HZ (Mn ><T’ Mnla L(]))

induced from (4.2), and the isomorphism

H}I(Mno XTp Mm’ R\I/L(j)) l> H%(Mno XTp Mn17 L(]))
due to the fact L ~ RV L by Theorem 4.1.3.
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(2) Analogous to Construction 4.3.9, we define the map
inC!*’*i L[Sh(vzw (ino_nO)K:zo,p)] XL L[Sh(v;p (im _n1>K:,1,p)]
= H‘OZ(Snm L)®r H‘%(Sma L) = H‘%(Sno XT, Sni, L)

(Trn0><7rn1)* (LnOXLnl)l

H‘%(Bno X, Bnn L) H‘zln(Mno XT, Mnn L(TL))

in Fun(8(V,.)? x &(V,i1)P, Mod(L)).
Suppose that — is taken in the subcategory &(V,)Z,.

(3) We define A Sh(V,,,=,K, ) to be the graph of the morphism sh; (4.6), as a closed sub-
scheme of Sh(V,,,, =n,Kngp) Xspec 7 Sh(Vy,, =n, K, ), which gives rise to a class

[A Sh(Vn, _nKn,p)] € H?}?(Sh(vnov _noKm),p) X Spec F Sh(vnlv —ni Km,p)v L(n))

by the absolute cycle class map.
(4) We define ASh(Vy,, (1,=n)KZ,,) to be the graph of the correspondence (shj,shY), which
is a subset of Sh(V7y , (ing=no) Ky, ) X SV, (1n,=n)KS, L)-

no,p

The following theorem, which we call the second geometric reciprocity law, relates the class
[ASh(V,,, =K, )] with an explicit class coming from the Shimura set.

Theorem 4.5.2 (Second geometric reciprocity law). Suppose that — is taken in the subcategory
R(V,)E . We have

sp*

T, (i X T (i 5 10,)710€ ([ Sh(Viy = Kop)]) = (id X T, (i X )06 (L v (1mn iz, )

ni,p°

in HY*(Mpy X1, Snys L(r0)), where T

ni,p

€ Ty, is the Hecke operator appeared in Theorem 4.5.10.

Note that by Proposition 4.3.6 and Remark 4.3.8, HY°(M,,, X, Sy, L(ro)) is a Ty, y-module.
For readers’ convenience, we illustrate the identity in the above theorem through the following

diagram

locy, inc;* X N . . .
H2(Sh(Vig, =0 Ko ) Xspec # Sh(Viny =y Ky ), L(1)) —= HZ'(Myy X1, My, L(1)) =—— LISh(V2,, (3ng=ng) K2, )] @1 LISH(VE,, (0= K, )]
W l(idxml)* w
[A Sh(\/n, —nK”,p)] H%"(Mnn X, Bn,, L(n)) IN SB(VE,(tn=n)K2p )

l(idxm,l )
HZ°(My, X1, Sy, L(1o))

Proof. We denote

M,,

mu: M, — M, xg, M,,;; = M, X,

the diagonal morphism of the correspondence (id, my) (4.7) in Fun(8(V,)E, X T, Sch z¢ )1, Then
we have the identity

loc;J ([ASh(V,,, =K, ,)]) = ma[M,] € HF* (M, X1, Mpy1, L(n))

by the commutative diagram (4.8).
Put By, == By (V,,, =)sp for short, and denote

ba = (by,bt): By, = By X1, By = By X1, By
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the diagonal morphism of the correspondence (b, by). By Proposition 4.4.5 (resp. Lemma 4.4.2)
when n = ng (resp. n = nq), the following commutative diagram

(tng xid)oba

B., M,, X1, Bn,

LnObL\L lidXLnl
ma

Mn Mno XTp Mn1

is Cartesian. Then by Proper Base Change, we have

T (ld X Wnl)!(id X Lm)*mA[[Mn] =T <1d X Wnl)!((bno X ld) o bA)y(Ln o bi)*[Mn]

ni,p° ni,p-
. . .
= Tn1,p‘(ld X Ty 1((Lng X id) 0 ba)i[Bgp)-
The commutative diagram
(tng xid)oba
BSp MTLO XTp B?’Ll
(idXﬂ'nl)ObAi J{idxgl
tng xid
Bno XTP Sn1 Mno XTp Sn1

implies the identity
T3, - % 7 (1 X d) 0 ba)By] = T,

ni,p- ni,p*

(tng x 1d)1((id X 7y, ) 0 ba)i[Bsp)-
Now by the definition of By, (Definition 4.4.3), we have
(i X Tay) 0 bANBap] = (g X i)* (L sh(vs (hmn K1)

Sp,p

In all, we have
T;hp.(id X Wnl)y(id X Lnl)*mA![Mn] = (Lno X id)!(ﬂ'no X id)*<T:Ll,p‘]lASh(V;,(in—n)K;Tp,p))?

which, by Theorem 4.3.10, equals

(Lno X id)[(ﬂ'na X ld)*(ld X Wnl)!(id X Lnl)*(id X Lnl)[(id X 7Tn1)*<ILASh(V;,(in—n)Kgp’p))

= <1d X Wnl)!(id X Lm)*incr*(ﬂﬁ.Sh(V;,(in—n)K* ))

Sp,p

The theorem follows. 0

5. UNITARY MODULI SCHEMES: SEMISTABLE CASE

In this section, we define and study certain semistable integral moduli scheme whose generic
fiber is the product of a unitary Shimura variety and an auxiliary CM moduli. Since the materials
in this section are strictly in the linear order, we will leave the summary of contents to each
subsection.

We fix a special inert prime (Definition 3.3.4) p of F* (with the underlying rational prime p).
We take the prescribed subring P in Definition 3.4.2 to be Z,. We choose following data

O a CM type ® containing 7.;

O a rational skew-hermitian space Wy over Op ® Z,) of rank 1 and type ® (Definition 3.5.3);

O a neat open compact subgroup Kf C Tq(A>P);

O an isomorphism Q, ~ C that induces the place p of F';

O an element @ € Op+ that is totally positive and satisfies val, () = 1, and valy(w) = 0 for
every prime q # p of F'* above p.



56 YIFENG LIU, YICHAO TIAN, LIANG XIAO, WEI ZHANG, AND XINWEN ZHU

We adopt Notation 3.3.6. In particular, F g’ contains [F2. Since Wy and K§ are insensitive and will
never be changed in the remaining part of this section, we will not include them in all notations.
However, we will keep the prime p in notations as later in application, we need to choose different
primes in a crucial step. Put T, := T,(Wo, Kf) ®0o, 07, Z3.

5.1. Construction of moduli schemes. In this subsection, we construct our initial moduli
schemes. We start from the datum (V°, {A{},,) where

O V¢ is a standard definite hermitian space (Definition 3.1.7) over F' of rank N > 1, and
O for every prime q of F'* above p, a self-dual O, -lattice Ay in Ve @p F.

Definition 5.1.1. We define a functor
M, (VE,=): &(VO)? x T — PSch)z
KP? — M, (V?, K™)

such that for every S € Sch’/Zg, M, (V°,K?°)(S) is the set of equivalence classes of sextuples
(A07 >\07 77{)), A7 >\7 77p) where

O (A, Ao, m5) is an element in Ty (.S);

O (A, ) is a unitary Op-abelian scheme of signature type N® — 7, + 75 over S (Definitions

3.4.2 and 3.4.3) such that ker A[p*] is contained in A[p] of rank p?;

O nP is a KP°-level structure, that is, for a chosen geometric point s on every connected
component of S, a m (9, s)-invariant K*°-orbit of isomorphisms

17's V7 @ A7 — Homigh pees (HY' (Aos, A7), HY' (44, A7)
of hermitian spaces over F' ®g A®? = F ®p+ A", See Construction 3.4.4 (with O =

{00, p}) for the right-hand side.

The equivalence relation and the action of morphisms in K(V°)? x T are defined similarly as in
Definition 4.1.2.

Remark 5.1.2. In the definition of the moduli functor M, (V°, =), we use the definite hermitian
space V° to define the tame level structure — this is different from the usual treatment. The reason
for doing this is to make the uniformization map (5.4) for certain stratum in the special fiber of
M, (V?, =) canonical, since our main interest is the Shimura set Sh(V°, =K?), while the trade-off
is that the relation between the generic fiber of M,(V°, =) and unitary Shimura varieties cannot
be made canonical (see Definition 5.1.6).

We have apparently the forgetful morphism
(5.1) M,(V°, =) = T,
in Fun(R(V°)P x ¥, PSch//Zg)), which is representable by quasi-projective schemes. According to
Notation 3.3.6, we shall denote by the base change of (5.1) to Fy by M,(V®,=) — T,, which is a
morphism in Fun(&(V°)? x T, Sch pe ).
Definition 5.1.3. For every K € &(V°)P, let (Ao, Ao, 75; A, A\, n*) be the universal object over
M, (V°,K??). We define

(1) My (Ve,KP?) to be the locus of My(V°,KP®) on which w4v
5

. . . dR 1
o coincides with H{"™(A)z

which we call the balloon stratum;

5This terminology is borrowed from an unpublished note by Kudla and Rapoport, where they study the corre-
sponding Rapoport—Zink space. The intuition becomes clear after Theorem 5.2.4 where we show that this stratum
is a projective space fibration over a zero-dimensional scheme.
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(2) M3(V°,KP°) to be the locus of M,(V°,K?) on which H{®(A)L is a line subbundle of
wav r< , which we call the ground stratum;
(3) M}(V°,K) to be Mg (Ve, KP°) N M3 (V°, KP°), which we call the link stratum.’
We denote
m': MI(V°, =) = M (V°, =),
m'®: MI(V°, =) = M3 (V°, =),
the obvious inclusion morphisms.

Remark 5.1.4. When N = 1, the ground stratum and link stratum are both empty.

Theorem 5.1.5. For every KP° € R(V°)P, we have

(1) The scheme M,(V°,KP°) is quasi-projective and strictly semi-stable over Ty of relative

dimension N — 1; and we have
M, (V?, KP) = M, (V°, K) UM;(VO7 KP?).

Moreover, (5.1) is projective if and only if its base change to Q]‘f is.

(2) The loci My(V°,KP?) and M;(V®,KP°) are both closed subsets of My(V®, KP°), (whose in-
duced reduced schemes are) smooth over T,,.

(8) We have a canonical isomorphism for the relative tangent sheaf

TMS(VO’KPO)/TP ~ %Om ((,UA\/J&)’ Lie_A’Té:o) .
(4) When N > 2, the relative tangent sheaf Tas(ve xeey/t, fits canonically into a sequence
0 —— Hom (wAva , wjvﬁ& /w.AV,Too) —— T (ve xre) /T, — Hom (WAV,TgQ JH{F(A)L, LieA,TgQ) —0.
(5) When N > 2, we have a canonical isomorphism for the relative tangent sheaf
TM£(V01KPO)/TF = Hom (W.AV,TSO /H?R<A)ioo7 LieA,Tgo) .
Proof. For (1), the (quasi-)projectiveness part is well-known. We consider the remaining assertions.
Take a point 2 = (Ao, Ao, m6; A, X\, n?) € M, (V°,KP°)(k) for a perfect field x containing Fy, and
denote by the completed local ring of M, (V°,K?°) at « by O,. We have a W (k)-bilinear pairing
(, Iare: D(A)r. X D(A);c. — W (k) as in Notation 3.4.12. By repeatedly applying Proposition
3.4.8, we have for every commutative Artinian W (x)-algebra R that Homyy () (O, R) is the set of
R-subbundle
MTOO g D(A)Too ®W(n) Ra Mrgo g D(A)Tgo ®W(/i) R
of ranks 1 and N — 1 lifting wav /.- and wav . < , respectively, such that (M., M )x .. = 0.
We choose isomorphisms D(A), ~ W(k)®N and D(A),e ~ W(x)®" under which the pairing
(', )ar. 1s given by
(@15 2n), (Y15 UN) DA = PT1Y1L + ToY2 + - + TNYN-
There are four possible cases.
(i) If wav/ury is generated by (1,0,...,0) and wyv /. -c contains (1,0,...,0), then possibly

after changing coordinates, we may assume that wav /.- = {(y1,...,yn-1,0)}. Then we
have O, ~ W (k)[[x1,...,zn_1,2N]]/ (125 — D).

(i) If wav/xr. is generated by (1,0,...,0) and wyv,. e does not contain (1,0,...,0), then
possibly after changing coordinates, we may assume that wav /. -< = {(0,%2,...,yn)}. It

is clear that M. is determined by M. ; and O, ~ W (k)[[za, ..., zN]].

6This is the stratum linking balloons to the ground.
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(iii) Ifwav k.. is not generated by (1,0, ...,0) and wav . < contains (1,0,...,0), then possibly
after changing coordinates, we may assume that wuv /. - is generated by (0,...,0,1). It
is clear that M. is determined by M,_; and O, ~ W (k)[[x1,...,zn-1]].

(iv) If wav k- is not generated by (1,0, ...,0) and wav . e does not contain (1,0,...,0), then
this would not happen.

Together with the fact that M,(V°, KP°) ® Q is smooth of dimension N —1, M, (V°, KP°) is strictly
semi-stable over T, of relative dimension N — 1. Moreover, My(V°,K??) is the locus where (i)
or (ii) happens; and Mp(V®, KP°) is the locus where (i) or (iii) happens. Thus, both (1) and (2)
follow.

For (3-5), we will use deformation theory. For common use, we consider a closed immersion
S < Sin Sch,p, defined by an ideal sheaf Z with Z* = 0. Take an S-point (Ag, Ao, 76; A, A, 7P)
in various schemes we will consider. By Proposition 3.4.8, we need to lift wav - and wav o to
subbundles @v .. C H™(A/S),. and @av e C HYS(A/S),c , respectively, that are orthogonal
to each other under the pairing (3.3).

For (3), since we require (Dav ., H{™(A/S)e )$_ = 0, it remains to lift dav e without re-
striction. Thus, (3) follows by Remark 3.4.6.

For (4), we need to first find lifting &wav . that contains H{™(A/ S)L . and then find lifting

Too !

satisfying (©av r..,@av e )T = 0. Thus, (4) follows by Remark 3.4.6.

>‘77—<>o

For (5), we only need to find lifting &av  that contains H{™(A/S)L | which implies (5). O

B

»Too

In the remaining part of this subsection, we discuss the relation between M, (V°, =) and unitary
Shimura varieties. Since we use a standard definite hermitian space to parameterize the level struc-
tures, such relation is not canonical, which depends on the choice of an indefinite uniformization
datum defined as follows.

Definition 5.1.6. We define an indefinite uniformization datum for V° (at p) to be a collection
of (V', 3, {Ay}qp) where

O V' is a standard indefinite hermitian space over F' of rank N;

O j: Ve ®g A™®P — V' ®g A>®P is an isometry;

O for every prime q of F'* above p other than p, Ay is a self-dual Op,-lattice in V' ®@p Fy; and
O A} is an Op,-lattice in V' @ F, satisfying A; C (A})" and (A})Y/A} has length 1.

By the Hasse principle for hermitian spaces, there exists an indefinite uniformization datum for
which we fix one. Let K be the stabilizer of Aj for every g over p; and put K, == [];,, Ki. The

isometry j induces an equivalence of categories j: K(V°)P = K(V')?.
Then similar to Remark 4.1.5, we obtain a “moduli interpretation” isomorphism

(5.2) M(V®, =) = Sh(V', j=K}) Xspecr T}
in Fun(R&(V°)? x T, Sch qe ) jxn, where T acts on Sh(V’, j=Kj,) Xspec r Ty via the second factor.
Lemma 5.1.7. Let L be a p-coprime coefficient ring. The two specialization maps
He o(M(V?, =) @z Qp, L) = He (M, (V°, =), RUL),

H (M (V°, =) Dz Qp, L) — H(My(V°, =), RV L),
are both isomorphisms. In particular, (5.2) induces isomorphisms

Hi o(Sh(V', j=K} )7, L) = He ,(My(V°, =), R¥L),

He (Sh(V', j=K})7, L) = He(My(V°, =), R¥L),
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in Fun(R(V°)?, Mod(L[Gal(Q,/Q})])) for every i € Z. Here, Gal(Q,/QY) is regarded as a subgroup
of Gal(F/F) under our fized isomorphism ,: C ~ Q,.

Proof. When M, (V, =) is proper, this is simply the proper base change. When M,(V, =) is not
proper, this follows from [L.518, Corollary 5.20]. O

Remark 5.1.8. When [F* : Q] > 1, the Shimura variety Sh(V’,K”K}) is proper over F' for
KP" € R(V')P. We explain that Sh(V’, KPK}) has proper smooth reduction at every place w of F’
above X\ {p}.

Take a place w of F above ¥7 \ {p}. Choose a CM type ® containing 7., and an isomorphism
C ~ Q, that induces w (not the unique place above p!). Put Ty, = T,(Wo, Kf) ®0y, 0z, Zy- We
define a functor M, (V', K¥') on Sch’/Zg such that for every S € Sch’/Zg, M, (V',K?)(S) is the set
of equivalence classes of sextuples (Ag, Ao, n5; A, A, n?) where

O (Ao, Ao, nh) is an element in T, (5);

O (A, \) is a unitary Op-abelian scheme of signature type N® — 7, + 75, over S (Definitions
3.4.2 and 3.4.3) such that ker A\[p*] is contained in A[p] of rank p?;

O nP is a KP-level structure, similarly defined as in Definition 5.1.1.

Then M, (V’,K?) is represented by a projective scheme over Zg’. An easy computation of the
tangent sheaf as in Theorem 4.1.3 shows that M, (V’, K¥') is smooth of relative dimension N — 1.
Moreover, we have a canonical isomorphism

M, (V' K?) 2= Sh(V', K”'K') Xspee p T,
over T7. Thus, Sh(V’, K’K}) has proper smooth reduction at w as T, is finite étale over Op, .

5.2. Basic correspondence on balloon stratum. In this subsection, we construct and study
the basic correspondence on the balloon stratum M, (V°, =).

Definition 5.2.1. We define a functor
Sp(Ve, =) (V)P x T — PSch’/FS
K = S, (V°, K)
such that for every S € Sch’/]Fg), Sp(Ve,KP?)(S) is the set of equivalence classes of sextuples
(A07 )\07 nga AO> /\07 77po) where
O (Ao, Ao, 75) is an element in T, (S);
O (A°,)°) is a unitary Op-abelian scheme of signature type N® over S such that A° is
p-principal;
O nP° is, for a chosen geometric point s on every connected component of S, a m(S,s)-
invariant KP°-orbit of isomorphisms

°: VO @ AP — Hompig, e (HS'(Agy, A7), HiY(AZ, A7)

of hermitian spaces over F' ®g A™? = I @p+ A7

The equivalence relation and the action of morphisms in K(V°)? x ¥ are defined similarly as in
Definition 4.1.2.

We have apparently the forgetful morphism
Sp(Ve,=) = T,

in Fun(R(V°)P x ¥, PSch’/Fg,) which is represented by finite and étale schemes.
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Now we take a point s° = (A, Ao, 1p; A%, A\°,n?°) € S;(V°,KP°)(x) where & is a perfect field
containing F. By Remark 3.4.10, the (x, 0 ')-linear Verschiebung map
Ve H{N(A/K)r, = HY (A% 8) g1y, = HT (A% /8) e,
is an isomorphism. Thus, we obtain a (k,o)-linear isomorphism
v HR(A%/K) e — HIR(A®/K)....
We define a non-degenerate pairing
{, }oo: H®(A/K)re x HIR(A®/K)re — K
by the formula {z,y}se = (V''z,y)r ... (Notation 3.4.7). To ease notation, we put
Vo = H?R(AO/IQ)T&J.
By the same proof of Lemma 4.2.2, we know that (¥s,{ , }s) is admissible. Thus, we have the
Deligne-Lusztig variety DL := DL(%:0,{, }s, N — 1) (Definition A.1.2).
Definition 5.2.2. We define a functor
By(V?,=): R(V°)P x T — PSch'/Fg)
K?° — B;(VO, KP?)
such that for every S € Sch’/Fg, By (Ve KP?)(S) is the set of equivalence classes of decuples
(A07 )\07 Wg; A7 )\7 77p; Ao’ )\07 77po§ 5) where
O (Ao, Ao, 163 A, A, 1P) is an element of Mg (V°, KP?)(S);
O (Ao, Ao, 15; A%, A°,nP°) is an element of S;(V°, KP?)(S);
O fB: A — A°is an Op-linear quasi-p-isogeny (Definition 3.4.5) such that
(a) ker B[p™] is contained in A[p];
(b) we have A = Y 0 A\° o 3; and
(c) the KP°-orbit of maps v +— S, o nP(v) for v € V° ®g AP coincides with 7*°.

The equivalence relation and the action of morphisms in K(V°)? x T are defined similarly as in
Definition 4.2.3.

We obtain in the obvious way a correspondence

(5.3) Sp(Ve, =) <= By(V°, =) —= Mo(V°, =)

in Fun(&(V°)P x ¥, PSch’/Fg)/Tp.

Definition 5.2.3 (Basic correspondence). We refer to (5.3) as the basic correspondence on the
balloon stratum My (V?, =), with S7(V°, =) being the source of the basic correspondence.

Theorem 5.2.4. In the diagram (5.3), (° is an isomorphism. Moreover, for every point s° =
(Ao, Mo, mos A%, A, mP°) € Sp(V°, KP°) (k) where K is a perfect field containing F®, if we put B =

p’

7°71(s°), then the assignment sending (Ao, Xo, mh; A, A\, mP; A%, X%, nP°; B) € BS(S) to the subbundle
H = Bire wavsre CHP(A/S)e = HI*(A°/K)re ®, Og = (Vi)

induces an isomorphism (% : B% = P(¥4) satisfying that

(1) (2 restricts to an isomorphism

(%1 B (o 'MI(V°,KP°) = DLy = DL(¥%0,{, }so, N — 1);
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(2) we have an isomorphism
HOm (WAY iy W re J0AY 700 ) = (63) Opiror (—(p + 1))
In particular, B3 (°" "M} (V°, KP°) is a Fermat hypersurface in BS ~ P(¥4).

Proof. Take an object KP° € &(V°)P. It is clear that Bj(V® =) is a scheme. We denote by
(Ao, Ao, no5 A, A, 1?3 A%, X%, mP°; B) the universal object over By (Ve, K.

First, we show that ° is an isomorphism. It is an easy exercise from Grothendieck—Messing
theory that the canonical map 7]3;(\;07}(1,0) /T, LO*TME(VO,Kpo) /T, 18 an isomorphism. Thus, it
suffices to show that (°(k’) is a bijection for every algebraically closed field ' containing k.
To ease notation, we may assume ' = k. We construct an inverse of (°(k). Take a point
(Ao, Aos 163 A, A\ mP) € Mp(Ve, KP?) (k). Write Gav -, the preimage of wav -, under the reduction
map D(A),, — H{*(A/K)r,. As (Wav s, HI®(A/K)re )ar, = 0, we have D(A)Y. = p~'Qav 1,
Now we put Dpo, = D(A), for 7 # 7, and Dao, = p '@av,. . We claim that Dy =
@©,ex., Dacr is a Dieudonné module, which amounts to the inclusions FDyo ., € Dyo o and
VD o7, € Dyore. The first one is obvious; and the second one is equivalent to the first one
as Dyo . and Dyo o are integrally dual under ( , )f\rfw Then by the Dieudonné theory, there
is an Op-abelian scheme A° over xk with D(A°), = Dyo . for every 7 € ¥, and an Op-linear
isogeny 3: A — A° inducing the inclusion of Dieudonné modules D(A) C D(A°). By Lemma
3.4.13(2,4), the Op-abelian scheme A° has signature type N®. Let A° be the unique quasi-
polarization of A° satisfying A = 3¥ o A\° o 8, which is p-principal as Dy . = DXO’TOO. Final-
ly, we let n”° be the map sending v € V° ®g A*? to [, o n?(v). Thus, we obtain an object
(Ao, Mo, mos A, A P A%, A%, mP°; B) € Sp(V°,KP°)(k). It is straightforward to check that such as-
signment gives rise to an inverse of 1°(k).

Second, we show that (2 is well-defined, namely, H is a subbundle of rank N — 1. By Lem-
ma 3.4.13(2,4) and Definition 5.2.2(b), we have ranko(ker f, . ) — rankog(ker f, < ) = 1 and
ranko, (ker B, - ) +ranko, (ker B, ;< ) = 1. Thus, 5, .c is an isomorphism, hence H is a subbundle
of rank N — 1.

Third, we show that (% is an isomorphism. Denote by H C (¥;-)p(s,.) the universal subbundle
(of rank N — 1). Then we have a canonical isomorphism

Te(v,0)/x ~ Homo,, | (H, HI (A /k) e, /H) :

By Theorem 5.1.5(1) and the fact that 3, < is an isomorphism, we obtain an isomorphism

»Too

B, = Coo Tp(¥,0) /-

Thus, to show that (%: B% — P(¥;.) is an isomorphism, it suffices to construct an inverse of
(% (k') for every algebraically closed field k' containing k. To ease notation, we may assume
K = k. Take a k-linear subspace H C ¥ = H{®(A°),c of rank N — 1. Let H denote by its
preimage under the reduction map D(A°),c — H{®(A°),c . We put D4, = D(A°), for T # 7w,
and Dy, = V1H C D(A°),.. Itisclear that Dy = @, cx_ Da, is a Dieudonné module. By the
Dieudonné theory, there is an Op-abelian scheme A over k with D(A), = Dy, for every 7 € X,
and an Op-linear isogeny : A — A° inducing the inclusion of Dieudonné modules D(A) C D(A°).
By a similar argument as for .°, we obtain a point (A, A\, n?; ) € B2 (k); and it follows that such
assignment is an inverse of (% (k).

Finally, we check the two properties of (Z.

For (1), we check that the closed subscheme (%(BS% N 1°"'MI(V°,K)) coincides with

DL(%,{, }s, N —1). Recall that M}(V°, K°) is define by the condition
HilR(A/S)ioo Q WAV/S,TgO~

(LO*TMg(Vo,Kpo)/Tp)
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Note that we have H = B.,cwav/s,e and VIH® = g, HI®(A/S), , which implies
(VIH®)L = (B, HI®(A/S), )t = Bure (Hig(A/S)L ). Applying the isomorphism S, , the
above condition is equivalent to
(V'HP): C H,

which is the condition defining DL(%,{, }s, N — 1).

For (2), we have

wAvﬂ'oo = ker /8*77'00 = H?R(AO/S)TOO/6*7700H§1R<A/S)Too = H?R(AO/S)TOO /V_IH(p)
and
le_v,fgo/wAv,Too = 6*7Toowjv,rgo = (6*,T&WAV/SvT§o>J_ = HJ_'
Thus, we have
(4().,4\/77-(><> ~ C;O*O]P’('Vso) (p)’ C(ij TS /wAvﬂ'oo ~ CL::OP('VSO) (—1)

from which (2) follows.

The theorem is all proved. [l

Corollary 5.2.5. When N > 2, the normal bundle of the closed immersion
m'®: MI(V®, KP) — M3 (Ve KP)

is isomorphic to (m'®)*Oye(ve krey(—(p + 1)).

Proof. By Theorem 5.1.5(4,5), we have that the normal bundle is isomorphic to
Hom (WAV,TOO : wjvmgo /WAV,TOO> :

Thus, the claim follows from Theorem 5.2.4. We can also argue that the normal bundle of mf®
is dual to the normal bundle of m™ which is isomorphic to (mTO)*OMg(VoKpo)(p + 1) by Theorem
5.2.4. 0

Construction 5.2.6. Let K{ be the stabilizer of A{ for every q | p; and put K =[], Kg. Similar
to Construction 4.3.2, we may construct a uniformization map, canonical this time,

(5.4) v°: Sy (Ve =)(F,) = Sh(V?,=K?) x T,(F,)
in Fun(&(V°)? x ¥, Set) 1 7, which is an isomorphism, under which the induced action of
Gal(F,/Fy) on the target is trivial on Sh(V°, =K?).

Moreover, similar to Construction 4.3.5 and Proposition 4.3.6, for every g € K;\U(V°)(F,")/K3,
we may construct the Hecke correspondence

Hkg: S;(VO7 _>g - S;(Voa _) X S;(voa _>
as a morphism in Fun(&(V°)P x T,Sch ge)/7, that is finite étale and compatible with the uni-
formization map.

5.3. Basic correspondence on ground stratum. In this subsection, we construct and study
the basic correspondence on the ground stratum Mg (V®, —). We assume N > 2.

Definition 5.3.1. We define a functor
Sp(V°,=): R(V°)P % T — PSchipy
K = Sp (V°, KP?)
such that for every S € Sch’/]Fg), Sp(V°, KP?)(S) is the set of equivalence classes of sextuples
(Ag, Mo, mh; A%, A®, nP*) where
O (Ao, Ao, 75) is an element in T, (.S);
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O (A*, \*) is a unitary Op-abelian scheme of signature type N® over S such that ker A*[p>]
is trivial (resp. contained in A®[p] of rank p?) if N is even (resp. odd);

O nP* is, for a chosen geometric point s on every connected component of S, a m(S,s)-
invariant KP*-orbit of isomorphisms

P VO @y AP - HomEw , (I (Agy, A7), Hi' (A2, A7)

of hermitian spaces over F ®g AP = F ®@p+ AR,
The equivalence relation and the action of morphisms in K(V°)? x ¥ are defined similarly as in
Definition 4.1.2.

We have apparently the forgetful morphism

in Fun(R(V°)P x %, PSchl/Fg,) which is represented by finite and étale schemes.
Now we take a point s* = (Ag, Ao, 10; A%, A*,nP*) € S5 (V°,KP°)(x) where & is a perfect field
containing F. By Remark 3.4.10, the (s, 0 ')-linear Verschiebung map

Ve HY (A% k)5, = YA /K)om1r, = HYR (A% /K) g,
is an isomorphism. Thus, we obtain a (k, ¢)-linear isomorphism
v HR(AY k) e — HIR(A®/K)....
We define a pairing
[0 Yot HIR(A® ), x HIR(A® ) e —
by the formula {z,y}s = (V"' y)xe ... (Notation 3.4.7). To ease notation, we put
Ve = H‘fR(A'/H)Tgo.

By the same proof of Lemma 4.2.2, we know that (¥,{ , }s) is admissible. Thus, we have the
Deligne-Lusztig variety DL% := DL*(¥,{, }s) (Definition A.2.1). Moreover, dim, ¥, is equal
to 0 (resp. 1) when N is even (resp. odd).

Definition 5.3.2. We define a functor
B;(VO, =) R(V°)P x T — PSch//Fg
K?° — B;(Vo, KP?)

such that for every S € Sch’/]Fg,, By (Ve,KP?)(S) is the set of equivalence classes of decuples
(A07 >\07 77& A7 Aa 77p; A.7 A.7 T]p.; ’Y) where

O (Ao, Mo, 163 A, A, 1P) is an element of M3 (V°, KP?)(S);
O (Ao, Ao, 163 A®, A®,nP*) is an element of S5 (V°, KP?)(S);
O v: A— A®is an Op-linear quasi-p-isogeny (Definition 3.4.5) such that
(a) kerv[p>] is contained in Alp];
(b) (ker s, )* is contained in wav /g re ;
(¢) we have w - A =Y 0 A\* o ; and
(d) the KP°-orbit of maps v — 7, o nP(v) for v € V° ®g A*? coincides with nP°.

The equivalence relation and the action of morphisms in K(V°)? x ¥ are defined similarly as in
Definition 4.2.3.



64 YIFENG LIU, YICHAO TIAN, LIANG XIAO, WEI ZHANG, AND XINWEN ZHU

We obtain in the obvious way a correspondence

(55) S;(Voa _) ~— B;:<VO7 _) — M;(VO7 _>
in Fun(&(V°)P x ¥, PSch’/Fg)/Tp.

Definition 5.3.3 (Basic correspondence). We refer to (5.5) as the basic correspondence on the
ground stratum M3 (V®, =), with S3(V°, =) being the source of the basic correspondence.

Theorem 5.3.4. In the diagram (5.5), take a point

s* = (Ao, Ao, 10; A%, A%, 0P*) € S5 (V2 KP?) (k)
where k 1is a perfect field containing Fg’. Put B% = 7*71(s*), and denote by (A, \,nP;7) the
universal object over the fiber Bl..

e er e 1S A4 SMOOo scheme over kK, whose tangent sheaq, B /k S canonica mnto
1) The fiber B i th sch hose tangent sheaf Tie, jx fit cally int
an exact sequence

0 — Hom (wAv,Too,wi{v’Tgo /wAv’Too) — 7;3;./& — Hom (wAv,Tgo/(ker ’)/*7TOO)J', LieAv’T&)) — 0.

(2) The restriction of v% to Bl is locally on B2 a closed immersion, with a canonical isomor-
phism for its normal sheaf

Nisjps, = Hom ((ker Vi) /HI (AL, LieAv’Tgo) ~ (im Yir. ) ®0pe Lieavre, .
(3) The assignment sending (Ao, Xo, Mh; A, X\, nP; A, X nP*: ) € B (S) to the subbundles
Hy = (('?*,Too)_1"‘}AV/S,7'<><>)L - H?R(A./S)Tgo = H?R(A./“)T&, ®y Os = (Vse)s,
Hy = Yarg, wav s, © H?R(A./S>T§o - H?R(A./’i)nio % Os = (Yer)s,
where y: A* — A is the (unique) Op-linear quasi-p-isogeny such that 5y o~y = w - idy,
induces an isomorphism
(h: Bl = DLS = DL* (V%o { , }so).
In particular, Bi. is a geometrically irreducible projective smooth scheme in Sch,, of di-
mension |5 ].
(4) If we denote by (Hge1, Hseo) the universal object over DL, then there is a canonical iso-
morphism
G (Mo /Hawz) = 1% Licu re,
of line bundles on BS..
Proof. For an object (Ao, Ao, 755 A, A, 7P A%, A%, 1P y) € By (V°,KP?)(S), Definition 5.3.2(a) im-
plies that there is a (unique) Op-linear quasi-p-isogeny ¥: A®* — A such that §o~y = w-id4 hence
v o4 = w -idse. Moreover, we have the following properties from Definition 5.3.2:

(a’) ker ¥[p™] is contained in A®[p];

(b)) (im %, )" is contained in wav < ;

(¢") we have @ - \* = 5Y o Ao #¥; and

(d’) the KP-orbit of maps v — w4, o n*?(v) for v € V° ®g A®? coincides with n?.

First, we show (1). It is clear that B? is a scheme of finite type over k. Consider a closed
immersion S < S in Sch'/n defined by an ideal sheaf Z satisfying Z> = 0. Take a point z =
(Ao, Ao, B3 A, X, 1P A® X, 2% ) € B%(S). To compute lifting of 2 to S, we use the Serre-Tate
and Grothendieck—Messing theories. Note that lifting ~ is equivalent to lifting both ~ and ¥,
satisfying (b,c,d) in Definition 5.3.2 and (b’,c’,d’) above, respectively. Thus, by Proposition 3.4.8,
to lift = to an S-point is equivalent to lifting
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O wav/sr., to a subbundle &av .. of HE™(A/S),. (of rank 1),
O wav/grc to asubbundle @av o of HiriS(A/S)Tgo (of rank N — 1),
subject to the following requirements
(a”) @av ., and Quv e are orthogonal under (, )% (3.3);
(b7) (Fer, HSS(A®/S),. )" is contained in QDAY s -
As 5, . HS(A%/S), . =kern, .. CHS(A/S),_, (b”) is equivalent to
(¢”) (kervys,.)* is contained in Wav re .
To summarize, lifting = to an S-point is equivalent to lifting wav/s-< to a subbundle wyv ;¢ of
H{s(A/ S’)Tm containing (ker ., )*, and then lifting w4v /s, to a subbundle &4v ,_ of cijjéo.
Thus, (1) follows.
Next, we show (2). By Theorem 5.1.5(4), the map Toeu/n = L Ty (ve Kpo) /i
the canonical map

Hom (wav zg, /(ker 7 7. )5, Lieav re ) = Hom (wav ¢ /HIF(A)L, Lieav 1 ) -

ge, is induced by

It is clearly injective, whose cokernel is canonically isomorphic to
Hom ((ker Vero ) /HIF (AL, LieAngO)
~ Hom ((Hn Yerrs) LieAvyT&) ~ (im Vi ry ) ®0pe Liegv oo .

We obtain (2).
Third, we show (3). We first show that (% has the correct image, namely, we check

O rankp, Hy = (%W and rankpg Hy = (%1 — 1: By Lemma 3.4.13(2,3) and Definition 5.3.2,
we have
rankog (ker v, ) 4 rankog (ker v, e ) = 2| 5] + 1,
rankog (ker v, » ) — rankog (ker v, < ) = 1,
which imply
(5.6) rankog (ker v, - ) = [2],  rankog (ker v .c ) = [251].
Thus, we obtain rankep, Hy = [%1 Since ker vy, .. C (ker v, .. )t C wav/sr., we have
Hy = 7y e Wavs,7e. 2 Wavygre [ ker v, -c . Thus, we obtain ranke, Hy = (%1 — 1.

O H{®(A*/S)%_ C H,: By Definition 5.3.2(c) and the definition of ¥, we have Aoy =0 \*,
which implies

(5.7) (ker 7or )" = 7ok (HIR(A*/S)L).

By Definition 5.3.2(b), Hs contains 7, ,c (kerv,, )" in which the latter coincides with
HIR(A"/S)L by (5.7).
O Hy C Hi: As Aoy =70 \*, we have
<(>§/*,Too)_1wAV/S,TOO77*,TgowAv/S,Tgo>/\‘,Too = <’i/*,’roo (’?*,Too)_lwAv/S,Too7 WAV/S,Tgo>>\,Too =0.
Thus, we have Hy C H.
O H, C H;{" Note that we have

MY = ker o = (Fure) " Fwl g, ) © F((Farm) 'wavysin) = F((HP)Y).
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Thus, (F((H}OD))L))L C (im~urc )=, which in turn implies HP C V((im 74 r¢ )*), which
further implies V-'H® C (im Yire. )T, which implies im~, .. C H;'. By comparing ranks
via (5.6), we obtain

(5.8) im~y, .. =H.

In particular, H,' contains H, as im Vere, does.
O H, C Hy: Note that H{ = ~, . (VHI®(A/S), ) = V(im.,.) = V(ker %, ,..) C V(HL).
Thus, V-'H) C Hi-, which implies Hy; C (V'HP): = H;.
O Hf C H;: It follows from Hy C H;.
Since the target of (% is smooth over x by Proposition A.2.2, to see that (% is an isomorphism,
it suffices to check that for every algebraically closed field " containing

(3.1) (% induces a bijection on x’-points; and
(3.2) (% induces an isomorphism on the tangent spaces at every xk-point.
To ease notation, we may assume k' = k.
For (3.1), we construct an inverse to the map (% (k). Take a point y € DL (k) represented by

k-linear subspaces
H{®(A*): C Hy C Hy C ¥ = H®(A®) .

We regard F and V as those sesquilinear maps in Remark 3.4.10. For every 7 € Y, we define a
W (k)-submodule Dy, C D(A®), as follows.

O If 7 & {700, 75, }; then Dy, = D(A®),.
O We set Dy, = V- 1H2, where H2 is the preimage of Hy under the reduction map
D(A%)r, — D(A*) e [pD(A)e — HIR(A*).
O Weset Dy e = FH 7, where H ¢ is the preimage of Hi- under the reduction map D(A®), —
D(A%)r../pPD(A®),, = HdR(A') oo
Finally, put D4 = @,cx_ Da,- as a W(k)-submodule of D(A®). We show that it is stable under

F and V. It suffices to show that both F and V stabilize D4, @ D4 ¢ , which breaks into checking
that

O FDa,r. € Dare, that is, FV—'H, C FH?. Tt suffices to show that V-'H, (as a subspace of
H{R(A®),.) is Contalned in Hi", which follow from the relation H, C H,"

O FDae. € Dy, that is, FFHC C V"' H,. Tt suffices to show pFH C H,, which obviously
holds.

O VD4, € Dypre, that is, VV1H, C F]:If. it suffices to show H, C FHji, which follows
from the identity FHj- = (V_'H,)" and the relation Hy C H',

O VD4, C Dar, that is, VFHE C V"' H,. Tt is obvious as V™ 1H2 contains pD(A®),

Thus, (Dy,F,V) is a Dieudonné module over W (x). By the Dieudonné theory, there is an Op-
abelian scheme A over k with D(A), = Dy, for every 7 € X, and an Op-linear isogeny y: A — A*
inducing the inclusion of Dieudonné modules D(A) = Dy C D(A®). Moreover, since pD(A®) C
D(A), we have ker y[p>] C Afp]. Now we check that (ker~, )" is contained in wav,/g,c , which
is equivalent to that pD(A*)Y ND(A).. C VD(A), . However, as Hy contains H{®(A*): | we
have pD(A®)Y_ C H, = VD(A)

Let A\: A — AY be the unique quasi-polarization such that wA = 7" o A* o y. We claim that
A[p™] is a polarization whose kernel is contained in A[p| of rank p?. Since Hy C H;, we have
(H¢, Ha)e -, € pW(k), which implies (D(A),_,D(A)re )rer. € pW (k). It is enough to show
that the inclusion D(A),e — D(A)_ induced from (, )je .. has cokernel of length N + 1. This

T
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follows from the facts that the cokernel of D(A®),. < D(A®*)Y_ has length N — 2| ¥, and the
cokernel of D(A),_ ® D(A),.. — D(A®),. @ D(A®), has length 2| T | + 1.

It is an easy consequence of Lemma 3.4.13(2) that the Op-abelian scheme A has signature type
N® — 7, + 75, Finally, let 7” be the unique KP-level structure such that Definition 4.2.3(d) is
satisfied. Putting together, we obtain a point = = (Ao, Ao, 75; A, A\, nP; A*, A, nP*; ) € B (k) such
that (% (z) = y. It is easy to see that such assignment gives rise to an inverse of (% (k); hence
(3.1) follows immediately.

For (3.2), let T, and 7T, be the tangent spaces at  and y as in (3.1), respectively. By Proposition
A.2.2 and the construction, the induced map ((%).: 7, — 7, fits into a commutative diagram

L L7
Hom,, (WAV,TOO s WAV re. /WAV,TOO) — 7. — Hom, (wAv e/ (ker v, )=, Lieav ﬁ&)

i (C0)- l

Hom, (Hy/H,, Hy'/Hy) T, Hom,(Hy /Y, Hy'/ Hs)

in Mod(x). The right vertical arrow is induced by maps

'Y*,T,go . ’Y*,Tgo
wAv,Tgo/(ker 7*7Tm)l — Hg/af/sj, LleAvﬂ_go ~ H?R<A)T§O/WAV7T&> — Hi/HQ

which are both isomorphisms by (5.7) and (5.8), respectively. The left vertical arrow is the
composition

Hom (WAv 7wy Whv e /@Y r., ) = Hom, (Hi/V"' Hy, Hy /Hi-) = Hom, (Hy/Hy, Hy /H,)
in which the first arrow is induced by maps

HE NV Hy 20 o HEHE S Gk o
which are both isomorphisms as ¥, r, (Hi") = wav re; Yere (V' Hy) = 0, and Yu - (Hy ) = Wi o -
Thus, ((%).: T — T, is an isomorphism by the Five Lemma; hence (3.2) and (3) follow.
Finally, (4) is a consequence of (5.8). O

Remark 5.3.5. We have the following remarks concerning Theorem 5.3.4.

(1) When K is sufficiently small, the restriction of ¢? to B2, is a closed immersion for every
point s* € S3(V°,K")(x) and every perfect field & containing T

(2) In fact, one can show that the union of M} (V°, K?°) and the image of ¢°: By (Ve KP?) —
M3 (V°, K??) is exactly the basic locus of M3(V°, K??). In particular, as long as N > 5, the
basic locus of Mp(V®, KP°) is not equidimensional.

Construction 5.3.6. To construct a uniformization map for S3(V°, =), we need to choose an
Op,-lattice A} in V° ®F I, satisfying

O Ay C AL C p‘lA;, and

O pA; C (A})Y such that (A7)Y/pA;y has length 0 (vesp. 1) if N is even (resp. odd).
Let K be the stabilizer of Ap; and put K5 = K§ X [Ig}, 4, Ki- Similar to Construction 4.3.2, we
may construct a uniformization map

(5.9) v S3(V°, =)(F,) = Sh(V°,—K?2) x T,(F,)

in Fun(R(V°)? x T, Set) 1 ,) which is an isomorphism, under which the induced action of
Gal(F,/F;) on the target is trivial on Sh(V°, =K3).
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Moreover, similar to Construction 4.3.5 and Proposition 4.3.6, for every g € K;\U(V°)(F,")/K3,
we may construct the Hecke correspondence

Hkg: S;(Voa _)g - S;(voa _) X S;(voa _)

as a morphism in Fun(&(V°)? x ¥, Sch g )7, that is finite étale and compatible with the uni-
formization map.

5.4. Basic correspondence on link stratum. In this subsection, we construct and study the
basic correspondence on the link stratum M; (Ve,=). We also discuss its relation with the two
previously constructed basic correspondences. We assume N > 2.

Definition 5.4.1. We define a functor
SHVe,=): R(V°)P x T — PSchips
KP — ST(V°, K™)
such that for every S € Sch'/Fg), SH(Ve, KP°)(S) is the set of equivalence classes of decuples
(A07 )\07 ngu Ao) >\O7 77po§ A.7 )\.7 Wp.§ ¢> where

O (Ao, Ao, 153 A%, A%, mP°) is an element in S5 (V°, KP°)(S);
O (Ao, Ao, 163 A®, A®,nP*) is an element in S3(V°, K°)(S);
O 1: A° — A® is an Op-linear quasi-p-isogeny (Definition 3.4.5) such that
(a) ker[p™] is contained in A°[p];
(b) we have @ - A\° =¥ o A* 0 ¢); and
(c) the KP°-orbit of maps v — 1, o nP°(v) for v € V° ®g AP coincides with nP°.

The equivalence relation and the action of morphisms in £(V°)? x ¥ are defined similarly as in
Definition 4.2.3.

We have apparently the forgetful morphism
SI(Ve,=) = T,

in Fun(R(V°)P x ¥, PSch’/Fg) which is represented by finite and étale schemes.
By definition, we have the two forgetful morphisms

sfo. s;(VO, =) = Sp(Ve,=), s':Si(Ve, =) — Sy (Ve =)
in FUﬂ(.ﬁ(Vo)p X ‘Z, SCh/IE‘g’)/Tp-

Definition 5.4.2. We define Bf(V°, =) to be the limit of the following diagram

§p(V?, =) <= By(V?, =)~ Mg(V?, =)

TSTO Tm“.o

Sg(vo’ _) Mg(vou _)

- -

Sp(V7, =) <= By(V°, =)~ M3(V°, =)

in the category Fun(&(V°)P x T, Sch e ), -
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From the definition above, we have the following commutative diagram
(5.10) Sp(Ve, =) ) < By (Ve, =) s Mg (Ve, =

\ST\\
\\\

So Vo _ Bo o _ L Mo o _)

in Fun(R(V°)? x T, Sch /Fg’) /1, together with the four new morphisms from B,T,(VO, —) as indicated.
It will be clear in Subsection 5.10 why we draw the diagram oblique.

Theorem 5.4.3. In the diagram (5.10), we have
(1) The square

o R
Bi(V°, =) —= M}(V°, =)

-

B;(VC” _) — M;(VO7 _)
is a Cartesian diagram.

(2) Take a point st = (Ag, Mo, nl; A%, X, P%; A® X®, P*: 1p) € SH(V°, KP°)(k) where k is a perfect
field containing Fy. Put BL = i (s") and Vi = (imep, e )/HIR(A®/K)L which has
dimension L%J Then the assignment sending

((AOv )‘07 nga Av )‘a 77p; on >‘Ov 77po§ /B)a (A07 )\07 776)7 A7 )\7 77p§ A.7 )‘.7 77p.5 7)) S BL (S)
(with v =10 ) to (Virewavysr )/HIV(A*/S)x induces an isomorphism
¢l Bl S P(%4).
Proof. For (1), unravelling all the definitions, it suffices to show that for every object
((A(b AO? 7787 A7 /\7 T]pa AO7 /\07 77po§ B)7 (A07 )\07 ngu A7 )\7 npv A.7 )\.7 T]p.; /7))
of M;(VO,KPO)(S) Xg(ve krey(s) Bp (V7 KP?)(S), the quasi-isogeny 1 = 7o 7l A° — A% is a
quasi-p-isogeny. However, we know that f, ;e : H{®(A),c — H{¥(A°),c is an isomorphism; and
ker 8, ;.. = wav .. Thus, it suffices to show that wyv . is contained in ker«y, which is clear since

WAsY 1o, = 0.
For (2), we first show that for a point

z* = (Ao, Ao, 63 A, A, 73 A% A%, P05 y) € By (V2 KP?)(9),

1*(x*) belongs to M} (V°,Kr°)(S) if and only if H; = Hj', where we recall from Theorem 5.3.4
that Hy == ((§sro) 'wav.r. ). In fact, by Definition 5.1.3, 1*(z*) € M} (V°, K?°)(S) if and only if
wav r,, = Hig (A)% . In the proof of Theorem 5.3. 4, we see im 7y, -« = H;' (5.8). As Ao¥ =~V o\,
we have (im 7, e ) = (Fu7oe) ' Hig (A)ze - Thus, if wav -, = Hig (A)% , then Hy = ((im 7y, e )7)*
which equals im~y, .o = Hy', as im~, re contains HdR(A°) . On the other hand, if H; = H;', then
(Ve ) twav o (1m Yire ) (7*7%0) IH}iR(A)TC , which implies easily that wav , = HdR(A)TLéo.

yToo

Second, we show H; = im, ;¢ if 2° € BT +(S). Since v = 1) o 3, we have im 7*7750 C im Yy e .
Asim7y, ;o = H; 1= H,, we have H; C im w* re_. On the other hand, it follows easily from Lemma
3.4.13(2,3) that im ¢, ;¢ has rank [4]. Thus, we must have H; = im ¢, < .
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The above two claims together with Theorem 5.3.4(3) imply (2). O

Remark 5.4.4. Tt follows from the proof of Theorem 5.4.3 that for every st € SI(V°, KP°)(k), if we
put s° == si°(s") and s® := s™(s"), then
(1) the morphism (2% o bi° o (CSTT)_1 identifies P(%;+) as a closed subscheme of P(¥;.) induced
by the obvious k-linear (surjective) map %5 — ¥4i; and
(2) the morphism (% o b* o (CL)*1 identifies P(7;+) as a closed subscheme (of codimension
one) of DL*(¥.,{, }s) defined by the condition H, = H;'.

Construction 5.4.5. Put K; = K, N K. Similar to Construction 4.3.2, we construct a uni-
formization map
(5.11) vl SI(Ve, =)(F,) = Sh(V°,=KI) x T,(F,)

in Fun(&(V°)? x T,Set) 5 7, which is an isomorphism, under which the induced action of
Gal(F,/Fy) on the target is trivial on Sh(V°,=KJ).

5.5. Cohomology of link stratum. In this subsection, we study the cohomology of the link
stratum. We assume N > 2.

We first construct certain Hecke correspondences for By(V®, =) extending Construction 5.2.6.
Unlike the functor Sp(V°, =), the natural action of K = U(A;)(OF;) on the functor By(V°, =)

is nontrivial. However, as we will see, such action factors through the quotient U(A;)(OF;) —
U(Ap)(F,). Let Ki; be the kernel of the reduction map Kj = U(A;)(OF;) — U(A)(Fp).
Construction 5.5.1. We first define a functor
Sp1 (V2 =) (V)P x T — PSch’/Fg,
KP? = S, (Ve KP?)
such that for every S € Sch’/Fg, Sp1(Ve, KP?)(S) is the set of equivalence classes of septuples
(Ao, Ao, nos A%, A°, P55 ) where
O (Ao, Ao, mb; A%, A°,P°) is an element in Sp(V°, KP°)(S);
O My 18, for a chosen geometric point s on every connected component of .S, an isomorphism
77;: A; ® IF;D — HOmOF (AOS[p]7 Az [p])
of hermitian spaces over Op, ® F,, where Homo, (Aos[p], Ag[p]) is equipped with the her-

mitian form constructed similarly as in Construction 3.4.4 with respect to (A, A°).

The equivalence relation and the action of morphisms in K(V°)? x T are defined similarly as in
Definition 4.1.2. In fact, we have a further action of U(A})(FF,) on Sp,(V°,=). Moreover, similar
to Construction 4.3.5 and Proposition 4.3.6, for every g € Kg,\U(V®)(F,")/K};, we may construct
the Hecke correspondence

(5.12) Hkg: 55, (V2 =)g = 551 (V7 =) xS, (V7. =)
as a morphism in Fun(R(V°)? x T, Schpe )1, that is finite étale.
On the other hand, Theorem 5.2.4 implies that we have a canonical isomorphism

o fe} o o U(Ag)(FP) o
Bp(v 7_) = Spl(v 7_) X ]P)(Ap ®Fp>

in the category Fun(&(V°)? x T, Sch pe)/r,. Thus, for every g € K5 \U(V°)(£,")/K},;, we obtain
from (5.12) the Hecke correspondence

Hk,: By (V®, =)y — B,(V°,=) x B,(V®, =)
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as a morphism in Fun(&(V°)? x T, Sch pe) 7, that is finite étale.
Now we study cohomology.

Lemma 5.5.2. Consider a p-coprime coefficient ring L.
(1) If p+ 1 is invertible in L, then the restriction map

(mTO)* : H%(M;(Vo> _)’ L) — H‘IZ(M;<VO7 _)’ L)
is an isomorphism for every integer i ¢ {N —2,2N —2}. In particular, HL(M;(V°, =), L)
and Hy (M} (V°, =), L) vanish if i is odd and different from N — 2.
(2) For every i € Z, both HL(M;(V°,=), L) and HL (M} (Ve, =), L) are free L-modules.
(3) When N s even, the action of Gal(F,/F®) on HY 2(M}(V°, =), L(¥52)) is trivial.

2

Proof. By Theorem 5.2.4, for every K € &(V°)? and every s° € Sg(V°, K#)(F,), the restriction
of (m™)* to the fibers over s° is a morphism appeared in Lemma A.1.4.

Part (1) then follows from Lemma A.1.4(2). Part (2) follows from Lemma A.1.4(3). Part (3)
follows from Lemma A.1.4(4) and Construction 5.2.6. O

Definition 5.5.3. Let £ € H3(B;(V°, =), L(1)) be the first Chern class of the tautological quotient
line bundle on By(V°, =) (that is, in the situation of Theorem 5.2.4, the restriction of £ to Bg is

isomorphic to (& Op(y,.)(1) for every KP* € &(V°)P and every s° € S;(V°, KP?)(FF,)). We define
the primitive cohomology HP™ (NI} (V°, =), L(i)) to be the kernel of the map

U(mTO*Lfg)i Hg—Z(M;g(vo’ _>’ L(Z)) — HQ(M;(VO7 _>’ L(i + 1>>

Proposition 5.5.4. Take an object KP° € K(V°)P and a rational prime ¢ # p. Let m°°P be an
irreducible admissible representation of U(V®)(ARP) with coefficients in Qq such that (7°P)K" is
a constituent of Hprim(Mg (V°,KP°), Q). Then one can complete m°P to an automorphic represen-
tation T = TP ® Moo @ [, Tq of U(V®)(Ap+) such that o is trivial; w4 is unramified for q # p;
and

(1) when N is even, m, is a constituent of an unramified principal series;

(2) when N is odd, BC(m,) is a constituent of an unramified principal series of GLy(F,) whose

Satake parameter contains {—p, —p~'}.

Proof. Put K& = K2 X [Ty qzp K¢ By Construction 5.5.1, the cohomology HY ~*(M{(Ve, K#°), Q)
is an Q[K"™KS,\U(V°) (A%, )/KPKS ]-module for which HP™ (M} (V°, K#°), Qy) is a submodule.

In the uniformization map (5.4), we let so € S;(V°, K?°)(IF,,) be the point corresponding to the
unit element on the right-hand side. Put

HPrm (M (VE, KP?), Q) = HP™ (MI(V°, KP°), Q) (VHY 2 (M(V°, KP°) N 7°(s0), Qe).

Then HE'™ (M} (V°, KP°), Q) is a representation of U(A})(F,) = Kj /Ky, which is iisomorphic io)
the representation 2y studied in Subsection C.2. Then we may identify Hprim(Mg(Vo, KP?), Q)

with

(5.13) Mape (U(V")(F*)\U(V")( w) /KT K3=QN>
qlp,a#p

as Qu[KP°K5 \U(V°) (A, )/KP°K?, ]-modules. It is well-known (see, for example, [HM78]) that the
representation )y is irreducible and determined by N up to isomorphism. Therefore, (5.13) is a
submodule of Map(U(V®)(FF)\U(V®)(A%F,)/KP°K?,, Q). In particular, we can complete 7°P to
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an automorphic representation m = 77 ® 7o, ® [Iy), Tq of U(V®)(Ap+) such that 7 is trivial; 7,
is unramified for q # p; and 7, |kg contains Q.

In case (1), by Proposition C.2.1(2), we know that Q2 has nonzero Borel fixed vectors. Thus,
Ty is a constituent of an unramified principal series.

In case (2), we first consider the case where N = 3. As my|k; contains 3, it has to be

c-Indg? Qs by Proposition C.2.1(3) and [MP96, Theorem 6.11(2)]. Thus, by [MP96, Proposi-
tion 6.6], m, kg 1s irreducible supercuspidal, which is actually the unique supercuspldal unipo-
tent representation of U(V°)(F,F). In fact, C-Indggﬂg is the representation 7°(1) appeared in
[Rogd0, Proposition 13.1.3(d)], after identifying @, with C. By [Rog90, Proposition 13.2.2(c)],
BC(7*(1)) is the tempered constituent of the unramified principal series of GL3(F}) with the Sa-
take parameter {—p, 1, —p~'}. Now for general N = 2r + 1, as Tylkg contains Qy, by Proposition
C.2.1(4) and [MP96, Theorem 6.11(2)], 7, is a constituent the normalized parabolic induction of
(1)K x; K- - - Ky, for some unramified characters x1, ..., x,_1 of F*. Therefore, by the com-
patibility of local base change and induction, BC(m,) is a constituent of an unramified principal
series of GLy(F},) whose Satake parameter contains {—p, —p~'}.

The proposition is proved. 0

5.6. Intersection on ground stratum. In this subsection, we describe certain scheme-
theoretical intersection on the ground stratum, which will be used in the next subsection. We
assume N > 2.
Take an object KP* € K(V°)P. Given two (possibly same) points s}, s5 € S3(V®, K")(k) for a
perfect field & containing Fy, we put
B°. s = B‘;I ><1\/[':(\/'0’1(;00”i B;.

51,89

SS7

some particular cases of the Hecke correspondences introduced in Constructlon 5.3.6. We now
give more details.

as the (possibly empty) fiber product of ¢} | Bj, and ¢} | Bj,. To describe B, .., we need to use

Definition 5.6.1. For every integer 0 < 7 < N, we define a functor
S;(VO, —)ji ﬁ(Vo) X T — PSCh/Fp
KP? = S5 (Ve KP);
such that for every S &€ Sch’ /Fp, Sp(Ve, KP?);(S) is the set of equivalence classes of decuples
(A07 )\07 7]07 AI? >\I7 771 ) A57 )\57 7]2 ) ¢.> where
O (Ao, Mo, mb; A3, A3, m}*) for i = 1,2 are two elements in S3(V°, K?°)(S); and
O ¢*: A} — A3 is an Op-linear quasi-isogeny such that
(a) qu' o /\’ lis a quasi-p-isogeny; and ker(p¢®)[p] has rank p>V=7);
(b) ¢*[q*] is an isomorphism for every prime g of F'* above p that is not p;
(c) we have ¢*¥ o A\ 0 ¢* = \}; and
(d) the KF°-orbit of maps v — ¢2 oni*(v) for v € V° ®g AP coincides with 75°.
The equivalence relation and the action of morphisms in K(V°)? x T are defined similarly as in
Definition 4.2.3. Finally, we denote

Hig: 3V, =), = S3(V°, =) x S3(V°, =)
the morphism in Fun(&(V°®)? x T, Sch e )1, induced by the assignment
(A07 )\07 T][z))u AI? )\Iv 771 ) A;a )\57 T]2.7 ¢.> = ((AOJ )‘07 7787 AI: )\I; Tﬁ.)7 (AOJ )‘07 775’ A§7 )\57 ng.))
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Remark 5.6.2. When KP° is sufficiently small, the morphism
Hk;: Sp (Ve KP?); — Sp(V°, KP?) x Sp(Ve, KP?)
is a closed immersion for every j; and the images of Hk; for all j are mutually disjoint.

Now we take a point s* = (Ao, Ao, 70; AT, AT, 17°5 A3, A3, m5°; ¢°) € Sy(V°, KP°) (k) where & is a
perfect field containing Fg. By Definition 5.6.1(c), we have (p¢® o A\}™1)Y = p¢*~' o AS~. Thus,

pd*~! o AS™! hence pg*~! are quasi-p-isogenies as well. In particular, for every 7 € ¥, we may
consider

ker(pg®). . = ker ((pg*).: H{®(A1/k), — H{R(A3/k), ),
m(pe* s = im ((pg*)r: HI¥(A3/K), — HIF(AS/R), ).
Lemma 5.6.3. We have

(1) im(pg*1)... C ker(pg®)., for every T € Buo;
(2) dim, ker(pg®), = N — j for 7 € {700, 75 };
(3) im(pd*1).r NHI(AT /) = 0 for 7 € {700, 75}
(4) (im(pg*~")ur) ™ = ker(pg®). s for T € {7100, 75}; and
(5) dim, im(pe* )., =j for 7 € {700, 75}

In particular, Sy(V°,KP?); is empty if j > LEJ

Proof. For (1), it is obvious since (p¢*) o (pg*~1) = p*.

For (2), by Definition 5.6.1(a), we have dim,, ker(p¢*®). .. +dim, ker(p¢*®), . = 2(IN —j). Using
the isomorphisms V: H{®(A}/k), — H{®(A}/k),. and V: HI®(AS/k),. — H{®(AS/K).c, we
have dim, ker(p¢®). .. = dim, ker(p¢®). . hence both equal to N — j.

For (3), it suffices to consider 7 = 7 due to the isomorphism V. Via ¢°*, we regard D(A3) as
a lattice in D(A})q. By Definition 5.6.1(a), we have pD(A3),. C D(A}).., C D(A3)Y. (Notation
3.4.12). Suppose H{"(A}/k)x C im(pp* ').r.. Then one can find z, € D(A3),, and z; €
D(AI)XOO \ D(A}),., such that pry = pry. It follows that (z, Vao)asr, = (v1,VE1)as ., does
not belong to W(k), which is a contradiction. Here, we regard V as Verschiebung maps on for

Dieudonné modules of A} and A$, which are isomorphisms.
For (4), as A} 0 ¢*~! = ¢*V o A3, we have for 7 € {7, 75} that

(im(pg* ™)) = ((p9°)ure) 'HIT (AT )7,
which equals ker(p¢®). - by (3).
For (5), by (2,3,4), we have dim,, im(pg*™!),, = j for 7 € {7, 7%}.
The last claim follows from (1,2,5). O

Too

TS,

By Lemma 5.6.3(1,4), for 7 € {7, 7}, we may put

ker<p¢.)*,7' .

dR/ e —
Hj (¢ )r = my

and we have the induced k-bilinear pairing
() Mt HER(9%) 7 X HYR(6°) g, — .

On the other hand, the (k, ")-linear Verschiebung map V: H{®(A$/k), — H{®(A}/k).e induces
a (k,0")-linear isomorphism V: H{®(¢*), — H{®(¢®).c . We define a pairing

{ Fort HY(0%)rg, X H¥(¢%)rg, — 6

oo
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by the formula {z, y}e = (V"'z,y)xs -... To ease notation, we put
_ ppd
Voo 1= HlR((b.)Tgo'

Lemma 5.6.4. Suppose j < |5] — 1. The pair (Vee,{ , }s) is admissible of rank N — 2j
(Definition A.1.1) satisfying dim, ¥d = N — QL%J In particular, we have the geometrically
irreducible smooth projective scheme DL* (¥, { , }s) € Schy,. of dimension |5 | — j as introduced

in Definition A.2.1.

Proof. By Lemma 5.6.3(2,5), we have dim, % = N—2j. By Lemma 5.6.3(3,4), we have dim,, ¥,J' =
N —2|Z]. The lemma follows by Proposition A.2.2. O

Now consider a connected scheme S € Sch'/,,i and a point z € B;I’S5 (S) represented by a quat-
tuordecuple (Ao, Ao, 155 A, X, 773 AT, AL 0075 715 A3, A 0575 72).-

Lemma 5.6.5. There exists a unique integer j satisfying 0 < 7 < [%J — 1 such that s* =
(Ao, Mo 165 AT, XY, V%5 A3, A8, 711575 6°) s am element in S3(V°, KP°);(S), where ¢* = yp07; . More-
over, we have

(514) im(p¢.7l)*,7'go g HQ g Hl g ker(p¢.)*,T§oa
where Hy C Hy C HI®(A$/S),e are subbundles in Theorem 5.3.4 for the image of  in B (S).

Proof. First, by definition, we have ker(pg®)[p] = ker(v2 o 41)[p], which is an Op-stable finite flat
subgroup of A$[p]. Thus, as S is connected, there is a unique integer j satisfying 0 < j < N such
that ker(p¢®)[p] has rank p?(V=9).

Second, we show that p¢® o A3™! is a quasi-p-isogeny, that is, 5 0 ¥, 0 A}™! is a quasi-p-isogeny.
By Theorem 5.3.4(3), Y14,7e Wav/s,rc. contains HF(A$); | which implies J1.. H{®(A}); = 0. In
other words, ker A}[p>] is contained in ker ¥, [p>]. Thus, §; o A\}"! is already a quasi-p-isogeny; so
is pp® o ATL.

Third, we show that j is at most |5 | — 1. (Note that Lemma 5.6.3 already implies that
j < [4§].) Theorem 5.3.4 implies rankoy Hy + 1 = ranko, Hy and H{®(A}/S): C H,. Lemma
5.6.3(3) implies rankpy Hy > rankog im(pg®* '), ;o + 1. Thus, by Lemma 5.6.3(2,5) and (5.14), we
have (N — j) — j > 2, that is, j < [§] — 1.

Definition 5.6.1(b,c,d) are obvious. Thus, it remains to check (5.14). On one hand, we have

im(p¢._1)*,T§O = lm(’h o '72)*77'30 - 71*,7&’?2*,7@0H?R(A5/5)T§o

= 71*773072*,7'800‘)145\//5',7;0 - ’71*,7-3050,4;\//577—80 = HQ.

On the other hand, since ¥, im(pe® )i, = Yiur, im(7 © ¥2)er. = 0, we have the in-
clusion im(pg® 1)ur. € (Fers) ‘wavo,. Thus, Hi = ((Y1ur) 'wavr,. )t is contained in
(im(pp* ) - )=, which is ker(pg®). -« by Lemma 5.6.3(4). The lemma is proved. O

Definition 5.6.6. By Lemma 5.6.5, we have a morphism

13-
B;I,s§ — H Hk;1(817 85)
5=0
For a point s* € Hk; ' (s}, s3)(k) for some 0 < j < [§] — 1, we denote by B the inverse image
under the above morphism, which is an open and closed subscheme of B;LSE'
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Theorem 5.6.7. Let s}, 55 € S3(V°,KP°)(r) be two points for a perfect field r containing Fy. We
have

EIst
B;;VSE - H H B;.
J=0 s'GHk]._l(sI,sg)(n)
Take s* = (Ao, Mo, 1h; AT, X3, 10°5 A3, 03, 75%5 ¢°) € Hk ' (1, 83) (k) for some 0 < j < |§] -1,

(1) Denote by H; the image of H; in H{®(¢*),e ®, Os = (V)s for i = 1,2, Then The
assignment sending (Ao, o, 155 A, N, 1175 A3, N8 735 A3, A3, 75" 72) € B2H(S) to (Hy, Hy)
induces an isomorphism

Cs.': B;' — DL.<7/$'7{ ) }S')

(Definition A.2.1) in Schy,.
(2) The cokernel of the map

7;3;0/"' B:- @E'./Hh?)'. - L.*TMG(VozKpO)/” B®.
1 : 52 S s

is canonically isomorphic to
G ((0*7:[3'2> BO0teha.1 10 (ﬂ:‘l/ﬁﬂ))
where (7:[5.1,7:15.2) is the universal object over DL® (Y5, { , }se).

Proof. The decomposition of Bf. . follows directly from the definition and the fact that
ij_l(s{, s3) is isomorphic to a finite disjoint union of Spec &.

Now we show (1). We first notice that Lemma 5.6.3 implies that (Hi, H2) is an element in
DL* (7o, {, }se)(9).

Since the target of (3 is smooth over x by Lemma 5.6.4, to see that (3 is an isomorphism, it
suffices to check that for every algebraically closed field s’ containing x

(1.1) ¢2% induces a bijection on x’-points; and

(1.2) (% induces an isomorphism on the tangent spaces at every x/'-point.
To ease notation, we may assume k' = k.

For (1.1), we construct an inverse to the map (% (k). Take a point y € DL* (%, { , }so)(k)
represented by r-linear subspaces ¥,. C Hy C H; C ¥, or equivalently, subspaces

im(p¢* s, ® HY"(A}/K)7, © Hy C Hy C ker(pg®)sre, © HY™ (A}/K)re,.

These give rise to a point y; € DL*(%s,{ , }s)(x). By Theorem 5.3.4(3), we obtain a unique point
z1 = (Ao, Ao, 165 A, A, P AL AL 073 11) € Bl (k) such that (% (1) = y1. Put vz == ¢®oy1: A — A3
We claim that +, is a quasi-p-isogeny. In fact, as A o§; = 9/ 0 A, (imy1sre, IM Y1ure )2 =0.
Thus, we have

.
15Too

im Vix,78, - (1m '71*,TOO)L = (V_I/YI*,TSOWAV,TSO)L = H; - ker(p¢.>*,T§O'

By the isomorphisms V: H{®(A}/k), — H¥(A}/k)e and V: HI¥(AS/k),. — H{F(AS/K)c , we
obtain im vy, ,, C ker(p¢®). ... In particular, im(p¢® o v1)., = 0 for every 7 € X; in other
words, 7, is a quasi-p-isogeny. Now we show that xo = (Ag, Ao, 7h; A, X\, nP; A3, NS, 15°; 7o) satisfies
Definition 5.3.2(a—d).

For (a), it suffices to show that py, ! is a quasi-p-isogeny, equivalently, v, * o (p¢*~!) is a quasi-
p-isogeny. However, we have im(p¢*'). .. = V'im(pp* '), ;e C V'Hy = imyy, ., hence
im(pgp*~').re. € imy. e using the action of V, which together imply that yto (pe*) is a
quasi-p-isogeny.
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For (b), we identify D(A) as submodules of both D(A?) and D(AS$) via y; and s, respectively.
Then we need to show that pD(A3)Y. ND(A)... CVD(A),.. Aspe*'o As~! s a quasi-p-isogeny,
we have pD(A3)Y C D(A})r . Moreover, the image of pD(A3)Y  in D(A}).c /pD(A})e. =
H{®(A}),c is contained in im(pg* '), ;o ® H?R(AI /k)%_, which is further contained in Hy. Thus,
pD(A3). ND(A)c, CVD(A),, as VD(A),, is the inverse image of Hy in D(A}),c .

For (c ) and (d), they follow obviously.

To summarize, z belongs to B, (k); and & == (z1, ) is an element in B. (x) such that ¢} (z) =

Too

y. It is easy to see that such assignment gives rise to an inverse of (%(x); hence (1.1) follows
immediately.

For (1.2), let T, and 7, be the tangent spaces at x and y as in (1.1), respectively. By Theorem
5.3.4(1), we have a canonical short exact sequence

L
(JJ,4\/7 WA\/J—SO

(ker V#7700 )J_ + (ker V2x, o0

0 — Hom, (wAv,TOO,

Tg°> —)7;—>Hom,€<

wAv 7TOO

)L,LieAngo) — 0.

Then by Proposition A.2.2 and the construction, the induced map (¢%).: T, — 7, fits into a
commutative diagram

H wAV H WAV re. Li
Oomy, | Wayv Too ) ol , Lle Vore
A wAv Too ‘/ (ker 71*7700 )J_ + (ker 72*,7'00 )J— 4 =

Hom, (Hy/H,, Hy'/H,) 7T, Hom,.(H, /¥4, Hy | Hy)
in Mod(k). The left vertical arrow is the composition
Hom, (wAv 7, Whv e /wav r., ) — Hom, (Hi /v~ Hy, Hy [ H')
= Hom,, (Hy/H,, Hy /Hy) ~ Hom, (H,/H,, Hy /Hy),
which is an isomorphism. The right vertical arrow is induced by maps

CUA\/ﬂ-go '71*,7—80 H2
(ker Yiuro ) + (ker ya.r )t " im(pg* )., @ HIR(AS/K)E

LieAvﬂ_go ~ H?R(A)T&/WAV’TC = HA/HQ 14/]:.]2

>~ Hz/y/sj,

V1% s

As ker yo. -, = im Yo, ,., We have

UJAV,T;O ’Yl*,ToowAV,Tgo H2

~ —

(ker 71*,TOO>J_ + (ker 72*,Too)l B im('ﬁ © ’72)*,7'50 + HC11R<AI/’€>7J{,O B im<p¢.71)*,7'§o D H?R(AI/K)i;o ’

which implies that the first map is an isomorphism. By Theorem 5.3.4(4), the second map is an
isomorphism as well. Thus, ((%).: 7. — 7, is an isomorphism by the Five Lemma; hence (1.2)
and (1) follow.

Then we show (2). Theorem 5.3.4(2) implies that the cokernel of the map

Toe. s |Be €D Tie, sulne, = ¢ Tuag(ve oe) sl e,
1 2
is canonically isomorphic to

(5.15) Hom ((ker Vi + ket Yo - ) /HV (AL, LieAv,fgo) -
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As ker vo, -, = im s, ., We have

H{R(A), o imyang _ MY 0 Vimyngr,
ker viur, +kervour,  Am(yi 092)sr.  im(pg* )i, Vim(pd* ).,

(5.16)

However, we have Vim Y1, .. = (Vixre ware )® and Vim(pg* 1), .. = (im(pp* 1), )®. Thus,
(5.16) is isomorphic to 0*Hges, hence

(5.15) = Hom (0" Huea), Lieav rs, ) = (0" Huoz) @0paiy o o) (Hab/Hara)
where we use Theorem 5.3.4(4) for the last isomorphism. We have proved (2) and the theorem. [J
We also need a description for
Bio = B;. XM;(VO,KPO) Mlt (Vo, Kpo)
for s* € Hk;l(si, s3)(k). It is clear that if we put
Bl. = Bl X (ve ko) MJ(V®, KP)
for 1 = 1,2, then

| i
M (ve kee) Bsg-

By definition, for every S € Schy,, BL.(S ) is the set of equivalence classes of unvigintuples

(A07 )‘07 778: A? )‘7 77p7 AOJ )‘07 77po§ AL AL 7]?.7 A;a )\57 775.7 67 Y15 V25 ¢17 1/}27 gb.)

rendering the diagram

commute. Here, the letters remain the same meaning as in our previous moduli problems. Put

SZ. = {8.} XS;(VOJ{PO)XS;(VO’KPO) (S;(VO, Kpo) X S;(VO, Kpo>) XSS(VOJ{PO)XS'?(Vo’KpO) S;(VO, Kpo)
where Sp(V°, KP?) — Sp(V°, KP?) xSp(V?, KP?) is the diagonal morphism. Then we have a canonical
map

7T;L.I BZ. — Si.
of k-schemes by forgetting (A, A, n*) and related morphisms.
Theorem 5.6.8. Let s7,s5 € Sy(V®,KP°)(k) be two points for a perfect field r containing Fg.
Take s* € ij_l(s;7 s3)(k) for some 0 < j < [X| — 1. Then the scheme Sl. is a disjoint of
N, .

(p+1)(P*+1)--- (L2771 £ 1) copies of Spec k.

Take a point t1 = (Ao, Ao, nf; A%, X°, 7% AL A, m1™s A3, A3, 155 4, s, 6°) € Sk (k).

(1) The assignment sending
(AOa )‘Oa nga A, >\7 77p; Aoa >\Ov 77p0§ AI? I? 77{).5 A;» 57 775.; 57 1, Y2, ¢1, ¢2, ¢.) € Bi" (S)
to Hy/(im(pg* 1) ,e. + H{R®(A®/S)L ) induces an isomorphism

Gr: (wl) M) = P(%4)
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where we put
iln(l/}l)*,rgo
m(pg* ). e, + HIT(A/S)E

Vit = -
i

which has dimension |5 ] — j.
(2) The cokernel of the map

7;31;/& ‘(ﬂ.)-l(ﬂ) @gig/n‘w;.)—lm) -t M£<vo,Kp°>/n‘(w§.>—l<ﬂ>
is canonically isomorphic to

G ((7He) @os,) Oser (D)
where Hyi is the universal object, namely, the tautological bundle on P(¥).

Proof. In fact, the assignment sending (Ao, Ao, nf; A%, A%, 0P AT, AL mi™5 A3, A3, m5"5 1, 2, 9°) €
S (S) to im (1)1 )+, -oc induces a bijection from S!.(S) to the subbundles H C H{®(A*/S),c of rank
[5] satisfying im(pg* '), re ®x Os C H C ker(pg®).re. ®, Og and (V'H, H),. = 0. Thus, we

know that Sl. is a disjoint of (p + 1)(p® +1)- - - (p2L%J_2j—1 + 1) copies of Spec k.

For (1), we denote by s the image of ¢ in S(V°, K?°)(k) in the first factor. Then a point
(Ao, Ao, b A, A mPs A° N P A A, nh®; B,m1) € BIT(S) belongs to Bl.(9) if and only if H, con-
tains im(p¢* '), ;e ®, Og. Thus, (1) follows from Theorem 5.4.3(2).

For (2), it follows from Theorem 5.6.7(2) and the isomorphism

(F1/Hr2) leor) = (Haoa/Hava) lecr,) = Oy (1).
0

5.7. Incidence maps on ground stratum. In this subsection, we define and study the incidence
maps on ground stratum. We assume N > 2. In order to have a uniformization map for S3(V°, =),
we also choose data as in Construction 5.3.6.

Definition 5.7.1. We denote
O T%, the Hecke algebra Z[K;\U(V°)(F,\)/KS];
O T}, the Hecke algebra Z[K;\U(V°)(F,")/K];
O Ty, € Z[K;\U(VO)(FP+)/K°] the characteristic function of KJKp; and

pip)
O Ty, € Z[K;\U(V®)(F,")/K;] the characteristic function of K{K3.

Moreover, we define the intertwining Hecke operator to be
Ing = TNp o Thp € Ty
where the composition is taken as composition of cosets.

Remark 5.7.2. We remind the readers that according to our convention, the unit elements of
ZIKA\U(V°)(F,F)/Kp] and Z[KS\U(V®)(F,F)/K}] are ke and ks, respectively. However, when N
is odd, K} and K} have different volumes under a common Haar measure on U(V®)(F,"); in other
words, the convolution products on the two Hecke algebras are not induced by the same Haar
measure on U(V®)(F,F).

Let L be a p-coprime coefficient ring. By Construction 5.2.6 and Construction 5.3.6, we have
canonical isomorphisms

L[Sh(V®,=K3)] ~ He(S;(V°, =), L),

L[Sh(V*,=K})] ~ He(S;(V°, =), L),
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in Fun(R(V°)?, Mod(L[K;\U(V®)(F,5)/K])) and in Fun(&(V°)?, Mod(L[K;\U(V°)(F,F)/K3])), in-
duced by v° (5.4) and v*® (5.9), respectively.

Construction 5.7.3. Recall from Definition 5.5.3 the class & € H3(B;(V°, =), L(1)), which is the

first Chern class of the tautological quotient line bundle on By(V°, =). Put r := [§| > 1. We

construct three pairs of maps in Fun(&(V;)2,,Mod(L)) as follows:

incy: L[Sh(V°,=K2)] = HY(S2(V°, =), L) ~ HY(Bg(V°, =), L)
N HEY Y (Be(Ve, =), L(N —r — 1))
& BV DRIV, =), LN = — 1)),

incs: HZ (Mg (Ve, =), L(r)) <= HZ (BS(V°, =), L(r))
UgN—o"—l
e

HEY V(B (V°, =), L(N — 1))
o HYS;(V°, =), L) 5 LISh(V°, =K}

incf : L[Sh(V®,=K2)] & HY(S2(V°, =), L) = HY(B:(V°, =), L)
S YR (B(V, =), L(N — 7 — 2)
5 BT QL (V, =), LN — - 2)
w2 N (VO =), LN — 7 — 2))
m/*® 1) —
2 HV T (M (Ve =), LN — 1 — 1)),

inc?: HY (M2(V°, =), L(r)) =5 HZ (M (V°, =), L(r))

mf° )
2 HTY(ME (Ve =), L + 1))
ﬁ) H%(TJrl) (E;(VO7 _)’ L(’l” + 1)
U§N7T72

——— H" VBV, =), L(N = 1))
T H(SS(V°, =), L) = L[Sh(V®, =K2)];

incf: L[Sh(V®,=K3)] = HY(S5(V°, =), L) ~— HY(B}(V°, =), L)
Ay N (N (V2, =), LN — 7 — 1)),

incy: HY (M3 (V°, =), L(r)) < HY (B}(V°, =), L(r))

— HY(S;(V°, =), L) = L[Sh(V°,=K?)].
Note that the construction of the second pair only makes sense when N > 3; and when N = 2,

we regard inc!T and inc} as zero maps. In fact, the two maps in each pair are essentially Poincaré
dual to each other.

Definition 5.7.4. Suppose N = 2r + 1 odd with » > 1. We define the incidence map (on the
ground stratum) to be the map

inc: L[Sh(V®, =K2)] @ L[Sh(V®, =K2)] — L[Sh(V°, =K2)] @ L[Sh(V°,=K3)]
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in Fun(R(V°)?,Mod(L)) given by the matrix

inci o ine,T inc} o incy
inc; o ine,T inc; o incy

if we write elements in the column form.

Remark 5.7.5. The construction of the incidence map can be encoded in the following diagram

L[Sh(V°, =K3))] L[Sh(V®, =K?)]
HY (M (V°, =), L(r — 1)) H3(By(V°, =), L)

L[Sh(V®,=K3)] L[Sh(V®,=K3)]
in Fun(R(V°)?,Mod(L)).
Proposition 5.7.6. Suppose N = 2r + 1 odd with r > 1. Then the incidence map inc is given by

the matrix
<_(p + 1)2 T?\?,p)
Ve Thy
where
r—1
TN p 52 dr Sp TN P30
0

in which the numbers d}_; , are introduced in Notation 1.5.2, and the Hecke operators Ty, s are
introduced in Notation B.2.1 (as Ty ;).

Proof. Take an object KP° € R(V°)P.

First, we show inc} o inc/ = —(p+1)2. Since mTO*Oﬁg(Vopro)(l) has degree p+ 1, it follows from
Corollary 5.2.5.

Second, we show incf o in¢y = T, and incg o inc,T = Ty, However, these are consequences of
Theorem 5.4.3 and Construction 5.4.5.

Finally, we show inc o inc? = Ty, By Theorem 5.6.7(1), it suffices to show that for every
s}, 55 € S5(V°,KP°)(F,) and every s* € Hk; !(s3,53), the intersection multiplicity of B, and B}, at
the component B, equals d?_; . However this is true by Theorem 5.6.7(2), Proposmon A2. 4(1)
and the excessive intersection formula.

The proposition is proved. O

Now we assume that N = 2r is even with » > 2. The reader may notice that the situation is
different from Definition 5.7.4 since now M3 (V°, =) has dimension 2r — 1 while By (V?, =) still has
dimension r. Thus to obtain a similar diagram as in Remark 5.7.5, we have to insert a map

©: HY (M3 (V°, =), L(r — 1)) — HY (M3 (V°, =), L(r))
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to obtain a diagram like

L[Sh(V®, =K3))] L[Sh(V®,=K?)]
HY MV, =), L(r — 2)) He(By(V°, =), L)

p
(S
H%T(M; (VO> _)7 L(T’))
HY (M,E(V] =), L(r)) HY (By(Ve, =), L(r))
L[Sh(V®, =K?)] L[Sh(V°, =K?)].

Definition 5.7.7. For every line bundle £ on M3 (V°, =), we denote
O: HY *(MR(V°, =), L(r — 1)) — HY (M} (V°, =), L(r))

the map by taking cup product with ¢1(£), and define the L-incidence map (on the ground stratum)
to be the map

incg: L[Sh(V®,=K?)] € L[Sh(V°,=K?)] — L[Sh(V°,=K?)] € L[Sh(V°,=K?)]
in Fun(R(V°)?,Mod(L)) given by the matrix
(inc]f 0O oinc| inci 0O, o inc,')
inc; o O, o inc!T incj o O, oincy
if we write elements in the column form.

There are three natural choices of £, which are (Q(M;(VO7 —)), Lieg <, and wav .. We now
compute O for the first two.®

Proposition 5.7.8. Suppose N = 2r with r > 2. Let L be a p-coprime coefficient ring. For
L= O(M;(Vo, —)), the incidence map inc, is given by

(p+17°  —(+1)T%,
_<p + 1)T;\?,p R;V,p
where

e ol r—3)- .
Rip =2~y (D +3) - (P 1) T

in which the Hecke operators Ty, 5 are introduced in Notation B.2.1 (as Ty ;).

A line bundle £ on M} (V?, =) is a collection of a line bundle L£(K?°) on every Mg (V°,KP?), compatible with
respect to pullbacks.
8In fact, the third one is a linear combination of the first two.
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Proof. Take an object K*° € ﬁ(VO)

First, we show incj 0 ©p o inc! = (p+1)3. Since mTO*OMg(VO’Kpo)(l) has degree p + 1, it follows
from Corollary 5.2.5.

Second, we show incj o O, oinc} = —(p + 1)Tx, and inc; 0 O o incl = —(p+1) N, However,
these are consequences of Corollary 5.2.5, Theorem 5.4.3, and Construction 5.4.5.

[t remains to compute inc} o O, o inc}. By Theorem 5.6.7(1), it suffices to show that for every
s%,55 € Sy(V°,K)(F,) and every s* € Hk'(s%,s3), the intersection multiplicity of BZI and Big
at the component Bi. equals

1—(=p)’
p+1
By Theorem 5.6.8 and the excessive intersection formula, such intersection multiplicity equals

Z / )CT j—1 ( o Hﬂ) ®(’)P<~1/T) OP("//tT)(l)> :
tT ¢

ttes!t, (Fp)

(p+1)(p+3)--- (" 4+1).

A simple exercise shows that
1—(=p)’

T ) — *H ® O ]_ ) =
/]P’(”Vﬁ)c Jj—1 <(0' tT) O]P(nt/”) IP’("VHL)( ) ot 1

for every ¢! € SI.(F,). Thus, the claim follows from Theorem 5.6.8. O

Proposition 5.7.9. Suppose N = 2r with r > 2. Let L be a p-coprime coefficient ring. For
L = Liey ;< , the incidence map incg is given by

<_(p+ 1)2 T?\?,p)
Nop Nop
where

TNy = Zdr 50" TNpis

in which the numbers d;_; , are introduced in Notatzon 1.5.2, and the Hecke operators Ty, 5 are
introduced in Notation B.2.1 (as Ty ;).

Proof. Take an object KP° € K(V°)P. By Theorem 5.2.4, we have an isomorphism
(5.17) ™ Lieg e OMT ve gy (1)

of line bundles on M} (V°, KPO)

First, we show inc; o O o inc/ = —(p+1)2 This is a consequence of (5.17), Corollary 5.2.5 and
the fact that mf° OMS ve krey(1) has degree p + 1.

Second, we show inc} o ©, o incf = Ty, and inc; o O, o inc,T = Ty, However, these are
consequences of (5.17) and Corollary 5.2.5, Theorem 5.4.3, and Construction 5.4.5

It remains to compute incj 0O, oincy. By Theorem 5.6.7 and the excessive mtersectlon formula,
it suffices to show that for every s%,s3 € S3(V°,K")(F,) and every s* € Hk; 1(s3,3), we have

(5.18) /D et 3 & (0" Huo2) ©0paryy0y (ki /Hao)) -1 () Liease ) = a2,

where (Hge1, Hyeo) is the universal object over DL® (%, { , }s ). However, by Theorem 5.3.4(4), we
have (C%)s Liea e ~ Ho;/Hseo. Thus, (5.18) follows from Proposition A.2.4(2). The proposition
is proved. 0]
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5.8. Weight spectral sequence. In this subsection, we study the weight spectral sequence asso-
ciated to M, (V°,=). We keep the setup in Subsection 5.7. In particular, NV is an integer at least 2
with r = L%J > 1, and L is a p-coprime coefficient ring. To ease notation, we put X% := XZ(VO, -)
for meaningful pairs (X,?) € {M,M,B,S} x { ,0,e }.

Construction 5.8.1. By Theorem 5.1.5(1), we have the weight spectral sequence (E2?, dP7),

with terms in the category L[Gal(F,/F2)], abutting to the cohomology H% *(My,RVL(r)). In
particular, we have

B = BN, L(r) ) B2 (M3, (1)),
Thus, the six maps in Construction 5.7.3 give rise to another six maps
Inc;: L[Sh(V®,=K2)] — EP* WD (N — 21 — 1),
LISh(V®,=K)] — EP* V(N — 21 — 1),
Inc}: L[Sh(V®, =K})] — EP*M (N — 21 — 1),
= EY? — L[Sh(V®, =K},
Inct: EY*" — L[Sh(V°, =K})],
o EY?" — L[Sh(V°, =K})],

ImqT :
Inc

Inc

in Fun(R(V°)?,Mod(L)).

In the future, we will have to study the composite maps

Inc? Inc}
Incj (Incf Inc/ Inc!') : Inc? od; " od)? (1) o (Incf Inc/ Inc,')
Inc; Inc;

when N is odd and even, respectively. In the next two lemmas, we will study the spectral sequence
and prove two formulae related to the above maps, according to the parity of V.

Lemma 5.8.2. Suppose N = 2r + 1 odd with r > 1.
(1) The first page of E2? is as follows:

q>2r+2
- 71 ,2r+1 L 0,2r+1 L
g=2r+1  HZ (M, L(r — 1) — HZ (M3, L(r)) @ HZ ! (M3, L(r) —— HZ (M}, L(r)
o —1,2r o o 0,2r o
q=2r HZ (M, L(r — 1)) HZ (M., L(r)) & HY (M3, L(r)) HZ (M, L(r))

71 ,2r—1 0,2r—1

q=2r—1 HY (MY, L(r — 1)) *—= HF ' (Mg, L(r)) & HY 7' (Mg, L(r)) - HF ' (M}, L(r))

q<2r—2

EP? p=—1 p=0 p=1

with &7 = (m°, —m/®), d9 = (mf°)* — (mf*)* for every i € Z; and E?* = 0 if [p| > 1.
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(2) We have
Inc? 1 0 0
Incy (Inc!O Inc/ Inc!') =0 —(p+1)? TV,
Inc; 0 TV, TN

(3) We have (T%, o Inc} + (p + 1)%Inc) o d; »*" = 0.

Proof. Part (1) is immediate. Part (2) is a consequence of Proposition 5.7.6.
For (3), note that under the composite isomorphism

is LISh(V°, =K2)] = HY(S3,, L) = HYU(BY, L) 5 HZ (B3, L(r — 1))
S HE (N, L(r — 1)) 2 H2 (M, L(r — 1) = By

the map d; "*" oi: L[Sh(V°, -K7)] — EY*" coincides with (p 4 1)Inc; — Incf. Thus, (3) follows by
(2) as we have

1 0 0 p+1
(0 %, (+1?) |0 —(p+1)* TR, || -1 | =0.
0 TV Ty 0
The lemma is proved. U

For N even, we first recall that there is an (increasing) monodromy filtration F,RWL(r)
of RUL(r).  Such filtration induces a filtration F,HY(Mpy, RUL(r)) of the cohomology
Hi(My, RUL(r)), and a corresponding filtration FH'(Ige, Hx(My, RUL(r))) of the quotient
module HI(IQE, Hi(My, RUL(r))).

Lemma 5.8.3. Suppose N = 2r even with r > 1.
(1) The first page of EP is as follows:

q>2r+1
o —1,2r o o 0,27 o
q=2r HY (MY, L(r — 1)) ——=HZ (M3, L(r)) & HZ (MY, L(r)) —— HZ (M}, L(r))
g=2r—1 0 HZ~H(MS%, L(r)) 0
— 171727‘72 L L (1),27‘72 —
g=2r—2  HE(MY, Lr — 1)) HE (Mg, L(r)) @ HE (MY, L(r) = HZ2(MY, L(r))
q<2r—3
Ep? p=-1 p=0 p=1

with &7 = (m°, —m/®), d9 = (mf°)* — (mf*)* for every i € Z; and E* = 0 if |p| > 1.
(2) The spectral sequence EPY degenerates at the second page.
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(3) In the (three-step) filtration FJHZ ~*(My, RUL(r)), we have canonical isomorphisms
F_ HZ ' (My, RUL(r)) ~ Ey* 2 = coker d 2,
FoHZ ' (My, RUL(r))
F_ HY ' (My, RUL(r))
HY ' (My, RUL(r))
FoHY ' (My,RUL(r))
in Fun(R(V°)?, Mod(L[Gal(F,/F7)])).
(4) The monodromy map on HY ~'(My,RUL(r)) factors through FoHY ' (My, RUL(r)) and

s given by the composite map

E2—1,2r & E§’2T_2 N H%T_I(MN, R\I/L(T)),

~ E9¥ ! = HZ (MY, L(r)),

—1,2 —1,2r—2
ZEQ’r:kerdl’r 5

where (v is the map induced from the identity map on H%”’Z(MFV, L(r—1)).
(5) We have a canonical isomorphism

L El,?’r'f?
F_1H1<IQg’aH%T_1(MN7R\I’L(r))) ~ (m) (—1)7
2

in Fun(R(V°)?, Mod(L[Gal(F,/F7)])); and the map d; V" induces an isomorphism

E1,2r—2 im d—1,27'
(é—l%) (=1) =~ - “1or 10,2r—2
22 im(d; od; (—1))
in Fun(R(V°)?, Mod(L[Gal(F, /F;)])).

(6) If p* — 1 is invertible in L, then we have a canonical short exact sequence

0 — F_H' (Igg, HY ™' (My, RWL(r))) — H}

sing

(QF 1 (M, RUL(r))) —= HE (W3, L(r — 1)) 5/ - 0

in Fun(R(V°)?, Mod(L)).
(7) The composite map

Inc?
(Inc}k) od; " ody* (1) 0 (Incf Inc; Incf)
Inc;

coincides with

p+1 (p+1)? —TX, p+1 0 —Tf%,
p+17?  (p+1° —(+1TF,]. 0 0 0
—Ty\})’p —(p+ l)T;\}”p R;V,p _T;\(f),p 0 R;\,’p

when N > 4 and when N = 2, respectively.
(8) The image of the map

(TN, o Incg + (p + 1)Inc;) o d; 1 0 dP*2(—1) o (Incf + Incf + Inc):
L[Sh(V°,=K})]** P L[Sh(V°, =K3)] — L[Sh(V°,=K})]

is exactly ((p+1)Ry, — Tx, o Tx,) L[Sh(V°,=K3)], where Ry, is introduced in Proposition
5.7.8.

Proof. For (1), note that by Lemma 5.5.2(1), both HL(MY, L) and Hi(MS,, L) vanish for i odd.
Thus, (1) follows.
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Parts (2-4) follow directly from the description of Ef'? and [Sai03, Corollary 2.8](2) for the
description of the monodromy map®. Part (5) follows from (1-4).
For (6), by Lemma 5.5.2(3), we know that the action of Gal(F,/F;) on E)* 7?(—1) is trivial.

As p? — 1 is invertible in L, we further have E; " (—1)®/%) — 0 and
H'(Gal(F,/F}),F_1H' (Ige, HY ' (My, RUL(r)))) = 0.
In particular, we have the isomorphism
(QF, HZ ' (My, RUL(r))) ~ H'(Ige, HY ' (My, RUL(r))) S/
~ FoH! (Ige, HZ 7' (My, RUL(r))) /5

Hl

sing

and that (6) follows from the induced long exact sequence.

For (7), when N > 4 (that is, r > 2), it follows from Theorem 5.2.4(2) and Proposition 5.7.8.
When N = 2, it follows from a direct computation.

For (8), we have the identity

Inc?
(T;vip 0 p+1) %nc}; od;172’”od$’2’“*2(—1)o(IHCf Tnc] IHC;)
nc,

— (O 0 (p+ 1Ry, —TNp° T(f)\zp)

by (7), which implies (8).
The lemma is all proved. U

Construction 5.8.4. We construct
(1) when N = 2r + 1 is odd, the map

Vi EY” — L[Sh(VS, K%)]
to be restriction of the map
T, © Inci + (p + 1)*Inc}: BY* ™1 — L[Sh(V3, Ky,

to ker d(l)’%_l, which factors through Eg’% by Lemma 5.8.2(3), composed with the map
TRy LISh(VR, Ky )] = L[Sh(Vy, K{)];
(2) when N = 2r is even, the map

V% kerd}® — L[Sh(V%, K%)]
to be restriction of the map
TN © Incg + (p + 1)Inc,: EY*" — L[Sh(V%,K%)]

in Lemma 5.8.3(8) to kerd)®, composed with the map TV, L[Sh(Vy, KY)] —
L[Sh(Viy, Ky)].

Remark 5.8.5. By the descriptions of the Galois actions in Construction 5.2.6 and Construction
5.3.6, the map V! factors through the quotient map E3*" — (Eg’%)w@ JE2)-

To temporarily end the discussion on weight spectral sequences, we record the following easy
lemma, which will be used later.

9The description of the monodromy map does not require that the scheme is proper over the base.
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Lemma 5.8.6. Suppose N > 3. The following diagram

(Inc} JInc} JIncy)

Ep* L[Sh(V°, =K;)]%* @ L[Sh(V°, =K;)]
Q02 l l (p+1,-1,0)
Rl L[Sh(V°, =K3)]

is commutative, where the lower arrow is the composite map

— m'TO r e Lo* r —
HZ (ME(V°, =), L(r)) = Hg" ™ (Me(V, =), L(r + 1)) < H" ™V (Bo(Ve, =), L(r + 1)

UgN—r—Q
R

YD BV, =), LV = 1)) 75 HY(S;(V°, =), L) = L[Sh(V", =K},
which is an isomorphism.

Proof. The commutativity of the diagram follows from the formula d)*" = (mf°)* — (mf*)*, and
the fact that MJ(V° =) is a hypersurface in M; (V®, =) of degree p + 1 by Theorem 5.2.4 and
Lemma A.1.4(1). By Lemma 5.5.2 and Poincaré duality, the lower arrow is an isomorphism. [J

5.9. Special results in the rank 3 case. In this subsection, we study some special properties
of the ground stratum My (V®, =) when N = 3. The results here will only be used in the situation
(b) of Lemma 8.1.4 and are only necessary for the main theorems in Subsection 1.1 in the case
where n = 2 and F'* = Q, so readers may skip this subsection at this moment.

To begin with, we recall the following definition.

Definition 5.9.1 ([['<&8, Chapter I. Definition 3.7 & Note 3.10]). A proper morphism f: X — Y
of schemes of characteristic p is purely inseparable if the following two equivalent conditions hold:

(1) For every (scheme-theoretical) point y of Y, there lies exactly one point x of X, and the
residue field extension is purely inseparable.

(2) For every algebraically field x of characteristic p, the induced map f(k): X(k) = Y (k) is
a bijection.

We now assume dimpy V° = N = 3.

Definition 5.9.2. We define a functor
M(Ve,=): &(VO)? x T — PSch)z
KP® s M, (V°, KP°)

such that for every S € Sch’/Zg, M (V°,KP?)(S) is the set of equivalence classes of sextuples
(A07 )\07 776’ Al? )\/7 77p/> where

O (Ap, Ao, m5) is an element in Ty (.S);

O (A’, X) is a unitary Op-abelian scheme of signature type 3¢ —27,,+275 over S (Definitions

3.4.2 and 3.4.3) such that \ is p-principal;

O n?' is a KP°-level structure, that is, for a chosen geometric point s on every connected
component of S, a (9, s)-invariant K*°-orbit of isomorphisms

s VP @g AP — Homyls e s (HE(Ap,, A7), HEE (AL, AP))

of hermitian spaces over F' ®g A*? = F ®p+ A7, See Construction 3.4.4 (with O =
{00, p}) for the right-hand side.

The equivalence relation and the action of morphisms in K(V°)? x ¥ are defined similarly as in
Definition 4.1.2.
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We have apparently the forgetful morphism
(5.19) M (Ve =) = T,
in Fun(R(V°)P x T, PSch’/Zg). By a similar proof of Theorem 4.1.3, the morphism (5.19) is repre-
sented by quasi-projective smooth schemes of relative dimension 2. We denote by the base change
of (5.19) to F by M (V°, =) — T,, which is a morphism in Fun(&(V°)? x ¥, Sch gz ).
Definition 5.9.3. We define a functor
KP? — N, (V°, KP)
such that for every S € Sch’/Fg, N, (Ve,KP°)(S) is the set of equivalence classes of decuples
(A07 )\07 nga A7 )‘7 77p, Ala )\,7 77p,§ 5) Where
O (Ao, Ao, mb; A, A, mP) is an element of M, (V°, KP°)(S);
O (Ao, Mo, mb; A, N, n?') is an element of M (V°, KP?)(S);
O §: A — A’ is an Op-linear quasi-p-isogeny (Definition 3.4.5) such that
(a) ker §[p>] is contained in Alp];
(b) we have A = §¥ o X 0 §; and
(c) the KP°-orbit of maps v — d, o nP(v) for v € V° ®g A>P coincides with 7.
The equivalence relation and the action of morphisms in K(V°)? x ¥ are defined similarly as in
Definition 4.2.3.

By definition, we have the following two obvious forgetful morphisms.

MP(V07 _) M;J(vo7 _)

in Fun(8(V°)? x T, Sch pe). By the extension property of isogeny, it is clear that both p and y' are
proper. We apply the Stein factorization to the morphism p' and obtain the following diagram

(520) NP(V07 _) — N;(Vov _)

/ K

MP (Vo7 _) M;a (Vov _)

in Fun(R(V°)P x ¥, Sch/]F;p). For every KP° € K(V°)P a perfect field x containing IF;?, we say that a
point (Ag, Mo, 75; A", N, 1P") € M (V°, KP°)(k) is special if we have FH{® (A" /k),, = VH{?®(A'/K)-...
We denote by My, (V°, KP?)g, the locus of special points in My, (V°, KP?), regarded as a Zariski closed
subset, and by N{ (V°, KP?), the (set-theoretical) inverse image of M (V®, KP°)y, under /. An easy
deformation argument shows that My (V°, KP?), is of dimension zero.

Proposition 5.9.4. In (5.20), for every KP° € K(V°)?, we have
(1) The morphism p: N,(V°, KP?) — M, (V°, KP°) induces a purely inseparable morphism onto
its image which is Mz (V°, KP°).
(2) The morphism v': Ny (V°, KP?) — M (V°, KP?) is purely inseparable.
(8) The morphism v: Ny(V°, KP?) — N{(V°,KP?) ids the blow-up along Ni(V°, KP®)gp. 1Y

ONote that blow-up along a zero-dimensional closed subscheme Z of a regular scheme depends only on the
underlying closed subset of Z.
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Proof. For (1), it suffices to show that for every algebraically closed field x containing Fy, pu(k) is
an isomorphism from N, (V°, KP?)(x) to M3 (V°, KP?)(k).

We first show that the image of u(x) is contained in M3(V® KP)(k). Take a point y =
(Ao, Ao, mo; A, A P AN P 0) € Np(VO,KP°)(k). By Lemma 3.4.13(2,4) and the relation A =
6V o N o4, we know that d, . : H{®(A/k), — H(A’/k), is an isomorphism if 7 # 75; and ker 0, ¢
has dimension 1. Moreover, since X' is p-principal, we have kerd, . = H{®(A/k)L . By the
signature condition again, we also have ker d, -« C wav ¢ . Thus, u(y) belongs to Mp(V°, K?°)(k)
by Definition 5.1.3.

It remains to construct an inverse to u(x): Np(V?, KP)(k) — M3(V?, K)(k). Take a point
x = (Ao, Mo, b3 A, N 1P) € M3(Ve,KP°) (k). Write H{®(A/k)L_ the preimage of HI*(A/k)L un-
der the reduction map D(A),.. — H{¥(A/k)re. As (H{F(A/k)r  HI¥(A/K)r e = 0, we
have D(A)Y_ = p 'H{®(A/k)L . Now we put Dy, = D(A), for 7 # 75, and Dy e =
pflﬁ‘fR(A//i)to. We claim that Dy = @,cs. Da is a Dieudonné module, which amounts
to the inclusions FDyr ;e € Dy, and VD e € Dy, . The first one follows from the relation
F(Hig(A/K)$e) C Fwav e = 0 in which the first inclusion is due to Definition 5.1.3; and the
second one is equivalent to the first one as Da e and Dav,, are integrally dual under {, )§ .
Then by the Dieudonné theory, there is an Op-abelian scheme A’ over xk with D(A’), = D,
for every 7 € X, and an Opg-linear isogeny §: A — A’ inducing the inclusion of Dieudonné
modules D(A) C D(A’). By Lemma 3.4.13(2,4), the Op-abelian scheme A’ has signature type
30 — 27, + 275. Let N be the unique quasi-polarization of A’ satisfying A = §¥ o A o §, which is
p-principal as Dy, = DX,J&. Finally, we let n”" be the map sending v € V° ®q AP to §, onP(v).
Thus, we obtain an object (Ao, Ao, 76; A, A, nP; A, N nP';0) € Ny(Ve, KP°) (k). It is straightforward
to check that such assignment gives rise to an inverse of u(k).

We now consider (2) and (3) simultaneously. Let N,(V° KP°)y, be the inverse image of
M, (Ve KP?)g, under /. By Lemma 5.9.5(1) below, the induced morphism

' N (VO KPP\ NG (V2 KP?) g — M (VP KP?)\ M (V2 K,

sToo

is purely inseparable. Thus, the induced morphism

v Np(VO KP?) \ N (V2 KP?) g, — NV KP?) \ N (V2 KP?)g,
is an isomorphism, and the induced morphism

v N; (VoK) \ N;(VO, KP?)gp — M;(VO, KP?) \ M (V?, KP?)gp

is purely inseparable. Since N,(V°, K?°) is quasi-projective, v is projective. Thus, v is a projective
birational morphism, which has to be the blow-up along a subset Z of Nj(V° KP?)y, (see, for
example, [Lit102, Theorem 8.1.24]). Now we take a point 2’ of M (V°, KP?)y, with the residue field
k, which is a finite extension of Fg. Since v/ is a finite morphism, the inverse image of z’ consists
of finitely many points yy, ..., y, of N (V®, KP?)y, with residue fields #y, ..., ky,, respectively. By
Lemma 5.9.5(2) below, the residue field extension r;/k is trivial for every 1 < i < n; and moreover,
Z has nonempty intersection with {y1,...,v,}. Thus, ;/~'(2’) has cardinality at least |x|+n. But
we know that p/~'(z’) has cardinality exactly || + 1. Therefore, we must have n = 1. We
immediately have both (2) and (3). O

Lemma 5.9.5. Consider an element ' € My(V°,K?°)(k) for some KP® € R(V°)P and a perfect
field k containing IFg’. We have

(1) If the image of @' is mot special, then p/='(z') is a singleton.
(2) If the image of «' is special, then /'~*(z') is isomorphic to P*(k).
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Proof. Write 2/ = (Ag, Mo, nh; A, N, n?"). By the Dieudonné theory and Lemma 3.4.13(2,4), we
see that p/~!(2’) is bijective to Dieudonné submodules Dy C D(A’) satisfying D4, = D(A’), for
7 # 75, and that D(A’);c /Da e is a vector space over x of dimension 1. This amounts to the
subspaces of H{®(A'/k).c of dimension 2 containing FH{®(A4'/k), + VH{®(A'/k)._. Since both
FH{R(A'/k),. and VH®(A'/k),. have dimension 1, the lemma follows by the definition of special
points. 0

Remark 5.9.6. In fact, one can show that y induces an isomorphism from N, (V°, =) to M3 (V®, =);
and v/ is purely inseparable of degree p. But we do not need these facts.

5.10. Functoriality under special morphisms. In this subsection, we study the behavior of
various moduli schemes under the special morphisms, which is closely related to the Rankin—
Selberg motives for GL,, x GL,11.

We start from the datum (Vy,{A]  }qp) as in the beginning of Subsection 5.1, but with V7 of
rank n > 2. (See Remark 5.10.15 below for the case n = 1.) We then have the induced datum

(V;)Hrlv {A;Jrl,q}‘ﬂp) = ((VZ)ﬂv {(Az,q)ﬁ}qlp)

of rank n + 1 by Definition 3.1.7. For N € {n,n + 1}, we let K%, be the stabilizer of A%, and
put K%, = Iy, Ky 4- Recall the category R(V7})L, and functors —;, =4 from Definition 3.1.11. To
unify notation, we put =, = =, and =, = =—;. Similar to the case of smooth moduli schemes
considered in Subsection 4.4, there are five stages of functoriality we will consider.

The first stage concerns Shimura varieties.

Notation 5.10.1. We choose an indefinite uniformization datum (Vi jn, {A; 4}qp) for V;
as in Definition 5.1.6. Put Vi, = (V0)s, jur1 = (Jn)s, and Al = (A} ,);- Then
(Vii1s 3o, {1011 g Jap) 18 an indefinite uniformization datum for V;,,. For N € {n,n + 1},
we let Ky, be the stabilizer of Ay, and put Ky, = [y, Kiy ;-

We obtain a morphism
Sh/T: Sh( ;w Jn_anz,p) — Sh<viz+17 jn+1_n+1K;L+1,p)
in Fun(R(V;)?,, Sch/p).

sp?
For the second stage of functoriality, we have a morphism

(5.21) my: M, (V3 =n) = My(V5 s =ni1)
in Fun(&(V7)5, x T, Sch/ze )/, sending an object (Ao, Ao, n5; A, A, 1P) € My(Vy, KE?)(S) to the

object (Ao, Ao, b5 A X Ag, A X Ao, P & (id 4y )s) € Myp(Ve 1, K5 1)(S). Tt is clear that my restricts
to three morphisms

me: My (Ve,=n) = M(Vo iy, =as1),
(522) Hl$3 Ml(VZ, _n) - M;;(v?(;—i-b _n+1)7
m?: My (Ve, =) = Ma(Vo .y, =ni1)-

Moreover, we have the following commutative diagram

o (5.2) .
(523) Mg<vn+17 _n—i—l) Sh<V;«L+17 Jn+1_n+1K;1+17p) ><SpecF Tg
m?T Tsh%xid
o (5.2) .
Mg(vm _n) Sh(V;l, Jn_nK;Lp) XSpecF Tg

in Fun(8&(V3)2, x T, Sch/ge ) /ro-



ON THE BEILINSON-BLOCH-KATO CONJECTURE FOR RANKIN-SELBERG MOTIVES

91

At the third stage of functoriality, we study the basic correspondence diagram (5.10) for N =
n,n+ 1 under the special morphisms. We will complete a commutative diagram in Fun(&(V;,)2, x

T, Sch/Fg )1, as follows

(5.24)

w2
<%
w2 —
=%
= 5
3
33 *
= X -
£
@ N
& 33
=2
< <= =
= =~
53 =3
S - - P
: N | G
S —
:, 3
3 sh
b 3
%
_a[/.; vUz —
= = 0
53 33 p
- e )l B 7
:I i :I
< Z 3
=
3 : S
R o +
=5
=
<%
= S
i
33 =
K 3
s
5 - A st =3
B o % + i3
==
== == =
= = 3
50 33 ps
N & “l - -
- 3 3
s
o i
=
e
= = 33
=9 30 t
= & JI = N
:I + :I
< Z 3
=
=
=0
= =2
=3
= 3
i
53 — *
I - I
= 3
t
5o i° £,
& i3
=
=
2
53
S0 s
: 5 <
~I i al
< T
t
=
<
= =2
<.
= B
53 o
;.I = “|
-~ +
)

in which the bottom (resp. top) layer is the basic correspondence

(resp. My(V3 415 =nt1))-

diagram (5.10) for M,(Ve, =)
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First, we consider the basic correspondences on the balloon strata, that is, the back layer of the
diagram (5.24).
We define s9: S;(V7, =) — Sy (V5 11, =nt1) to be the morphism sending an object

(A07 )\07 7787 Aoa >‘Oa Upo) € S;(Vzv KQO)(S)
to the object
(A07 )‘07 nga AO X A07 AO X >‘07 77po D (ldA0>*) € S;(V'?L—i-l? Klr)zirl)(s)
Remark 5.10.2. The canonical inclusions
Vo = Vo A= ADotap
induce a morphism
sh?: Sh(Vy, =K} ) = Sh(V, 1, =1 Ko 1 ,)
in Fun(R(V:)?  Set). It is clear that the following diagram

sp?
o o = US‘ 1 o o iin
Sp (vn+1> _n+1)<IF;D) 4+> Sh(vn-i-la _n+1Kn+1,p) X Tp (Fp)
s2(Fp) T T shixidy )

SS (VZ, _n)<Fp) - Sh(V?L, _nK;,p) X TP (Fp)

in Fun(R(V7)E,, Set) 1 7,) commutes, where vj |, and v}, are uniformization maps in Construction
5.2.6.

We define bg: By (V5. —,) — By (V;, 1, =n11) to be the morphism sending an object
(A07 /\07 7787 A? )‘7 77p§ AO? )‘07 77p03 6) € B;;(Vzv K;zO)(s)
to the object
(A07 )\07 7757 AX AOJ A X AO? np@(ldAo)*7 A® X A07 A® X >\07 T]po@(idA0>*; 6 X idAO) S B;<V(T)L+17 KfLi—l)(S)
Second, we consider the basic correspondences on the ground strata, that is, the front layer of
the diagram (5.24).
Definition 5.10.3. We define a functor
S;(VZ, _)sp: R(ViL);Sp XT— PSCh//IFg’
K = Sy (V,, K7)gp
such that for every S € Sch’/Fg, Sy (Vi KP?)ep(S) is the set of equivalence classes of decuples
(A07 >\07 77{))’ A.7 A.7 np.; A.a 57 77§”7 5.) where
O (Ao, Mo, mb; A®, A®,nP*) is an element in S5 (V75 KE°)(S);
O (Ao, Mo A3, A3 72") i an clement in S3(VE,,, KZ7 1) (5):
O §%: A* x Ag — A} is an Op-linear quasi-p-isogeny (Definition 3.4.5) such that
(a) ker §*[p>] is contained in (A® x Ag)[p];
(b) we have A\* x @A = §*¥ 0 A7 0 0°; and
(c) the KJ;-orbit of maps v+ 2 o (77* @ (id4,)«)(v) for v € V§ ®g AP coincides with
-
The equivalence relation and the action of morphisms in &(V})5 x T are defined similarly as in
Definition 4.2.3.
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We have apparently the forgetful morphism
Se(Vo,=)sp — Ty
in Fun(&(V;)Z, x %, PSch’/Fg) which is represented by finite and étale schemes. By definition, we
have the two forgetful morphisms
Sl: S;<V27 _)Sp — S;(V(;” _n)a S$: S;(V;, _)sp — S;<VZ+17 _n—l-l)
in Fun(&(V7)5, x T, Sch/ge) /-
Lemma 5.10.4. We have the following properties concerning s;.

(1) When n is even, s} is an isomorphism, and the morphism
sp o sl_lz Se(Vo,=n) = Sy(Vo i1 =nt1)
s given by the assignment
(Ao, Ao, 105 A%, A% 0P%) = (Ao, Ao, mh; A® X Ag, A® X g, nP* X (ida, )« )-
(2) When n is odd, s} is finite étale of degree p + 1.
Proof. The proof is very similar to Lemma 4.4.2, which we leave to readers. 0

Definition 5.10.5. We define B3(V;, =)y, to be the fiber product indicated in the following
Cartesian diagram

B;(V;, _)sp = S;(V%, _)sp

g,k

By (V3 =n) —S3(V3, =)

in Fun(R(V7)E, x T, Sch e )1, We define by: BY(V7, =)y = BR(V) 1, —n41) to be the morphism
sending an object

((Ao, Ao, nbs A, N, 075 A% A% 7% ), (Ao, Ao, mib; A% A5, 7% AS AL E°56%)) € BR(V), KP?)gp(S)

to (Ao, Ao, mb; A X Ag, A X Ao, 1P @ (iday)«; A, A, 155 0% o (v x idy,)), which is an object of
By (Vs 1, Kii1)(S) by a similar argument of Lemma 4.4.4.

We have the following result.
Proposition 5.10.6. When n is odd, the square

.
Ln+1

B; (VZ—H? _n+1)

b} T
I3 obI

By (Vo =)sp

M; (VZ—H? _n+1)

[t

M; (V;Dw _n)

extracted from the diagram (5.24) is Cartesian.
Proof. The proof is very similar to Proposition 4.4.5, which we leave to readers. 0

Third, we consider the basic correspondences on the link strata, that is, the middle (vertical)
layer of the diagram (5.24).
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Definition 5.10.7. We define SE(V;’L,—)SP to be the fiber product indicated in the following
Cartesian diagram

te
bsp

S;KV?%’ _)sp S;(vfw _)sp

SI\L isi
te

SE(Ve. =) S3(Ve,=n)

in Fun(R(V7)5, X T, Sch g ) j7,. By Lemma 5.10.4, we know that Sj[ is an isomorphism (resp. finite

étale of degree p + 1) when n is even (resp. odd). We define sﬁ: SH(Ve, =)sp — S} (Vo 1, =nt1) to
be the morphism sending an object

(<A07 )\07 775; on )\07 77p05 A.u )\.7 77p.§ ¢)7 (A07 )\07 nga A.7 /\.7 77p.§ Aav 57 n€.7 5.)) € S;];(Vfw KPO)SP(S)
to the object
(A07 )‘077787 A® X AOJ A® % )‘07 77p0 S (1dA0)*a E? E7n€.7 0% o (w X ldAO)) S S;g(V:L+17 Kz11)<5>
Lemma 5.10.8. We have
(1) When n is even, the square

te
o S'n+1 ° o
Sl]; (vn+17 _n+1) > Sp (Vn+1a _n+1)

TST T
T T

S;r;’ ° o
S;(Vrow _)Sp Sp (vn’ _)Sp

extracted from (5.24) is a Cartesian diagram.

(2) When n is odd, the square

fo
b'rH»l

S;(v;)z—&-la _n—i-l) -~ S;(V;_H, _n-‘rl)

extracted from (5.24) is a Cartesian diagram.

Proof. Let SH(Ve,=)s be the actual fiber product in both cases. Take an object K*° € R(Vy)E.
We have to show that the natural morphism s*: S (Ve K"y, — Si(V, KP°)g, is an isomorphism.

Since st is a morphism of étale schemes over IF;?, it suffices to show that s*(x) is an isomorphism

for every perfect field k containing Fg’.
For (1), by Lemma 5.10.4(1), an object in SH(Ve, K°),,(S) is given by a pair of objects:
<A07 >\07 Uga A.7 )\.7 77p.§ A* X A(), A® X W)\O, np. X (ldA0>*) € S;(VZ, KPO)SP(’%)?
(A07 )‘07 775’7 AE)7 E? négoé A® x A07 )‘. X W)\Oa 77p. X (idAO)*; %) c S;<V:L+17 Kf:l—l)(’%)

Let A° be the cokernel of the kernel of the composite map Ay ﬂ A*x Ay — A®, and Y: A° — A®
the induced map. Let A\° be the unique quasi-polarization of A° satisfying w-\° = 1)V o\*01). Since

A7 is p-principal and we have @-\f = 90 (A® x @ - \g) oty, the composite map A7 RENITI Ag — Ag
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splits. Thus, the natural map A7 — A° x A is an isomorphism. Then A° is p-principal, and we
obtain an object

<A07 )\07 nga on >\07 npO; A.a )\.7 np.; ,lvb) € Sg (VZ’ Kfzo)(’l{) = S;(V’IC’)H Kpo)sp("{)a
where nP° is chosen so that Definition 5.4.1(c) is satisfied. In other words, we obtain a morphism
from Sj(V, K (k) to SH(VS, KP°)y(k). Tt is straightforward to check that it is an inverse to
the morphism s*(x).

For (2), an object in SE(VS, KP°),, (k) is given by a pair of objects:
(A(b /\07 7787 AOJ )\OJ npo) S S;(VZ, KZO)(KJ)?
(Ao, Mo, 763 A% X Ao, X7 X Noy 0 (idag )i AT, X, 7155 00y) € SE(V7q, K7 ().

Let A*Y be the cokernel of the kernel of the composite map A$" w—h> A% x Ay — A°Y, and
WYY A°Y — A*Y the induced map. Taking dual, we obtain a map 1: A° — A® and an induced
map 0°: A*x Ay — Aj. Let A® be the unique quasi-polarization of A® satisfying @-\° = PV oA o).
Since A7 is p-principal and we have A\* X @ - A = 0*Vo A; 00°, we know that ker A® [p>] is contained
in A*[p] of rank p?, and we obtain an object

(Ao, Mo ihs 42, X2, 1773 AN %5 ), (Ao, Mo A%, X 1P AL 5 6%)) € SLVE K7 (),

where 7P is chosen so that Definition 5.4.1(c) is satisfied. In other words, we obtain a morphism
from S}(VS, KP°)g (k) to SV, KP°)g(k). Tt is straightforward to check that it is an inverse to
the morphism s¥(k). O

Definition 5.10.9. We define B;(V;’L,—)Sp to be the fiber product indicated in the following
Cartesian diagram

i
Tap

B;g(vfw _)Sp S;(V%v _)SP

o I+
t ™ f
BP (Vfw _N) SP (V;)w _n)
in Fun (ﬁ(V;)gp X ‘Z, SCh/Fg )/Tp .

By the universal property of Cartesian diagrams, we obtain a unique morphism
bl3: BI(Vi. =) — By (Vi =)sp

rendering the front lower-left cube of (5.24) commute. Finally, an easy diagram chasing indicates
that we have a unique morphism

bL B;<V$m —)sp = B;(VSH—D —n+1)
rendering the entire diagram (5.24) commute. Thus, we obtain our desired diagram (5.24).
Remark 5.10.10. By Proposition 5.10.6 and Theorem 5.4.3(1), one can show that when n is odd,

the square

t
1) [’n 1 °
BI]; (Vn+1> _n+1) u M;]; (Vn+1> _n+1)

b;T Tm;
BM\/Za _)sp M;2<V$n _n)

extracted from the diagram (5.24) is Cartesian.

LLObI
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Remark 5.10.11. By Lemma 5.10.4(1), Definition 5.10.5, Definition 5.10.7, and Definition 5.10.9,
the four downward arrows in the diagram (5.24) are isomorphisms when n is even.

At the fourth stage of functoriality, we compare the special morphisms for basic correspondences
and for Deligne-Lusztig varieties. Take a point st € S;(V;’L, KP°)4, (k) for a perfect field x containing
F®. Put

p

ST)a Sy = SL.(SIL)a Spy1 = SL.-H(SL-&-l)'

Denote by B;, BZL’ BLH, Bl BEZH’ B:., BS., and B;%H their preimages under W;fp, o, 7TIL+1,

Ty Tl Taps Ty and mpq, respectively.
Proposition 5.10.12. Let the notation be as above. The following diagram

CO

o St 1
BSSL+1 ]P)(/VS%+1)
bl
\ CTT \
T Sn+1
BSIL+1 ]P)(/y'SIL+1)
b3 \bjjl \
S
E DLSZH
B
%
Bg. P(7%)
b. 65.
bizh T T C:;rl Obi \ 0
BST ]P)(AI/SL)
m ¢z ob3 \
B? DL?

in Sch,, commutes, where
O Cso and C;’OH are the isomorphisms in Theorem 5.2./;
O (% and C;.H are the isomorphisms in Theorem 5.3.(3);
O ¢! and CTT are the isomorphisms in Theorem 5.4.3(2);
Sn Snt1
O P(V1) = P(Ys) and P(¥+ 1) — P(¥5 ) are closed embeddings in Remark 5.4.4(1);
n n+ n
O P(7;) — DL, = DL*(%.{ ., }ss) and IP’(”//SLH) — DL = DL (Vaoo {5 Joo.,) are
closed embeddings in Remark 5.4.4(2);
O P(¥) — P(¥,,) is the morphism induced by the obvious r-linear (surjective) map
/V'SSL+1 — ,ys%;‘
O dge1 is the morphism in Construction A.2.3 with respect to the map dge: Vo s — %%H
induced by 6°: A®* X Ag — A}, and
O P(7i) = P(¥,+ ) is the restriction of dse4, in view of Remark 5.4.4(2).
n n+l
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In particular, b: Bis — B;.+1 is an isomorphism when n is even.

Proof. The proof is very similar to Proposition 4.4.6, which we leave to readers. The last assertion
follows as b}: Bi. — BS. is always an isomorphism, and Jge¢ is an isomorphism when n is even. [

At the final stage of functoriality, we relate the special morphisms for sources of basic corre-
spondences to Shimura sets under the uniformization maps v° (5.4), v* (5.9), and v (5.11). Recall
that we have data (V3,, {A] ¢}qp) and (V75 {A7 1 gFap)-

Notation 5.10.13. As in Construction 5.3.6, we choose a lattice chain A5, € Ay C p~'A | of
Vy @p Fp, and a lattice chain Ay, € As,, € p Ay, of Vo, ®p F,, for which we assume
that (Ar.z,p) C Ay C pil(A'v ){ holds. We now introduce various open compact subgroups at
.

O For N € {n,n + 1}, we have K, from Construction 5.2.6, K%, from Construction 5.3.6,

and K},p = Ky, N K%, from Construction 5.4.5.

O Put K, , =K, ,NK} ., , (as a subgroup of K}, ) and Kg, , = Kg, | X Tlqp.e0 Ki

O Put KI = K‘ NK;,

bpp Sp,;p

For later use, we also introduce natural maps

sh: Sh(V}, =K} ) = Sh(V] 1, =KD ,),
sh?: Sh(Vy,=,K;,) — Sh(Ve, =, K2 ),
shi: Sh(V,,— ;p p) = Sh(Vy =i KR, ),
shi: Sh(V;,— KT p) = Sh(VE, =KE,),
shT: Sh(V;, — Klp S Sh(v101+17 —n+1Kn+1,p)v

shi?: Sh(Vy,=,K! ) — Sh(Vy, =K ),
shi*: Sh(Vy,=,K! ) — Sh(Vy, =,K3),

n+1 Sh(V; .1, n+1Kn+1p) — Sh(V 1, =n1 Koy,
Shn+1 Sh(Vy .1, n+1Kn+1p) — Sh(V; 4, n+1Kn+1p)
shi*: Sh(Vy, =, KI ) — Sh(Vy,=.KS, ),

Sp,p

Sp,p

in Fun(R(V°)Z,,Set). Note that sh? has already appeared in Remark 5.10.2.

sp?

Similar to Construction 4.3.2, we may construct two uniformization maps

(5.25) V3t Sy (Vi =)sp(Fp) = Sh(Vy, =, KS, ) x Ty(F,)
(5.26) v;p: s;(vn, —)sp(F,) — Sh(Ve, = Kspp) x Ty (F,)

in Fun(8(V7)5, x T, Set) 1, 5,), which are isomorphisms. We leave the details to readers.
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Proposition 5.10.14. The following diagram

w2
<3
53
I =
s $id
= el
=l -~
<
=
C wn
@ Rz
59 53
J - =
= Gl Gl
5 - -
#
w = vl/.) —
PAS 2 Q<O
S 23 £
1 - U P 1
s & - £ 5
= Gl = Cl t
el = Gl = =
S S =
=
— — =« <
=l 5| o CIEES
s S =t 2z
= = = =
|22
= 3o
=
3
:<o =
I
=
>
e
3 &
N £
X X
5 [
<
=
<
= |
=1 . Tl e T
|5 o | g o+
Sl z a|® ="
XD
B 2]
=
o o =
=% = 53
= 3
S 5s e
| | :I
3 3 t
fal pal =
: - 2 - iah
= o T £ 3
% & x £ *
e = X
= | =
~ K =
|
T
w2
=
o w =
= = 53
+
= 53 e
1 1 J
3 T
> , 5
3 ze SN
: P ; P .
= S * e +
X X =
X z X z T
= = X
N —_
= = =]
< s <
= = =
=
T

in Fun(R(V7)E, X T, Set) 1 5,) commutes (in which all uniformization maps are isomorphisms).
Moreover, the induced actions of Gal(Fp/Fg’) on all terms on the right-hand side factor through

the projection to the factor Ty(F),).

Proof. 1t follows from Constructions 5.2.6, 5.3.6, and 5.4.5. O
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Remark 5.10.15. When n = 1, we have the diagram (5.24) in which all terms not in the top or
back layers are empty. Propositions 5.10.12 and 5.10.14 can be modified in the obvious way.

5.11. First geometric reciprocity law. In this subsection, we state and prove a theorem we
call first geometric reciprocity law, which can be regarded a geometric template for the first explicit
reciprocity law studied in Subsection 7.2 once throw the automorphic input.

We maintain the setup in Subsection 5.10. However, we allow — = (—,,, —,.1) to be an object of
R(V;)P x &(V;,, 1), rather than K(V;)2,. Denote by ng and n; the unique even and odd numbers
in {n,n + 1}, respectively. Write ng = 2ry and ny = 2r; + 1 for unique integers 9,7, > 1. In
particular, we have n = ro + r1. Let L be a p-coprime coefficient ring.

To ease notation, we put X;, = X (V;_, =, ) for meaningful triples (X,?, o) € {M,M, B, S} x

{ ﬂ?a‘%'ff} X {07 1}
Notation 5.11.1. We introduce following objects.

(1) Put P :== M,,, xp, M,,,.

(2) For (?79,71) € {o,®,1}? put PP’ := M xr Mt which is a closed subscheme of P.!!

(3) Let 0: Q — P be the blow-up along the subscheme P°°/ which is a morphism in
Fun(R(V5)? x &(VE,,)? x T, Schyzs) r,

(4) For (?9,71) € {o, e, 1}2, let Q™" be the strict transform of P?"t under o, which is a closed
subscheme of Q.

(5) Let fy;,‘)”;,l: P?"1 — P%" be the closed embedding if P’ is contained in P’0"1, and

01
70,7 ?26.7 20 9 . . 20.7 ¢ . . 20 9!
oot s Q70" — Q701 the closed embedding if Q! is contained in QQ'o>"1,
‘001

Suppose that — is taken in the subcategory K(V;)Z,.

(6) Let Pa be the graph of my: M,, = M,, 41 (5.21) over Ty in Fun(K(Vy)
as a closed subscheme of P.

(7) For 7 = e,0, let P} be the graph of m{: M — M, (5.22) over T, in Fun(&(V;)2 x
T, Sch e ) /7, as a closed subscheme of P,

(8) Let Qa be the strict transform of P under o, which is a closed subscheme of Q.

X S? SCh/Zg)/Tpa

p
Sp

Lemma 5.11.2. The two specialization maps

He (Q @z, @y, L) — HE (Q,RUL),
HI‘I(Q ®Zp2 @]M L) — Hl‘I(Qv R\IJL)a

are both isomorphisms.

Proof. When Q is proper, this is simply the proper base change. When Q is not proper, this again
follows from [L.518, Corollary 5.20]. O

Lemma 5.11.3. The scheme Q (valued at any object of R(V})E)) is strictly semistable over Zg’
of relative dimension 2n — 1. Moreover, we have

HRecall from Notation 3.3.6(5) that P is P Rz F2.
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(1) The reduction graph of Q is as follows

Qto

Qo,o Qo,o

Qo,ome,T

QT

Qo,omQT,T

Q ) QT” Q )

so that
Q(O) — Qo,o H Qo,o H Qo,o H Q.’O,

Q(l) — QOJ H QTﬁ- H QO,T H QT,O H QT’T,
QY = (QnQ") [T(Q>* nQ™,
Q) =0, forc> 3.

Here, Q) denotes the union of the strata of Q of codimension c.
(2) For the morphism o, we have that
O the induced morphism o: Q'"t — P'™ s an isomorphism if 7o #71;
O the induced morphism o: Q0" — P s the blow-up along P if (?5,71) €
{(c,0), (e, @)}
O the induced morphism o: QM — PH is a trivial P'-bundle;
O the induced morphisms o: Q*° N QM — PH and o: Q>* N QM — PH are both
isomorphisms.
(8) The natural map

U*: H%(F?O’?l, O,\) — H%(Q?O’?l, O)\)
is injective, and moreover an isomorphism if 79 #74.
(4) For (70,71) € {(0,0), (e, ®)}, the map

(O )ro 0™ HEA(PM, 05(-1) = Hx(Q", 01)
is injective; and we have
HE(Q", 0)) = o"HE(P™™, 0,) @(0%)5, )0 Hy *(PH, 05(—1)).

(5) If we denote by f € Hg@”,@(l)) the cycle class of an arbitrary T-orbit of fibers of the
trivial P*-fibration @: Qbt — P, then the map
(fu) 0 o™: Hy 2(PM, 0x(~1)) — Hz(QM, 0))
is injective; and we have

Hz(Q",04) = o' Hz (P11, 0,) @ f U o' H *(PM, O5(~1)).
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Proof. Parts (1,2) follow from a standard computation of blow-up. Parts (3-5) follow from (2). O

Let (E29, d?9) be the weight spectral sequence'? abutting to the cohomology HZ™(Q, RUOy(n)),
whose first page is as follows:

S < < <
IN Il Il = A%
= o o ) Il S
z 3 S S o S
| I | S +
w [ = —
jasy T jasy
ay ap ay
5 } L
< ) Q| Q|
; e T e
| 2 2 S
ro > = P
| | |
o ® o
> > >
= = =
l’_‘!‘a \LH!‘V lb_:;‘
[ S B
= 3 [
| | 3
b L
jas T just
Y ap aw
L L L
< 2 2 2
I = = =
\ o S S
= — = —
3 3 3
| | |
—_ —_ —
= = =
= = =
G b TL
l 7 i 7 l ¥
B L 5
“E T Yy o g
oAy oA i jasi
& T Py T Loony
Ql N Ql < o 3
< T2 f a3 £=
~ =! ~ = ~ S
[ D= D = D=
o S S S0
= O =~ O — ¥
- A )
S S I =
s =z =
= . = . =
o o £
b L
jun)
»a:-";\v e jus
& e
| | 3
= —~ 2
5 2l ) =
L = = -
S S P
> > —_
— — 3
3 3 =
= = ~
£ £ a
l 8 l i e
H ¥
b L s
wr‘g: wm-g jus)
3 A
| | S
X = 2
3 2 3 2!
Il = = =
o - Q
S S =
5 s S
= = =
= =

with EP? = 0 if |p| > 2. The following lemma will be used later.
Construction 5.11.4. For a = 0,1, let § € HZ(B?_,L(1)) be the first Chern class of the

tautological quotient line bundle on B;, . We construct four new pairs of maps in Fun(&(Vy)? x

12Strictly speaking, the differential maps d?¢ depend on the choice of the ordering of (types of) irreducible
components of Q, which we choose to be the clockwise order Q°° < Q°* < Q** < Q*°.
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R(VS.1)P,Mod(L)) as follows:

incy s L[Sh(V,, = K2, )] @1 LISh(VS,, =0, K3, )]

no,p ny’? ni,p
—> HO (S’lOlo’ ) ®L HO (S’?Ll7 ) T(S’Iolo XTp 87(;17 )

o

(2 72, )"

H%(E(;Lo B:u’ L)
ro—1, r1—1 . .
Y S HEY (B, X, B, Lin — 2)

(tng Xtnq 1

2(n—2) /7710 o

HY" P (M, x5, My, L(n — 2))
idxmf? )* n—>2)

e, gL, o, M, L(n - 2)
(ideIL.l)!

HE VOV, o, MG, Lin = 1) = HEZ (P2, L(n — 1),
inc? ;- H2'(P**, L(n)) = HZ'(M2, x, M3, L(n))

ny’
(zdxml )* n /o
— HF'(My, x5, M}, , L(n))
(dxml)r onio ~o 0
- H% +2<Mn0 MTL17 L(n + 1))
M} H2n+2(§20 leaL(n + 1))
Ufro 1U€II 1

Hy"*(B;, x7, By, L(2n — 1))

ny?
(ﬂzo ><ﬂ—;)ll)! 0 [Qo o 0 o o
E— H (S S’nl’ ) H (Sn07 ) ®L H‘}:(Snl’ )
[Sh(vszoa K(:zo p)] AL L[Sh(vglv K;)zl p)]

inc;”*: LISh(VS,, =n K3, )] @1 LISh(VS, , =0 K2 )]

no,p ni? ni,p
= Ha(S;,, L) @1 He(S},, L) = Hx(S;, 7, S}, L)

ni’
(13 X8 )"

HY(BS, xx, BY,. L)

ny?
ro—1 e
= ’ Hé(mil%B:m XT, B;NL(TO —1))
(15, %81

n—1 o e 2(n—1) /So.e
H20 D (M, g, My, Lin — 1)) = H22 (P, L(n — 1)),
ne,: H3"(P>*, L(n)) = H%”(MZO ><T M? | L(n))

ni’
Sl 12 (B3, o, Bl L(n))
ugro~!

HZ "o (Be xx, B, L(ng — 1+ 11))
(T Xm0y 1

HO (go S:Ll7 ) (S;)L()’ ) ®L HO (S:M? )
LISh(Ve,, = K2 )] @r LISh(VE , =, K

no,p ni’ ni p)]
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inc}’": L[Sh(VS =, K2 )] @1 L[Sh(VS =, K2 )]

no’ no,p ni’ ni,p

_> H‘I(S;o’ ) ®L HO (Srozlv ) ‘I(S:mo Tp g?zl? L)
(7Tn0 ><7Tn1) H%(E;LO XTP E;)Ll7 L)
r1—1

31

—— HZ"*(B:, x5, Boyy L(r1 — 1))

idxed

(idxen ) H2r1 2<Bo Mm,L(Tl — 1))

(ideLl) r1—2 /e

(B, <, ML, L 1)
m? 1) — n—
(¢ nox 1) H;EZ 1)(M:m XTp M7.’L17 L(TL - 1)) = H2( b (P.. L(n - 1))a
incg ; : : H¥'(P**, L(n)) = HF* (M}, x5 M;LNL( n))

(o xmpy ) H?{L(B. MLI,L( ))

(ldenl) H2n+2(B. XT M;’Ll’ L(n -+ 1))

idxe¢
(i, HZ"2(By, <, BS,, L(n+ 1))

1 EDY
u§1—> H2(ro+n1 D(B' X7, B, ,L(ro+n; —1))

no
(5, X7, )

H3(S5, %7, Sh,» L) = Hy(S,, L) @ Hy(S;,, L)
= L[Sh(V;, ,=n K2 )] @p LISh(V; =, K> )];

no’ no,p ny? nlp

incy*: LISh(VS , = KS )] ®p LISh(VS =, K2 )]

n07 no,p Tl17 ni,p
= He (S, L) @1 Hy(S,,, L) = Hy(S, x5, Sp, L)

T HO(BY, X, By, L)

ni?

(19 X1 )1
I

H%SZ‘”(M;O M L(n—1)) = Hyt V(P** L(n — 1)),

ny?
ney,: HY'(P**, L(n)) = HY" (O, x, M, L(n))

T 1By, x, B, L(w)
T e S D&l 1)

= LISh(Vy,, =0 K3, )] @1 LISh(Vy,, =0, K2 ).

no,p ni’ ni,p

) HO (So

no’

In fact, the two maps in each pair are Poincaré dual to each other.

Theorem 5.11.5 (First geometric reciprocity law). Take an object KP* € K(V;)E,. For the class
cl(P%) € HZ*(P**, L(n)), we have
(1) For f € L[Sh(V; , KPP Ks )] @ LISh(V; ,KP°K? )], the identity

no’ no,p ny’ ni,p

[aenumgin = X (1, 0)shi(s).shi(s)

o0 °
s€Sh(Ve,KhKe, )
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holds.
(2) For f € L[Sh(V; ,KE° K )] @ L[Sh(V; ,KPCK? )], the identity
T
LoaPnuine ()= 3 (Th,,/)h(s)shi(s)
’ s€Sh(Ve,KhKS, )

holds.
(3) For f € L[Sh(V?, KYD“’KO )] @ L[Sh(V?

ng’ no,p

KKy )], the identity

ni? ni,p
2 ° . 2. .0 /—eo ®0
/ﬁ” cl(P%) U (mc. (The. p @I pf) (p+ 1)%inc; (Tno’p ® Tho ))
= > (Tnep @ Tnypf)(s,8hi(s))

seSh(Vg,KR°KS )
holds.

Here, fg.,. denotes the T-trace map in Definition 3.5.8; and sh, sh}, and shi are maps in Notation
5.10.13.

The intersection number in (3) is the actual one that is responsible for the first explicit reci-
procity law which will be discussed in Subsection 7.2.

Proof. We first show (3) assuming (1) and (2). By (1), (2), and Lemma B.4.4, we have for
f e L[Sh(V; KK )] @p L[Sh(V;,, KK )],

no’ no,p ni,p

[ PR U (e (15, © 2y )+ (1 (2, © T2, 6)

Pe.e

= 2 (Thop © (Toyp 0 Iny p) ) (shi(s), shi(s))

s€Sh(Vg KE°KS, ,

+ ) (Trow ® ((P+1)*T5, , 0 T27 ) f)(shi(s), shi(s))

CKe
seSh(VS,KIKS, )

=X (T, © (T, 0T )N, ()

s€Sh(Vg Kh°KS, ,

+ > (T @ (T, 0T, — Tht p o I, ) f)(shi(s), shi(s))

po
seSh(VS,KLKS, )

= > (Thow @ (Th, p © Ty ) ) (shi(s), shi(s))
seSh(Ve,KEKS,
which, by Lemma 5.11.6 below, equals
> (Tnop ® Ty o) (s, 8h3(s)).
s€Sh(Vg,KR°KS, )
Thus, (3) is proved.

Now we consider (1) and (2) simultaneously. Similar to the maps inc{ and inc] in Construction

5.7.3, we have maps
*: L[Sh(Ve KPP K% )] — Hare ™ D(Me_ | L(ra + a — 1)),
incl,: L[Sh(VE_ KE°KS )] — Hae ™ V(MY | L(ra + o — 1)),

nc>:

for « = 0,1. Note that we now take Hg . for the target of the maps rather than Hg. Moreover, in
the calculation below, we will frequently use the following formula for intersection number pairings:
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for a finite morphism i: X — Y of smooth schemes over an algebraically closed field, and proper
smooth subschemes X’ of X and Y’ of Y, we have

<XA7X, X Y/>X><Y - <X/AaX/ X Y,>X’><Y - <7;*X/aY,>Y

where X and X\ denote by the graphs of ¢ and i | X', respectively. The proof for (1) and (2)
differs by the parity of n.

We first consider the case where n = ng is even. By Lemma 5.10.4(1) and Proposition 5.10.14,
shj is an isomorphism. Take a point s;, € Sh(V} KF°K} ). Let s* be the unique element in
Sh(V;, KI°KS, ) such that s;, = shj(s*®), and put s;,; = shi(s®). By (the last assertion in)
Proposition 5.10.12, we have

mf incg(lss ) = incy(lse ).

(¢} ()

For (1), we have for every s, € Sh(V;,, KIG K} ) the identity

T . o * . s
/ﬁ- cl(Py) Uine, (Lse s, 1)) = /7 (m;!lnca(ls;l)) Uinci(1y )
* 1
T, .t
= . incg(Lss, ) Uiney(Ly ).

Thus, (1) follows from Proposition 5.7.6. For (2), we have for every )., € Sh(Vy_, KI% K>, )
the identity

T T
ﬁ A(PR) Uinet* (g ) = ﬁ (mined(1s)) Uinei (L)

PDe.e M:H»l
_ * c e e
= /7 incg(Lss, ) Uinci(Ly ).
M:L+l

Thus, (2) follows from Proposition 5.7.6.
We then consider the case where n = n; is odd. Take a point s; ; € Sh(Vy,, K}’ 1K}, ). By
Proposition 5.10.6, Proposition 5.10.12, and Proposition 5.10.14, we have

m{"incg(Lse ) = incy(shjshi"le. ).

For (1), we have for every s;, € Sh(V}, KF°K} ) the identity

: ° et * ox: @ N
/?” cl(P) Uine (Lse ,, s1)) = /M; (mT 1nco(137-1+1)> Uincy (1)
T
= | inc}(sh;shi" 1l ) U inc (1 ).

Thus, (1) follows from Proposition 5.7.6. For (2), we have for every s, € Sh(V,, KK, ) the
identity

T T
/ﬁ” cl(PH) Uine!® (1(se  s1)) = /M:L (Hl%*in(?(.)(ls;“)) U incf(1y)
T
= - incj(shj;shi*le ) Uinci(ly,).
Thus, (1) follows from Proposition 5.7.6.
The theorem is proved. 0
Lemma 5.11.6. For every f € L[Sh(V, ,KF°K? )] @ L[Sh(V; ,KPK? )], we have

> (To pf)(shi(s), shi(s)) = . (T pf)(s,shi(s)).

seSh(Vg KR°Ke, seSh(Vg, KR°KS )
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Proof. There are two cases.
When n is even, by Lemma 5.10.8(1) and Proposition 5.10.14, we have

> (To /) (shi(s),shi(s)) = > f(shi(shf*(s)), shiy (shi(s)))
s€Sh(Vy KRKe, ) seSh(Ve, KEKL, )

= ) F(shf (shf? (), shi (shf? (s (s))),

s€Sh(VS, KK, )

which, by Lemma 5.10.4(1), Definition 5.10.7, and Proposition 5.10.14, equals

) F(shf(s),shi(shf(s))) = . (Toopf)(s,shi(s)).
s€Sh(VS, KEKL, ) s€Sh(Vg KHKS )
When n is odd, by Definition 5.10.7 and Proposition 5.10.14, we have
> (To, pf)(sh(s), shi(s)) = > f(sh? (sh](s)), shi(shi3(s))

s€Sh(Vg,KE°Ke, ) seSh(V KEKL, )

= > F (0 (shi(s)), shi% (shi(s)),

s€Sh(V, KL KL, )

which, by Lemma 5.10.8(2) and Proposition 5.10.14, equals

. (T pf)(s,shi(s)).

s€Sh(Vg,KR°KS, )
The lemma is proved.

Construction 5.11.7. We constructs maps

Inc;: HY(QY, L(n)) — HY(Q"*, L(n)) = HE(P**, L(n))
B, LSh(VE,, = K2, )] @1 LISh(VE, = K2, )],
Inc?,: H(QY, L(n)) — (Q°’ L(n)) = HF"(P>*, L(n))
Dy LISB(VS, , =no K3, )] @1 LISH(VE,, = K2, )],
Inc; ;: HY(Q, L(n)) — H%"(Q” L(n)) = HF"(P**, L(n))
B, LSh(VE,, = K2, )] @1 LISh(VE, = K2, )],
Inc H%"( 0, L(n)) — H%"(Q” L(n)) = HF"(P**, L(n))
B LIS(VE, =KD, )] @1 LIS(VE, =0, K5, )

Define the map
Vi HZ(QO, L(n) > LISW(VS,, =aK3, )] @1 LISH(VS, = K3, )]

ni’ ni,p
to be the sum of the following four maps
( no,p ® Im p) © IHCZT, (]9 + 1)2( no,p ® T;: p) ° InCz,.;
(p+ 1)1, ®12,,) o Inchy, (p+ DA(IZ, © T2, o Inc

,®

At last, we recall the construction of potential map from [Liul9, Section 2.2]. For r € Z, put

B'(Q, L) = ker (5: HZ (Q), L(r)) — HZ(Q, L(r)))
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and
B,(Q, L) = coker (31: Hz*" "7 2(@QW, L(2n — r - 2)) - HZ*" 7V (QW, L2n — r - 1)) .
We define B"(Q, L)? and Bs,_,_1(Q, L)o to be the kernel and the cokernel of the tautological map
Br(Q? L) — B2nfr71<Q7 L)?

respectively. By [Liul9, Lemma 2.4], the composite map

H QO L(r = 1) % HV@Y, L — 1) 2 HE @, L(r)
factors through a unique map
By —(Q, L)o — B"(Q, L)’
in Fun(&(Vy,)? x &(V5,,)?, Mod(L[Gal(F,/Fy)])). Put

- . Gal(Fp/F¥
C™(Q, L) = BQ, D)ys, ey Cr(Q L) = Bo(Q 1),

Then we obtain the potential map
(528) A" O2n—7’(Q7 L) — CT(Qa L)
in Fun(R(V2)? x &(Vy, )P, Mod(L))."* We will be most interested in the case where r = n.

Remark 5.11.8. By the descriptions of the Galois actions in Construction 5.2.6 and Construction
5.3.6, the map V in Construction 5.11.7 factors through the quotient map

HZ(Q®, L(n)) — HZ(Q", L(n))Gal(Fp JF2)>
hence restricts to a map

V: C™(Q, L) — L[Sh(VS,, = K2, )] @1 LISh(VS,, = KS. )]

no’ no,p ni,p

in Fun(&(V2)P x &(VS_ )P, Mod(L)), via the canonical map C™(Q, L) — HZ*(Q©, L(n)) Ga®, re)-

6. TATE CLASSES AND ARITHMETIC LEVEL RAISING

In this section, we study two important arithmetic properties of semistable moduli schemes
introduced in Section 5. The first is the existence of Tate cycles when the rank is odd, studied
in Subsection 6.2. The second is the arithmetic level raising when the rank is even, studied
in Subsections 6.3 and 6.4. In Subsection 6.1, we collect some preliminaries on automorphic
representations and their motives.

Let N > 2 be an integer with r := | ¥ |.

6.1. Preliminaries on automorphic representations. In this subsection, we consider

O a relevant representation IT of GLx(Ap) (Definition 1.1.3),

O a strong coefficient field £ C C of II (Definition 3.2.5),

O a finite set X}, of nonarchimedean places of F* containing i (Notation 3.1.4),

O a (possibly empty) finite set 37 '* of nonarchimedean places of F* that are inert in F,
strongly disjoint from X7, (Definition 1.3.3),

O a finite set ©1 of nonarchimedean places of F'* containing 3.5, U ;.

B [Lin19], €7(Q, L) and C,(Q, L) are denoted by A"(Q, L)° and A,(Q, L)o, respectively.
MHere, the subscript “Ir” standards for “level-raising”.
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We then have, by Construction 3.1.10, the homomorphism
on: Ty — Og.
For every prime \ of E/, we have a continuous homomorphism
pix: I'r = GLy(E))

from Proposition 3.2.4(2) and Definition 3.2.5, such that pf; , and pyj (1 — N) are conjugate.
We choose

O a finite place X of E (with the underlying rational prime /) satisfying £ 1 ||v||(||v]|? — 1) for

every v € 3,
O a positive integer m,

O a standard definite hermitian space V§{, of rank N over F, together with a self-dual

+ st
shust U

+
Hogstosr st Op,-lattice A} in V{, ®@p AR E“, satisfying that (V%), is not split for

v € ¥f when N is even,
O an object K3 € R(VY) of the form

Ky= [ (&) x II UMY,

vext, ust vgsLust, ust

min min

satisfying that when N is even, (K$%), is a transferable open compact subgroup of
U(VS)(ESF) (Definition D.2.1)'” for v € Xf, and is a special maximal subgroup of

min

U(V)(ES) for v € 3

Ir»

O a special inert prime (Definition 3.3.4) p of F'™ (with the underlying rational prime p)

satisfying
(P1): X7 does not contain p-adic places;
(P2): ¢ does not divide p(p* — 1);

(P3): there exists a CM type ® containing 7., as in the initial setup of Section 5 satisfying

Qq) = Qp2;

(P4): pif N is even, then Py ) mod \™ is level-raising special at p (Definition 3.1.5);
if NV is odd, then Pyr,) mod X is Tate generic at p (Definition 3.1.5);

(P5): Py, mod A is intertwining generic at p (Definition 3.1.5);

(P6): if N is even, the natural map

Op/A"[Sh(Vyy, K3)] . Op/A"[Sh(Vy, K3)]
+
Tiﬂmp N ker ¢ ker o
is an isomorphism;
(So we can and will adopt the setup in Section 5 to the datum (V3, {A%}Hqlp)-)
O remaining data in the initial setup of Section 5 with Qg’ = Qp2;

O a definite uniformization datum as in Construction 5.3.6; and
O an indefinite uniformization datum (Viy, jn, {Ag y}qpp) for Vi as in Definition 5.1.6.

Put K = (K%)? and K% = Ky x K3. Like in Subsection 5.8, we put X} = X;(V§, KY)
for meaningful pairs (X,?) € {M,M,B,S} x { ,n,0,e, 1}. Let (E?? d??) be the weight spectral

sequence abutting to the cohomology Hx™*(My, R¥O,(r)) from Subsection 5.8.

Remark 6.1.1. By Construction 3.1.10 and (P2) (namely, £ # p), we know that Py, is a poly-

nomial with coefficients in O,.

Remark 6.1.2. Note that when N = 2, (P2) and (P4) together imply (P5).

5By Lemma D.2.2(3), every sufficiently small (K%/), is transferable. So the readers may ignore this technical

requirement.
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Notation 6.1.3. We introduce the following ideas of ']I‘?ruE
mi=To % Aker (’]I‘N 0y — OE//\)
n= T2 A ker (T? I Oy — OE/X”) .

We then introduce following assumptions.

Assumption 6.1.4. We have H:(My, R¥O,), = 0 for i # N — 1, and that HY "' (My, RUO) ),
is a finite free Oy-module.

Assumption 6.1.5. The Galois representation py  is residually absolutely irreducible.

Remark 6.1.6. Under Assumption 6.1.5, we obtain a homomorphism
prx: e — GLy(Ox/A)

from the residual homomorphism of py , which is unique to to conjugation, absolutely irreducible,
and (1 — N)-polarizable (Definition 2.4.7). From Construction 2.4.8 or Lemma E.1.3(3), we then
have an extension

ﬁl’[,)\,+: FF+ — gN(O)\/)\)
of prrx. For a different extension pry 4/, there exist elements g € GLx(O5/\) and a € (Oy/A)*
such that pn () = gpna+(v)g~" for v € Tp, and pry+(c) = (aB, p,¢) if pra+(c) = (B, ¢).
The discussion below on the extension py » + is independent of such ambiguity.
We now fix an isomorphism ¢,: C ~ Q, that induces the place X of E, till the end of this section.

Definition 6.1.7. Let m be an automorphic representation of U(V$)(Ap+). We say that 7 is
I1-congruent (outside ¥ U XF) if 7 is trivial, and for every nonarchimedean place v of F'* not

in XFuUXiu Ez, the two homf)morphisms LPa(BC(r,)) and Lida,) from Ty, to Q,, which in fact
take values in Z,, coincide in Fy.

Lemma 6.1.8. The two maps
TNy OE[Sh(V?v,KC’ )m = Op[Sh(Vy, K§)lm
TN p: Op[Sh(Vy, Ky)m = Op[Sh(Vy, Ki)ln
are both isomorphisms, where Ty, and T?\Zp are introduced in Definition 5.7.1.

Proof. By Proposition B.4.3(1) (resp. Proposition B.3.5(1)) when N is odd (resp. even) and (P5),
we know that the endomorphism Iy, = T3, o Ty, of Og[Sh(V3, K )|n is an isomorphism. Thus,
it suffices to show that the free Oy-modules Og[Sh(V$, K% )]m and Og[Sh(V$, K& )]w have the
same rank. We show that Og[Sh(V$, K%)]m ®0, Q¢ and Og[Sh(VS, K%)]m ®0, Q¢ have the same
dimension. We have

OE[Sh< ?Va ®OA QZ @m
Op[Sh(Vy, K3)ln ®o, Qr = EBm

where 7 runs over all automorphic representations of U(V$)(Ap+) (with coefficients in Q) that
are II-congruent; and m(m) denotes the automorphic multiplicity of 7.'® It suffices to show that

if in the second direct sum 7T;< N # {0}, which has to be of dimension one since K% is special

16 Although we know that m(m) = 1 by Proposition C.3.1(2), we do not need this fact here.
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maximal, then W;( N # {0} as well. Since 7, is semistable, then its Satake parameter a does not
contain the pair {—1, -1} (resp. {—p, —p~'}) when N is even (resp. odd) by (P5). Let m, be
the unique constituent of the principal series of o such that (7})*~ # {0}, then by Prop081t10n
B.4.3(1) (resp. Proposition B.3.5(1)) when N is odd (resp. even) again, we see that ()"~ # {0}

Thus, we must have 1, = 7, as K} is special maximal. The lemma follows.

Lemma 6.1.9. Let m be an automorphic representation of U(VY)(Ap+) that is II-congruent. If
Assumption 6.1.5 holds, then 7 is stable.

Proof. By Proposition 3.2.8, we know that BC(w) exists as (V%,7) is a relevant pair. Let
PBC(m)e: L'E — GLy(Qy) be the associated Galois representation from Proposition 3.2.3(2), which
is the direct sum of the associated Galois representation of each isobaric factors. If BC(w) is
not cuspidal, then ppc(r),, is decomposable. Since 7 is II-congruent, by the Chebotarev density
theorem, ppc(r),, admits a lattice whose residual representation is isomorphic to pr . ®o,/x F,,
which is irreducible. This is a contradiction. Thus, the lemma follows.

Lemma 6.1.10. Assume Assumption 6.1.5. Then the natural maps
He, o(Sh(Vly, jvKV K], v)7: O)m = He(Sh(Viy, 8KV K, v) 7 O s
Hls,c(M;Va O/\)m — H%(M;V, O/\)m:
are both isomorphisms for every i € 7.

Proof. By Lemma 5.1.7, and the description of the weight spectral sequence (EP9, d?9) in Lemma
5.8.2 (for N odd) and Lemma 5.8.3 (for NV even), it suffices to show that the natural map

(6.1) Hi o(Sh(Viy, INKR K, )7, Ox)m = He (Sh(Viy, j8KFK] 6) 7, Or)m

is an isomorphlsm for every ¢ € Z. This is trivial when Sh(V'y, jnKY K] ) is proper
If Sh(Vy, j8K K], y) is not proper, then the Witt index of V’ is 1; and Sh(Vy, jnKY K], ) has

a canonical toroidal compactification Sh(Vly, j v K& VK, v), which is smooth over F'. As jyKK] v

is neat, the boundary Z == Sh(VY, jyK? VK, v) \ Sh(Vy, i8KVK], y) is geometrically isomorphic
to a disjoint union of abelian varieties (of dimension N — 2). In particular, H (Z5, 0,) is a free
O -module (of finite rank). Let 7’> be an irreducible admissible representation of U(V’y)(A%)
that appears in H, (Z7, O)) ®0,., C. Then 7/ extends to an automorphic representation 7’ of
U(V’y)(Ap+) that is a subquotient of the parabolic induction of a cuspidal automorphic represen-
tation of L(Ap+) where L is the unique proper Levi subgroup of U(V’) up to conjugation. In par-
ticular, 7’ is not stable. Thus, by (the same argument of) Lemma 6.1.9, we have H, (Z7, O))m = 0
for every i € Z. This implies that (6.1) is an isomorphism. O

6.2. Tate classes in the odd rank case. In this section, we assume that N = 2r + 1 is odd
with r > 1. We study the properties of the localized spectral sequence ELZ, after Lemma 5.8.2.

Lemma 6.2.1. We have o
HL (MY, O))m = 0

for every odd integer i.

Proof. For i # 2r — 1, it follows from Lemma 5.5.2(1). Now we assume i = 2r — 1.

Let m°°? be an irreducible admissible representation of U(V{)(A7:") that appears in the coho-
mology H?{’l(Mk, Ox)m ®0, . C. By Proposition 5.5.4, we may complete 7°°? to an automorphic
representation 7 of U(V$,)(Ag+) as in that proposition, such that 7 is II-congruent and such that
BC(m,) is a constituent of an unramified principal series of GLy(F}), whose Satake parameter
contains {—p, —p~'} which is different from e(Il,) in F, by (P5).
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On the other hand, by the Chebotarev density theorem, both ppc(r),, and pmy ®g, Q¢ each
admits a lattice such that their reductions are isomorphic. However, this is not possible by
Proposition C.3.1(2) and Proposition 3.2.4(2). Therefore, we must have HZ (M}, 0))m = 0.
The lemma is proved. U

Lemma 6.2.2. Assume Assumption 6.1.4. We have
(1) Ef =0 if q is odd;
(2) EVe is a free Ox-module for every (p,q) € Z?;
(3) B = 0 unless (p.g) = (0.20);
(4) Egﬁf is canonically isomorphic to HY (Mpy, RUOL(7))m, which is a free Ox-module;
(5) B2 degenerates at the second page.

Proof. Part (1) follows from Lemma 6.2.1 and Assumption 6.1.4. Part (3) follows since dj "
. .. . 0.2r . . . .. . .

is injective and d;”" is surjective. The remaining parts are immediate consequences of (1) and
Assumption 6.1.4. O

Theorem 6.2.3. The map
Vit B = OAISB(V3, K3l
(Construction 5.8.4) is surjective. Moreover, if we assume Assumptions 6.1.4, 6.1.5, and Hypoth-
esis 3.2.9 for N, then we have
(1) The generalized Frobenius eigenvalues of the Ox/\[Gal(F,/F,2)]-module B2 @0, Ox/\ is

2m
contained in the set of roots of Pa,) mod A in a finite extension of Oy/A.

(2) The O,[Gal(F,/F,2)]-module Egﬁf is weakly semisimple (Definition 2.1.2).
(3) The map V} induces an isomorphism

Vot (B2 i, 50y OASB(Vy K-

By Remark 5.8.5, the map V}, always factors through the quotient map Egﬁf — (ngnr)(}al(ﬁp JF 3)-
P

Proof. We first show that V. is surjective. From Construction 5.8.1, we have a map
(Incy, Incf, Inc} o T3°) := Ox[Sh(Vi, K3)]®* — EP*
which induces a map
ker (d(l]’% o (In¢}, Inc!, Incf o T;O)) — ker d0?".
However, by Lemma 5.8.6, the former kernel is simply the kernel of the map
Inc?

(p+1 —1 0) Incy (In(j3 Inc/ Inc!'oT;O).
Inc;

Now since (p+1,—1,0) and (0, T,* o T3°, (p+1)°T;*) ® O, are linearly independent, by Nakayama’s
lemma, V% is surjective if the following matrix
Inc?
Incy (Incf Inc/ Inc o T;O)
Tp* o Inc,

in Ty, is nondegenerate modulo m. However, by Lemma 5.8.2(2), the above matrix equals

1 0 0
0 _(p + 1)2 I?V,p )
0 I?V,P T?\Zp o T;VJJ o T?\(fj,p
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whose non-degeneracy modulo m follows from Lemma B.4.2, Proposition B.4.3, and (P4,P5).
Now we consider the three remaining assertions. By Lemma 5.1.7 and Lemma 6.2.2, we have
an isomorphism

Eym = HZ (Sh(V', JnKR K], v)7, OA(1))m
of 0,[Gal(Q,/Q,2)]-modules. By Lemma 6.1.10, Proposition C.3.1(2), and Hypothesis 3.2.9, we
have

HE (Sh(V', JNKR K, v 7 Oa(r))m ®0, Qe ~ @PBC r) 4

of representations of I'r with coefficients in Q,, where d(7r ) == dim(7/°?)3I¥KN | and the direct sum
is taken over all stable automorphic representations 7’ of U(V’)(Ap+) that is II- congruent and such
that m, is a holomorphic discrete series representation of U(V')(F} ) with the Harish-Chandra

parameter {r,r—1,...,1 —r,—r}; and 7/ is trivial for every archimedean place T # 7.,

For the proof of (1-3), we may replace E\ by a finite extension inside Q, such that PBC(x') 0
is defined over E) for every 7’ appeared in the previous direct sum. Now we regard pgc(xy,, as
a representation over Ey. Then ppc(r,, (r) admits a I'p-stable O,-lattice RBc(ry, unique up to

homothety, whose reduction Rpc(r is isomorphic to pm(r). Moreover, we have an inclusion

By ~ HZ (Sh(V', JnKR K, 3) 5, OA(r)m € B Ricpn) 2™

of 0,[Gal(F,/F,2)]-modules. This already implies (1).
By (P4), we know that pf ,(r) is weakly semisimple and

dimok/,\ 15&)\<7,)Ga1(]1*‘p/ﬂ*‘p2) -1

On the other hand, we have
dimE/\ p]CBC(ﬂ'/)wz (T)Gal(FP/FPQ) > 1.

Thus by Lemma 2.1.5, for every n’ in the previous direct sum, Rgc(ﬂ,) is weakly semisimple, and

dimg, PRo( ., (T)Gal(Fp/FPQ) =1.

This implies (2) by Lemma 2.1.4(1).

The above discussion also implies that, for (3), it suffices to show

Zd < dlmE/\ OX[Sh(VN,KO )] ®O,\ E/\

where 7’ is taken over the same set as in the previous direct sum. However, this follows from
Corollary C.3.3 and Lemma 6.1.8. The theorem is proved. 0J

6.3. Arithmetic level raising in the even rank case. In this subsection, we assume that
N = 2r is even with r > 1. We study the properties of the localized spectral sequence EE'Y, after
Lemma 5.8.3.

Proposition 6.3.1. Suppose N > 4. Assume Assumptions 6.1.4, 6.1.5, and Hypothesis 3.2.9 for
N. Then we have

(1) The map
(Incy + Inc;f +Incf)m: Ox[Sh(VS, K )] 22 @ O\[Sh(VY, KY)]m — E0 20— 2(—1)

from Construction 5.8.1 is an isomorphism.
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(2) The map
(Inct, T, Tncn: EVZ — 0 [Sh(VS,, K3))%2 € Ox[Sh(V3,, K3l
from Construction 5.8.1 is surjective, whose kernel is the Ox-torsion of HZ (M, Ox(7))m-
(3) The map V9, : d(ffnr — O\[Sh(VS, K)]m (Construction 5.8.4) is surjective.
(4) The map V2 o dl_}n’% o d(l):ir_2(—1) induces a map

F—lHl (IprH%T_l(MJ\U R\IJOA(T))ITI) — O, [Sh<v})\f7 K?\/)]m/((p + 1)RJOV,p - I?\/,p)
which is surjective, whose kernel is canonically the Ox-torsion of HZ (M%, Ox())m-

Proof. We first claim that the map
(in¢] + inc} o Tx )m: OA[Sh(Vi, K )2 = HY (MY, Ox(r — 1))m

is an isomorphism. In fact, by Lemma 6.3.2 below, it suffices to find a line bundle £ as in Definition
5.7.7 such that (inc.)y is surjective, where

inc, = (inc, Ty, o incy) 0 O o (incf + incf o TN,
We take £ to be O(My)®2 ® (Lie s« )*"*'. Then by Proposition 5.7.8 and Proposition 5.7.9, the
endomorphism inc, is given the matrix
( (p+1)° (p+ IR, )
P+ D)I%, TRy o Ry, + Ry, + (2 + DTxy)) 0 TR,

in Ty ,. Now, by Lemma B.3.6 and Proposition B.3.5, the determinant of the above matrix mod
m is equal to

7‘2T 1 2T2T 1 1 3 r241 r2_1 - 1 1
—p H(az+%+2)-((p+l)p H(ai—l—%—p—p)ﬁ-(p—f—l) (p + —p )z::l <a1+%p>)

=1 i=1 j=1:=1 P
i#]

where {a,,..., a1, a7, ... a; '} are the roots of Pai1y,,) mod X in a finite extension of Oy/A. By
(P2), we have

P+ (0T =) #£0 mod X;
by (P4), we have
H (ai%—l'—p—;) =0 mod A, ZH (aﬂ—

i=1 & Jj=li=l
i#]

1 1

—p—);‘é() mod A;
O p

and by (P5), we have

H(ai—i-l—l—Q) =0 mod .
i=1 @i
In particular, the matrix representing inc, is nondegenerate modulo m; hence the claim follows
from Nakayama’s lemma.

Part (1) follows immediately from the above claim and Lemma 6.1.8. Part (2) follows from (1)
by Poincaré duality, together with Lemma 6.1.10.

For (3), by definition, AY is the composition of

(TN pIncg, TNy © Inc?, Inc, ) E(l)fnr — O5[Sh(V, K%)] &3,
which is surjective by (2) and Lemma 6.1.8, and the obviously surjective map
(1,0,p + 1) Ox[Sh(V, K322 — O5[Sh(VS, K¥)m-
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Thus, (3) follows.
Now we consider (4). Let (E?;ﬁ{” ) be the free O-quotient of E?ﬁf, which is simply the quotient by
the Ox-torsion (HZ (M%, Ox(T))m)tor of HZ (M%, OA(7))m- Thus by (2), we obtain an isomorphism

(Inc?, Inc}, Inc}) (EY2) e = OASh(V3, K352 @D Ox[Sh(Vi, Ki)]m

through which we identify the two sides. If we let (ker d[l)fur )& be the free Oy-quotient of ker dcl)fnr,

then by Lemma 5.8.6, the above isomorphism maps the submodule (ker d(l)ﬁ:)fr to the kernel of the

map

(p+1,-1,0): Ox[Sh(V}, Kl €D Oa[Sh(Viy, K )lm — Oa[Sh(V3y, Ki)]m-

By Assumption 6.1.4, we have im dl_,rln’% = ker d(l):zf. Combining Lemma 5.8.3(5), we see that the
map dii{gr induces a canonical isomorphism
— im d; b ker d"2"
F—IHI(IQ :Hgil(MMR\I’OA(T))M = —1,2r 17(?%«—2 = —1,2r (1)7;—2
v im(dy " odiy (1)) im(dyy" odin “(—1))

. ~1.9 . . .
induced by d; ;*". Thus, we have a canonical surjective map

F_ L H(Ig,, HZ ' (My, REOA (1)) — (ker di )i
S I (A o dU T (- 1))

whose kernel is -
_ (HTT(M;\H O)\ (T))m)tor ‘
(HF (M3, OA(1))m)or N im(dy ™" 0y *(—1))
By Lemma 6.1.8 and Lemma 5.8.3(7), we see that (ker d(l]ﬁf)fr Nker VY is contained in the image
dl_"ln’% o dP?2(—1), as modules of (E?ﬁf)fr. Thus, by (3), the map V9 induces an isomorphism

1,m
(ker di' ) . OA[Sh(VE, K3)]m
im(d; ;> o dVa 2(=1))  im(V9od;y odie (~1))

By Lemma 5.8.3(8), im(V? o dii{% o dy'%?(—1)) coincides with the submodule
(Tp 0 (0 + DR, — Txp 0 Top) © Thp ) -OA[Sh(V3y, K3 ) -
Note that, by Lemma B.3.6, we have
TRy 0 (0 + DRY, — TR, 0 TH,) 0 TN, = Ty (0 + )RR, — Ty
Thus, to conclude (4), it remains to show that
(6.2) (HE (M3, OA(1))m)ior Nim(dy " o dyy—*(—1)) = 0.

By Lemma 5.1.7, Hypothesis 3.2.9, and Proposition C.3.1(2), we know that the Q['r]-module
HZ 1 (Mpy, RUOL(r))m ®0, Qy is isomorphic to a direct sum of ppy,,(r) for some relevant repre-
sentations II' of GLy(Ap). By Proposition 3.2.4(1) and [I'Y07, Lemma 1.4(3)], we know that
pv ., (1) is pure of weight —1 at p (Definition 2.4.4). In particular, we have H(Q,z, prr,, (1)) = 0
by [Nek07, Proposition 4.2.2(1)], hence that both sides of the inclusion

F_iH! (TIg,, HY 7 (My, RUOA(7))m) C Hyjg (@2, HY = (M, REOA(7) ) )

sing
are torsion Oy-modules. Thus, the O)-rank of im(dl_j{% o d?jﬁf‘Q(—l)) is equal to the Oy-rank of
ker d(l)ﬁf, which in turn is equal to the sum of Oy-ranks of O,[Sh(V%, K)]m and O»[Sh(VS, K% )|m-
However, the source of the map dl_j{% o d(l)jﬁf_2(—1), which is E?ﬁf 2 /im dii{zT, is also a free O,-
module of the same rank. Therefore, we must have (6.2). Part (4) is proved. O
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Lemma 6.3.2. Suppose N > 4. Assume Assumptions 6.1.4, 6.1.5, and Hypothesis 3.2.9 for N.
Then HZ (M%, Ox)n is a free Ox-module; and its rank over Oy is at most twice the rank of the
(free) Ox-module O[Sh(V%, K% )|m-

Proof. By Assumption 6.1.4, Lemma 5.8.3(2), and Lemma 5.5.2(2), we have an injective map
HZ~2(M3y, Ox)m = HZ2(MLY,, Ox)m
induced by d(l)’QT_Q. For the target, we have an isomorphism
HY 2 (MY, Ox)m = OA[Sh(VR, Kl @ H™™ (M, O3

In particular, HZ (M}, O))m hence HZ2(M%;, O are free Oy-modules.

Let 77 be an irreducible admissible representation of U(V})(Ax;") that appears in
H%T_2(M;V, O))m ®0,., C. Then, by Proposition 5.5.4, one can complete 7°? to an automorphic
representation T = 7P ® 7o, @ ][, Tq such that 7 is trivial; m is unramified for g # p; and
is a constituent of an unramified principal series. Moreover, 7 is II-congruent. By Assumption
6.1.5 and Lemma 6.1.9, we know that 7 is stable.

To prove the lemma, it suffices to show that for such 7 as above, we have

(63) dim@e H%T_Q(M;V, @Z) [Lgﬂ'oo] S 2 diIIl@Z @[[Sh( ?\/7 K?V)] [Lgﬂ'oo].

Note that as in the proof of Proposition 5.5.4, we have an isomorphism

(6.4) i "HPR (M, Q) = Mapygs (U(V?v)(Fﬂ\U(V?v)( /K I Ky @ ) :
alp.a7p

By Proposition C.3.1(2), we have BC(m,) ~ BC(7),. Let ppc(n),,: I'r — GLnN(Qr) be the
associated Galois representation. Since 7 is II-congruent, by the Chebotarev density theorem,
PBC(m),, admits a lattice whose residual representation is isomorphic to prx ®o,/a F,, which is
irreducible by Assumption 6.1.5. Thus, by Proposition 3.2.4(2), a(BC(7,)) does not contain
{—1,—1} due to (P5) and contains {p,p~'} with multiplicity at most one by (P4). We now have
three cases.

Case 1: m, is unramified. Then (6.3) follows by (6.4) and the fact that the multiplicity of Qy
K3, is at most 1 by Proposition C.2.1(2).
Case 2: m, is not unramified and m, ¢ S. Then by Lemma C.2.3(1),

Q. Thus, both sides of (6.3) are zero by (6.4).
Case 3: m, belongs to S. Then we have Q,[Sh(V%, K)][te7*] = 0, hence an inclusion

Ty|lke does not contain
PIRNp

(6.5) ¢ 'HY (M}, Q0)[7>] — Mapy; (U(V?v)(F+)\U(V?v)( VKR 11 KNchN) ]
alp.a#p

by (6.4). Note that, by Proposition C.2.1(2), the multiplicity of Qy in Wp]ngp is one, hence we

have 7

Mapyes (U(V?v)(F+)\U(V?v)( ) /KY T K?V,qJQN> 7] == (mP)KN
alp,a7p

by Proposition C.3.1(2).

On the other hand, by Lemma 6.1.10, Proposition C.3.1(2), Corollary C.3.2, and Hypothesis
3.2.9, we know that the Q[I'r]-module

Hz = (Sh(Viy, InKVKG, v )7 Q) [Lem™?]

is isomorphic to dim(7>?)X¥ copies of PBc(n).,- By Proposition 3.2.4(2), we know that
PBC(r W|Ga1 @/Q,2) has nontrivial monodromy action. Thus, by Lemma 5.1.7 and the spectral
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sequence EP9, the cokernel of (6.5) has dimension dim(7°?)¥~ | which forces the target of (6.5)
to vanish. In particular, (6.3) holds.
The lemma is proved. O

Remark 6.3.3. Following the well-known computation of level raising of Shimura curves (see, for
example, Step 5 of the proof of [LLiu19, Proposition 3.32]), we know that Proposition 6.3.1(4) also
holds when N = 2. Moreover, as M} is a disjoint union of projective lines, the kernel of the map
is trivial hence the map is an isomorphism.

Recall that we have fixed a positive integer m at the beginning of Subsection 6.1, and introduced
the ideal n in Notation 6.1.3.

Theorem 6.3.4. Assume Assumptions 6.1.4, 6.1.5, and Hypothesis 3.2.9 for N. Moreover, if
N >4, we further assume that
(a) > 2(N + 1) and ¢ is unramified in F
(b) puas (Remark 6.1.5) is rigid for (X5, X)) (Definition E.7.1), and pualgae re,))
absolutely irreducible;
(¢) the composite homomorphism Ty 2 O — Op/\ is cohomologically generic (Definition
D.1.1); and
(d) OA[Sh(V, K% )| is nontrivial.
Then we have
(1) H: (M}V, Ox)m is a free Ox-module for every i € 7Z.
(2) Ey is a free Ox-module, and vanishes if (p,q) & {(—=1,2r),(0,2r —1),(1,2r — 2)}.
(3) If we denote by {ai',...,a*'} the roots of Pymyymod X in a finite extension of
O,/\, then the generalized Frobenius eigenvalues of the Ox/NGal(F,/F,z2)]-module
HZ LM%, OA(1))m ®0, Ox/A is contained in {pai’,... pat'}\ {1,p?}.
(4) The map in Proposition 6.3.1(4) (see Remark 6.3.3 for N = 2) factors through a map
Viw: FH (I ,, HY 7 (My, RUO,(r)) /n) — Oz[Sh(Vy, K})]/n
which is an isomorphism. The map from Lemma 5.8.3(6) induces a canonical isomorphism
F_H! (T, HY 7 (My, RVOA(7)) /1) — gy (Qpz, HY ™ (My, REOA (1)) /1).

sing
(5) There exist finitely many positive integers myq,...,m, at most m such that we have an
isomorphism

ml)c

Hil” I(Sh( JNKPOK;;N)FaO/\

IEB‘R

of O\[T'r]-modules, where R is the T g-stable Oy-lattice in pH,,\(r), unique up to homothety.

Remark 6.3.5. In fact, from the proof, one sees that when NV > 4, we can take m; = --- =m, =m
due to our strong extra assumptions.

6.4. Proof of Theorem 6.3.4. The proof differs according to N = 2 or N > 4 as we can see
from the extra assumptions. We start from the much more difficult case where N > 4.
We apply the discussion of Section E to the pair (7, x) as in Subsection E.7, where
= ﬁHA-{-' I'pr — g]\r(O)\/)\)
and the similitude character y = nF/F+ e, Vi Tp+ — O for some p € Z/2Z.'" Then 7 is rigid for
(S, 21, and also for (X1, S U {p}) by (P4).

min»

In fact, it will follow from Theorem E.7.3(3) that x = 0; but we do not need this fact a priori.
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For ? = mix, unr, ram, consider a global deformation problem (Definition E.2.6)

= (e ™ S USE U USE { P} s Usfutpiust)

mlﬂ
where

O forv € Xt 9, is the local deformation problem classifying all liftings of 7,;

O for v € %, 9, is the local deformation problem 2™ of 7, from Definition E.6.1;
O for v = p, 9, is the local deformation problem Z° of 7, from Definition E.6.1;
O for v € 3, 9, is the local deformation problem 2" of 7, from Definition E.3.6.

Then we have the global universal deformation ring Runlv from Proposition E.2.7. Put R” := R;ﬁ?v
for short. Then we have canonical surjective homomorphlsms Rmix _y RUIT and R&MX — Rram of
O,-algebras. Finally, put
Rcong — Runr ®Rmix Rram.
We fix a universal lifting
Tmix: Lt — Dy (R™X)
of 7, which induce a continuous homomorphism
: T'p — GLy(R™X)
by restriction (Notation E.1.2). By pushforward, R"¢ also induces homomorphisms

Panrt Dt = Gv(R™), Pram: Dps — @y (R,

Denote by P B the maximal closed subgroup of the inertia subgroup IF; cr F of pro-order

IIllX

coprime to ¢, as in Subsection E.5. Then FF; /P B t2e % gb% is a p-tame group (Definition

E.4.1). By definition, the homomorphism rfmx is trivial on P i Let v and V' be eigenvectors in

(Ox/N)®N for 7(¢?2) with eigenvalues p~" and p~2"2, respectively. By Hensel’s lemma, v and v/

lift to eigenvectors v and v/ in (R®X)®N for TEnix(¢127)7 with eigenvalues s and s’ in R™* lifting p=2"

242 respectively. Let x € R™* be the unique element such that 77 (t)v' = xv + V. Then

mix

and p~
we must have x(s — p~®") = 0. By Definition E.G.1, we have

Runr — Rmix/(x)7 Rram — Rmix/(s _ p—Q'r)’ Rcong lex/( 'r’ X).

Let T be the image of T% in Endp, (Ox[Sh(V$, K$)]). By (d) in Theorem 6.3.4, we know
that T £ (0. Thus by Proposition E.7.3, we have a canonical isomorphism R"™ = T g0 that
O,[Sh(VY, K )]m is canonically a free R™-module of rank dy,, > 0. We may write the eigenvalues
of i, (02) by {pai, ... p o s, s = p~¥2s71} with aq, ..., o1 in certain finite flat

extension of R™ that are not congruent to p or p~! in Oy/\. By Proposition B.3.5(2), we have
((p+ DRy — Ti)-Or[S(Vir. K)o = (5 — ). OA[Sh(Vie, K.

In particular, we have
OIS (Vi K/ (0 + DRy — Tiry) = OISV, K5l e RE%,

which is a free R®"$-module of rank d;.

On the other hand, let T™™ be the image of 'Ir? 5 in Endo, (HY ~'(My, RVO,)). By Propo-
sition 6.3.1(4) and Lemma 5.8.3(6), we know that T2™ 2 0. Thus by Lemma 5.1.7 and Theorem
E.7.3 (with (3}, i, 1) replaced by (X1, 2 U {p}, ¥+ UXY)), we have a canonical isomor-
phism R™™ & Tram go that HY ' (My, RUO, )y is canonically a free R™™-module. Define the
R™™-module

H := Homp, ((R™™)®Y, HZ ! (My, R¥O,)n)
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where 'z acts on (R™™)®V via the homomorphism r%¢ . By the same argument for [Sch18, The-
orem 5.6 (using Proposition C.3.1 and Hypothesis 3.2.9, here), we have a canonical 1somorphlsm

H2 ! (My, RUO) ) = H @pram (RE)EN

of R®™[I"p]-modules. Since R™™ is a local ring, H is a free R™"-module, say of rank d.,. If we
still denote by v and v/ for their projection in (R™™)®V  then it is easy to see that

Hlg (@, (RPN (1)) = R v o R () = RS
Thus, we obtain
HY, (Que, HEY 1My, RUOA(r))m) ~ H @peam Hi, (Qp2, (R™™)®V (1)) ~ H Qpram R©,

which is a free R®"¢-module of rank d,,, > 0.

Proposition 6.4.1. Under the assumptions of Theorem 6.5.4, we have dyn, = dram. In particular,
the two canonical maps

F—1H1<IQPQ>H‘2{_1(MN7 R\POA(T)) ) - O)\[Sh( ?V? K?V)]m/((p + 1)R§)V,p - I?\Cp)a
F—lHl(IQp2 > H‘er_l(MNv R\IJO)\( )) ) — H1 (@p2> H‘QIT_1<MNa R\IJOA(T))YH)?

sing

from Proposition 6.3.1(4) and Lemma 5.8.3(6), respectively, are both isomorphisms.

Proof. By Proposition 6.3.1(4), the first map is surjective. By Lemma 5.8.3(6), the second map is
injective. Thus, we must have d,ay > dunr > 0 by the previous discussion.

Take a geometric point 1, € (Spec R*™)(Qy) in the support of Ox[Sh(V$, K% )]m, which corre-
sponds to a relevant representation II; of GLy(Af) such that pp, ,, is residually isomorphic to
prix ®@o,/x Fe. Then we have

dunr = dlm@g[Sh( 2 Ko )][LZ¢H1]~

Take a geometric point 7o € (Spec R™™)(Qy) in the support of HY ' (My, R¥O,)n, which
corresponds to a relevant representation Iy of GLy(Ap) such that pp,,, is residually isomorphic
to P ®0, /x Fe. Then we have

dram = dim HY ™ (My, RUQy)[16m,] = dim HE ™ (Sh(Vly, JnKR K], v) 7, Qo) [tedm, ]

by Lemma 5.1.7. By Proposition D.2.3 and Lemma 6.4.2 below, we have dy, = diam. The
proposition follows. 0

Lemma 6.4.2. Let I1; and 1y be two relevant representations of GLy(Ag) such that the associated
Galois representations py, ,, and pr,,, are both residually isomorphic to pr\ ®o, /x F,. For every
v € X5 (so that every lifting of pri 1. is minimally ramified), if we realize 11y ,, and 11y, on vector
spaces Vi and Vs, respectively, then there exist normalized intertwining operators Amn, , and Ap,,
for 11y, and Ily, [Shill, Section 4.1], respectively, such that we have an GLy(Op,)-equivariant
isomorphism i: Vi = Vs satisfying i o An, , = An,, 0 1.

Proof. We will give the proof when v does not split in F', and leave the other similar case to the
readers. Let w be the unique place of F' above v.

By Proposition 3.2.4(1), both II; ,, and Il ,, are tempered. Thus by the Bernstein—Zelevinsky
classification, for a = 1,2, we can write

Mo =15V (g0 4 R R0y 1 R 0ao R oar K- Rogy,)

for some integer ¢, > 0, some standard parabolic subgroup P, C GLy(F,), and some (unitary)
discrete series representations {04, _t,, ..., 00z, satisfying o, _; =~ UZZ. See Subsection C.1 for
the notation on parabolic induction.
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By Proposition E.5.11(3) and [BLGGT 14, Lemma 1.3.4(2)], we know that pr, |1, and prm, ., |1,
are conjugate. Thus, by [Yao, Lemma 3.6], we have P, = P, (say P) and t; =t (say t), and we
assume that there are unramified (unitary) characters {x_s,...,x:} of F.* satisfying y_; ~ x;*
such that oy; = 01,; ® x;. For every i, we choose a vector space W; on which oy, realizes (and
also realize o)§ on W; via g fg=1¢), and fix a linear map A;: W; — W_; intertwining o; and
o¥¢ satisfying A_; o A; = idy,. Put o := K!__,01,; regarded as a representation of P by inflation,
which realizes on the space W = ®’?:_tI/Vi; and put A, = ®!__,A; € End(W). Choose an
element w € GLy(F,) satisfying w = 'w®, that wPw™' N P is the standard Levi subgroup of P,
and that for (a_y,...,a;) € wPw™' N P, we have w(a_y,...,a)w™ = (as,...,a_y).

We realize 11, ,, on the space

Vi = {f: GL.(F,) = W | f(pg) = 64°(p)o(p) f(9),p € P.g € GL,(F,)}.

Define a linear map Ay, ,: V1 — Vi by the formula

(An,.. (1) (9) = A; (flw'g™))

Then it is clear that Ay, , is a intertwining operator for II; ,, satisfying A% ., = 1. Similarly, we
realize Il ,, on the space

Vo= {f: GL.(F,) = W | f(pg) = 65 (0)x(p)o(p) f(g).p € P, g € GL,(F,)},

where we put y = X!__,x; regarded as a character of P. We define A, : V5 — V5 by the same
formula, which is a normalized intertwining operator for Il,,,. The desired isomorphism i is the
map sending f € V; to the unique function i(f) such that i(f)(g) = f(g) for g € GLy(OF,). The
lemma is proved. 0

Now we can prove Theorem 6.3.4 when N > 4.

Proof of Theorem 6.3.4 when N > 4. For (1), Assumption 6.1.4, Lemma 5.5.2, and the spectral
sequence in Lemma 5.8.3 imply that Hi(M%, Oy)n is Ox-torsion free for i # 2r — 1,2r. By
Proposition 6.3.1(4) and Proposition 6.4.1, we know that HZ (M%, O\)n is Ox-torsion free. It
remains to show that HY ~*(M%, Ox)m is Ox-torsion free as well.

By definition, the universal homomorphism 7%, : I'r — GLy(R™") has a direct sum decompo-

ram °

sition (R#™)®N = R; @ R, in which R; is a free R™™-submodule of rank N — 2, and Rj is the free
Rr™_submodule of rank 2 generated by (the image of) v and v'. We have

F_lH%”,_:l(MN, R\IJO)\)m g H ®Rram Rramv.
On the other hand, we have

HQTfI(Mo O/\) _ FOH?ZT_1<M7N,R\IIO)\)“1
T N> m F_lH%T_l(MN7R\IJO>\)m’

FiHY ' (My RVO) )m

FoHY ™' (My ,RYO, )m
2r—1 (N o :

HZ 7 (MY, O))m coincides with

H ®Rram RramV/Fle?}:T_l(MN, R,‘IJO)\)m,
which is fixed by Gal(F,/F,2). However, by Lemma 5.8.3(6) and Proposition 6.4.1, the Oy-torsion
of H¥ ~1(M%, Ox)m has to vanish. Part (1) is proved.

Part (2) is an immediate consequence of (1), Assumption 6.1.4, Lemma 5.5.2, and the spectral
sequence in Lemma 5.8.3.

and that the quotient is torsion free by Lemma 5.5.2. Thus, the O,-torsion of
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Part (3) is a consequence of (1) and (P4) that Py,) mod A™ is level-raising special at p. In
fact, we have an isomorphism

H%Til(mz\” OA(T)) ~H ®Rram R1 (T)
of 0,|Gal(F,/F,2)]-modules.
For (4), by Proposition 6.4.1, it suffices to show that the two natural maps
F_1H!(TIg,, HY 7 (My, RYOL(7))m) /0 — F_ H' (Ig ,, HY 7' (My, REOA(r)) /n),
Hiing (Qpe, HY ™ (M, REOA (1) Jm) /1 — Hioy(Qpe, HY ™ (M, REOA(r)) /n),

sing
are both isomorphisms. Note that we have a short exact sequence

HY ' (My RYO, (1)m

F_HY ™ (My ,RUO, (r))m -0

0 — F_iH'(Ig,, HY 7 (My, RUOA(7))m) — H'(Ig ., HY ™ (M, REOA(r))m) —

of ']I']EVWE; -modules, which is split by considering Gal(F,/F,2) actions and (3). Thus, the first iso-
morphism is confirmed. The second one is also confirmed as, by (3), one can replace Gal(F,/F,2)-
invariants by Gal(F,/F,2)-coinvariants. Part (4) is proved.

For (5), we have

Hz ™ (Sh(Viy, InKRK], v )7 Oa(r)) /0 =2 H @peam i (R™ /1) (1)
by Lemma 5.1.7. Here, we regard n as its image in T;*™, where the latter is canonically isomorphic

to R™™, We claim that Oy /A" = R™™ /n and (R™™ /n)®N (r) ~ R(™¢ as O, /\™[I'p]-modules, where
we recall that T'z acts on (R™™/n)®N via rf . By definition, n is the kernel of homomorphism

ram’

Stust én

TN —>0E%OE/>\m,

which satisfies nN O, = A"™O,. Thus, the structure homomorphism O, — R™" induces an equality
O,/\"™ = R /n. Now by the Chebotarev density theorem, and a result of Mazur and Carayol
(see [I<is09, Theorem 1.4.1]), we know that the two liftings (R /n)®N () and R(™¢ of pa(r) to
O,/A™ have to be isomorphic.

Theorem 6.3.4 is all proved when N > 4. U

Proof of Theorem 6.3./ when N = 2. Part (1) is trivial since M$ is a disjoint union of projective
lines.

Part (2) follows from (1) by the same reason as for N > 4.

Part (3) is trivial as HX(M$, O5(1)) = 0.

For (4), from Remark 6.3.3, we know that the natural map

F_H'(Ig,,, Hy(Ma, R¥O(1))m) — Oa[Sh(V3, K3)]m/((p + 1)RS, — I3 )
is an isomorphism. By (3) and Lemma 5.8.3(6), the natural map
F_H'(Ig,, Hy(Ma, R¥OA(1))m) — e (Q2, Hy (Mo, RUO(1))um)

is an isomorphism as well. Passing to the quotient by n follows from the same argument as for
N > 4.
T+ Ayt _
For (5), let T be the image of T, ™ in Endo, (Hx (Mg, R¥0,(1))). Then by the same
argument for [Sch18, Theorem 5.6], one have an isomorphism
H%(Mg, R\IIO)\(l))m ~ H ®T¥r€7m (T.ﬁ?m)@2

of Tra™[I'p]-modules, where H is a (finitely generated) Ti;™-module, and I'r acts on the factor
(Ty2™)®2 by some continuous homomorphism which lifts gf; ,(r) (from O)/X = T2™ /m to T2™).
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Clearly, the natural homomorphism O,/\"™ — T2™/n is an isomorphism. Then as an O,/\™-
module, H ®@ram Ti#™ /1 is isomorphic to @i, O/A™ for some positive integers mq,...,m, at
most m. Thus, it remains to show that (T™™/n)®2 and R(™¢ are isomorphic as deformations of
PiA(r). But this is a consequence of the Eichler—Shimura relation for the unitary Shimura curve
Sh(Vy, joK5°K], ) [Liu, Corollary D.9], the Chebotarev density theorem, and a result of Mazur
and Carayol (see [I[<is09, Theorem 1.4.1]).

Theorem 6.3.4 is all proved when N = 2. 0

7. EXPLICIT RECIPROCITY LAWS FOR RANKIN-SELBERG MOTIVES

In this section, we state and prove the two explicit reciprocity laws for automorphic Rankin—
Selberg motives. In Subsection 7.1, we setup the stage for automorphic Rankin—Selberg motives,
which will be used until the end of the next section. In Subsections 7.2 and 7.3, we state and
prove our first and second explicit reciprocity law, respectively.

7.1. Setup for automorphic Rankin—Selberg motives. Let n > 2 be an integer. We denote
by ng and n; the unique even and odd numbers in {n,n + 1}, respectively. Write ny = 2ry and
ny = 2ry + 1 for unique integers ro,r; > 1. In particular, we have n = ry + ;.

In this and the next sections, we consider

O for a = 0,1, a relevant representation I, of GL,,_ (Ar) (Definition 1.1.3),
O a strong coefficient field £ C C of both II; and II; (Definition 3.2.5).

Put X7, = Xf, UXf (Notation 3.1.4). We then have the homomorphism

o, : Tomin = Op
for « = 0,1. For a = 0,1 and every prime A of F/, we have a continuous homomorphism
praa: I'r — GL,, (E))
from Proposition 3.2.4(2) and Definition 3.2.5, such that pf;_, and pyp_ (1 —na) are conjugate.

Assumption 7.1.1. For a = 0,1, the Galois representation py, » is residually absolutely irre-
ducible.

7.2. First explicit reciprocity law. We start by choosing

O a finite place A\ of F (with the underlying rational prime /),

O a positive integer m,

O a (possibly empty) finite set Ef;l 18 of nonarchimedean places of F* that are inert in F,
strongly disjoint from Y, (Definition 1.3.3), satisfying £ { |[v[|(||v||* — 1) for v € ¥jf 1,

O a finite set ¥ of nonarchimedean places of F'* containing 3, U I

O a standard definite hermitian space V;, of rank n over F, together with a self-dual
rhust ust
Mogstomy, umtt, Or-lattice A in Vo @p Ap” ™™ (and put Vo, = (V5); and

A5y = (Ay)y), satisfying that (V7 ), is not split for v € iy,

BHere, the subscript “I” (Roman number one) stands for the “first”. In the next subsection, we will have ZI I
for the second reciprocity law.
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O an object K9 € K(V5,) and an object (K, K¢ ;) € R(V:)s, of the forms

sp?

Ko=JI (K. x II U(A)(Op+),
vezjﬁnuzfr!l vgSt uz;muzﬁ’l

K:p = H (KSp)U X H U(AZ)(OF;L)a
vez;inuzﬁﬂ vgzjouzrfmuzf;’l

ntl = H (Koi1)w X H U<AZ+1>(0F;)7
vext. unt vgutust. ust

min Ir,I min Ir,I

satisfying (Kg,), = (K3), for v € X, (Kg,)w C (K5), for v € X, and that (K ), is a
transferable open compact subgroup (Definition D.2.1) of U(Vy, )(F,") for v € £, and is
a special maximal subgroup of U(Vy, )(F}) for v € jfy,
O a special inert prime (Definition 3.3.4) p of F'* (with the underlying rational prime p)
satisfying
(PI1): ¥ does not contain p-adic places;
(PI2): ¢ does not divide p(p* — 1);
(PI3): there exists a CM type ® containing 7., as in the initial setup of Section 5 satisfying
Qg) = sz;
(PI4): Py, mod \™ is level-raising special at p (Definition 3.1.5);
Pom, ,y mod X is Tate generic at p (Definition 3.1.5);
(PI5): Py, mod A\ is intertwining generic at p (Definition 3.1.5) for o = 0, 1;
(PI6): the natural map

Op/N"[Sh(VE, K5)]  O/X"[Sh(VS, K5,
srusy — =
ne | Nker o, Tre Nker ¢,
is an isomorphism of nontrivial Og/\"-modules for o = 0, 1;
(PI7): Pa,)saqr,) mod A™ is level-raising special at p (Definition 3.1.5);
(So we can and will adopt the setup in Subsection 5.10 to the datum (V;, {A5 }qp)-)
O remaining data in the initial setup of Section 5 with @g’ = Qp2; and
O a definite uniformization datum as in Notation 5.10.13.

Put K¢ = (Kg,)? and K, == K& x K7 put KP° = (K )? and K, = K’ x K;,_ for
a = 0,1. Like in Subsection 5.11, we put X] = X (V5 ,KF°) for meaningful triples (X,?,a) €
{M,M,B,S} x{,n,0,e, 1} x{0,1}. For a = 0,1, let (“EP9,*dP9) be the weight spectral sequence
abutting to the cohomology HY *(M,,., R¥O(r,)) from Subsection 5.8.

+ 5t
Notation 7.2.1. We introduce the following ideas of ']I‘E; U , fora=0,1

iusy

Mo = T2 % ker (Tg Yy O — OE/)\> ,

srush

ng = Tnl 77 Nker <T§: dm_a> Op — OE/)\m> .
We then introduce following assumptions.

Assumption 7.2.2. For a = 0,1, we have Hg(M,,,, R¥O))n, = 0 for i # n, — 1, and that
Hga_l(Mna, RYO, ), is a finite free O)-module.

Assumption 7.2.3. Under Assumption 7.1.1, if ng > 4, then
(a) £ > 2(ng+ 1) and ¢ is unramified in F
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(b) prig s+ (Remark 6.1.5) is rigid for (Y5, ¥y ;) (Definition E.7.1), and prgalga,/ () 1
absolutely irreducible; and

(c) the composite homomorphism ’]I‘nm‘“ ﬂ Opr — Og/\ is cohomologically generic (Defini-
tion D.1.1).

Now we apply constructions in Subsection 5.11, evaluating on the object (K#°, K% ) of R(V?)? x
R(Vy1)P. In particular, we have the blow-up morphism ¢: Q — P from Notation 5.11.1, and the

localized spectral sequence (E'G, ) 40 (g mp)) from (5.27).

Lemma 7.2.4. Assume Assumptions 7.1.1, 7.2.3, 7.2.2, and Hypothesis 3.2.9 for bothn and n+1.
Then

(1) For (?9,71) € {o,e,7}* and i € Z, we have a canonical isomorphism
H%(P?O’?lv O)\)(mo,m1) = @ HZO (Mn%v O/\)mo ®o, HZI(MZIN O/\)\m
i0+11=1

in Mod(Gal(ip/IF) Ox)ie-

(2) We have E57 q) € {(—1,2n),(0,2n —1),(1,2n — 2)}, and canonical isomor-

mo ml) Zf <p7

phisms
E2 %ﬂ"?:ml) 0E2 mo ®o 1E(2]’§1T11=
Eytmomy) = "Egme " ®0, 'Exmr,
B2, ~ VB o, "B

in Mod(Gal(F,/F,2), Oy )

(3) If ES 2:10 1an( 1) has a nontrivial subquotient on which Gal(F,/F,2) acts trivially, then
1= 1.

(4) For (20,7,) € {o,0,1} and i € Z, both HE (P75, 03(1))masmyy 90 HEQ™,05(1) o
are weakly seLmszmple.

(5) We have H5(Q, R\PO%)(moi,ml) =0 fori#2n ‘—l.

(6) The canonical map Hg ,(Q), 05) mom) = HE(Q, 00) (mo.my) @5 an isomorphism for every
integers ¢ and 1.

Proof. For (1), by Lemma 5.5.2, Lemma 6.2.2(2), Theorem 6.3.4(1), we know that Hi (M’ , O))m,
is a finitely generated free Oy-module for « = 0,1 and every i, € Z. Thus, (1) follows from Lemma
6.1.10 and the Kinneth formula.

For (2), we first show that EU( | degenerates at the second page. By (1), Lemma 5.11.3(2),

s,(mp,my)

Lemma 5.5.2, and Lemma 6.2.1, the composition of d and the natural projection

m m1
El ol wy — HEZ(@QM, 0(n — 1)) HI(QM, Oa(n — 1))
is injective for every ¢ € Z. Thus, d m my) 1S injective, which implies E2 (mo,my) = U for every
q € Z. By a dual argument we have E2 ’(Imo m) = = 0 for every ¢ € Z as well. For the degeneration, it

suffices to show that d m my) 1s injective and d1 (mo,my) 1S surjective for ¢ odd. By Lemma 5.11.3(2),
Lemma 5.5.2, and Lemma 6.2.2(1), we have HL 2(Q ,Ox(n—1)) = Hq_Q(Q'Jr Ox(n — 1)) for ¢
odd, which easily implies the injectivity of df% . By a dual argument, d is surjective
for ¢ odd.

Now for every g € Z, the morphism ¢ induces a map

* 01*,q0 1p*q1 *,q
Ul. @ E17m0® E1m1 _>E

1,(mo,my)
q0+q1=q

m m1)
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of complexes of 0,[Gal(F/F,2)]-modules, hence a map
o3 D D BN @0, B = Bl m)

Po+P1=p qo+q1=¢
of 0,[Gal(F/F,)]-modules for (p,q) € Z*. By Lemma 6.2.2 and Theorem 6.3.4(2), to show (2), it
suffices to show that ¢} is an isomorphism, or the natural map

@ H‘iIO (Mno’ R\IJOA(TO))I‘HO ®OA H‘lfl (va R\I}OA(T1>>m1 — H‘ZZ(Q7 R\I/O/\(n))(momu)
io+i1=i
induced by o is an isomorphism for every ¢ € Z. By Lemma 5.1.7 and Lemma 5.11.2, the above
map is identified with

@ HZTO (MZO ®Qp2 QP’ O)\ (TO))mo ®O>\ Hz@l (MZ1 ®Qp2 Qpa OA (rl))ml — Hl‘I(Qn ®Qp2 QP? OA (n))(mo,ml)’
io-+i1=i
which is an isomorphism by Lemma 6.1.10, and the Kiinneth formula. Thus, (2) follows.

For (3), let {agi,...,00,} and {afy,...,ai},1} be the roots of Pa,, modA and
Pom, ,ymod X\ in a finite extension of Oy/A, respectively. By (PI4), we may assume ag,, = p.
By (2), Theorem 6.2.3(1), and Theorem 6.3.4(3), the generalized Frobenius eigenvalues of the
O,/ Gal(F,/F,2)]-modules E;l’Qn (—1) ®0, Ox/A and By~ 1 )(—=1) ®0, O/ are contained in

(mp,my) 2,(mg,my
{p~%ait,...,p%ai,,,p 2} and {p~'agiail, ..., p g, 1ai t U {pTrag, - p a1 ), Te
spectively. By (PI2), we have p? # 1 in Oy/\. By (PI7), we have ay;, & {p? p 2} for 1 <4y <y,
which implies 1 & {p*QOzﬂ, . ,p*Qinl,p*Q}. Again by (PI7), we have ag 014, € {p,p'} for
1 <ip < rgand 1 < i < r, which implies 1 ¢ {p~'agiaii,....p 'ag,,_10ir}. By (P4),
we have ag;, & {p,p '} for 1 < iy < ry, which implies 1 ¢ {pila(ﬂ, . ,pilaiio,l}. Thus, (3)
follows.

For (4), by Lemma 5.11.3 (3-5) and Lemma 2.1.4(1), it suffices to show that
HZ (P O5(1))(momy) i weakly semisimple. By (1) and Lemma 6.2.2(1), it suffices to
show that HZ°(M, O\ (io))me ®0, HE*(M!L, Ox(i1))m, is weakly semisimple for ig,i; € Z. By
Lemma 5.5.2, the action of Gal(F,/F,2) on H¥*(M! ,O\(is))m, is trivial for & = 0,1, ? = o, 1,
and every i, € Z. On the other hand, it is a consequence of Theorem 6.3.4(2) (for iy) and Lemma
6.2.2(3) (for i1) that the action of Gal(F,/F,2) on H¥*(M?,_, Ox(ia))m, is trivial if ig & {ro — 1,79}
or i; # r1. By Proposition 6.3.1(1,2) and Theorem 6.3.4(1), the actions of Gal(F,/F,2) on both
HYO (M3, Ox(ro — 1))m, and HZ°(M;, , Ox(r0))m, are also trivial. Thus, by Lemma 2.1.4(1),

it remains to show that HY*(M? , Ox(r1))m, is weakly semisimple, which follows from Theorem

6.2.3(2) as it is isomorphic to the direct sum of 1Egj§ff and H (M}, Ox(r1))m, -
Part (5) is a direct consequence of (2).
Part (6) follows from (1), Lemma 6.1.10, and Lemma 5.11.3(3-5). O

Remark 7.2.5. In fact, Lemma 7.2.4(5) holds under only Assumption 7.2.2; and Lemma 7.2.4(6)
holds under only Assumption 7.1.1.

Lemma 7.2.4(5) induces a coboundary map
Alq: Zg(Q") — H'(Qe, HY' ™ (Q, RTOA(1)) (mo.my))-
We also recall the singular quotient map
o: H' (szﬂ H%nil(Qv RYO, (n»(mo,ml)) - Hsling<@p27 H%nil(Qv RWO}\("))(WO,mﬂ)'

By our choice of K, and (K2, K¢, ), we obtain a morphism

sp?
M, (V5. KS,) = P
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which is finite. Denote by P, the corresponding cycle; and let Qg, be the strict transform of
P, under o, which is a Tp-invariant cycle of Q. Our main goal is to compute d AJq(QZ,) in

Smg(@pz,H%” 1(Q,R¥0y(n))/(ng,n1)). Recall the map A" (5.28); the cycle Qg, gives rise to a
class cl(Qsp) € C™(Q, L) (see Subsection 5.11 for the target).

Proposition 7.2.6. Assume Assumptions 7.1.1, 7.2.3, 7.2.2, and Hypothesis 3.2.9 for both n and
n+ 1. There is a canonical isomorphism

smg(Qp 7H2n 1(Q R‘\I]OA( )) mo ml)) - cokerA mo m1
under which 0 AJq(Qg,) coincides with the image of cl(Qsp) in coker Af;

(mo,my)"

Proof. By [Lin19, Theorem 2.16 and Theorem 2.18],' it suffices to show that O, is a very nice
coefficient for E, 1 in the sense of [Linl9, Definition 2.15]. In fact, in [Liul9, Definition 2.15],

,(mo,mq

(N1) is sat1sﬁed due to Lemma 7.2.4(2); (N2) is satisfied due to Lemma 7.2.4(3); and (N3) is
satisfied due to Lemma 7.2.4(4) and Lemma 2.1.4(2).
The proposition is proved. 0

By Construction 5.11.7 and Remark 5.11.8, we have a map
V: Cm(Q, O)\) — OA[Sh(VO KZO)] Ko, OA[Sh(VO

no’ ny?

K5l
Theorem 7.2.7 (First explicit reciprocity law). Assume Assumptions 7.1.1, 7.2.3, 7.2.2, and
Hypothesis 3.2.9 for both n and n + 1.
(1) The image of the composite map V (mg.m;) 0Ly ) i contained inng.Ox[Sh(V5, , K w0,
OA[Sh(V7,, K3 ),

ny?

(2) In view of (1), the induced map
le/m: coker A;ﬁl/no — O)\[Sh(vzo, :LO)]/ﬂo (XJOA OA[Sh(V;’u, 21)]1111
is an isomorphism.
(8) Under the natural pairing
OA[Sh(V5,, K501 /m0 ®o, OA[Sh(Vy | K3 ), X Ox/A™[Sh(V | KG )]no] @0, OA[Sh(V3, |, KG lm, — Ox/A™

obtained by taking inner product, the pairing of V e n)(0AJQ(QRA)) and every function
F € Ox/N[Sh(VS, K2, ][] ®0, On/A"[Sh(VE, K5 J|lm] s equal to

no’ niy?

(P+1) ono(In,,) - om(Tn,,) - D fls,shi(s)).

s€Sh(Ve,K2,)

Here, we regard 0 AJq(Qg,) as an element in coker A, .y (hence in coker Ay /ng) via
the canonical isomorphism in Proposition 7.2.6.

Proof. We first consider (1). By Lemma 5.11.3(3,4), we have
2(n— x112(n—1) 20,71
H V@, 0000 = Dy = @ o HLVEO, 050~ 1)) g
(?0,71)€{o,0}2
D@D B (P, 05 (= 2)) gy D)0 HE" ™ (M, 0 (1~ 2)) -
Thus, it suffices to show that

(1a) The image of o*HZ" "V (P°*, Oy (n — 1)) (mo,m1) D o*HZ" D (P Oy(n — 1)) (mo,my) under the
map (V 0611 0 65)(mo,my) s contained in ny.O»[Sh(V7, Kj;o)]mO ®o, OA[Sh(V; K5 )m,

no’?

19Although it is assumed that the underlying strictly semistable scheme X is proper over the base in [Liul9], the
proof of relevant results works without change in our case even when Q is not proper in view of Lemma 7.2.4(6).
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(1b) The image of o*H2" " (P°°, Ox(n — 1)) moumy) B 0 H2™ Y (P*°, Ox (11 = 1)) mo.my) under the
map (V 06110 65) (mo,my) IS zero.

(1c) The image of (52:2);0*H?n_2)(FT’T, Ox(n — 2)) (mo,my) under the map (V o 611 0 6§) (mo,my) 18
zero.

(1d) The image of ((ﬁji)ga*H%(n*Q) (P, 0x(n = 2))(mg,my) under the map (V o 811 0 63) (mo,my) 18
zero.

For (1a), we have a commutative diagram

HZ" (P>, 0x(n — 1)) momy) D HE" "V (P**, 0x(n — 1)) (momy)

H‘QI(n_l)(QO7.7 O/\(n - 1))(1110,1111) @H%(TL_D(Q. ¢ O)\(n - 1))(‘“0 my) T O)‘[Sh( no’ )]“‘0 ®OA O/\[Sh(VfLI ’ K’(’)Ll)}ml

in which

OE(l) zﬂz:)o 2 ®OA H2T1 (1\/[. O)\(Tl))ml

ni’

O the upper horizontal arrow is the map
"D (P2, 051 = 1) m) D™ (P, 00(1 = 1))y,
— Hs 2o~ 1)(M° O)\(TO —1))m, ®0, HZ (M., OA(71))m,

no’?

@ HT (ro=) no’ OA( ))mo ®O>\ Hzrl (M:n’ O)\<T1>>m1
="EYa ™ ®o H%(M' OA(r1))m,

ny?

given by Lemma 7.2.4(1) and the Kiinneth formula;
O the right vertical arrow is

(VO o Od1—1,27"0 o Od(l),Qro—Q(_l))mO ® (IO o iIlC; —+ (p —+ ]_) n }J oinc )ml;

ni,p
and
O the lower horizontal arrow is (V o 611 0 0¢) (mo,my)-

For (1a), by Proposition B.3.5(2) and (PI4), we have
((p+ 1Ry, — Inp)-OASh(V] KD )me € 1o.OA[Sh(V;

= no?

Thus, (1a) follows from Proposition 6.3.1(4) and Lemma 5.11.3(3).
For (1b) and (1c), both images are actually contained in the sum of

(Inl P lncof + (p + 1) ni p inC:,o)(’YO o) H 2y (POT O (n - 1))(m0,m1)

K(:LO )]mO

and
(I;DM,IJ © inC:,T + (p + 1) ni p © ll’lC )(’70 o) HQ(n 1 (P.7T7 OA(TL - 1))(mo,m1)7
which by Lemma 7.2.4(1) coincide with

H%To( nos O (70) )Jme ®0, ((Iflhp o Ian; + (p+1)*T iy © Inct ) dy 1 2r1H2(r1 1) (MIW Ox(r1 — 1))m1)

and
H27”0 (M' O)\<7"0))mo Ko, ((17011,p o IHC? + (p + 1) p © Inc! ) d1_172r1H§(r171)( n1’ O)\<7"1 _ 1))m1) 7

no’

respectively. However, they vanish by Lemma 5.8.2(3). Thus, (1b) and (1c) follow.

For (1d), by [Liul9, Lemma 2.4], it follows from (1c). Thus, (1) is proved.

Now we consider (2). We claim that the map V mm,) (With domain C"(Q, Ox)(me,m)) is surjec-
tive. In fact, consider the submodule

kerodg 3;0 ®o, ker 1d(1) zfll C ED H?I(n_l)(F?O’?l, Ox(n — 1)) (mg,m1)
(?0,71)€{o0,0}2
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in view of Lemma 7.2.4(1). Then o* (ker 04020 @, kerld(l):z:;l) is contained in C™(Q, Ox)mg,m,)-

1,m0
On the other hand, the map V(u,m,) © 0* (with domain kerod?ﬁ;o ®o, ker ld(l):zfll) coincides with
Vi, @ V4., which is surjective by Proposition 6.3.1(3) and Theorem 6.2.3. The claim follows.

my)
Thus, it remains to show that the domain and the target of Vy, /n, have the same cardinality.

By Proposition 7.2.6, we have an isomorphism
(71) coker A:’u /nU = coker A?mo,ml)/no = H;ing((@p27 H‘QIn_l(Qa R\I/O)\ (n))(mo,ml))/no
of O)/A\™-modules. By Lemma 7.2.4(2,3) and Theorem 6.2.3(2), we have

H;ing(@p27 H‘2In71 (Qv RYO, (n))(mo,ml)) = Hging(QPQ’ H%T()il(mnm RYO, (TO))mo) ®o, (1E3231T11)G31(FP/F1)2)'

Then by Theorem 6.2.3(3) and Theorem 6.3.4(4), we have
(7.1) ~ Ox[Sh(V;, , K} )]/ng ®o, OA[Sh(V,,, K} )]m, -

no’ ny?
Thus, (2) is proved.
Finally we consider (3). As Qs does not intersect with Q°°, we have
cl(Qsp) = cl(Q) € HF'(Q™*, Ox(n)),
and by Construction 5.11.7,
V(l(Qy)) = ((p+ 1)(Tpe, @ T, ) oines ; + (p+ 1)*(Ton, @ Tot ) o incj ) (cl(PS,)).
Applying Theorem 5.11.5(3) to the object (K2,,K; ;) € &(V;)s, followed by pushforward, we

sp’
know that the pairing between Vi, /m,(cl(Qsp)) and any function

[ € Oz /A" [Sh(V5y, K5l [no] @0, Ox/A™[Sh(Vy,, K )]

no’
is given by the formula

(P+1) - ¢my(Ingp) - om(Th,p) - > f(s,shi(s))

s€Sh(Vy,K3,)

in view of (PI6). We then obtain (3) by Proposition 7.2.6.
The theorem is proved. 0

We state a corollary for later application. We choose an indefinite uniformization datum as in
Notation 5.10.1, and put Sh], = Sh(V/, ,jn KK/ ) for o =0,1.

Assume Assumptions 7.1.1, 7.2.2. By Lemma 6.1.10, Lemma 5.1.7, and the Kiinneth formula,
we have H ((Sh],, Xspee 7 Shy, )7, Ox) (mosmy) = 0 if @ # 2n — 1. In particular, we obtain the Abel-
Jacobi map

AJ: Zn(Sh:ZO X Spec F Sh/n1> — HI(F, H2n_1((Sh;LO XSpec F Sh:n)F? Ok(n))/(l’lo, 1’11)).

Let Sh{, be the cycle given by the finite morphism Sh(V},, j,K2°K/, ) — Sh], Xspec p Shy,,;, which
is an element in Z"(Sh;,  Xgpecr Shy, ).

Corollary 7.2.8. Assume Assumptions 7.1.1, 7.2.3, 7.2.2, and Hypothesis 3.2.9 for both n and
n+ 1. Then we have

expy, (Fplocy AJ(ShL,), Hlg (Fy, H 1 ((Sh,, X spec Sy, )7, Ox(1)/ (o, m1)) )
= expy, (Lsn(vg ks, OA[S(Vig, K5, ) x Sh(V3 K )]/ (no,my))

where expy, is introduced in Definition 2.1.0. Here, we regard Lsnvg kg,) as the pushforward of the
characteristic function along the map Sh(V;,Kg,) — Sh(V;, K7) x Sh(V;, 1, K, ).
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Proof. Note that the isomorphism (5.2) induces a map
H2" 4 ((Shyy, Xspee  Shy,, )7, OA (7)) moamy) — HE'™H(Q, ROA(1)) (m,m1)

of 0,[Gal(Q,/Q,2)]-modules, which is an isomorphism by Lemma 5.11.2. Combining with the
diagram (5.23), we have

expy (Splocy AJ(SH), HY (Fy, H2 (S, X spec i S, 7, Oa(n))/ (0, m1))

= exp, (9 AJQ(QY,), Hiy (Qy2, HY ™ (Q, RUOA(n))/(ng, 1)) -
Now Theorem 7.2.7 implies

€XPx (aAJQ( gp) smg((@p 7H2n 1(Q R\I’OA( ))/(n()’nl)))

= expy, ((p + Dony (T, )61, (To, ) Tsnv ks,); OA[Sh(Ve, K5 )] /0 @o, OA[Sh(Vs, K )] /n1) -

Note that (p+1) is invertible in Oy by (P12); ¢ér, (I, ) is invertible in Oy by (PI5) and Proposition
B.3.5(1); and ¢, (T;, ,) is invertible in Oy by (PI4) and Proposition B.4.3(2). Thus, the corollary
follows. D

7.3. Second explicit reciprocity law. We start by choosing

O a finite place A of E (with the underlying rational prime /),

O a positive integer m,

O a (possibly empty) finite set ¥ y; of nonarchimedean places of F'* that are inert in F,
strongly disjoint from ¥, (Definition 1.3.3), satisfying £ { |[v[|(J|v||* — 1) for v € iy,

O a finite set X7} of nonarchimedean places of F™ containing ¥}, U Elr >

O a standard indefinite hermitian space V, of rank n over F|, together with a self-dual

Lozt ust
Mogst ust st Op,-lattice A, in V, ®@p Ap P Emin i (and put V,1 = (V,); and

min

Api1 = (An)ﬁ), satlsfymg that (Vp,), is not split for v € Xy,
O an object K,, € R(V,,) and an object (K, Kpi1) € R(V,,)sp of the forms

vext unt vgrtust. ust

min Ir,IT min Ir,IT

Ko = H (K8p>v X H U(An)(OF:')?

vext. unt vgutust ust

min Ir,II min Ir,IT
Knt1 = H (Kng1)o X H U(An-i-l)(OF,;L)’
UGZ Uzlr I ’U€2+ Ejr’lmuzlr 11

satisfying (K)o = (Kn )y for v € i, (Kop)o € (Ky)o for v € Xy, and that (K5 ), is a
transferable open compact subgroup (Definition D.2.1) of U(VZO)(Fﬂ for v € E;m and is
a special maximal subgroup of U(Vy, )(F,") for v € Xy,
O a special inert prime (Definition 3.3.4) p of F* (with the underlying rational prime p)
satisfying
(PII1): X does not contain p-adic places;
(PI12): ¢ does not divide p(p* — 1);
(PII3): there exists a CM type ® containing 7., as in the initial setup of Section 5 satisfying
Qg - Qp2;
(PII4): Pyq,,)mod A™ is level-raising special at p (Definition 3.1.5);
Py, ,) mod X is Tate generic at p (Definition 3.1.5);
(PII7): Paqr,)®a(,,,) mod A™ is level-raising special at p (Definition 3.1.5);
(So we can and will adopt the setup in Subsection 4.4 to the datum (Vy,, {Anq}qp)-)



ON THE BEILINSON-BLOCH-KATO CONJECTURE FOR RANKIN-SELBERG MOTIVES 129

O remaining data in the initial setup of Section 4 with (@g’ = Q,2; and
O a definite uniformization datum as in Notation 4.4.7.

Put K}, == (i,KZ)) <K}, , and K} == (1, K )xK; fora=0,1. Put Kf = (i,KZ) <K}, ,
and K, ) = (i,K?) x K, . Like in Subsection 4.5, We put X} = X[ (V,,, K~ ) for meaningful

triples (X, 7, ) € {M, M, B S} {,n} x{0,1}.

+ 59+
Notation 7.3.1. We introduce the following ideas of Tg”uz” ,fora=0,1

EUE

R "mm(qrz KT oanE/A>

pIE) Iny

N = Tot ™™ A ker <’]r§* LT OE—>OE/)\m>

We then introduce following assumption.

Assumption 7.3.2. For a = 0,1, we have Hi(M,,,O\)m, = 0 for i # n, — 1, and that
Hga_l(Mna, O))m, is a finite free Oy-module.

Lemma 7.3.3. Assume Assumptions 7.1.1, 7.5.2, and Hypothesis 3.2.9 for n.
(1) The O\[Gal(F,/F,:)]-module HY" (M,,,, Ox(71))m, is weakly semisimple (Definition 2.1.2).
(2) The map

Tyt © [’:;1 : (H‘%Tl (Mnu OA(Tl))m1)Ga1(Fp/Fp2) - Hoi(gnn O/\>m1
s an isomorphism.

Proof. The proof of the lemma is similar to Theorem 6.2.3. For readers’ convenience, we reproduce
the details under the current setup.
For (1), by Lemma 5.1.7, we have an isomorphism

H2T1 (va O)\<T1>>m1 = Hz::nl (Sh(vm ) Km )f? O>\ (T1>)m1

of 0,[Gal(Q,/Q,2)]-modules. By Lemma 6.1.10, Proposition C.3.1(2), and Hypothesis 3.2.9, we
have an isomorphism

H?e‘rl (Sh(vmv Knl )f? OA (Tl))ml ®O>\ @5 = @ p%c(ﬂ‘l),Lg (Tl)@d(ﬂl)
Gt

of representations of I'p with coefficients in Qy, where d(m;) = dim(7;>")%"1 . Here, the direct sum
is taken over all stable automorphic representations m; of U(V,,,)(Ap+) that is H1 congruent and
such that m,  is a holomorphic discrete series representation of U(V,,)(F} ) with the Harish-
Chandra parameter {ry,r — 1,...,1 —r;,—r;}; and 7y, is trivial for every archimedean place
T # 7... We may replace E\ by a finite extension inside @, such that PBC(m1) 1S defined over
E) for every m appeared in the previous direct sum. Now we regard ppc(r,),, as a representation
over F,. Then pBC(mm(rl) admits a I'p-stable Oy-lattice Rpc(r,), unique up to homothety, whose

reduction Rpc(r,) is isomorphic to prr,, A(r1). Moreover, we have an inclusion

HZI <Sh(v”1’ Knl )F7 O (rl))ml - @(R%C(m)>@d(m)

™
of 0,[Gal(F,/F,2)]-modules. By (PII4), we know that pfj, ,(r1) is weakly semisimple and

dimo, /x pf, (1) @52 = 1,

On the other hand, we have

dimEk p%C(WI)Mg (Tl)Gal(?p/FPQ) > 1.
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Thus by Lemma 2.1.5, for every 7 in the previous direct sum, Rgc(m) is weakly semisimple. Thus,

HZ (M,,,, Ox(71))m, is weakly semisimple by Lemma 2.1.4(1). Thus, (1) follows.
For (2), we note that in (1) we have also proved that (H3™"(M,,, OA(r1))mi) G, /7 ») 18 @ free

Ox-module of rank Y d(m1). By Theorem 4.3.10, Proposition B.4.3(2), and (PII4), we know that
Tny! © Ly, 18 surjective. Thus, it remains to show that

Zd(ﬂ'l) S dlmE/\ H%(gnl, O,\)m1 Q@OA E)\.

However, the above inequality is a consequence of Proposition 4.3.4 and Corollary C.3.3.
The lemma is proved. 0

We have a finite morphism Sh(V,,, Ks,) — Sh(V,, K,.) Xspee 7 Sh(Vyy1, Kpy1), which gives rise
to a class

[Sh(Va, Kp)] € HE' (Sh(Ving, King) Xspec 2 Sh(Vny, Ky, ), On(n))
by the absolute cycle class map.

Theorem 7.3.4 (Second explicit reciprocity law). Assume Assumptions 7.1.1, 7.3.2, and Hypoth-
esis 3.2.9 for both n and n + 1. Then we have

expy, (1ocp([S(Vo, Kep)]), HE ((SH(Vig, Kng) Xspec & SH(Viy, Kiny)) 5 Oa(m))/ (0, m1) )
< expy (Lsn(vy ke, ) OASh(Vi, K5 x Sh(V3 K51/ (ng, 1))

Sp,sp no?

where loc, is introduced in Construction 4.5.1; exp, s introduced in Definition 2.1.6; and the
element Lsn(vy ks, .,) @S regarded as the pushforward of the characteristic function along the map
Sh(V7, Kg, o) = Sh(VE, K7) x Sh(V7 1, K4y
Proof. We claim that

(1) the action of T  on HY* (Mg X1, Snys Or(70)) (mo,my) 18 invertible; and

(2) the composite map

(id X ﬂ-nl)! © <1d X Lm)*: H%H(Mno XT, M, , OA(TL))(mo,ml) - H%TO (Mno XT, Snl’ O)\<r0)>(m0,m1)

is an isomorphism.
We prove the theorem assuming these two claims. Take a uniformizer A\g of E). Suppose
AoLsnvy ks, ) = 0 in Oz[Sh(Vy (K5 ) x Sh(V} K7 )]/ (ng, n1) for some integer e > 0. Applying

no? ny?

Theorem 4.5.2 to the object (Kgp, Kpi1) € R(V,,)sp followed by pushforward, we have
ATy o-(id X 7y, )i(id X Lnl)*loc;)([Sh(Vn, Ky)]) =0

nip-
in H¥"(M,,, X1, Sy, Ox(n))/ (1, n1). By the above two claims, we must have

AgToc ([Sh(Vi Kip)]) = 0
in H¥"(M,,, X, My,,Ox(n))/(ng,n1). Thus, we have

Aglocy ([Sh(V,,, Kyp)]) =0
as the map HZ'((Sh(Vy,y, Kny) Xspee r Sh(Viy, Kny))py, Or(n)) — HE* (M, X1, My, Ox(n)) is an
isomorphism. The theorem follows.

Now we consider the two claims. By the Hochschild—Serre spectral sequence, we have a short
exact sequence

2n—1 /N7 N n(\/] ) n (NI N Gal(Fp/F2)
0— HI(IFva Hé 1(1\'[710 XT, My, Oz\(n))(mo,ml)) - H% (M, Xy M, OA(”))(moml) - H‘QI (M XT, My, , O)\(n))(mo,m) "

— =0
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of Oy-modules. By the Kiinneth formula and (an analog of) Lemma 6.1.10, we have
H%(MNO XTp va OA)(mo,ml) = @ Hi‘fo (Mnm OA) X0, H‘zfl (Mma OA)
i0+i1=1

for every i € Z. This implies HZ*(M,,, X7, M,,,, Ox(n))(mo.my) = 0 and

H%R_I(Mno XT, Mnl? OA(”))(mo,ml) = H%TO_I(Mnoa O (70))mo ®o, H‘?Srl (M”M? OA(71))my -
In particular, we have a canonical isomorphism

(7.2)
H%n<Mno XT, va Ok(n))(mo,ml) ~ H' (Fp27 H‘QIT()il(Mnoa O)\<7’0>>m0 ®O>\ H‘ZITI (MHN O)\(Tl))“u)‘

Similarly, we have

(73) H%m (Mno XTp Sm? OA(TO))(mo,Ym) = Hl (FPQv H‘%To_l(mnow OA(TO))mo ®O,\ H%(gmv Ok)ml)
= Hl(FP27 H%ro_l(mnoﬂ O)\<7n0>>mo) ®O>\ H%(gnl’ O)\)ml'

For claim (1), note that the action of Ty, , on HZ*(M,y X1, Sn;, Ox(10))(me,m) factors through
the second factor under the isomorphism (7.3). By Proposition B.4.3(2) and (PII4), we know that
the action of T , on HY(S,,, Ox)m, is invertible. Thus, (1) follows.

For claim (2), by (PII7) and a similar argument for the proof of Lemma 7.2.4(3), we know that
the O,[Gal(F,/F,2)]-module

H‘%TO_I(MHO’ O/\(TO))mo ®o, ker ((H?Iﬁ (Mm» OA(TI))ml) — (H‘%Tl (va OA(T1>>m1)Ga1(Fp/Fp2)>
has zero Gal(F,/F,:)-coinvariants. Combining with Lemma 7.3.3, we obtain an isomorphism
H%n(Mno XTP Mn17 O)\(n))(mo,ml) ~ Hl(Fp27 H%T'O—l(Mnou O)\ (T’o))mo) ®O)\ (H%Tl (M'rll’ O)\ (Tl))ml)Gal(Fp/FPQ)

from (7.2), under which the map (id x m,, )1 o (id X ¢,,,)* coincides with id ® (7,1 04, ). Thus, (2)
follows.
The theorem is proved. U

8. PROOF OF MAIN THEOREMS

In the section, we prove our main theorems on bounding Selmer groups. In Subsection 8.1,
we introduce the notation of (weakly) admissible primes for the coefficient field, and make some
additional preparation for the main theorem. In Subsections 8.2 and 8.3, we prove our main
theorems in the (Selmer) rank 0 and 1 cases, respectively.

8.1. Admissible primes for coefficient field. We keep the setup in Subsection 7.1.

Definition 8.1.1. We introduce following assumptions on a prime A of £ with the underlying
rational prime ¢ (and the ring of integers O, of E)):

(L1): ¢ > 4n and is unramified in F}
(L2): %1, does not contain f-adic places;

(L3): the Galois representation pr, » ®pg, o, .a is absolutely irreducible;

(L4): Assumption 7.1.1 is satisfied, that is, pr, \ and pm, » are both residually absolutely irre-

ducible;
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(L5): under (L4), for & = 0,1, we have a I'p-stable O,-lattice R, in pr, A(7), unique up to
homothety, that is (1—«)-polarizable, for which we choose a (1—«)-polarization =,: RS =
RY(1 — a) and an isomorphism R, =~ O™ of O)-modules.? After adopting the notation
in Subsection 2.6, we have
(L5-1): either one of the two assumptions in Lemma 2.3.4 is satisfied;
(L5-2): Lemma 2.6.1(3) holds with F” = F.jj_ (Definition 3.3.2) and £ (T) = T? — 1 (see

Remark 8.1.2 below for a more explicit description);
(L6): under (L4), the homomorphism pr, + (Remark 6.1.5) is rigid for (3;,,0) (Definition

E.7.1), and prig | ga#/r(c,)) 18 absolutely irreducible;

+
(L7): for a = 0,1, the composite homomorphism ']I‘n“““ I, Or — Og/)\ is cohomologically
generic (Definition D.1.1).

Finally, we say that

(1) X is weakly admissible (with respect to (Ilp,I1;)) if (L1-L5) are satisfied;
(2) A is admissible (with respect to (Ilg,I1;)) if (L1-L7) are satisfied.

Remark 8.1.2. In Definition 8.1.1, (L5-2) is equivalent to the following assertion: the image of the
restriction of the homomorphism

(Po+, Pris €): Drv = Gng(Ox/A) X 4, (Ox/A) X (Or/A)
(see Notation 2.5.1 for the notation) to Gal(F'/F},) contains an element (vo,71,€) satisfying
(&) 52 -1 7£ 0)
(b) for & = 0,1, 7, belongs to (GL,,(Ox/\) x (Ox/\)*)c with order coprime to ¢;
(c) 1 appears in the eigenvalues of each of h.,, h,,, and h,, ® h,, (Notation 2.5.2) with multi-
plicity one;
(d) h,, does not have an eigenvalue that is equal to —1 in Oy/A;
(e) h., does not have an eigenvalue that is equal to —& in Oy/A.

Lemma 8.1.3. The representation pr, &g, pri, A(1) s pure of weight —1 at every nonarchimedean
place w of F' not above ¢ (Definition 2.4.4).

Proof. This is a consequence of Proposition 3.2.4(1) and [TY07, Lemma 1.4(3)]. O

Lemma 8.1.4. Assume Hypothesis 3.2.9 for ny. Let V,,, be a standard indefinite hermitian space
of rank ny over F', A, a self-dual Hvi@iouzi,m Op,-lattice in V,,, ®p A?ioUZ:Zin’ and \ a prime of E.
Consider a finite set B of special inert primes of F* whose underlying rational primes are distinct
and coprime to X, and an object K,,, € R(V,,,) of the form (Kn)sr XIpgstost, UAn )(Opy).
Put

+

)2 o
m; = Tnmm B N ker (TTEL;{H“ i} OE — OE/)\>

where fo; is the union of ¥ for all underlying rational primes p of B. Suppose that Py, ,) mod A
is intertwining generic (Definition 3.1.5) for every p € B, and that

(a) either the composite homomorphism Tn{“‘" ——> Op — Og/X is cohomologically generic;
(b) or ny =3 and H,(Sh(V3,K3),05/N)m, =0 if i # 2.

Then for every special mazimal subgroup K, o of Tlpey U(Vn,)(F,7) and every i € Z, we have an
isomorphism

Hi’t(Sh(Vm’ Km)a Ok)n‘u = Hét(Sh(vnn K&B Km &]3) O)\)ml

201 fact, (L5) does not depend on the choice of =, and the basis, since E, is unique up to units in Oy and the
basis is unique up to conjugation in GL,_(O)).
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of O,[I'p]-modules.
Note that (a) is stronger than (b) when n; = 3.

Proof. We first note that for every p € B, U(V,,,)(F,") has two special maximal subgroups up to
conjugation, exact one of which is hyperspecial maximal.

Take an element p € P, a special maximal subgroup K7 5 of TTyeq oy U(Vi, ) (£, a hyper-
special maximal subgroup K, , of U(V,,,)(F;), and a non-hyperspecial special maximal subgroup

P

Ky, , of U(Vy, )(FF). We claim that if Hi (Sh(V,,,,K¥ K} 1K ), Op/A)m, = 0 for i # 2rq, then

there is an isomorphism

Hf’et(Sh(va K&B K;fl B ;1 p) O>\>m1 = Hét<Sh(Vn17 Km K;fl B ;1 p) Ok)m

of O,[I'r]-modules for every i € Z.
Fix an embedding E, < Q,. We first show that there is an isomorphism

(81) Hét(Sh(Vm ) Km Km B ’SLl p) OA)TM ®o, @f = Hét(Sh(vmv Km Km B 1.11 p) Ok)n‘q ®o, @f

of Q¢[I'r]-modules for every i € Z. Let A;, , be the self-dual Op, -lattice in V,,, ®p F, whose
stabilizer is K7 ,. Without lost of generahty, we may assume that K7, , 1s the stabilizer of a
lattice A, satlsfylng AS o © A, and (A7, )Y/pAS, , = Fpe. To show (8 1), it suffices to show
that for every (necessarily cuspidal) automorphic representatlon m of U(V,,)(Ar+) that appears
in either side of (8.1), the maps

K? K¢,

T oMt s T TN
are both isomorphisms. Hypothesis 3.2.9 and the Chebotarev density theorem imply that ppc(r, ).,
and pr, » ®g, Q have the isomorphic (irreducible) residual representations. In particular, the
Satake parameter of BC(7;), does not contain {—p,—p~'} by Proposition 3.2.4(2) and the as-
sumption that Py, ,)mod A is intertwining generic. Thus, we obtain the isomorphism (8.1) by
Proposition B.4.3(2).

To prove the claim it suffices to show that Hi (Sh(V,,, K} K 3K, 5)s Ox)m, 1s a free Oy-module
for every i € Z. If we assume (a), then this follows immediately. If we assume (b), then this follows
from Proposition 5.9.4, Lemma 6.2.1, and a straightforward computation on the spectral sequence
in Lemma 5.8.2.

The lemma follows immediately from the above claim by induction on the number of primes
p € P for which K, o is not hyperspecial maximal at p. Note that the initial induction hypothesis

is satisfied by either ( ) or (b). O

Proposition 8.1.5. Suppose E = Q and that there are two elliptic curves Ay and A; over F*
such that for every rational prime ¢ of E and o = 0,1, we have pr,, ¢ ~ Sym™ ! HL (Aar, Qo)|rp-
If Aoy and Ay are not isogenous to each other and End(App) = End(A15) = Z, then all but
finitely many rational primes £ are weakly admissible; and when [FT : Q] > 1, all but finitely many
rational primes { are admissible.

Proof. We need to show that every condition in Definition 8.1.1 excludes only finitely many ¢ (for
(L7) we assume [F" : Q] > 1). By [Ser72, Théoréme 6], for sufficiently large ¢, the homomorphisms

FF+ — GL(Hét(AaF,}Fg)) ~ GLQ(F@)

are both surjective for & = 0, 1. Thus, we may assume that this is the case.
For (L1) and (L2), this is trivial.
For (L3), (L4), and (L5), this has been proved in Proposition 2.6.3.
For (L6), by Proposition E.5.12, the condition that pr, »+ is rigid for (X1, 0) excludes only

finitely many ¢. It is clear that the remaining two conditions also exclude only finitely many ¢.
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For (L7), this follows from Corollary D.1.4. O

8.2. Main theorem in the Selmer rank 0 case.

Theorem 8.2.1. Keep the setup in Subsection 7.1. Assume Hypothesis 3.2.9 for both n and n+1.
If L(%, [Ty x I1y) # 0, then for all admissible primes X of E, and for all but finitely many weakly
admissible primes X\ of E when n = 2, we have

H}(F7 Prig A ©E, pl—h)\(n)) =0.

Proof. By Lemma 8.2.2 below, we may fix the choices of V5, A?, (K7, K>, ) in that lemma such
that

Y. [fls,shi(s)) #0
s€Sh(V3,K3)
for some f € Og[Sh(V;,, K}, )]ker ¢r,] ®o, Or[Sh(V;,, K, )][ker ¢r,]. Moreover, by Lemma
D.2.2(3), we may assume that (K¢ ), is transferable (Definition D.2.1) for v € X1,
We take a prime A of E' with the underlying rational prime ¢. We adopt notation in Subsection
2.6 with the initial data in Definition 8.1.1. Define two nonnegative integers mpe, and my,, as

follows.
(1) Let mper be the largest (nonnegative) integer such that
> f(s,shy(s)) € N Op
s€Sh(VS,K9)
(2) We choose a standard indefinite hermitian space V,,, over F of rank n;, together with an

identification U((V;, )>®) ~ U(V?) of reductive groups over A%, .*" In particular, we have
the Shimura variety Sh(V,,,K; ). By Hypothesis 3.2.9, we have an isomorphism

HE (Sh(Va,, K5 )7, Ex(r1))/ ker ém, = (Rf @0, B))™"
of E,\[I'r]-modules for some integer p; > 0. We fix a map
HE (Sh(Va,, K5, )7, Oa(r1))/ ker ¢, — (R§)™"

of O,[I'r]-modules whose kernel and cokernel are both Oy-torsion. Then we let my,; be the
smallest nonnegative integer such that both the kernel and the cokernel are annihilated by
)\mlat A

Now we assume that either A\ is admissible, or n = 2 and \ is weakly admissible and satisfies
H., (Sh(V3, K3)%7, Or/N)/ ker ¢, = 0 for i # 2 (which only excludes finitely many primes). Note
that in both cases we have Hi (Sh(V,,,,K? )7, Op/A)/ ker ¢, = 0 if @ # 2rq.

We start to prove the theorem by contradiction, hence assume

dimp, H}(F, puy» ®p, pmya(n)) > 1.

Take a sufficiently large positive integer m which will be determined later. By Lemma 8.1.3, we
may apply Proposition 2.4.6 by taking 3 to be the set of places of F' above ¥, U X/, Then we
obtain a submodule S of H} g (F, R(™) that is free of rank 1 over O, /A= such that loc,|s = 0
for every nonarchimedean place w € ¥ not above ¢. Now we apply the discussion in Subsection

2.3 to the submodule S € H'(F,R(). By (L5-1) and Lemma 2.3.6, we obtain an injective map
652 Gal(FS/Fﬁ(m)) — HOIIlo)\ (S, R(m))

2IThere are many choices of such V,, and the isomorphism. We choose one only to get some control on the
discrepancy of the integral cohomology of Shimura varieties and the lattice coming from Galois representations.
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whose image generates an Oy-submodule containing A'=™ Homo, (S, R(m)), which further contains
AR Homg, (S, R™)) by Lemma 2.3.3 and (L3). By (L5-2) and Lemma 2.6.1, we may choose an

element (7y1,72,€&) in the image of (pH),p(QZZ), e )|Gal (F/r, ) satisfying Lemma 2.6. 1(2). It gives

rise to an element v € (GLygn, (Ox/A™) x (Ox/A™)*)¢ as in Notation 2.5.2 such that (R(™)" is a
free Oy /A™-module of rank 1 by Lemma 2.6.2 and (2.4). Now we apply the discussion in Subsection
2.5. By Proposition 2.5.5 (with mg = my, r, =1, rg = 1), we may fix an (.5, v)-abundant element
U € Gg, (Definition 2.5.6).

We apply the discussion and notation in Subsection 7.2 to our situation with A, m, Ef;l =0,
¥ = Yh, (Vo A°) K° and (K° K?,,). By the Chebotarev density theorem, we can choose a
~v-abundant place w! Vv ) of P h satlsfymg U, m = ¥ and whose underlying prime p of F* (and
the underlying rational prime p) is a special inert prime satisfying (PI1)—(PI7) and

(PI8): the natural map

EUE

HE (Sh(Vay, K5 )7 Oa(r1))/ (Tl ~7 Nker ¢, ) — HE (Sh(Vay K5, )7, Ox (1)) / Ker 6,
is an isomorphism.

We also choose remaining data in the initial setup of Section 5 with Qg’ = Q,2, a definite uni-
formization datum as in Notation 5.10.13, and an indefinite uniformization datum as in Notation
5.10.1. By the definition of mpe,, we have

(8.2) expy, (Lsn(vs ks,), Or[Sh(V5,, K5 ) x Sh(Vs, K3 )]/ (ng,11)) > m — myer,

where we recall that
srus

_Tna " Nke I'<T2mm —>OE—>OE/)\m)
for = 0, 1. Here, Tgy(vg ko)) is nothing but the characteristic function of the graph A Sh(Ve K?)
of the map Sh(V;,K?) — Sh(V;y |, K; ).
We claim that there exists an element ¢; € H'(F,R(™)¢) for some positive integer m; < m
satisfying

(8.3) exp) <8plocp(cl), Hy,, (Fp, R(ml)c)) > M — Mper — Miat;
and such that for every nonarchimedean place w of F not above X7 U {p},
(8.4) locy(c1) € Hy(Fy, R(m1)e)

holds.

We first prove the theorem assuming the existence of such ¢;. Fix a generator of the submodule
S C H}(F,R™) and denote by its image in H'(F,R™)) by s;. We also identify R(™)¢ with
(R(™))* via the polarization Z. Now we compute the local Tate pairing (sy, 1), (2.1) for every
nonarchimedean place w of F.

O Suppose that w is above Xt . Then we have loc,(s;) = 0 by our choice of S. Thus,
<81, Cl> = 0.

O Suppose that w is above X/. Then by (L2), Rg is crystalline with Hodge-Tate weights
in [—n,n — 1]. Thus, we have loc,(s;) € H}(Fw,R(ml)) by Lemma 2.4.3(2) and (L1). By
(8.4), Lemma 2.2.6 and (L1), we have N\ (s, ¢1),, = 0 where 0y, = A\ C O, is the
different ideal of E\/Q.

O Suppose that w is not above ¥}, U/ U {p}. Then by (L2), R is unramified. Thus, we
have loc,(s1) € H}(F,, R0™)) by Lemma 2.4.3(1). By (8.4) and Lemma 2.2.3, we have
<81, Cl>w = 0.
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O Suppose that w is the unique place above p. Then since wELm) is abundant, we have

exp, (locw(sl), H}(Fw7 f{(ml))) > mp — my — tR.
By (8.3) and Lemma 2.2.3 again, we have
expy ((s1,€1)ws OA/AN™) > M — Mper — Muat — My — TR.
Therefore, as long as we take m such that m > mpe, + Miay + my + tr + Mmar, we will have a

contradiction to the relation
Z<517 Cl)w =0,

where the sum is taken over all nonarchimedean places w of F'. The theorem is proved.
Now we consider the claim. By (L4), (L6), and Theorem 6.3.4(5), we have an isomorphism

oo _
(8.5) HE (S (V2 Jng KoK )7 Oa(r0) /o = €D RE™

i=1
of O,[I'p]-modules, for finitely many positive integers my, ..., m,, at most m. Assumption 7.2.2

for a« = 0 is satisfied by (L7) if n > 3 and by (L4) if n = 2.
By Lemma 8.1.4, we have an isomorphism

Hét(Sh(vmv Kle )F7 OA)ml = Hf’et(Sh(V;@lu jan'Zr)Lci K >f7 OA)UH

ni,p

of O,[I'r]-modules. Assumption 7.2.2 for a = 1 is satisfied by (L7) if n > 3 and by (PI8) if n = 2.
Moreover, by (PI8), we may fix a map

sFust

HE (Sh(V7,,, 30 KK, ), Oa(r))/ (T~ Nker én,) — (RE) ™"

of O,[I'r]-modules whose kernel and cokernel are both annihilated by A\™=t. Taking quotient by
A we obtain a map

(8.6) HZ(Sh(VY,, 30 KEKL, )7, Oa(r1)) /ng — (R{™S)®

ni,p

of O,[I'r]-modules whose kernel and cokernel are both annihilated by \"™at.
To continue, we adopt the notational abbreviation prior to Corollary 7.2.8. By Lemma 6.1.10
and the Kiinneth formula, we obtain a map

M —
(8.7) T: HE' " ((Sh,, Xspee r Sy, )7, Oa(n))/ (g, n1) — PRI
=1

of O,[I'p]-modules whose kernel and cokernel are both annihilated by A=t  from (8.5) and (8.6).
Here, we have re-indexed p; copies of {m,...,m,,} into p = pop1 positive integers at most m.
Recall that we have a class

AJ(SH,,) € HY(F, HE ™ (SH, Xspec  Shl, ) Oa(n))/ (g, m)),

where Sh{, is nothing but the graph of the morphism Sh;, — Sh; ,,. By Corollary 7.2.8 and (8.2),
we have

(8:8) expy (Tploc, AJ(ShL,), Hl,o (Fy, HE' ' ((Sh)y, Xspee # Shy, ), OA(n))/ (0, 11)) ) = 1m0 = miper.
For every 1 < i < p, let
Ti: B2 (S, X spec e SH, g Oa(m))/ (no, my) — RS
be the composition of T (8.7) with the projection to the i-th factor; and put
¢; = H'(F, Y,;)(AJ(Shl,)) € H'(F,R(™)°).
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Then (8.8) implies

1nax expy (8 loc,(c;), H

Without lost of generality, we obtain (8.3). On the other hand, as both Sh], and Sh;_, have
smooth models over Op, for which (an analogue of) Lemma 4.1.4 holds, we obtain (8.4).

m;)c
smg(FpuR )) 2 m — Mper — Miat-

O

Lemma 8.2.2. Let Il and 11, be as in Theorem 8.2.1 such that for o = 0,1, pr, .x s absolutely
irreducible for some prime \ of E. Suppose L(%, [Ty x I1;) # 0. Then there exist

O a standard definite hermitian space V; of rank n over F', together with a self-dual
+ st
gzt ust, Or,-lattice A7 in Vi ®p A?xuzmm (and put V5.1 = (Vy)y and AL = (A7)),
O an object (K° K5 1) € R(V;)sp in which K5, is of the form
Ko.= 11 & )ox I UQ)(Op)

vext. vgniust

fora=0,1,
such that
> f(s,;shy(s)) #0

s€Sh(V3,K3)
for some element f € Og[Sh(V;, , K )|[ker ¢r,] ®o, Op[Sh(V;, ,K; )][ker ¢r,].

Proof. This follows from the direction (1)=(2) of [BPLZZ, Theorem 1.7], together with [BPLZ-
7, Remark 4.15]. Note that since our II, and II; are relevant representations of GL,,(Ar) and
GL,, (Ar), respectively, both members in the pair of hermitian spaces in (2) of [BPLZZ, Theo-
rem 1.7] have to be standard definite. O

Corollary 8.2.3. Keep the setup in Subsection 7.1. Suppose that
(a) there exists a very special inert prime p of F'* (Definition 5.3.4) such that 11y, is Steinbery,
and 11, , is unramified whose Satake parameter contains 1 exactly once;
(b) for a = 0,1, there exists a nonarchimedean place w, of F such that 11, is supercuspidal;
(c) [FT:Q] >1ifn>3.
If L(5,1y x ITy) # 0, then for all but finitely many primes X of E, we have

H}(F, pugx ®p, pmya(n)) = 0.

Proof. By Theorem 8.2.1, it suffices to show that all but finitely many primes A\ of E are admissible
(or weakly admissible if n = 2). It suffices to show that each of conditions (L1-L6) in Definition
8.1.1 excludes only finitely many A, and also for (L7) if n # 3.

For (L1) and (L2), this is trivial.

For (L4), this follows from Lemma E.8.3 by (b).
For (L3), this follows from Lemma 8.2.4 below by (L4) and (a).
For (L6), this follows from Theorem E.8.4 by (a) and (b).

(L7),

For this follows from Corollary D.1.4 by (c).

For (L5-1), let A be a prime of F satisfying (L4) and (L6), whose underlying rational prime is
at least 2n(n+1) — 1. Then by (a), pn,» and pry, » satisfy the assumptions in Lemma 8.2.4 below,
with & = O)/A and I' = I'p. Thus, by Lemma 8.2.4(2), assumption (b) of Lemma 2.3.4 hence
(L5-1) hold.

For (L5-2), take an arithmetic Frobenius element ¢, € I’ i By Definition 3.3.4, ¢, belongs to

Gal(F/F4,). For a = 0,1, put ro = ["¢] as always. By (a), the Satake parameter of Il is
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{p*t, ..., pT0=D1: and we may write the Satake parameter of I, , as {1, ot ,a#} in which

«; is an algebraic number other than 1 for 1 < i < ry. For our purpose, we may replace E by a
finite extension in C so that a; € E for 1 < i < ry. By Proposition 3.2.4(1), we have |a;| = 1 for
1 <4 < ry. Therefore, for all but finitely many prime \ of E, we have

O {p,aq,...,a,, } is contained in OF;

O {p*mod),...,pT?0"Y mod A} consists of distinct elements and does not contain —1;

O {a;mod A |1 <i < r}is disjoint from {1, —p, —p~'};

O {pTla;mod A, ..., pr 0 Vo, mod A |1 < i <} is disjoint from {p,p~'}.
Then for every prime A satisfying (I.4) and the above properties, (L5-2) is satisfied by taking the
element (po4, p1+, €)(¢p) in Lemma 2.6.1(3).

The corollary follows. U

Lemma 8.2.4. Let I be a group, and k a field of characteristic either zero or at least 2n(n+1)—1.
Let po: I' = GL,,, (k) and p: T' — GL,, (k) be two homomorphisms that are absolutely irreducible.
Suppose that there exists an element t € T such that po(t) = 1+ J,, and p1(t) = 1. Then we have

(1) po ® p1 is absolutely irreducible;
(2) po ® p1 is not a subquotient of ad(py @ p1).

Proof. We may assume that k is algebraically closed. For o = 0,1, let V; = k%" be the space
which I' acts on through p,. By [Ser94, Corollaire 1], we know that both pg ® p; and ad(py ® p1)
are semisimple.
For (1), thanks to the element ¢, every subrepresentation of Vj ®; Vi is of the form Vy @5 V/
where V/ is a subrepresentation of V;. Since p; is irreducible, it follows that py ® p; is irreducible.
For (2), note that (pg ® p1)(t) is conjugate to (1 4 J,,)®™. On the other hand, ad(py ® p1)(t)

is conjugate to
ng

@(1 + Jgi_l)@n% .

i=1

Since ng is even and 1,3,...,2no — 1 are odd, py ® p; is not a subquotient of ad(py ® p1) as
ad(po ® p1) is semisimple.

The lemma is proved. ]

Corollary 8.2.5. Let n > 2 be an integer and denote by ng and n, the unique even and odd
numbers in {n,n + 1}, respectively. Let Ay and Ay be two modular elliptic curves over F* such
that End(A¢z) = End(A;17) = Z. Suppose that

(a) Aog and Az are not isogenous to each other;
(b) both Sym™ ™' Ay and Sym™ ' A, are modular; and
(c) [FT:Q] >1ifn>3.

If the (central critical) L-value L(n,Sym™ ' Agp x Sym™ ' Ay ) does not vanish, then we have
H}(F, Sym"™ ™" Hi, (Ao, Qr) ®g, Sym™ ' Hy, (A1, Q¢)(n)) = 0
for all but finitely many rational primes €.

Proof. By (b) and [AC89], both Sym™ " Agp and Sym™ ' A, are modular. Thus, we may let
I1, be the (cuspidal) automorphic representation of GL,, (Ar) associated to Sym™ ' A,p for
a = 0,1, which is a relevant representation (Definition 1.1.3). We also have the identify

L(n+s,Sym™ ' Agp x Sym™ ' A p) = L(% + 5,11y x 11y)

of L-functions, and that the representation of I'z on Sym" ' H}, (A5, Q) is isomorphic to p, ¢
for « = 0,1. By Proposition 3.2.10 and (c), Hypothesis 3.2.9 is known in this case. Then the
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corollary follows immediately from Theorem 8.2.1 and Proposition 8.1.5 (where we use (a) and
(c)) with E = Q. 0

Remark 8.2.6. In this remark, we summarize the current knowledge on the modularity of symmetric
powers of elliptic curves, namely, condition (a) in Corollary 8.2.5. Let A be a modular elliptic
curve over F'". We have

O Sym? A is modular by [C.J76];

O Sym® A is modular by [IXS02];

O Sym* A is modular by [Kim03];

O Sym® A and Sym® A are modular if F* is linearly disjoint from Q((s) over Q;

O Sym’ A is modular if F'* is linearly disjoint from Q((s5) over Q;

O Sym® A is modular if F'* is linearly disjoint from Q((7) over Q;
in which the last three cases are obtained in a series of recent work [C'T 14, C'T15 CT17] of Clozel
and Thorne.

8.3. Main theorem in the Selmer rank 1 case. We state the following weak version of the
arithmetic Gan—Gross—Prasad conjecture.

Conjecture 8.3.1. Suppose L(%, Iy x II1) = 0 but L’(%, Iy x IIy) # 0. Then there exist
O a standard indefinite hermitian space V, of rank n over F, together with a self-dual
+ 5t
[logst s+ Or,-lattice Ay, in V, Qp A?‘”UE"““ (and put Voq1 = (Vy)p and Appq = (An)y),
O an object (K., Ky11) € R(V,)sp in which K,,, is of the form
Kna = H (Kna)'u X H U(Ana>(OFj>

vest. vgsust,
fora=0,1,
such that for every prime \ of E, the graph ASh(V,,K,) of the morphism shy: Sh(V,,K,) —
Sh(V,41, Kui1) (4.6) is nonvanishing in the quotient Chow group
CH"(Sh(Va,, Knp) X Spec F Sh(Va,, Kay)) e/ (ker ¢n,, ker ¢y, ).
In the situation of the above conjecture, since both Iy and II; are cuspidal, we have

Hfét((Sh(Vnov Kno) X Spec F Sh(an ) Km))f7 EA)/(ker ¢H07 ker ¢H1) =0

if i # 2n — 1. In particular, the Hochschild—Serre spectral sequence gives rise to a coboundary
map

ATV Z7(Sh(Ving, Kng ) Xspee # Sh(Vi,, Kiny))
- H1<F7 Hggl_l((Sh(vnov Kﬂo) XSpec F Sh(vmv Km))F7 E>\ (n>)/(ker ¢H07 ker ¢H1))'

Theorem 8.3.2. Keep the setup in Subsection 7.1. Assume Hypothesis 3.2.9 for both n and n+1.

Let X be a prime of E& for which there exist
O a standard indefinite hermitian space V, of rank n over F, together with a self-dual
vazzot,uziﬂn Og,-lattice A, in V,, ®p AIZT;UE‘T““ (and put Voq1 = (Vy)g and Appq = (An)y),
O an object (K, Ky11) € 8(Vy)sp in which K,,, is of the form

Kn, = H (Kny ) X H U(Ana>(0FJ)

vex™ vgsiust

min min

for a = 0,1, satisfying that (K,,), is a transferable open compact subgroup (Definition
D.2.1) of U(Vy J(F}) forve S5

min’
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such that
(8.9) AT (ASKh(V,, K,)) # 0.
If we further assume that either A is admissible, or n =2 and X is weakly admissible and satisfies
H:, (Sh(V3, K3)5, Or/N)/ ker ¢r, = 0 for i # 2, then we have
dimp, H}(F, prioa @, pmya(n)) = 1.
Remark 8.3.3. In fact, (8.9) already implies that the global epsilon factor of I1y x IT; is —1.

Proof of Theorem 8.3.2. We take a prime A of E for which we may choose data V,,, A,,, (K., K,11)
as in the statement of the theorem such that AJY*™(ASh(V,,K,)) # 0. We assume that X
satisfies either (a) or (b) of Lemma 8.1.4. Lemma 8.1.3 and (L2) imply that AJy*"™ (A Sh(V,,K,))
belongs to the subspace

HJI”(F7 Hg?_l((Sh<Vn0, KTLO) X Spec F Sh(an ) Knl))f? B (n>>/<ker ¢H07 ker ¢H1>>
hence to the submodule
H (F,HE ™ ((Sh(Vig, Knp) Xspee  Sh(Viy, Ky )5, Oa(n))/ (ker ¢y, ker ¢, )

by Definition 2.4.2.
We adopt notation in Subsection 2.6 with the initial data in Definition 8.1.1. Define two
nonnegative integers mpe, and mi,; as follows.

(1) By Hypothesis 3.2.9, we may choose a map
Hz?_l((Sh(Vnov Kno) X Spec F Sh(an, Km))fv O)\(n))/(ker ¢H0? ker ¢H1) — R®

of O,[I'p]-modules such that the induced image of AJY*™ (A Sh(V,,K,)) in H}(F,R°),
denoted by s°, is non-torsion. Let s € H}(F ,R) be the element corresponding to s¢ under
the isomorphism in Lemma 2.4.5. We put

Mper = ordy (s, H}(F,R)/H}(F, R)tor)
(Definition 2.1.6), which is a nonnegative integer.
(2) By Hypothesis 3.2.9, we have an isomorphism
Hg‘:l(Sh(vnm Kn1 )F? EA(rl))/ker ¢H1 = (Rtlz ®o, E)\)@MI
of E)\[I'r]-modules for some integer p; > 0. We fix a map
Hz‘fl (Sh(an ) Km )fv OA<T1))/ ker ¢H1 - (R(I:)EBM

of O,[I'r]-modules whose kernel and cokernel are both Oy-torsion. Then we let my,; be the
smallest nonnegative integer such that both the kernel and the cokernel are annihilated by
)\mlat.
Note that in (1), we obtain an element s € H}(F,R)q = H}(F,Rq) = H}(F, puy» @, pmya(n))
that is nonzero. In particular, we have dimpg, H}(F, prioa @, pma(n)) > 1.
We start to prove the theorem by contradiction, hence assume

dimp, H}(F, puy» ®p, pmya(n) > 2.

Take a sufficiently large positive integer m which will be determined later. We fix a uniformizer
Ao of Ey. By Lemma 8.1.3, we may apply Proposition 2.4.6 by taking X to be the set of places
of F above X7, UX. Then we obtain a submodule S of H}  (F, R(™) containing (the image of)

Ao =" s of order 0,%% that is free of rank 2 over Oy/A™ ™=, and such that loc,|s = 0 for every

?Here, A, "**'s is any element in H}(F, R) satisfying Ay (A, "*"s) = s.
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nonarchimedean place w € ¥ not above ¢. Now we apply the discussion in Subsection 2.3 to the
submodule S C H'(F,R™). By (L5-1) and Lemma 2.3.6, we obtain an injective map

0s: Gal(Fs/Fym) — Homo, (S,R™)

whose image generates an O,-submodule containing NER(m) Hompo, (S, R(™), which further con-
tains A*® Homyp, (S, R(™) by Lemma 2.3.3 and (L3). By (L5-2) and Lemma 2.6.1, we may choose

an element (71,72, £) in the image of (ﬁm), ﬁg}?, Egm))

rise to an element 7 € (GLpgn, (Ox/A™) x (Ox/A™)*)c as in Notation 2.5.2 such that (R(™)" is
a free O, /\"-module of rank 1 by Lemma 2.6.2 and (2.4). Now we apply the discussion in Sub-
section 2.5. By Proposition 2.5.5 (with mg = my, r, = 1, rg = 2), we may fix an (S, v)-abundant
pair (U, U,) € G’%’7 (Definition 2.5.6). By the definition of a (.S, v)-abundant pair, we may choose
a basis {s1, s2} of S such that 0s(V;)(s2) = 0s(V2)(s1) = 0, and

(8.10) expy, (05(¥;)(s;), R ) > m — my — 4rg

|Gal(F/ r+ y satisfying Lemma 2.6.1(2). It gives

for j = 1,2. Moreover, without lost of generality, we may assume Ay "*s = a8, + a5y in

which a;, € O5.

First, we apply the discussion and notation in Subsection 7.3 to our situation with A\, m,
S =0, 3 = 25, (Vi An), K,y and (K, Knpq). By the Chebotarev density theorem, we can
choose a y-abundant place wﬁ) of FJ(rm) satisfying ¥ (m) = Wy and whose underlying prime p; of

1
F* (and the underlying rational prime p;) is a special inert prime satisfying (PII1)—(PII7) and
(PII8): the natural map

+
Thus

.
HE (Sh(Vay, Kiy )7, Oa(r1))/(Tnd™* Nker 1, ) — He* (Sh(Vay, Koy )75, Oa(r1))/ ker ¢y,

is an isomorphism.

We also choose remaining data in the initial setup of Section 4 with Qg)l = pr, a definite uni-
formization datum (V7 _,i.,, {As, 4 }ep) for @ = 0,1 as in Notation 4.4.7. By (2.4), (8.10), and
our choice of S, we have

exp, (s, H}(le,lf{(m)» > M — Mper — 4R,
which implies that
expy, (10cp, ([ Sh(Va, Kn)]), HE((S(Vag, Kng) Xspee  Sh(Vay, Ky )y, 2 L(0))/ (0, 11)) > 110 = ey — At

Here, we recall that
s
Ny = iinm N ker <T§§mn &) OE - OE/Am>
for « = 0,1. Note that Assumption 7.3.2 for a = 0 is satisfied by (L7) if n > 3 and by (L4) if
n = 2; Assumption 7.3.2 for a = 1 is satisfied by (L7) if n > 3 and by (PII8) if n = 2. Thus, we
may apply Theorem 7.3.4 hence obtain

(811) exXpP, (HSh(V;,K;p% OE[Sh(V;O, KZO) X Sh(V;l, K;l)]/(no, nl)) >m — Mper — 4tR.

Second, we apply the discussion and notation in Subsection 7.2 to our situation with A\, m,
Ef;}l ={m}, Sf =L, ust, Vo = Vi Ko = K and (K2, KD, ) = (K5, Kp.,). By the

p1? sp? sp?’
Chebotarev density theorem, we can choose a y-abundant place wgf) of FJ(rm) satisfying ¥ m) = Wy
2

and whose underlying prime py of F'* (and the underlying rational prime p,) is a special inert
prime satisfying (PI1)—(PI7), ps # p1, and
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(PI8): the natural map

zrus

4
Hzfl (Sh(vm ) Knl )fa O)\<7’1>>/<T"1 " M ker (le) — Hzfl (Sh(vnw Knl )f? OA(“))/ ker (le

is an isomorphism.

We claim that there exists an element ¢, € H'(F,R(™2)¢) for some positive integer my < m
satisfying

(8.12) exp) (8p2100p2 (cg), H!

sing

(sza R(m2)6)> Z m — Mper — 4tR — Myag,
and such that for every nonarchimedean place w of F' not above X U {p1,p2},
(8.13) locy(ca) € H}(Fw, R(m2)<)

holds.

By Remark 4.3.8 and Remark 4.4.8, we know that there exists an isomorphism U((V;, )>) ~
U(Vy?) sending K5, to K,,. Then the claim can be proved by the exactly same argument for
the similar claim in the proof of Theorem 8.2.1, using (8.11) and the fact that pp, 4 is rigid for
(Smins Zrp)->

Now we deduce a contradiction. Replace sy by its image in H}(F, R(™)). We also identify
R(m2)¢ with (R(™2))* via the polarization Z. Now we compute the local Tate pairing (sg, cs)q (2.1)
for every nonarchimedean place w of F.
+

O Suppose that w is above ¥ ;. Then we have loc,(s2) = 0 by our choice of S. Thus,

<Sg, Cg>w = 0.

O Suppose that w is above X . Then by (L2), Rg is crystalline with Hodge-Tate weights in
[1—n,n]. Thus, we have loc,(s2) € H}(F,, R™) by Lemma 2.4.3(2) and (L1). By (8.13),
Lemma 2.2.6 and (L1), we have N (sq, ¢9),, = 0 where 0, = A"t C O, is the different
ideal of E)\/Qg.

O Suppose that w is not above . USFU{py, p2}. Then by (L2), R is unramified. Thus, we
have loc,(s2) € H}(Fw,R(’m)) by Lemma 2.4.3(1). By (8.13) and Lemma 2.2.3, we have
(52, 02>w = 0.

O Suppose that w is the unique place above p;. Then we have loc,(s2) = 0 by our choice of
the basis {s1, so}. Thus, we have (s2,¢c2),, = 0.

O Suppose that w is the unique place above p,. Then we have

exp, <locw(32), H}C(Fw7 R(mz))) > my — my, — 4tg.
By (8.12) and Lemma 2.2.3 again, we have
expy, ((S2, C2)w; Ox/A™) > M — Mper — M1y — My — Stg.

Therefore, as long as we take m such that m > mpe, + Mmiae + My + 8ty + Mmair, we will have a
contradiction to the relation

Z<S27C2>w =0,

w

where the sum is taken over all nonarchimedean places w of F'. The theorem is proved. 0

2In fact, one needs to use the additional fact that when [F* : Q] > 1, both Shimura varieties Shy,, and Sh;,

have proper smooth reduction at every place w of F' above E;;l \ {p1}. See Remark 5.1.8.
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APPENDIX A. UNITARY DELIGNE-LUSZTIG VARIETIES

In this appendix, we study some unitary Deligne-Lusztig varieties in Subsections A.1 and A.2
for those used in Sections 4 and 5, respectively.

We fix a rational prime p. Let x be a field containing [F,.. Recall from Subsection 1.3 that we
denote by o: .S — S the absolute p-power Frobenius morphism for schemes S in characteristic p.

A.1. Unitary Deligne—Lusztig varieties in the smooth case. In this subsection, we intro-
duce certain Deligne-Lusztig varieties that appear in the special fiber of the smooth integral model
studied in Section 4.

Consider a pair (¥, { , }) in which ¥ is a finite dimensional x-linear space, and { , }: ¥’ X% — &
is a (not necessarily non-degenerate) pairing that is (k, o)-linear in the first variable and s-linear
in the second variable. For every k-scheme S, put s = 7 ®, Og. Then there is a unique pairing
{, }s: Vs x Vs — Og extending { , } that is (Og,o)-linear in the first variable and Og-linear
in the second variable. For a subbundle H C ¥4, we denote by H' C ¥4 its right orthogonal
complement under { , }s.

Definition A.1.1. We say that a pair (¥, {, }) is admissible if there exists an [F2-linear subspace
Yy C Y% such that the induced map % ®F,, K — ¥% is an isomorphism, and {z,y} = —{y, 2} for
every =,y € ¥.

Definition A.1.2. For a pair (¥, {, }) and an integer h, we define a presheaf
DL(7,{, },h)
on Sch, such that for every S € Sch/., DL(7,{ , },h)(S) is the set of subbundles H of 5 of

rank h such that H' C H. We call DL(¥,{ , },h) the (unitary) Deligne-Lusztig variety (see
Proposition A.1.3 below) attached to (#,{, }) of rank h.

Proposition A.1.3. Consider an admissible pair (¥ ,{, }). Put N := dim, ¥ and d == dim,, ¥ .
(1) If 2h < N +d or h > N, then DL(¥,{, },h) is empty.
(2) If N +d < 2h < 2N, then DL(¥,{ , },h) is represented by a projective smooth scheme

over k of dimension (2h — N — d)(N — h) with a canonical isomorphism for its tangent
sheaf

ToL .y = Hom (H/H Yoo ym/H)

where H C Pprer {,1,n) is the universal subbundle.
(3) If N +d < 2h < 2N, then DL(¥,{, }, h) is geometrically irreducible.

Proof. Part (1) is obvious from the definitions.

For (2), DL(¥,{, },h)is a closed sub-presheaf of the Grassmannian scheme Gr(¥, h) classifying
subbundles of ¥ of rank h, hence is represented by a projective scheme over k. Now we compute
the tangent sheaf. Consider a closed immersion S — S in Sch /r defined by an ideal sheaf 7
with Z? = 0. Take an object H C ¥5 in DL(¥,{, },h)(S). Let Dy and Gy be the subset of
DL(¥,{, },h)(S) and Gr(¥,h)(S) of elements that reduce to H, respectively. It is well-known
that Gy is canonically a torsor over Homep, (H, (¥s/H) ®04Z). Since ZP = 0, the right orthogonal
complement A depends only on H for every HeGy In particular, the subset Dy is canonically
a torsor over the subgroup Home (H/H™, (¥s/H) ®e4 L) of Home,(H, (¥s/H) ®e4 Z). Thus,
DL(7,{, },h) is smooth; and we have a canonical isomorphism for the tangent sheaf

ToLer i, y.ny/e = Hom (7'[/7'[47 YoLr 4, },h)/H)

where H is the universal subbundle. Note that this is a locally free Opyy ¢ 1,n)-module of rank
(2h — N —d)(N — h).
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For (3), we may assume that s is algebraically closed. By Definitions A.1.1 and A.1.2, we
have a canonical isomorphism DL(7,{ , } h) ~ DL(%,{ , }o,h) ®r , x, where { , }o denotes
the restriction of { , } to #. Suppose d = 0. Then { , }o is non-degenerate. By [BROG,
Theorem 1], we know that DL(%,{ , }o,h) is geometrically irreducible. In general, we consider
Y = /Y, equipped with a pairing { , }, induced from { , }o. Then it is clear that the
morphism DL(%),{ , }o,h) — DL(¥7,{ , }{,h) sending a point H € DL(%,{ , }o,h)(S) to
H/¥;4 is an isomorphism. Thus, DL(%,{ , }o,h) is geometrically irreducible by the previous
case. The proposition is proved. O

Lemma A.1.4. Consider a pair (¥,{ , }) with dim,? = N > 2 and dim, ¥ = 0, and a
p-coprime coefficient ring L. Suppose that p + 1 is invertible in L.

(1) The subscheme DL(¥,{, }, N — 1) is a hypersurface in P(¥") of degree p + 1.

(2) The restriction map

Hfét(]P)(n/>E7 L) - Hfét(DL(ﬂi/v{ ) }7 N — 1)E7 L)
induced by the obvious inclusion DL(¥,{ , }, N — 1) — P(¥) is an isomorphism for
i@ {N—22N —2)}.
(3) For everyi € Z, H,,(DL(¥,{, },N — 1)z, L) is a free L-module.
(4) When N is even, the action of Gal(F/k) on Hy (DL(¥,{, }, N — 1), L(¥52)) is trivial.

2

Proof. The lemma is trivial if N = 2. Now we assume N > 3. Then S = DL(¥,{, }, N —1) is
a geometrically connected smooth hypersurface in P(¥") by Proposition A.1.3.
Part (1) follows since S is defined by a homogenous polynomial of degree p+ 1, by its definition.
For (2), by the Lefschetz hyperplane theorem, the restriction map H, (P(¥ )z, L) — H% (Sk, L)
is an isomorphism for 0 < i < N — 3; and the Gysin map HY (Ss, L) — HL*(P(? )z, L(1)) is an
isomorphism for N —1 <i < 2(N —2). By (1), the composite map

He(P(Y )r, L) = He(Sr, L) — H?(P(Y )r, L(1))
is given by the cup product with ¢;(Op(y).(p + 1)), which is an isomorphism for i # 2N — 2 since

p+ 1 is invertible in L. Thus, (2) follows.

Part (3) is an immediate consequence of (2).

For (4), it suffices to consider the case where L = Qy for some ¢ # p by (3). Then it is
well-known that HY ?(DL(#,{, }, N — 1)E,Qg(¥)) is spanned by Tate cycles over k (see, for

example, [[INM78]). In particular, (4) follows. O
Now we construct the special morphisms between Deligne—Lusztig varieties when rank increases.

Construction A.1.5. Let (¥,{ , }) be an admissible pair with dim,? = n > 1 satisfying
dim ¥~ = n+1—2[2]. We put ¥ = ¥ & «l and extend { , } to a pairing { , }; on %
with {1,1}; = 0. Suppose that we have another admissible pair (%, { , };) with dim, %, =n+1
satisfying dim ”//f = n — 2| 5], together with a r-linear map 0: % — ¥ of corank dim ¥’ 7 such
that {0(z),d(y)}y = {z,y}4 for every z,y € ¥. We construct a morphism

or: DL(V {, },[*51) = DL(%,{, }:, [%32])
by sending H € DL(¥,{, },h[%2])(S) to 6(H & Og). We call é; a special morphism.
Proposition A.1.6. The morphism 6y is well-defined, and is a regular embedding.

Proof. When n is odd, § is an isomorphism, which implies that d; is well-defined an is an isomor-
phism.
When n is even, 0 is of corank 1. The identity {6(x),d(y)}; = {z, y}4 for every =,y € ¥#; implies

kerd C ¥ = ¥* @ kl. Take S € Schy.. For H € DL(¥,{, },[%1)(S), H & Og must contain
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¥, hence (kerd)s. It follows that §(H @ Og) has the same rank as H, which is [251] = [%2].
Since { , }; is nondegenerate, we have §1 # 0 hence (dx1)™ = 6¥;. In particular, (§(H & Og))™
is contained in (6%)s, which implies that (6(H @ Og))” C §(H @ Og). In other words, d; is
well-defined. On the other hand, for Hy € DL(%, {, }y, [%32])(S), whether (0x1)s € H C (6%)s
holds is a closed condition; and once it does, there is a unique H € DL(¥,{, },[%+])(S) such
that H, = 6(H @ Og). Thus, é; is a regular embedding by Proposition A.1.3(2).

The proposition is proved. U

A.2. Unitary Deligne—Lusztig varieties in the semistable case. In this subsection, we in-
troduce certain Deligne—Lusztig varieties that appear in the special fiber of the semistable integral
model studied in Section 5. We keep the notation from the previous subsection.

Definition A.2.1. For a pair (¥,{, }) with dim, ¥ = N, we define a presheaf
DL {, })

on Sch,, such that for every S € Sch/,., DL*(7,{, })(S) is the set of pairs (H;, Hy) of subbundles
of ¥4 of ranks (%1 and [%} — 1, respectively, satisfying the following inclusion relations

V5! C H, H;

of subbundles of 5.

Proposition A.2.2. Consider an admissible pair (¥',{ , }). Put N :=dim, ¥ and d := dim,, ¥
(1) If d > [X], then DL*(¥,{, }) is empty.
(2) If d < [§] — 1, then DL*(¥,{, }) is represented by a projective smooth scheme over &,
whose tangent sheaf fits canonically into a sequence

0 — Hom (H1/7'l2, H;/H1> — oL, p/n = Hom(Ha/Viiecy ¢ ), Hi'/H2) =0

where “//];L.(%{ 1y © Ha ©Hi C ey (1) are the universal subbundles.
(3) If N >2 and d = N — 2| %], then DL*(¥,{, }) is geometrically irreducible of dimension
3]
Proof. Part (1) is obvious from the definitions.

For (2), let Gr(7,r) denote by the Grassmannian variety that classifies subspaces of ¥ of
dimension r. Then DL*(¥,{, }) is a closed sub-presheaf of Gr(¥, [5]) x Gr(¥, [§] — 1), hence
it is represented by a projective scheme over k. Now we prove that DL*(¥,{ , }) is smooth and
compute its tangent sheaf. Consider a closed immersion S — S in Sch /. defined by an ideal sheaf
T with Z% = 0. Take an object ¥5' C Hy C Hy C ¥s in DL*(¥,{, })(S). To lift (Hy, H) to a
pair (Hy, Hy) € DL*(¥,{, })(S), we first lift Hy, which is canonically a torsor under the group
Home, (Hy/ V5!, (H;'/Hy) @0, T) as H;' depends only on H;'. Once such a lift H, is given, the
possible lifts of H; form a torsor under the group Home (H;/Hs, (Hy' /Hy) ®04 Z). In particular,
Zariski locally, there is no obstruction to lifting (Hy, Hy), hence DL*(¥,{ , }) is smooth. The
statement on the tangent bundle of DL*(¥,{ , }) follows immediately from the discussion by
considering the universal object on DL*(¥,{, }).
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For (3), similar to the argument for Proposition A.1.3(3), we may assume N even this time.
Then the statement follows again by [BR0G, Theorem 1]. O

Construction A.2.3. Let (¥,{ , }) be an admissible pair with dim,? = n > 2 satisfying
dim, 7™ = n —2[2]. We put % = ¥ @ xl and extend { , } to a pairing { , }; on % with
{1,1}4 = 0. Suppose that we have another admissible pair (#;,{ , };) with dim, % = n + 1
satisfying dim ”Vf =n+1-— QL”THJ, together with a r-linear map §: % — ¥ of corank dim 7™
such that {0(x),0(y)}y = {x,y}4 for every x,y € #. Then similar to Construction A.1.5 and

Proposition A.1.6, we have a morphism
or: DL*(7,{, }) = DL*(%.{, })
by sending (Hy, H2) € DL*(7,{, })(S) to (6(H; & Os),0(Hs ® Og)) € DL*(#,{, }4)(5), which
is a regular embedding.
Proposition A.2.4. Suppose k algebraically closed. Consider an admissible pair (¥,{, }) over
k. Let (H1,Ha) be the universal object over DL*(¥,{, }).
(1) Suppose dim, ¥ = 2r + 1 for some integer r > 1 and dim, ¥~ = 1. Then we have

ey e (@ H) @0y ) (Hi/7:)) = a5,

2) Suppose dim,, ¥ = 2r for some integer r > 1 and dim, ¥~ = 0. Then we have
( g

* - - _ qe
/DL'(%{ 3 ((U H2) ®0pieir ) (Hl/%Q)) A (Hl/H2) = drp:
Here, d; , is the number introduced in Notation 1.5.2.
Note that DL*(¥,{, }) is irreducible of dimension r, by Proposition A.2.2.

Proof. For (1), we let # be the quotient space ¥ /¥, equipped with the induced pairing, which
we still denote by {, }. Then we have a canonical isomorphism DL*(¥,{, }) = DL*(¥,{, })
by sending a pair (Hy, Hs) to (H,/¥ ™, Hy/? ™). If we denote by (Hi,Hs,) the universal object
over DL*(7,{, }). Then we have

Cr ((O'*HQ) ®ODL'(“V,{ B (%I‘/Hg)) = Cr_1 ((0'*7'_[2) ®ODL'(77,{ Y (7'_[;/7'_[2)) - C1 (7‘21‘/7‘22)

under the above isomorphism. Therefore, (1) follows from (2).

For (2), consider % := ¥ @ k1 and extend { , } to a pairing { , }; on % with {1,1}; = 1. Then
we have Deligne-Lusztig varieties DL(7#4,{ , }¢ h). In what follows, we only need to study the
one with A = r+ 1, and will simply write DL(%;) for DL(%;,{ , }4,7+1). Since we will work with
two spaces, we will denote by (-, ) for the (left,right) orthogonal complement for ¥, and (F, 9)
for the (left,right) orthogonal complement for 7.

We now define a correspondence

DL(%;) < DL(¥) = DL*(¥)

of schemes over k. For every k-scheme S,

O DL(¥)(S) is the set of pairs (H, Hy) where H is an element in DL(%)(S) and H, is a
subbundle of H™ of rank  — 1 that is contained in ¥g;
O 7 sends (H, Hs) € DL(7)(S) to H € DL(7)(S5); and

O 7* sends (H, Hy) € DL(¥)(S) to (Hy, Hy) € DL*(¥)(S) where H, :== (H N ¥s)".

It needs to show that 7* is well-defined, which amounts to the following four statements:
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O H, is a subbundle of #5: It suffices to show that the composite map H — ¥g — Og is
surjective, where the latter map is induced by the projection 7; — 1. If not, then there
exists a geometric point s of S such that H, is contained in ¥, which contradicts the
inclusion H, C H,.

O Hy C Hy: As H' C H by the definition of DL(%;), we have H- C H and {H",H}; = 0.
Thus, {H™ N ¥s, HN ¥s} = 0, which implies H, C H"N¥s C (HN ¥5)" = H,.

O H, C H;: As H™ C H, we have that Hl_| = H N Y5 contains Hs, which implies H; =
(Hy)" C Hj.

O H, C H,: As H" C H, we have (H")™N¥s C HNVs, which is equivalent to (H"N¥s)™" C
H N V5. As H, is contained in H™ N ¥s, we have H,”" C H N ¥s5 = H;', which implies
H, C H,".

We denote by H, (#,Hs), and (H;, M) the universal objects over DL(%), DL(¥), and DL*(¥),
respectively. By definition, we have H =mH and Hy = 7% Ho.

We first study the morphism 7. We say that a point s € DL(%;)(x) represented by Hj is
special if H is a maximal isotropic subspace of ¥ satisfying H, = H. Then there are exactly
(p+1)(P*+1)--- (p* ' +1) special points. Let DL(¥%;)’ be the locus of special points. It is clear
that for every morphism S — DL(%) \ DL(%;), 7*(S) is a singleton; and for a special point s,
we have 71(s) = P(H.) ~ Pr~!. In particular, 7 is a blow-up along DL(%;)’, for which we denote
by E C f)I(”i/ ) the exceptional divisor. In particular, 7 is projective. Moreover, E is exactly the
zero locus of the canonical projection map

H/Hy —» O~ - 1CO

DL(¥) by O 7%

which implies

(A.1) H [ Hy ~ O, (—E).

DL(¥)

Next we study the morphism 7*. We claim that 7°® is generically finite of degree p + 1. Take a
point s € DL*(¥')(k) represented by (His, Has). Then by construction, for every scheme S over
{s} Xprep) ﬁ(”ﬁ), ﬁ(%)(S) consists of subbundles H C ¥ ®, Og satisfying Has ®, O C H™ C
Hi, ®,. 05 ®Os1 and H- C H. Note that we have an induced pairing

Hls@lil Hls@ﬁl
{, }s: — K
H2s

2s

that is o-linear in the first variable and linear in the second variable. Then it is clear that when
{, }sis perfect, {s} xpre(»y DL(¥') is isomorphic to the union of p+ 1 copies of Spec x. However,
{, }, fails to be perfect if and only if H;' = H;. Thus, the locus where { , }, fails to be perfect
is a finite union of P71, Therefore, * is generically finite of degree p + 1.

To proceed, we introduce two more bundles

€= (0"H") oroy (H/H), €= (0"Ha) Spreey) (Hi/H)

on DL(%;) and DL*(¥') of ranks r and r — 1, respectively.
We claim that

(A.2) L= (H/H) ~ Op; ) (—E) Do, (H/H").

In fact, we have

L= ("N Y5,/ Ho
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by definition. Thus, the claim follows from the following injective map

0 T T Opi 3y (—E) —0
0—=HN V5, H Opigyy -1 —0

of short exact sequences of coherent sheaves on DL(¥) by (A.1) and the Snake Lemma.
By (A.1) and (A.2), we have

DL(¥)
= 6o (7€ B0, O (B)) - 1(£((1 - D)E))
—(WNW%7+2QWW%H(”90((Q+G—M(@)

= e (787 (L) + L eB) aL)ai (7€) + (1 =p) L e (B o (w8
= 7 (€)1 (H/He)) + 3 r (B (Dermior (1€ + (1= p) () (17E°).

=1

In particular, since m and 7*® are generically finite of degrees 1 and p + 1, respectively, we have

(A.3) (p+1) /D o

= (p— 1)127;/]51(7/ c1(E)e, i (T E°) Z/DL c1(L)ep—i—1 (T E®)
S} o) [CUTERIEIRES o AE B

¢a(E) -1 (M Ha) — /D 6

where 1 = ¢1(0Og(1)). As H/H™ = = (H/H':), we have L|g ~ Op(—F) = Og(1). On the other

hand, 772\ g is the tautological subbundle (of rank r — 1), which satisfies the short exact sequence
0 — Halp = OF — Op(1) — 0.
Thus, F = 7|5, which equals (0*Hs|p) ®o, (L|g), satisfies the short exact sequence

0—F—= 0p(1)¥ = O(p+1)—0.
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Therefore, we have

r—1

(A4) (A3) =p3 L iaP) = [ e
=p [ aa(F1) = [ ana(F)
:p/E<_p)r—1nr—l _ /E 1 - (_p>r77r—1

p+1
_ (_p>7‘+1 —1 / r—1

p+1
(_p)T+1 —1 /
=P 70 DL
L Lo )
r+1
_p — 1 .
= (p)Jrl(pﬂLl)(Png - (p" 1),
By [XZ, Proposition 9.3.10], we have
A5 / (&) =4d,,,
(A5) [y €)=y
where d,, is the number introduced in Notation 1.3.2. Thus, (2) follows from (A.3), (A.4) and
(A.5). The proposition is proved. O

APPENDIX B. COMPUTATION IN HECKE ALGEBRAS

In this appendix, we compute several explicit formulae on the evaluation of certain Hecke
elements. In Subsection B.1, we prove some combinatorial formulae on characters of the dual
group (of a unitary group). In Subsection B.2, we introduce the two unitary Hecke algebras and
prove a formula for an intertwining operator between the two Hecke algebras. In Subsections B.3
and B.4, we evaluate certain Hecke operators under a Satake parameter in the even and odd rank
cases, respectively.

B.1. Characters of the dual group. Let N > 1 be an integer with r := |5 |. We let GLy be
the group of automorphism of the Z-module Z®V, which is a group scheme over Z. Let Ty C GLy
be the subgroup of diagonal matrices. The group of homomorphisms from Ty to G,,, denoted by
X%, is a free abelian group generated by {p1, ..., pn} where p; is the projection to the i-th factor.
For 1 € X%, we denote by [u] the corresponding element in Z[X%]. For 1 < i < r, we put

B = [ — pivsr—] + [y — ] € ZIXR ]
For 0 < § <, let s5 € Z[X}] be the elementary symmetric polynomial in g, ..., @, of degree ¢.
Finally, we denote by Z[X}]®™ the subring of Z[X%/] generated by {si,...,s,.} over Z.
Now we consider GLY" :== GLy x{1,0} in which the involution ¢ sends A € GLy to
-1

1 1
-1 -1
. tAfl
(_1)N72 (_1)N72
(_1)N71 (_l)Nfl
For every algebraic representation p of GL" (over Z), we denote by x(p) the restriction of the

character of p to Tyo, regarded as an element in Z[X]. Let pysa be the standard representation
of GLy and py 4 its dual. We let {e1,...,en} be the standard basis of pya and {eY, ..., X}
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the dual basis of py 4. Forasubset I C {1,..., N}, we put (I) == >;c 4, [V = {N+1—i|i € I},
er = Niergi and €Y = Ajere) (in the increasing order of the indices). For 0 < 6 < r, put

Fy é
PN = (/\ pN,std> ® (/\ pjv\f,std> ,

which extends uniquely to a representation of GL$" such that o sends e;®@¢%, to (—1){0+ e ;@6 .

Remark B.1.1. In the next subsection, we will study the unramified unitary group U(Vy) over
nonarchimedean local fields. Then GL%'(C) is simply the Langlands dual group of U(Vy), and

we have Z[X3[?¥™ ~ Z[X*(m))"]wN

Lemma B.1.2. We have

6 -4 -

Z (T . +Z> - S5_i, if N is odd;

) - S5-95, if N is even.

In particular, x(pn.s) belongs to Z[X5 ™.
Proof. Note that for every ¢t € Ty, to sends e; ® €%y to

DI )™ TL () -5 @ €
iclV jeJ
Thus, we have

X(pns)(to) = > TI wa(®) T )

IC{1,...r}|I|=6i€lV iel

= > IT et pvia—a(t) ™

IC{1,...,;r},|T|=6 i€1

To evaluate the above sum, we consider i := |I N IY|, which has to be even when N is even. It is
easy to see that for fixed 0 < i < § (that is even if NV is even), the contribution from those subsets

I to the above sum is
(7" — 0+ z) s5i(t)
i T I6—1 .
5]

Thus, the lemma follows. O
Lemma B.1.3. Suppose that N = 2r is even.
(1) We have
H ()\ +A + .U'z‘) = X(PN;r) + Z X(PN;T%)(XS + )‘75)
i=1 =1
in Z[XN]Y™ @ ZIA, A1
(2) We have
roor . )\ -\ é
ZH(AJM + ) = 25 X(pNir-s) 51
=

in Z[X3]7™ @ ZIM\ A7

Proof. Part (1) is follows from Lemma B.1.2 by comparing coefficients of powers of A. Part (2)
follows from (1) by taking derivative with respect to A and dividing both sides of the resulted
equality by 1 — A2, O
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Lemma B.1.4. Suppose that N =2r + 1 is odd. We have

T B /\6+1+>\6
H()‘+/\1+Mi) ZXPNT& Nl

i=1
in Z[X5 Y™ @ ZIA, AL
Proof. By Lemma B.1.2, the right-hand side of the desired identity equals

r )\6+1+>\—6 r—¢ 544
—_— s
> a1

0=0 =0

i(v'z—iwww(r_i))ﬁ
S\m AL A=)

by substituting ¢ by » —  — 1. Thus, it remains to show that

EXNH LNk -
M<LHJ> = A+ AT
6=0

2

which coincides with

for 0 < k < r. However, we have

ix“%ﬂ( k )
= A+ LY

k )\k—H + )\—k )\k + )\—(k—l) k /\k—l +/\—(l~c—2) )\kz—? +)\—(kz—3)
(o)( N R W >+<1>< N R W >+

(ot s (o aeony g
=(A+AHk

The lemma follows. [l

B.2. Two Hecke algebras. From now to the end of this section, we fix an unramified quadratic
extension F//FT of nonarchimedean local fields. Let ¢ be the residue cardinality of F* and p the
maximal ideal of Op.

Let N > 1 be an integer with r := [§|. Consider a hermitian space Vy over F (with respect
to F/FT) of rank N together with a basis {e_,,...,e,} (with ey omitted if N is even) such that
(e—i,ej)vy = 6;; for 0 < i,j < r. Via this basis, we identify U(Vy) as a closed subgroup of
Resp/p+ GLy. We study two lattices

(B.1) Ay =Ope_, @ ®O0pe,, Ay=ple, @ @&p e ®Opeg® -+ ®Ope,

of V. We have (A})Y = Ay, pAY € (AY)Y, and that the Op-module (A%)Y/pA% has length
N —2r. Let K% and K% be the stabilizers of A%, and A%, respectively, which are subgroups of
U(Vn)(FT). Tt is clear that K is hyperspecial maximal; K is special maximal and is hyperspecial
if and only if N is even. We have two commutative Hecke algebras

Ty = ZIKN\U(VY)(FT)/KR], - Ty = ZKG\U (V) (F7) /KR ]

Recall that by our convention in Subsection 1.3, the units in Ty and T} are Ixs and ks,
respectively. Let Ay(FT) (resp. Ax(Op+)) be the subgroup of U(Vy)(FT) that acts on e; by a
scalar in F'" (resp. Op+) for every —r <i <.
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Notation B.2.1. For each element t = (t,...,ty) € ZN satisfying t; +tn41-i = 0 and a € F*,
we have an element a* € Ay(F*) such that at.e_; = al™1-ie_; for 1 <i <r. For 0 < § < r, put
ts == (1°,0V"2 (=1)?). We let T}, (resp. Tx.,) be the element in TS (resp. T%) corresponding to
the double coset K{w'Ky, (resp. K§w'KY) for some uniformizer w of F; and simply write T3
(resp. Ty.s) for Tq,, (vesp. T, )

Remark B.2.2. The elements Ty, € T3 and Ty, € Ty do not depend on the choice of the basis
{e_.,..., e} satisfying (B.1).

Now we recall Satake isomorphisms. Denote by Wy the Weyl group of Ay (FT) in U(Vy)(F7T),
which preserves Ay (Op+); and we have the two Satake isomorphisms®*

Saty: Ty = Z[AN(FT)/An(Op+)]VY,

Sath: Ty = Z[AN(F1)/An(Op+ )]V,
In addition, we have an isomorphism

ZIAN(FT) /AN (Op+)[V™ = ZIXy ™™

of rings under which ss corresponds to the characteristic function of the W y-orbit of p* for every
0 <6 < r. In what follows, we will regard Z[X}]*¥™ as the target of both Satake isomorphisms
Saty and Saty.

Notation B.2.3. Let Z[X3,] be the subring of Z[X3,] generated by {y, ..., u,} over Z, sending
p; to a; + a;t for 1 < < r. For every ring L and every tuple a = (au, ..., ay) € LV satisfying
;11— = 1, we have a homomorphism ¢, : Z[X%] — L, and denote

d5: Th —% ZIXR]Y™ C ZIX5] 5 I,

[e%

dh: T =% ZIXR]Y™ C Z[X5] &5 I,

«

the composite homomorphisms.

Definition B.2.4. We denote

O Laty the set of all self-dual lattices in Vy;

O Lat} the set of all lattices L in V y satisfying pL. C L" and that LY /pL has length N —2| I |;
O T% € ZIKN\U(Vn)(FT) /K] the characteristic function of K% K$; and

O T € ZIK3G\U(Vy)(FT)/K%] the characteristic function of K K$ .

Moreover, we define the intertwining Hecke operator
Iy =Ty oTy € Ty
where the composition is taken as composition of cosets.
Note that we have canonical injective homomorphisms
TS — Endz(Z[Laty]), T% — Endz(Z[Laty])

sending Ty, to the endomorphism that takes f € Z[Laty] to the function Ty.f satisfying

(Th.e/)(L) = 3 f(L') where the sum is taken over all I/ € Lat’ such that L' and L have rel-
ative position ! for 7 = o, e.

24Strictly speaking, we need to choose a square root of ¢, which we take to be q.
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Lemma B.2.5. We have the identity

T

Ty + (@ + DTy + (@ + D)@+ DT+ + [ + )Ty, i N =2r;
o =1
IN =

T?V;T + <q3 + ]')T?V;'r—l + (q3 + 1)(q5 + 1)T?V;r—2 +ot ]__[((]22‘4_1 + 1)T?V;Oa if N=2r+1
i=1

in TY.

Proof. To compute I%,, it suffices to compute its induced endomorphism on Z[Lat},]. Now we take

an element f € Z[Laty]. Then

REEMHED= Y @A = Y Y g
L*eLaty LecLat},  LgcLat}
LicLcy™'Lt LCLCp L7 L3CLoCp L3

for every L € Laty. Note that for pairs (L9, L3) € (Laty)? appearing in the formula above, we
have pL§ C Ly C p~'L§ and [LS : Lg] := [LS : Ly NLg] + [Lg : L N L3 € {0,2,...,2r}.
Now for a pair (L3, L3) € (Lat})? satisfying pLg C L C p~'L3, we consider the set
Laty (L§, L$) = {L* € Lat}y |L{ C L* C p~'L{,Ls C L* C p~'LS}.
It is easy to see that the cardinality of Lat}, (L{,L3) depends only on [L : L]. For 0 < § <r, we

denote by cy s the cardinality of Laty (L9, L) with [L{ : L] = 2. Then the lemma is equivalent
to showing that cy, = 1 and

(1 +1), 0<é<r, when N =2r;

CNG = ,_
I +1), 0<d<r, when N=2r+1.

Without lost of generality, we may assume L] = A%, and
Ly=ple, ® - ®p e o1 DOpe_rys5 D ®Ope,_s®pOrpe,_si1 @ -+ & pOre,.
When § = r, A} is the only element in Lat} (L7, LS). Thus, we have ¢y, = 1. For 0 < § < r, we

have cy s = cn_250. Thus, it suffices to show

r

H(q%—l +1)=(qg+1)- (QQT—1 +1), when N = 2r;
CN,O _ ’le

M@ +1)=(@G+1)--- (¢ +1), when N =2r+1.

i=1
However, cy is nothing but the number of maximal isotropic subspaces of the hermitian space
A ®o, Or/p over Op/p of dimension N, which is given by the above formula. Thus, the lemma
is proved. 0

The following three lemmas will be used in later computation.

Lemma B.2.6. We have the identity

_ O [N — 2 o o
C](S(N 6)X(PN,6) = § : [ §—i ] SatN(TN;i)
~ »

()

in ZIXN]™ for 0 <0 <r.
Proof. This is [X7, Lemma 9.2.4]. O
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Lemma B.2.7. For every integer k > 1, we have
k
2k
> qézl

] (gD 1) (1),
o=k q

k—d|

Proof. For every integer k > 1, we have the Gauss polynomial identity

;£%<__1)5[251A = (1=XN)(1 =X (1=

in Z[\].*> Now we specialize the identity to A = —g~*. Then we get

2k (k1) (2h—3) (2 2k _ _
S (g B (g )
5=0 —q
The lemma then follows by changing § to k — 9. O

Lemma B.2.8. For every integer k > 1, we have

e A I oY A B e R (e

d=—k—1 o=—k

Proof. In fact, we have

i 2,526+ 1 i 25| 2k
Z (_1)6(5q5 +6[ ] . Z (_1>6(5q6 +6[ ]
S=—k—1 k—o —q 6=k k—o —q
_ Zk: (_1)55q52+5(_q)k+6+1[ 2k ]
P k—d6—1 Y
k 2k 1
k+1 ¢ Z l
= k—§¢ Y
which, by Lemma B.2.7, equals
_ 2| 2k
ARSIV R PSR wp i At
—q

The lemma follows since

O

B.3. Enumeration of Hecke operators in the even rank case. In this subsection, we assume
that N = 2r is even.

Lemma B.3.1. We have the identity

T

0 TL (1 +2) = Sat (Ta) + (0 + D@ + 1)+ (@ +1) - Sat3y(Th, o)
=1 6=1

in Z[X5]v™,

25A proof can be found at http://mathworld.wolfram.com/GausssPolynomialIldentity.html.
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Proof. By Lemma B.1.3(1) and Lemma B.2.6, we have

7‘2 J 7’2 ’I"2 J
¢ I (s +2) =q" x(pny) +4 Z2x PNir—s)

i=1

" |2r — 21 | 2r — 21
S 5! ] JEETCRED V0 of It L ETCS
:Z Z_: q 2T_22 Sat ( TNZ

i=0 \6=—(r—i) T -0~ Z

which equals

Sat}y (Ta,) + D _(a +1)(¢* +1) - (¢ 7" + 1) - Sat}y (T, )
0=1

by Lemma B.2.7. The lemma is proved. U

Lemma B.3.2. We have the identity

T

¢ T (1 —a—a7") = Sati(T3,) + D () (g + 1)(g* + 1) -+ (@' +1) - Sati (T3, _5)
i=1 =1

in ZIX5 ™.

Proof. By Lemma B.1.3(1) and Lemma B.2.6, we have
¢TI (mi—a—a)
i=1

= P xlow) + 0 S0 + (—0) ) x(pr—s)

5=1
" |2r — 23 r =9 — 2r —2i o o
= [ . ] Satiy( TN7, + Z Zq (—q) 5)[ ] SatN(TN;i)
i=0 r—=1 6=11=0 70_5_2—(1
" 2r — 2 — 2 2r — 21
= ~1)° (" Sat3 (T
([_]+z< P (4 g )[T_é_i]_) A5 (T3,)
r T o s 2r — 21 o e
— ( (—1)5q6 +5[ 5 ] ) SatN(TN;i).
i=0 \o=—(r—i) U
Thus, the lemma follows from Lemma B.3.3 below by comparing coefficients. U

Lemma B.3.3. For every integer k > 1, we have
u 2k k 3 2%k—1
= (=) (a+ (@ +1)- (¢ +1).

—q

)8 0%+
> (=1 T

o=—k

Proof. By Lemma B.2.7, the lemma is equivalent to the identity

(—g)" zk: ¢ lkz—kél . = Xk: (—1)°"*° le_k(s] B

S=—k
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However, we have

(—0)* Y ¢ [kQ_k(;] e 3 (=1)07 [kQ_k(S] y

o=—k o=—k
= 6;k(—1)5q62+5 ((—Q)k_é - 1) lkz_k 5] »

= > (1)’ ((—9* - 1) [2: - 511 .

= (o) S ]

o=—k
Note that in the last summation, the term of 4 and the term of 1 — § cancel with each other for
—k < 6§ < k; and the term of —k is zero. Thus, the above summation is zero; and the lemma

follows. O

Lemma B.3.4. We have the identity

(=) ST (- a7)

Jj=1li=1
1#£]

J
Z ( g+ 1)(¢° + 1) (@7 1) = Y (-1) (20 + D [2;21] ) Sat3 (Tx_s)

in Z[X5 ],

Proof. By Lemma B.1.3(2) and Lemma B.2.6, we have

(qrm B qrm) zT: I (ui . qfl)

J=1 i
=q Z 1)*718(¢° = 47°) - x(pwir—s)
r 1 g2 s 2r—2i o s
— (_1)5 1q6 (5q6_5q 6)2[ 5 ] SatN(TN;Z.)
5=1 F I
- (= 2 o 2r—2i e
i=0 \o=1 r—o—1t_,
Thus the lemma is equivalent to the identity
i 252k +1 i 2 2k
> (=1)°(26 + )¢+ = > (-1)°¢" (6¢° — 3q™°)
0=0 k—o —q =1 k—9¢ g

=(—"g+D(@+1)-- (¢ +1)
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for every integer k > 1. In fact, we have
k

2 e e Fkkj;] L > (14" (96" = 6¢7°) le_kél -

5=0 5=1
i 2 5[2k+1 i > 2k
1)5545°+0 _ 5 6
Zl g lk 5] 5—2—:14( ) g lk_él_
—q 0= q
= (=" g+ 1)@ +1)-- (¢ + 1)
by Lemma B.2.8. The lemma follows. U

Proposition B.3.5. Let L be a ring. Consider an N-tuple a = (ay,...,ay) € LY satisfying
aiant1—; = 1, which determines a homomorphism ¢, : T3 — L as in Notation B.2.5.

(1) We have
#(1I%) =q" H(ozz—i-;—l—Z)

=1

(2) We have
o o o T - 1 1
6 (g + DB — 13) = ¢ I (aﬂr—q—)
i=1 & q
where
o = 1 - (_q)’f'—5 2(1"75)71 o
Ry :Z ——(q+1)(¢+3)---(q +1) - Tys-
o at1
(8) We have
o] o) (o) 1 1
¢a(RN+(Q+1)TN):—(q )Z (ai+cv_q_q>
=
where

TN _Zdr d,q TN5

in which the numbers d;_s , are mtroduced in Notation 1.3.2.

Proof. Part (1) follows from Lemma B.2.5 and Lemma B.3.1. Part (2) follows from Lemma B.2.5
and Lemma B.3.2. Part (3) follows from Lemma B.3.4. O

Lemma B.3.6. We have

TNV oRy =Ry oTy, TyoTy=TyoTy
in ZIKN\U(VN)(EFT) /K], where Ry, and TS are defined in Proposition B.3.5 (2) and (3), respec-
tively, and

r—1 r—48
[ ] 1 ( q) rT— — [ ]
Ry :—52: it1 (Q+1)(Q+3)"‘(qz( 2 1+1)'TN;6>
—0

TN _Zdr d,q TN6

Proof. In fact, by the same lattice counting argument as for Lemma B.2.5, we have
T;\Cf> © T?\/;é = T;V;(s ° T;\/?

for every 0 < § < r. Then the lemma follows immediately. O
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B.4. Enumeration of Hecke operators in the odd rank case. In this subsection, we assume
that N = 2r 41 is odd.

Lemma B.4.1. We have the identity

ri4r - — o o a o o
q * H (“’z + q + q 1) = SatN(TN;r) + Z(q?) =+ 1)(q5 + 1) T <q25+1 + 1) ’ SatN(TN;rfto
i=1 6=1

in LX),
Proof. By Lemma B.1.4 and Lemma B.2.6, we have

r - . Tr 6+1+ )
qr2+TH(“i+q+q 1):q2+ Zu

: X(pN;r—6>
i=1 =0 at1

r

6+1 —6 r—o .
T —reo) i) N (2P L =20 oo o
- S g+1 aty (T

! (;z:% qg+1 4 ; r—38—g L N( N,z)

1 r (g(qza-ﬂ + 1)(]52 [2(7‘ —i)+ 1] ) Sat(])v(T?V;i)

:q+1i:0 5=0 r—i=9
1 & = e [2(7“ —i) + 11 o o
= — Z q ) SatN<TN;i)'
q+1:= (5—(r—i)—1 r—i—=90 |_,

Thus the lemma is equivalent to the identity

k 2k +1
) qdzlk_(sl =(g+1)(@+ 1) (¢ + 1)
o0=—k—1 —q

for every integer k > 0. By Lemma B.2.7, we have

k+1 l 2k+2

52
2 i1os

| =@rv@sn@nn.
b=—F—1 -

Thus, it remains to show

Z 52 Z 52
= |]€ ] = lk ] ‘
S=—k— 1 0 —q S=—k—1 0 —q

However, the difference equals

M (] 2k+2 2k +1 MU e el 2641
2. 4 ([kntl—é]_q_[k—é]_q = 2 (-0 [k+1—5]_q

o=—k—1 o=—k—1
k 2k +1
— (et _1)° 5246
(—9) 5:§_kﬁ_1( I PR _

which equals zero as the term of § and the term of —d—1 cancel each other. The lemma follows. [

Lemma B.4.2. We have the identity

r

P2 d o o
q * H (IJ’Z - 2) = Z d5,q ' SatN(TN;T—5)
i=1 =0

in ZIXN|?™, in which the numbers ds, are introduced in Notation 1.5.2.
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Proof. By Lemma B.1.4 and Lemma B.2.6, we have

T s

¢ I (e —2) = ¢" 7 3 (-1)°(26 + 1) - x(pnir—s)
=1 6=0
r r—a4 .
r24r —(r=38)(r 2r+1—2 o o
=g " Z(_1)6(25+ 1)-q (r—08)(r+1+9) Z [ s 1 SatN(TN;i>
6=0 i=0 —q

—Z(TZZ 5(25 + 1)g" 0+ Z[ T‘”“]_)sat;v(ﬁw)

= — | r—i—9¢

r
= Z dévq ) Sat?V(T?V;T—é)'
0=0

The lemma is proved. U

Proposition B.4.3. Let L be a ring. Consider an N-tuple o = (ay,...,an) € LY satisfying
a;any1—; = 1, which determines a homomorphism ¢g,: T} — L as in Notation B.2.5.

(1) We have
s 1 1
da(1) =a 1 (az- + gt q) :

i=1
(2) We have
" 1
813 = I (ot — —2)
i=1 @i
where
TV =D drsg - T

in which the numbers d,_s, are introduced in Notation 1.5.2.

Proof. Part (1) follows from Lemma B.2.5 and Lemma B.4.1. Part (2) follows from Lemma
B.4.2. U

Lemma B.4.4. We have
TN o T3 = ((g+ 1)°Th + T o TR ) o TX
in ZIKN\U(VN)(FT) /K%, where T is defined in Proposition B.J.3(2), and

r—1

TN =D A0 s, This-
6=0

This lemma is a hard exercise in combinatorics. In fact, our proof below is by brutal force; it
would be interesting to find a conceptual proof.

Proof. 1t suffices to show that for every element f € Z[Laty ], we have

(B.2) ((q+1)°Tx + T o TR) (TR () = TR (T (/)
in Z[Laty]. Without lost of generality, we may just consider their values on AY.

For every L € Laty, and 0 < § < r, we denote

O ¢3(L) the number of L* € Lat} satisfying L C L* and (L® + A%)/A% =~ (Or/p)®°; and
O (L) the number of L° € Lat$, satisfying L° C A% and L/(LNL°) ~ (Op/p)®°.
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We then have

(TR (TR (N AY) = X2 o5(L) - f(L),

LeLaty,

(TN (Thss(NNARV) = X2 (L) - f(L).

LeLaty,
We claim the following identities
g2 [g a 7] ,if (L4 AY) /AN = (Op/p)®7 for some 0 < v < 6;
i fy q2
0, otherwise;

(B3) (L) =

£ f“_’y] - (L AR)/A% = (Or/p) for some 0 < 7 <5
(L) = 2l

0, otherwise.

For (B.3), we must have (L + A%)/A% C (L* + A%)/A% =~ (Op/p)®. Thus, the otherwise
case is confirmed. Suppose (L + A%)/A% =~ (Op/p)®7 for some 0 < vy < §. Then (pA% + L)/L
is an isotropic subspace of p~'L/L of dimension . Moreover, ¢§(L) is the same as the number
of maximal isotropic subspaces of ((pA% + L)/L)*/((pA% + L)/L) whose intersection with (the
image of) (p~'L N A% + L)/L, which itself is a maximal isotropic subspace, has dimension r — 4.
Thus, we obtain (B.3) by Lemma B.4.5 below since ((pA% +L)/L)*/((pA% +L)/L) has dimension
2r +1— 2.

For (B.4), we must have (L+A%)/A% ~ L/(LNA%) which is a quotient of L/ (LNL°) ~ (Op/p)®°.
Thus, the otherwise case is confirmed. Suppose (L + A%)/A% ~ (Op/p)® for some 0 < v < 0.
Then (L + A%)/A% is an isotropic subspace of p~1A% /A% of dimension . Moreover, c3(L) is the
same as the number of maximal isotropic subspaces of ((L + A%)/A%)Y/((L + A%)/A%) whose
intersection with (the image of) (p~*A% N p~'L + A%)/A%, which itself is a maximal isotropic
subspace, has dimension 7 —4. Thus, we obtain (B.4) by Lemma B.4.5 since ((L+A%)/A%)*/((L+
A%)/AY%) has dimension 2r — 27.

Now we come back to the values of (B.2) on AY. By a similar proof of Lemma B.2.5, we have

(B.4)

TV o TR = Thy, + (¢ + DThy 1 + (@ + D@ + DTy, + -+ 1@ + DTy
in T%. Then under Notation 1.3.2, we have
B5)  ((g+1)TH + TN o TY) o TN
r—1
= Th o TN + 3 (g + Ddrsg + (=0) g+ (@ +1) -+ (P07 1)) Thys 0 TV
6=0

By (B.3), (B.4) and (B.5), the lemma is equivalent to that for every integer k£ > 0, we have
: 52|k k(k+2 =, k—d+1 3 2(k—8)—1 ss+2) | B
> dr—sq4 M =g+ L 3 ((q+1)dk,57q+(—q) g+ 1)+ 1) (20 ))q o+ )M ,
(5:0 q2 6:0 q2

or equivalently,
(B.6)

: oz [k k o
> dsgq* M ¢ 4 Z( + Ddsg + (=) g+ D@+ 1) (¢ + 1)) gk k=d+2) M )
= 7 6=1 2
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By Lemma B.2.8, we have

()" Mg+ 1)(@* + 1) -

0

=—q >

j=—6—1

= _qdéq +q Z
j=—0

Thus, (B.6) is equivalent to

k (k} 5)2 k
g d a
6,qq [5‘| q2

6=0

or equivalently,
(B.7)

However, we have

k
—5)2 _
Z dé}qq(k ) (q2(k é

SN

o= 0]——5 1

SN

o= 03—76 1
)

SN

o= 0]—75 1
1)

SN

6=0j=—0—1
k o0-1

=2 2. (=

o= 1]*—(5

Sy Y-

6=0j=—9
Thus, (B.7) is equivalent to
>3 (-
6=0j=—9

which is obvious since

The lemma is finally proved.

Z(déq"'q Z

6=0

k

_8)2 _
zdd,qq(k 0) <q2(k é
6=0

(q26—1 + 1)

25 + 1 0 o[ 20
+aq ) (=1 “[ ]
l& ,]‘|_q Z( ) 5_] L

j=—6
26
i ﬂ[ ]
d—

o +J[ 20 1 B8 =5+2) [k‘ ,
0—j . J] 2

j=—0

(k—8)2 (q2(lc—6) N 1) |§1
e

m
+
<.
—
[\
(o)
+
: —
I—II—I,.Q
Q Q

2 k
(k=0)% (2042 _
(4 )LSJrl]z
q
20+ 1 k
—8)2 452 +](( q)25+2_1)l ] l ]
0—J _q5+1q2
20 + 2

e[ 2] 1]

k-l—l -6)? +j2+j((_q)5—j —1) [52_(21 lﬂ .

2 | 20 k
(k+1 8)% 452 +]( q)é—][ ] [ ] -0
0—1J 0| o ’
—q q

[ 2—53'] L

qu

j=—90
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Lemma B.4.5. Let V be a (nondegenerate) hermitian space over Op/p of dimension m > 1
with r = %], and Yo €V a mazimal isotropic subspace. Then the number of mazimal isotropic

subspaces Y C 'V satisfying dimoF/p(Y NYy) =r—s with0 < s <r is given by

g**? [r] , ifm=2r+1;
S| 2
q

r
qSZl] , if m = 2r.
S 2

q
Proof. We will prove the case for m odd and leave the similar case for m even to readers. We fix
an integer 0 < s < r. It is easy to see that the number of choices of the intersection Y NYj (of
dimension r — s) is

(q2r _ 1)(q2(r—1) _ 1) . (q2(7"73+1) _ 1) _ [7“]
(¢* = 1)(*=D = 1)+ (¢* = 1) slp

Then we count the number of Y with Y N'Y; fixed. We take a basis {e_,,...,e.} of V such
that (e_;,ej)y = d;; for 0 <i,j < r; Yy is spanned by {e_,,...,e_1}; and Y NY} is spanned by
{e_r,...;e_s_1}. Let {f1,..., fs} be an element in Y* such that {e_,,...,e_s_1, f1,..., fs} form
a basis of Y. Then since Y is isotropic, the coefficients on {es,1, ..., e, } of each f; have to be zero.
In particular, there is unique such element {f1,..., fs} € Y* that is of the form

A
(fl" : '7f8) - (617 s ’68> + (6—57‘ : '76—1760) (’U)
with (uniquely determined) A € M (Op/p) and v € My 4(Op/p). Moreover, the isotropic condi-
tion on Y is equivalent to that A+ A’ = 0 where A’ is the ¢-th Frobenius of A (and no condition
on v). It follows that the number for such Y with given Y NYy (of dimension r — s) is ¢**+2.
Thus, the lemma follows. O

APPENDIX C. SOME REPRESENTATION THEORY FOR UNITARY GROUPS

In this section, we prove several results for representations of unitary groups. Unless specified
otherwise, all representations will have coefficients in C. In Subsection C.1, we recall some general
facts about the local base change for unitary groups. In Subsection 6.2, we study the representation
appeared in the cohomology of Fermat hypersurfaces, and also compute the local base change of
some semistable representations. In Subsection C.3, we collect everything we need from the
endoscopic classification for unitary groups in Proposition C.3.1 and derive two corollaries from
it.

C.1. Local base change for unitary groups. In this subsection, we fix an unramified quadratic
extension F//F7T of nonarchimedean local fields.

Consider a hermitian space V over F' (with respect to F//FT) of rank N. Put G := U(V). For
an irreducible admissible representation 7 of G(F'1), we denote by BC(7) its base change, which is
an irreducible admissible representation of GLy(F"). Such local base change is defined by [Rog90)]
when N < 3 and by [Mok15, KNMSW] for general N.

We review the construction of BC(7) in certain special cases. For a parabolic subgroup P of
G and an admissible representation o of P(FT), we denote by 1%(c) the normalized parabolic
induction, which is an admissible representation of G(F*). Fix a minimal parabolic subgroup
Pmin of GG.

We first review Langlands classification of irreducible admissible representations of G(F™) (see,
for example, [I[<on03]). For an irreducible admissible representation 7 of G(F'T), there is a unique



ON THE BEILINSON-BLOCH-KATO CONJECTURE FOR RANKIN-SELBERG MOTIVES 163

parabolic subgroup P of GG containing P,;, with Levi quotient Mp, a unique tempered represen-
tation 7 of Mp(F™T), and a unique strictly positive (unramified) character x of P.(F7T), such that
7 is isomorphic to the unique irreducible quotient of 1%(7), which we denote by J&(7), known
as the Langlands quotient.

We then review the construction of tempered representations from discrete series representa-
tions (see, for example, [Janl1]). Let 7 be an irreducible admissible tempered representation of
G(F™). Then there is a unique parabolic subgroup P of G containing Py, and a discrete series
representation o of Mp(F*) such that 7 is a direct summand of 1%(). In fact, 1%(o) is a direct
sum of finitely many tempered representations of multiplicity one.

Now suppose that 7 ~ J%(7) is a Langlands quotient. Then we may write

Mp = GO X ReSF/F+ GLrl X X ReSF/F+ GLrt
with GGy the unitary factor, under which
x = 1 X |det,, |z X --- K |det,, | ™

for unique real numbers 0 < s; < .-+ < s;, where det, denotes the determinant on GL,.(F).
Suppose 7 = 79 X 7 X --- X 7y under the above decomposition. Consider a standard parabolic
subgroup P of GLy whose Levi is GL,, x - -+ x GL,, x GLy, X GL,, x --- x GL,,. Then we have

BC(r) ~ JGM (79| dety, |3 & - - - B 7y'° dety, |3 K BC(rp) B 71 [det, |5 K- - 5 7| det, | ™)

which is a Langlands quotient of GLy(F). Here, 7¢ stands for 7 o c.

Now suppose that 7 is an irreducible admissible tempered representation of G(FT), which is
a direct summand of I%(o) for some square-integrable representation o of P(F*). Write 0 =
oo Xoy X--- X oy, similar to the previous case. Then under the same notation, we have

BC(r) = 13" (0/° K- K 0y* K BC(09) Koy ¥+ - K oy)

which is an irreducible admissible representation of GLy (F').

Finally, if 7 is an irreducible admissible representation of G(F*) that is a constituent of an un-
ramified principal series, then BC(7) is a constituent of an unramified principal series of GLy (F).
Thus, it makes sense to talk about the Satake parameter of BC(7), denoted by a(BC(7)).

In what follows, we will suppress the parabolic subgroup P of GLy when it is clear. We denote
by Sty the Steinberg representation of GLx(F).

C.2. Tate-Thompson representations. In this subsection, we fix an unramified quadratic ex-
tension F'/F* of nonarchimedean local fields, with residue field extension x/k*. Let ¢ be the
residue cardinality of F'* and p the maximal ideal of Op.

Let N > 2 be an integer with r := [§'|. Consider a hermitian space Vy over F of rank N
together with a self-dual lattice Ay. Put Uy := U(Vy), and let Ky be the stabilizer of Ay which
is a hyperspecial maximal subgroup of Uy (F ™). Put Ay = Ay ®0,+ kT and Uy = U(/_XN). Then
we have the reduction homomorphism Ky — Uy(x*).

Let Iso(Ay) € P(Ay) be the isotropic locus, that is, it parameterizes hyperplanes H of Ay
satisfying H- C H. Then Iso(Ay) is a smooth hypersurface in P(Ay). In particular, Iso(Ay) has
dimension N — 2 and admits a natural action by Uy(x"). For a rational prime ¢ that is invertible
in k, put

HP™ (Tso( A e, Qe) = ker (Uer (Ops, (1)) : B (Iso(Aw)m, Q) — HY (Iso(An)x, Qe(1)))
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It is well-known by Tate-Thompson that (see, for example, [[IM78]) there is a unique irreducible
representation Qy of Uy (k") such that Qy is isomorphic to ¢, "HP"™ (Iso(Ay)z, Q¢) as represen-
tations of U ~n(kT) for every isomorphism t,: C = Q,. We call Qy the Tate—Thompson represen-
tation. We often regard €2 as a representation of Ky by inflation according to the context.

To describe )y, we first recall some notation from parabolic induction of finite reductive groups.
For every N, we fix a Borel subgroup Py of Uy. For positive integers r1,. .., satisfying ry +
.-+ +r; < r, we obtain a parabolic subgroup P%l""’”) of Uy containing Py, whose Levi quotient
M%““’”) is isomorphic to GN,Q(TI+...+Tt) X Resy/wt GLy, X - - X Res, )+ GL,,. For example, we have

. O the parabolic

PS\I,T) = Py. Given a representation o of M%l"“’”)(/ﬁ), we denote by Indggﬁl ,,,,,
N

induction, which is a representation of Uy (x*).

Now we suppose N = 2r even. The irreducible constituents of Indgx 1 is parameterized by
irreducible representations of the Weyl group Wy ~ {£1}" x &,. For every irreducible repre-
sentation € of Wy, we denote by PS(e) the corresponding irreducible representation of Uy (k).
We now specify a character €' : Wy — {#1} as the extension of the product homomorphism
{£1}" — {£1}, which is invariant under the &,-action, to Wy that is trivial on {+1}" x &,..

Proposition C.2.1. We have

(1) When N = 2r is even, the representation Qy is isomorphic to PS(ey"). )
(2) When N = 2r is even, Qy is the unique nontrivial irreducible representation of Uy (k™)

™)
satisfying dim QRN(”JF) — dim QZN =" _

(8) The representation Qs is the (unique) cuspidal unipotent representation of Us(kt).
(4) When N = 2r+-1 is odd with r > 1, the representation Qy is a multiplicity free constituent

of Ind [, 1) Q3 151,
N

Proof. We recall some notion of Deligne-Lusztig characters. Let &y be the group of N-
permutations, and ‘B its conjugacy classes which is canonically identified with the set of partitions
of N. For every m € Py, we let R, be the Deligne-Lusztig character (of Uy(x™)) [DL76, Corol-
lary 4.3] associated to the trivial representation of the maximal torus corresponding to 7. Let Ry
be the character of the representation Qy. Then by [[HM78, Theorem 1], we have

(C.1) Ry = ()N 3 x(m) g

TePN Z
where yy is the character function (on PBy) of the unique nontrivial subrepresentation of the
standard representation of Gy; and N!/z; is the cardinality of the conjugacy class w. By [DL76,
Theorem 6.8], we have the following orthogonality relation
0, ifr#7;

2., ifm=7n.

(©2) (1) = {

We are ready to prove the proposition.
For (1), note that ! is the unique nontrivial character of Wy that is trivial on {+1}" x &,.
Thus, (1) follows from (2) by [Cur79, Theorem 4.4.5].
) (0
For (2), it suffices to show that dim QEN(M) =1 and QZN (=) # 0. Let R}, be the character of
Indp?" 1. Then by [DL76, Proposition 8.2], we have R). = Rr). By (C.1) and (C.2), we have

<R27"7 /2r> = <_ Z X2T(7T)R7T>R(2T)> = _XQT((2T>) - _(_1) = 17

WE‘BQT‘ ZTI’
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which implies dim QRN =) — 1. Let Yy € Ay be the maximal isotropic subspace stabilized by

PE\T}). Then P(Yy) is contained in Iso(Ay), which gives rise to an element in CH" ' (Iso(Ay)).
It is well-known that its cohomology class subtracted by ¢1(Op;,)_(1)) is a nonzero element in

HP"™ (Iso( Ay )z, Q¢)(r—1), which is fixed by P%)(/{Jr) by construction. Thus, we have Qi,g")(ﬁ) # 0;
and (1) and (2) follow.

For (3), we have Ry = 5(R(13) — R3)) by (C.1). Then as computed in [Pra, Example 6.2], Q3 is
the unique cuspidal unipotent representation of 63(/€+).

For (4), let R, be the character of Indgff,f_ll) (Qg X 1%"*1). Then by [D1.76, Proposition 8.2],
2r+1

we have
1

R,27'+1 — g (R(2r71’13) — R(27-71’3)) .
By (C.1) and (C.2), we have

Xor41 (T 1
<R27‘+17 R,2r+1> = < Z L()Rﬂ-, § (R(zr—1713) — R(Qr—173)>>

TEP2r+1 “r
= :1)) <X27‘+1((2T_1, 1%) — X2r+1((2“1,3))) - ;(2 —(-1) = 1.

Thus, (4) follows. O

From now on, we assume that N = 2r is even. Let Vi, be another hermitian space over F
together with a lattice A), satisfying A}, C (A),)Y and (A%,)Y/A), ~ k. Put U, = U(V},), and
let K, be the stabilizer of Af, which is a special maximal subgroup of U, (F*). The following
proposition exhibits an example of the local Jacquet-Langlands correspondence.

Proposition C.2.2. Define

O S to be the set of isomorphism classes of irreducible admissible representations m of Ug,.(F™T)
such that 7|k, contains Qo and that the Satake parameter of BC(r) contains {q, ¢~ '} with
multiplicity one but does not contain {—1,—1} (Remark 3.1.6);

O &' to be the set of isomorphism classes of irreducible admissible representations m' of
UL, (F'*) such that '|x; —contains the trivial representation and that the Satake param-
eter of BC(m) contains {q,q '} with multiplicity one but does not contain {—1,—1}.

Then there is a unique bijection between S and S’ such that m and 7' correspond if and only if
BC(7) ~ BC(#').

Proof. We first note that both BC(7) and BC(n’) are constituents of unramified principal series.
We define a correspondence between S and S’ via the condition that the two Satake parameters
a(BC(7)) and a(BC(7")) coincide, which is clearly a bijection. By Lemma C.2.3(2) and Lemma
C.2.4 below, we have BC(7) ~ BC(n’) if 7 and 7’ correspond. The proposition is proved. O

Lemma C.2.3. For every irreducible admissible representation m of Ug.(FT) such that ml|k,,
contains Q. (hence m is a constituent of an unramified principal series).

(1) If the Satake parameter of BC(7) does not contain {q,q~'} and does not contain {—1,—1},
then 7 is unramified.

(2) If the Satake parameter of BC(w) contains {q,q '} with multiplicity one, then there exists
a unique multi-subset {sq,...,s.+ C C/(logq) 'mi with Res; > 0 such that if we arrange
them so that 0 < Resy < --- < Res, holds, then BC(m) is isomorphic to the unique
irreducible quotient of

IGLQT(, ‘SFrg...&"?&St2®||}”@---@|’}ST)-
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Proof. We fix a decomposition
No, =Ope_, ®--- B Ope_1 ®Ope; & --- P Ore,
in which (e_;,e;) = d;; for 1 <i,j <r. For 0 <1i <r, put
Voj=Fe_,d---®Fe_ 1P Fe;P--- P Fe;

which is a hermitian subspace of Vy,.. We take the minimal parabolic (Borel) subgroup P, of
G = Uy, to be the stabilizer of the flag Fe_, C --- C Fe_,. @ --- @ Fe_;. We also fix a Levi
subgroup of Py, to be Resp/p+ GL(Fep) X -+ - X Resp/p+ GL(Fe,).

Put K := Ks,, which is a hyperspecial maximal subgroup of G(F™). Let I be the subgroup of K
of elements whose reduction modulo p stabilizes the flag ke_,. C --- C ke_,. @ --- @ ke_1, which is
an Iwahori subgroup of G(F*). Let J be the subgroup of K of elements whose reduction modulo
p stabilizes the subspace ke_, @ --- @ ke_1, which is a parahoric subgroup of G(F*). We clearly
have I C J C K. Now we realize the Weyl group Wy, ~ {£1}" x &, explicitly as a subgroup of
K. For 1 <i<r, we let i-th —1 in Wy, correspond to the element that only switches e_; and e;,
denoted by w;. For every o € G,., we let (17,0) € Wy, correspond to the element that sends ey;
to €44(;), denoted by w;, € J. Then {wy, w(m), - ,wz )} is a set of distinguished generators of
Wa,.. We recall the Bruhat decompositions

r—1,r

weEWa, =0
For w € W, we let 0 < i(w) < r be the unique integer such that w € Jw; - - - wj(u)J.

By Proposition C.2.1(2), we have a K-equivariant embedding €, < C[I\ K], unique up to
scalar, hence obtain a distinguished subspace Q). C C[I\K/I] of dimension one. We would like
to find a generator of Qf . Now we compute the character of the C[I\K/I]-module Q! . By
Proposition C.2.1(1), the element 1,5 acts on Q% by —1; and by Proposition C.2.1(2), which
implies that Q% is contained in C[J\ K/J], the element Lpuy, ., , 1 acts on Qf by Twi ] 2 1] = ¢°
for every 1 < i <r — 1. It follows that Qér is spanned by the following function:

f=3 (1) =) 1p,; € CII\NK/I].
weW

Take an irreducible admissible representation m of U, (F'1) such that 7|k contains Qy,.. Then it
is a constituent of an unramified principal series. In other words, there exists a unique multi-subset
{s1,...,8.} € C/(logq)'mi with Res; > 0 such that 7 is a constituent of

I, (| 2 B[
We recall the projection map
—s —Sr I
2 CINK/T =15, (|7 R ®] ;)

defined at the beginning of [Cas80, Section 2|, which is C[I\ K/I]-equivariant. Put ¢ = Zf.
Now we separate the discussion.
Suppose that we are in the situation of (1). We may assume 0 < Res; < --- < Res,. Then there

exist a unique nonnegative integer ry and unique positive integers r1, ..., r; satisfying ro+- - -+7; =
r, such that
0=Res; =---=Res,, <Resypr1 =---=Respgtr, < - <ReSpgpegr, ;41 == Res,

holds. For every 1 <i <'t, put
i T (| [0 g ) @ [de,

R05r0+~-+'ri
F




ON THE BEILINSON-BLOCH-KATO CONJECTURE FOR RANKIN-SELBERG MOTIVES 167

which is an irreducible tempered representation of GL,,(F). Put Gy = U(Vay,) and Pomim =
GoN P As | |77 X ---&| | is a discrete series representation of Py (F71), the parabolic
induction

n=1 (|17 88 )
is a finite direct sum of irreducible tempered representations of Go(FT). As {s1,...,s,,} does
not contain (2logq)~'7wi, 79 is actually irreducible by [Gol95, Theorem 1.4 & Theorem 3.4]. In
particular, we obtain a Langlands quotient

35 (70 B (Bt [0
where P is the parabolic subgroup of G containing P, whose Levi quotient is isomorphic to
Go X Resp/p+ GL,, X -+ X Resp/p+ GL,,. We claim
(C.3) p#0€e ]G (Tg X (Zﬁ:lﬂdet”|;Resm+'”+”)> :

Assuming this claim, then 7 is isomorphic to J% (Tg X (Xlgzlnldetn@m sr““*”)), the unique
irreducible quotient of I (| |7 X |;5T), which is unramified. Thus, (1) follows.

Now we prove (C.3). Let w € Wy, be the element acting trivially on Vs, and switching
€ (rotetrir+g) With ey yoyrp1j for every 1 < j < r; and then every 1 < i < ¢. By [Kon03,

Corollary 3.2], (C.3) is equivalent to
(C.4) / $(wn)dn #£ 0
N(F+)

in which N is the unipotent radical of P and the integral is absolutely convergent. By [Casg0,
Theorem 3.4], we have for o + 1 < i < r that

1-2s;
g -1
Twi (¢) = T oo ¢a
q(1 —q>%)
which is nonzero as Res; > 0 and s; # % Here, the operator T, is defined at the beginning of

[Cas80, Section 3]. From this we obtain (C.4) hence (C.3).

Suppose that we are in the situation of (2). Then we may assume s; = % and s; # % for2 <i<r.
Let @ be the parabolic subgroup of G stabilizing the flag Fe_, C--- C Fe_. @ ---@® Fe_,, whose
Levi quotient is U(Vy) x Resp/p+ GL(Feg) x - -+ x Resp/p+ GL(Fe,). Then we have a canonical

inclusion
1§ (S ®| [ &’ [5) CIF

min

—1/2 —5 —S,
(IR 2 "] )
where Sp, denotes the Steinberg representation of U(Vy)(FT). As 17,5 acts by —1 on ¢, we have
¢ €13 (Sp, W |72 W+ R [7).

In particular, it follows that 7 is a constituent of I (Sp2 X| 72K X |}ST).

To proceed, we may assume 0 < Resy < --- < Res,. Then there exist unique positive integers
ro, ..., r satisfying ro + - - - + r; = r, such that
0=Resy=---=Res,, <Respyy1 =---=Respyqry, < - <ReSppsoqr, 41 == Res,

holds. For every 1 <i <'t, put
i T (| [0 g | ) o [t [

which is an irreducible tempered representation of GL,,(F'). Put Gy :== U(Vy,,) and Qy = GoNQ.
As Sp, M| |72 K --- K| | is a discrete series representation of Qo(F*), the parabolic induction

160 (Sp, 8 [72 8- B[ )
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is a finite direct sum of irreducible tempered representations of Go(F™). Let 79 be the unique
direct summand such that ¢ is contained in the subspace

I (70 B (R 7l det,, [0 ) C IS (Sp, B [ W R [7)

where P is the parabolic subgroup of GG containing P, whose Levi quotient is isomorphic to
Go X Resp/p+ GL,, X -+ X Resp/p+ GL,,. In particular, we obtain a Langlands quotient

JS (7‘0 X (&Ezlﬂdet”|;Resr0+"'+”>) :
By the same proof of (C.3), we obtain
6 #0€ G (B (RE_ymfdet, ;707 7) )
Then BC(m) is isomorphic to the unique irreducible quotient of
160 (KL, 7Y°[det,, [0 ) B BC(r) & (R 7ildet, 70" 7)) .
However, BC(7y) is isomorphic to
[Ghro (| [0 ®- - | |32 {BC(Spy) K| |7 - 8| [;°)
~ 1 (|70 B B [ B St W [ R B )

which is irreducible. Thus, (2) follows.
The lemma is proved. U

Lemma C.2.4. For every irreducible admissible representation ' of Ul (F'V) such that (/)2 #
{0}, there exists a unique multi-subset {ss,...,s,} C C/(logq)~'mi with Res; > 0 such that if
we arrange them so that 0 < Ress < --- < Res, holds, then BC(n') is isomorphic to the unique
irreducible quotient of

16 (| @ B [ RSt B | 7 K- 5] [
Proof. We fix a decomposition
Ay, =Ope_, @ ®Ope_s ® Ny @ Opes @ -+ - @ Ope,
in which (e_;,e;) = d;; for 2 <4i,5 <r. For 1 <i <r, put
Vi, =Fe_ ;® - ®Fe s ®AN,®0, F O Fes ®---® Fe;

which is a hermitian subspace of Vj,. We take the minimal parabolic subgroup Py, of G = U},
to be the stabilizer of the flag Fe_, C--- C Fe_. & --- @ Fe_,. We also fix a Levi subgroup of
Prin to be U(Vy) x Resp/p+ GL(Fez) X - -- X Respyp+ GL(Fe,).

Take an irreducible admissible representation 7/ of G(F*) such that (7/)X2r # 0. Then it is a
constituent of an unramified principal series. In other words, there exists a unique multi-subset
{s9,...,8.} € C/(logq) 'mi with Res; > 0 such that 7’ is a constituent of

1%, (LB R B[,

where 15 denotes the trivial representation of U(V})(F™T).
To proceed, we may assume 0 < Re sy < --- < Res,. Then there exist unique positive integers
ro, ..., T satisfying ro + - - - + 7, = r, such that

0=Resy=---=Res,, <Respyy1 =---=Respyqry, < - <ReSppsoqr, 41 = - =Res,
holds. For every 1 <i <, put
o L0 (| [ R ) 9 dets,

R05r0+~-+'ri
F
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which is an irreducible tempered representation of GL,, (F). Put Go := U(V5, ) and Fypn =

GoN Puin. As 1, K| |72 K --- K| |7 is a discrete series representation of Py (F*), the
parabolic induction

150, (1,0 72 R R [7)

is a finite direct sum of irreducible tempered representations of Go(F1). Let 75 be the unique
direct summand with nonzero invariants under K, NGo(F*). In particular, we obtain a Langlands
quotient

I (0 B (L mldet,, [ %))
where P is the parabolic subgroup of G containing P, whose Levi quotient is isomorphic to

Go x Resp/p+ GL,, X -+ X Resg/p+ GL,,. We claim

(C.5) 3G (o B (B mildety, [75 70+ ) ) £ fo).
Assuming this claim, then BC(7') is isomorphic to the unique irreducible quotient of
180 (R det,, | 0" ) RBC(ry) B (RE_, 7ildet,, [ 70 )).
However, BC(7y) is isomorphic to

1G12ro (l PR R [ZRBC(1,) K| 2 K- K FTO)
~ [OLarg (| 70 R[22 RSt, K| 72K K| IE%)

which is irreducible. The lemma follows.

Now we prove (C.5). Let w € G(FT) be the element acting trivially on V5, and switching
€ (rottri_i+j) With ey yp 115 for every 1 < j < 7; and then every 1 <7 < t. Note that we
have a canonical inclusion

15 (0 8 (80, mfdet, [7° 0 7)) C 16 (18 [ B -89 [7)

which is G(FT)-equivariant. Let ¢ be the unique element in the latter space, realized as functions
on G(F1), that takes value 1 on K, which belongs to the former space by our choice of 75. By
[Kon03, Corollary 3.2], (C.5) is equivalent to

(C.6) /N(F+) d(wn)dn # 0

in which N is the unipotent radical of P and the integral is absolutely convergent. By [Casg0,
Theorem 3.1], we have for o + 1 < i < r that
1 — q—1—25i

Tw(9) = g ¢

which is nonzero as Res; > 0. Here, the operator T, is defined at the beginning of [Cas&0,
Section 3|. From this we obtain (C.6) hence (C.5). O

Remark C.2.5. In fact, for 7 € S and 7’ € &’ in Proposition C.2.2 that correspond to each other,
they also correspond under the local theta correspondence with respect to the unramified additive
character and the trivial splitting character.
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C.3. Results from endoscopic classification. Let F/FT be a totally imaginary quadratic
extension of a totally real number field in the main text. We state the following proposition,
which summarises all we need from Arthur’s endoscopic classification for unitary groups in this
article. In particular, we will use the notion of local base change for unitary groups defined over
F} for every place v of F'™, denoted by BC as well, for which we have discussed some special cases
when v is inert in F' in Subsection C.1.

Proposition C.3.1. Take a relevant representation (Definition 1.1.3) II of GLy(Ap). Let V be
a standard definite or indefinite hermitian space over F of rank N and 7 = ®,m, an irreducible
admissible representation of U(V)(Ap+). We have

(1) If BC(m,) ~ 11, for every place v of F'*, then the discrete automorphic multiplicity of T is
1. In particular, (V,7) is a relevant pair (Definition 3.2.7).

(2) If (V,7) is a relevant pair such that BC(w) ~ I1,°° then we have BC(m,) ~ II,, for every
place v of F*. In particular, the discrete automorphic multiplicity of © is 1 by (1).

(8) If v is archimedean but not 7, then BC(m,) ~ IL, if and only if m, is the trivial represen-
tation.

(4) If v = 1, then BC(m,) ~ II, if and only if m, is the trivial representation (re-
sp. is one of the N discrete series representations with the Harish-Chandra parameter

{%, %, . %, %}) when V is definite (resp. indefinite).
Proof. Parts (1) and (2) are consequences of [[XNMSW, Theorem 1.7.1] for generic packets. Parts
(3) and (4) follow from (1), (2), and the definition of relevant representations. O

The above proposition has the following two immediate corollaries as two examples of the global
Jacquet—Langlands correspondence.

Corollary C.3.2. Take a finite place p of F* inert in F. LetV and V' be a standard definite and a
standard indefinite hermitian space over I, respectively, of even rank N = 2r, satisfying V, ~ V|,
(for which we fix) for every place v of F™ other than 7., and p. Let w be a stable automorphic
representation of U(V)(Ap+) (Definition 3.2.3) such that o is trivial and 7, belongs to the set S in
Proposition C.2.2 (in particular, V®p+ FpJr admits a self-dual lattice). Consider the representation
mi=m @m@nteP of UV')(Ap+) where

O 7, is a discrete series representation of U(V')(Fy ) with the Harish-Chandra parameter

{r—3r—=3 ... 3—r1—-r} and
O 7, € 8 is the representation of U(V')(F,F) corresponding to m, as in Proposition C.2.2.

Then the discrete automorphic multiplicity of © is 1.

Proof. Put 11 := BC(w). By Proposition C.3.1 and Proposition C.2.2, we have BC(n!) ~ II, for
every place v of F*. The corollary follows by Proposition C.3.1(1). O

Corollary C.3.3. Take a finite place p of F* inert in F. Let V and V' be a standard definite
and a standard indefinite hermitian space over F, respectively, of odd rank N = 2r + 1, satisfying
V, =~ V! (for which we fix) for every place v of F* other than 7., and p. Let @' be a stable
automorphic representation of U(V')(Ap+) such that m, is a discrete series representation of

U(V')(FY ) (Definition 3.2.3) with the Harish-Chandra parameter {r,r —1,...,1 —r, —r}; 7 is
trivial f(;;o every archimedean place T # 7.,; and m, is unramified. Consider the representation
Ti=7, @m ® ()P of U(V)(Ap+) where

O m,__ is trivial; and

O 7T; is unramified satisfying BC(m,) ~ BC(m,).

ZNote that BC(m) exists by Proposition 3.2.8.
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Then the discrete automorphic multiplicity of w is 1.

Proof. Put 11" := BC(n’). By Proposition C.3.1 and Proposition C.2.2, we have BC(m,) ~ II! for
every place v of F*. The corollary follows by Proposition C.3.1(1). O

APPENDIX D. SOME TRACE FORMULAE ARGUMENT

This appendix has two goals. In Subsection D.1, we remove some conditions in a theorem of
Caraiani and Scholze [C'S17]. In Subsection D.2; we prove a formula computing the dimension of
old forms in an L-packet for unitary groups. These two subsections are independent on a logical
level; we collect them together in one appendix mainly because the argument we use are similar,
namely, trace formulae.

We keep the setup in the main text.

D.1. Vanishing of cohomology off middle degree.

Definition D.1.1. Let N > 1 be an integer, and X a finite set of nonarchimedean places of
F* containing X . Consider a homomorphism ¢: T% — s with & a field. We say that ¢ is

cohomologically generic if

Hét(Sh(v’ K)a H) 0

TS Mker ¢ —
holds for
O every finite set ¥’ of nonarchimedean places of F'* containing XV,
O every integer i # N — 1, and
O every standard indefinite hermitian space V over F' and every object K € &(V) of the form
Ks+ X [Tgst ys+ U(A)(Op+) for a self-dual [], g5+ 5+ Or,-lattice A in V @p A?‘;Uy/.

The following definition is essentially [('S17, Definition 1.9].

Definition D.1.2. Let ¢: T% — # be a homomorphism with & a field. For a place w of F* not
in X7 that splits in F, we say that ¢ is decomposed generic at w if ¢(H,) € s[T] has distinct
(nonzero) roots in which there is no pair with ratio equal to ||w]||.?” Here, H, € Ty.[T] is the
Hecke polynomial.

Theorem D.1.3. Let N > 1 be an integer, and X7 a finite set of nonarchimedean places of Ft
containing X% . Let V be a standard indefinite hermitian space over F. Let ¢: T — Fy be a

homomorphism. Suppose [F : Q] > 1. Suppose that there exists a place w of F™ not in ST U}
that splits in F', such that ¢ is decomposed generic at w. Then we have

Hlét(Sh(V7 K)7Ff>kcr¢ =0
for every integer i # N — 1, and every object K € R(V) of the form Ks+ X [] o5t yn+ U(A)(Op+)
for a self-dual T], g5+ s+ O, -lattice A in V ®p A?;UE“"

Proof. When F contains an imaginary quadratic field and every place in 7 splits in F' (which
implies [F* : Q] > 1), the statement of the theorem can be deduced from the analogous statement
for the unitary similitude group, namely Case 2 of [('S17, Theorem 6.3.1(2)]. In this subsection,
we will explain how to remove these restrictions.

In the statement of the theorem, let wy be the underlying rational prime of w. We fix an
isomorphism C ~ Q,, that induces the place w of F. Put G := Resp+,g U(V). We have the
Deligne homomorphism h: Resc/g G — G®qgR as in Section 3.2. Put Ky, 0 = [Tyjw, U(A)(Opt),
which is a hyperspecial maximal subgroup of G(Q,,). We fix a character w: F*\Aj; — C* that

2T fact, as pointed out in [CS, Remark 1.4], there is no need to assume that the roots are distinct.
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is unramified outside ¥ % such that w| A%, is the quadratic character ng/p+ associated to F/F™*.
F

Put X = {p| X/ NX* # 0}
We define a subtorus T C Resp/g Gy, such that for every commutative Q-algebra R,

T(R) = {CL € F®Q R | NHIF/F+ a € RX}

We fix a CM type ® containing 7., and a sufficiently small open compact subgroup Kt C T(A>)
such that (Kr), is maximal for every p ¢ X. Then & induces a Deligne homomorphism
he: Resc/p G — T ®g R. We also put T .= T(A>"?) /T(Zw,))Kt” similar to Definition 3.5.5.

Put G == G x T and h == h x hg. Then we have the Shimura datum (G,h), which is of
Hodge type. Its reflex field is the composition F.Fg C C. Therefore, for every sufficiently small
open compact subgroup K C G(A®), we have the Shimura variety Sh(G, fl)KXKT, which is smooth
projective (as [F" : Q] > 1) over F.Fg of dimension N—1. When K is of the form K*°K,, o, it has a
canonical smooth projective model .7 (G, h)kwo over W (F,,,) which admits a moduli interpretation
similar to the one introduced in Section 4.1. Note that F.Fy is contained in W (F,,)q under the
isomorphism C =~ Q,,.

The discussion in [('S17], except in Section 5, is valid for all proper Shimura varieties of Hodge
type including the above one. Thus, we need to modify the argument in [CS17, Section 5] for our
case.

Let o and fi be the Hodge cocharacters corresponding to h and h, respectively. We have the
natural projection map B(G, i) — B(G, ) of Kottwitz sets, which is a bijection. For every
b € B(G, i), we have the corresponding Kottwitz groups J, and J,, with a canonical isomorphism
Jy ~ J, x T. For every (sufficiently small) open compact subgroup K*o C G(A™0) and positive
integer m, we have the Igusa variety ., uo,, for the integral model .7 (G, h)gwo, which is a
T-scheme over F,,,. Define

{HT,C(‘ﬂI\Z;IanU @5)] = @(_1)2 hﬂ (jMant K0 ,m» Qf)?
% K%o,m
which is virtual representation of G(A*"°) x Ju(Qy,). The crucial point is that our G is the
honest unitary group, rather than the unitary similitude group. Then [CS17, Theorem 5.2.3] is
modified as
tr (¢ | Heo( A Q) = 3. (G, H)STH(9M)
(H,s,m)

where is sum is taken over equivalent classes of elliptic endoscopic triples (H, s,n) of G; and we
use the character w for the Langlands—Shelstad transfer. This formula can be proved in the same
way as for [Shil0, Theorem 7.2] since our Shimura variety has a similar moduli interpretation as
seen in Subsection 4.1, although the Shimura datum (G,h) is not of PEL type in the sense of
Kottwitz. We can fix the representatives of the triples (H, s,n) as in [C'S17, Page 734] but without
the similitude factor. In particular, [C'S17, Corollary 5.2.5] is modified as

01 (¢ | He o Apans Q) ) = D 1(G, G)STE(67).

n

The next statement [('S17, Proposition 5.3.1] or rather [Shill, Corollary 4.7], namely,
L, (f70) = 7(Gg) 'STE (67)

geom

holds as long as f™ and ¢" are associated in the sense of [[.ab09, 3.2]. Here, G5 is the group
Resp/g GLiz x{1,0}. Note that, for rational primes in X, we do not have explicit local base change
transfer. However, we will see shortly that there are enough associated pairs at these primes to
make the remaining argument work, following an idea in [Shi].
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For the test function ¢ € C°(G(A>®"0) X J,(Qy,)) in [CS17, Theorem 5.3.2], if we assume ¢ =
¢y, ® ¢* in which ¢y is the characteristic function of some open compact subgroup Ky C G(Qy),
then for every Gz, ¢" is associated to some function f” in the sense above. This is shown in the
claim in the proof of [Shi, Proposition 1.4]. In particular, for such ¢, we have

tr (¢ | He o (S Q0)) = D 1(G, Ga) IE22(£70)

n

in view the above identities and [CS17, (5.3.2)]. The remaining argument toward [C'S17, Theo-
rem 5.5.7] is same as it is on the GL-side, for which it suffices to use the above test functions ¢.
In fact, our case is slightly easier as we do not have the similitude factor.

The argument towards Theorem D.1.3 or [('S17, Theorem 6.3.1(2)] only uses [('S17, Theo-
rem 5.5.7]. Therefore, Theorem D.1.3 holds. U

Corollary D.1.4. Let the situation be as in Subsection 6.1. Suppose [F* : Q] > 1. Then for all
but finitely many primes A of E, the composite homomorphism

(D.1) TS 2% Op — Op/A
is cohomologically generic (Definition D.1.1).

Proof. As pointed out in the proof of [C'H 13, Proposition 3.2.5], we can choose a nonarchimedean
place w of F' such that II, is unramified with distinct Satake parameters. Let {ay,...,ay} be
the Satake parameter of II,, which are algebraic integers. Since II,, is generic, we have o;/c; &
{1, ||w]||} for i # j. Thus, for every sufficiently large rational prime ¢, we have o;/a; & {1, ||w||} for
i # j even in Fy. Let A\ be a prime of £ above such a rational prime ¢. Applying the Chebotarev
density theorem to any residual Galois representation pryy of prx, we conclude that there are
infinitely many nonarchimedean places w of F'+ not in ¥*UX/} that splits in F, such that (D.1) is
decomposed generic at w (Definition D.1.2). Thus, (D.1) is cohomologically generic by Theorem
D.1.3. The corollary follows. 0

D.2. Dimension of old forms. Let N = 2r be an even positive integer. We consider

O a relevant representation II of GLy(AFr),
O two disjoint finite sets X, and ¥ of nonarchimedean places of F'™ such that ¥t contains
Y B U S contains X (Notation 3.1.4); and every place in ¥ is inert in F,

ram’ min

O a finite set £t of nonarchimedean places of F'* containing ¥, U X
O a standard definite or indefinite hermitian space V over F' of rank N such that V, is not
split for v € B,
sLust, ust

O a self-dual [[, g+ 5+ st Op,-lattice A in V@p A= "m0
O an object K € &(V) of the form

Ke [ Kx I UW)O0m)

vext. unt vgxiust. ust

satisfying that K, is special maximal for v € 3.
We have the homomorphism
om: Ty — Qi
given by II. Fix an isomorphism ¢,: C = Q.

Definition D.2.1. Let v be a nonarchimedean place of F". We say that an open compact
subgroup K, of U(V)(F,") is transferable if the following two conditions are satisfied.
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(1) For every endoscopic group H of U(V,), if we let fil be the endoscopic transfer of 1,
then there exists a compactly supported smooth function ngv on H(F,) such that 1k, and
¢ are associated in the sense of [Lab99, 3.2].

(2) When H is the quasi-split unitary group of rank N, we can take ¢EU to be supported on
GLy(Og,) once we identify H(F,) with GLy(F}).

We call the function ¢ in (2) an inertial transfer of K, if K, is transferable, and will drop the
superscript H in practice.

Lemma D.2.2. Let v be a nonarchimedean place of F*.

(1) If v splits in F, then every open compact subgroup K, is transferable.

(2) If v is not in I U Xy, UXy, then the hyperspecial mazimal subgroup U(A)(Opy) is
transferable which admits laLy(or,) as an inertial transfer.

(3) Ifvisin XF, USE then every sufficiently small open compact subgroup K, is transferable.

Proof. Part (1) is trivial. Part (2) is the combination of the endoscopic fundamental lemma and
the base change fundamental lemma.

For (3), for sufficiently small K,, condition (1) in Definition D.2.1 is proved in [Morl0, Lem-
ma 8.4.1(1)]; and condition (2) can be achieved by [Lab99, Proposition 3.1.7(2)] (see the proof of
[Lab99, Proposition 3.3.2]). O

Proposition D.2.3. Suppose that K, is transferable for v € XF,.. For every v € ¥, let ¢, be
equal to 1 (resp. 0) if one can (resp. cannot) find purely imaginary complex numbers ss, ..., s,
such that 11, is isomorphic to the induction

IGLzr(l |?g...g||j§&8t2@||}S2®"'&||E5T>

(see Subsection C.1 for the notation of induced representations). Then we have the identities

dim Q¢[Sh(V, K)][eepn] = | [I tr(Tu(¢xk,) o An,) I] cof,

UEELH veElt
dim HY ' (Sh(V, K)z Qo) [tedn] = N | J[ tr( DoAm) ] el
vGZ;m veElt

when V is definite and indefinite, respectively, for any inertial transfer ¢k, for K, and any nor-
malized intertwining operator Ap, for II, [Shill, Section 4.1], for v € ¥},

Proof. We only prove the case where V is indefinite, and leave the case where V is definite (which
is slightly easier) to the readers.

By Proposition 3.2.4(1), we know that II is tempered everywhere. Moreover, every discrete
automorphic representation of U(V)(Ag+) whose global base change is isomorphic to II has to be
cuspidal as well. Thus, we have H (Sh(V,K)#, Q/)[te¢n] = 0 for i # N — 1.

If there exists v € Y7 such that ¢, = 0, then by Lemma C.2.4 and the above fact that II,
is tempered, we have HY *(Sh(V,K)#, Q¢)[te¢n] = 0. Thus, the proposition follows. In what
follows, we assume ¢, = 1 for every v € ;.

By Proposition C.3.1 and Lemma C.2.4, we have

dim HY ' (Sh(V,K)z Qo) [wedn] = N ] > dim(m,)",

vexst. BC(my)~Il,

min
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where the sum is taken over isomorphism classes of irreducible admissible representations 7, of
U(V)(E;) such that BC(r,) ~ II, (for v € ;). Thus, our goal is to show

(D.2) 11 > dim(r)* =] [] tr(IL(¢k,) o Anm,)|-

vest, BC(my)~IL, vext

min

Now for v € ¥, we replace K, by a smaller subgroup (with the same notation) that is trans-
ferable by Lemma D.2.2(3).?® Let K’ € £(V) be the correspondent product. So we have

dim HY ™ (Sh(V, K')z, Q) [te¢n] = 11 > dim(m,)".

U€E+ UE+ BC(my )11,

min

On the other hand, by [Shi, (1.8) & (1.9)]* with j = 0 and £ the trivial representation, we have

dim HE ' (Sh(V, K) 7, Q) [en] = I tr((¢x,) o An,)|,

UEE+ ust

min

where ¢k, is any inertial transfer for K, and Ay, is any normalized intertwining operator for II,,
for v € Xf. Since Ypo(r, ), dim(m,)*» > 1 for every v € X, (D.2) will be implied by

(D.3) I Y dim(r) =|]] tr(L(¢k,) o Am,)|-

UEEI"; BC(my) 1, UEZt

For this, we choose an imaginary quadratic number field £ C C satisfying
O FE is not included in F
O if a rational prime p underhes Y+, . then p splits in E;
O if a rational prime p underlies i, then p is inert in E;

O the quadratic base change of II to F' = F.E, denoted by f[, remains cuspidal (hence
relevant).

Let F'* C ' be the maximal totally real subfield; let Xu] be the set of places of F'+ above ¥ and
let F the (finite set) of nonarchimedean places v of F + not in er such that II; is ramified. By
our choice of E, F'/F* is everywhere unramified; every place in >+ splits in F; and every place in
> sphts into two places of F* both inert in F. Let V be the standard definite hermitian space
over I’ of rank N such that Vy (for a nonarchimedean place ¥) is not split if and only if v € Z
Take an object K e R(V) of the form K = [T Kj satisfying

O Ky is hyperspecial maximal if ¢ is inert in F and not in Elr,

O Kj is given by K, for & € X, where v € % underlies ¥;

O 7y has nonzero Iu{,; invariants if v splits in a , where 7 is the descent of ﬁv to an irreducible
admissible representation of U(V)(E;).

Then we have

(D.4) dim Q;[Sh(V, K)][teoy] = S dim(#)%e.

PeSTUNT BO(#y) 1,

28We expect that the special maximal subgroup K, is already transferable; but we do not need to address this
issue.

29Stlrictly speaking, Shin’s formulae are stated for unitary similitude groups and assuming F' containing an
imaginary quadratic subfield. However, we can modify his argument to honest unitary groups and without the
constrain on F' by our moduli interpretation as we did in the proof of Theorem D.1.3.
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On the other hand, by [Shi, (1.8) & (1.9)], we have

(D.5) dim Q¢ [Sh(V, K)][uey] = tr(Ils (o) o A, )| -

pestust

Here, for v € i*, we take ¢ tobe 1y ® Ly ; and for ¢ € if;, we take ¢y to be ¢k, where v is

place of F* underlying ¥. Then it is easy to see that for ¥ € 27, we have

— Y dim(#)S > 1

BC(#y) 11y

(D.6) (a6, ) © Ap,)

(in fact, the sum is taken over a singleton). Combining (D.4), (D.5), and (D.6), we obtain

[I > dim@E)® = | I] t(a(og,) o Ay,)|

veX BC(#y) 1y vesf
which is nothing but
2 2
H Z dim(m,)* | = H tr(I,(ok, ) © Am,)
vex; BC(my)~Ily ves;t
Thus, (D.3) follows. The proposition is proved. O

APPENDIX E. DEFORMATION OF (GALOIS REPRESENTATIONS

We consider a subfield F' C C that is a CM number field. We adopt the notation concerning
ground fields in Subsection 1.3; and we put 7 := np/p+ for short. The main objective of this
appendix is to generalize results in [CHT08] and [T'hol2] concerning the relation between the Galois
deformation algebra and the Hecke algebra, informally known as R=T theorems. In Subsection
E.1, we collect some facts concerning essentially conjugate self-dual representations, which is also
frequently used in the main text. In Subsection E.2, we recall the notion and facts of lifting
and deformation of Galois representations. In Subsection E.3, we study Fontaine—Laffaille local
deformations. In Subsection E.4, we study representations of tame groups, which will be used in
the next two subsections. In Subsection E.5, we study minimally ramified local deformations. In
Subsection E.6, we study local deformations related to the level raising. In Subsection E.7, we
state and prove our R=T theorem for both unitary Shimura sets and unitary Shimura varieties. In
Subsection E.8, we study the rigidity property for reduction of automorphic Galois representations,
in the sense of Definition E.7.1.

In this appendix, we shall slightly change our notation system from Section 2 to fit the one used
in [CHT08]. We fix an odd prime ¢ and an isomorphism ¢,: C = Q. Consider a finite extension
E) of Q inside Q,. Let & (rather than O, in Section 2) be the ring of integers of E\, \ the
maximal ideal of &, and k = &/X the residue field. Following [(HT08], we denote by €. the
category of commutative local Artinian 0-algebras with residue field k, and let €, be the category
of topological local 0-algebras whose objects are inverse limits of objects of %é. For an object R
of €, we shall denote by mp its maximal ideal. For an &-valued character, we will use the same
notation for its induced R-valued character for every object R of €.

Take an integer N > 1.
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E.1. Extension of essentially conjugate self-dual representations. In this subsection, we
collect some notion and facts on the extension of essentially conjugate self-dual representations.

Notation E.1.1. We recall the group scheme ¥y from [CHTOS, Section 1]. Put
gN = (GLN X GLl) X {1,(}
with ¢ = 1 and
c(g, e = (1'g™" 1)
for (g,) € GLy x GL;. In what follows, we will often regard GLy as a subgroup of ¥y via the
embedding g — (g, 1,1). Denote by v: ¥y — GL; the homomorphism such that v|qp, x arL, is the
projection to the factor GL; and that v(¢) = —1. We have the adjoint action ad of ¥y on My,
given by
ad(g, p)(z) = gxg™, ad(c)(z) = "=
for z € My and (g, ) € GLy x GL;.

Let T be a topological group, and I' C [a subgroup of index at most two.

Notation E.1.2. Let R (rather than L in Section 2) be a commutative topological Z,-algebra.
For a continuous homomorphism .
r: ' = 9y(R)
such that the image of r|r is contained in GLy(R) x R*, we denote
r: T — GLy(R) x R* — GLy(R)
the composition of 7| with the projection to GLy(R).

Lemma E.1.3. Suppose [f‘ : '] = 2. Let R be a commutative topological Ze-algebra and x : r—
R* a continuous character. We have
(1) If r: T = 9y(R) is a continuous homomorphism satisfying r—*(GLy(R) x R*) =T and
vor =y, then for every v € T \ I, we have

%7 = Boyr® o B!,

where A is given from r(v) = (B, —x(7),¢).

(2) Let p: T — GLy(R) be a continuous homomorphism, ~v an element in T \ T, and B €
GLn(R) such that p* = Boxp¥ o B™! and B'‘B~ = ugx(v)1p(y?) for some pp € {£1}.
Then there exists a unique continuous homomorphism

r: T — 9y (R)
satisfying rlr = (p,x|r, 1) and () = (B, psx(7), ¢).
(8) Suppose in (2) that R is a field and p is absolutely irreducible. If p? and xp¥ are conjugate,

then p induces a homomorphism r: T — 9y(R) satisfying r|lr = (p,x), unique up to
changing the GLy(R)-component of r(v) by a scalar in R*.

Proof. Part (1) is a special case of [CHT08, Lemma 2.1.1].
For (2), we check that

r(v?) = (B, usx(7):€) - (B, upx(7): ¢) = (upx(7) BB~ x(7%). 1) = (p(+*), x(7v*). 1).
Since I is generated by I' and 7, we obtain a unique continuous homomorphism r: r — 9In(R) as
in (2).
For (3), by Schur’s lemma, the element B is unique up to scalar in R*, which implies the
existence and also the uniqueness of pp. Thus, (3) follows immediately. O
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E.2. Deformation problems. In this subsection, we introduce the notion of deformation prob-
lems. Let I" be a topological group, and I' C I a subgroup of index at most two.
Notation E.2.1. We consider a pair (7, x), where
O r: li — 9n(k) is a homomorphism,
O x: ' = 0* a continuous homomorphism, known as the similitude character,
subject to the relation 7' (GLy(k) X *) =T and voT = .

The following definition slightly generalizes [CHT08, Definition 2.2.1].

Definition E.2.2. A lifting of 7 to an object R of €, is a continuous homomorphism r: I' —
9n(R) satisfying rmodmg = 7 and v or = x. We say that two liftings are equivalent if they are
conjugate by an element in 1 + My(mg) C GLy(R) C 9n(R). By a deformation of 7, we mean
an equivalence class of liftings of 7.3
Now suppose that I' is topologically finitely generated. Then there exists a universal lifting
P g (RY)
of 7 to an object R® of €, such that, for every object R of €, the set of liftings of 7 to R is in

natural bijection with Hom, (R¢, R). Since I is topologically finitely generated, it is well-known
that RI°¢ is Noetherian; and there exists natural isomorphisms

Homy, (mgue /(m2e, A), k) ~ Homg, (RE, k[e]/(e?)) ~ Z'(T, ad 7),
where Zl(f‘,ad ) denotes the group of 1-cocycles of T with values in the adjoint representation
(ad 7, My (k)). Explicitly, for ¢ € Z'(T",ad 7), the corresponding lifting of 7 to k[e]/(?) is given by

r(9) = (1 +e0(9))7(g)

for every g € T. For two cocycles ¢y, ¢ € Z1(T,ad 7), the corresponding liftings 74, and ry, are
equivalent if and only if there exists an element x € My (k) such that

¢1(9) = ¢2(9) = (1 — ad7(g))(2)
for every g € I'. Thus, the equivalence classes of liftings of 7 to k[e]/(£?) is in natural bijection

with HY(T, ad 7).

Definition E.2.3. A local deformation problem of 7 is a closed formal subscheme 2 of Spf Rl
that is invariant under the conjugate action by 1 + My (mguoc).

By the moduli interpretation of R, giving a local deformation problem of 7 is equivalent to
giving a collection of liftings of 7 to objects in %, satisfying certain conditions (see [CHTOS,
Definition 2.2.2 & Lemma 2.2.3]).

Definition E.2.4. For a local deformation problem & of 7, we define the tangent space of 2,
denoted by L(Z), to be the image of the subspace

LY(2) == Homy, (mgue /(Mue, .7, A), k) € Z}(T, ad 7)
under the natural map Z(T',ad7) — HY(T', ad 7), where .# C RY¢ is the closed ideal defining 2.
Note that we have the identity
(E.1) dim, L}(2) = N? + dimy, L(2) — dim;, H°(T", ad 7).

3OStrictly speaking, a lifting or a deformation of 7 depends on the similitude character xy. But we choose to
follow the terminology in [CHTO08] by not spelling the characters out, as the relevance on the similitude character
is always clear from the context.
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Remark E.2.5. Later, when we consider a nonarchimedean place v of F+ and take I' = T Ft, the
subgroup I' we implicitly take is always I'p+ N I'p.

Now we apply Notation E.2.1 and Definition E.2.2 to the case where T' = T+ and T’ = T'p.

Definition E.2.6. A global deformation problem is a tuple (7, x, S, {2, }ves), where

O (7, x) is a pair as in Notation E.2.1;

O S is a finite set of nonarchimedean places of F'" containing all ¢-adic places and those
places v such that r, is ramified;

O 9, is a local deformation problem of 7, (Remark E.2.5) for each v € S.

We take a global deformation problem . = (7, x, S, {%, }ves). For v € S, we denote by .#, the
closed ideal of RI;;C defining &,. For a subset T C S, put

(E2) Ry = ), R/ A,

where the completed tensor product is taken over &. Recall from [CTT0S, Definition 2.2.1] that
a T-framed lifting of ¥ to an object R of € is a tuple (r;{f,}ver), Where r is a lifting of 7 to
R (Definition E.2.2), and §, € 1 + My(mg) for v € T. Two T-framed liftings (r; {5, }ver) and
(r'; {8, }ver) of T to R are said equivalent, if there exists x € 1+ Mpy(mpg) such that 7' =z 'orox
and () = 713, for every v € T. A T-framed deformation of 7 is an equivalence class of T-framed
liftings of 7. We say that a T-framed lifting (r; {5, }ver) is of type . if r, belongs to &, for every
v € S, and is unramified for every v ¢ S. Note that being of type . is a property invariant under
the conjugate action by 1 4+ My (mg). Thus it makes sense to speak of T-framed deformation of
type .. Let Def?}: %o — Set be the functor that sends an object R to the set of T-framed
deformations of 7 to R of type .7.

Let I'p+ g be the Galois group of the maximal subextension of F'/F* that is unramified outside
S. Recall the cohomology group H', (I'p+s,ad7) for ¢ > 0 introduced after [CTT08, Defini-
tion 2.2.7]. By [CHT08, Lemma 2.3.4], these are finite dimensional k-vector spaces, and satisfy
H', +(Tp+ s,ad7) = 0 for i > 3.

Proposition E.2.7. Assume that 7|r, is absolutely irreducible. Then for every subset T C S, the
functor DefJF is represented by a Noetherian O-algebra Ry in €p. Put REY = RE,@. We further
have

(1) There is a canonical isomorphism
2 1 -
Homy, (mRDT J(m20, A, e ), k) ~HY (D s, ad 7),
s 7 i

where we regard MRioe -~ @S its image under the tautological homomorphism Rl}fT — RE}.
Moreover, if H?y)}T(FFJr’S, adr) =0 and forv € S\'T, 2, is formally smooth over O, then

R;T S a power series ring over R};‘fT in dimy HY, (T p+ g, ad 7) variables.
(2) The choice of a lifting r": Tp+ — 9n(RYY) in the universal deformation determines an

univ

extension of the tautological homomorphism RY"Y — R?f to an isomorphism
RUY[[Xusijlloerasijen = RS
such that, for every v € T, the universal frame at v is given by B, = 1+ (Xy:ij)1<ij<n-

Proof. These are exactly [CHT08, Proposition 2.2.9 & Corollary 2.2.13] except that they consider
only local deformation problems at split places (that is, they assume that all places in S are split
in F'). However, the same argument can be applied to the general case without change. 0
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E.3. Fontaine—Laffaille deformations. In this subsection, we study Fontaine-Laffaille defor-
mations at f-adic places. We take a place v of F'™ above ¢; and let w be the place of F' above
v induced by the inclusion ' C F}. We assume that ¢ is unramified in F, and denote by
o € Gal(F,/Qy) the absolute Frobenius element.

Definition E.3.1. We say that E) is F-inclusive if E) contains the image of all embeddings of
F into Q.

We first suppose that E) is F-inclusive, and put 3, = Homy,(Op,, ©). Following [CHT0g],
we use a covariant version of the Fontaine-Laffaille theory ['L.82]. Let .#%4 ., be the category of
Op, ®z, O-modules M of finite length equipped with

O a decreasing filtration {Fili M}icz by Op, ®z,0-submodules that are Op, -direct summands,
satisfying Fil> M = M and Fil*"' M = 0, and '
O a Frobenius structure, that is, o @ 1-linear maps ®': Fil' M — M for i € 7Z, satisfying the
relations ®°|pyi+1,, = (@ and 3,0, P Fil' M = M.
Let A%, be the full subcategory of 4%, ,, of objects that are annihilated by A.
For an object M of .#% ,,, there is canonical decomposition

M = 6{) A477

TEXw
where M, := M®oy, 0,,6.010. Then we have Fil' M = @, 5, Fil' M, with Fil' M, = M, OFil' M,
and that &’ induces O-linear maps
L Fil' My — Moy
We put
gr' M, = Fil' M, /Fil'"™ M., gr*M, = Per’'M,, g*M = P gr*M,.

TEXw
We define the set of 7-Fontaine—Laffaille weights of M to be
HT. (M) = {i € Z | gr'M, # 0}.
We say that M has reqular Fontaine—Laffaille weights if gri M. is generated over & by at most one
element for every 7 € ¥, and every i € Z.
For every integer a satisfying 0 < a < ¢ — 2, let W‘[@OJZJ] be the full subcategory of .#%4,,
consisting of objects M satistying Fil*™ M = 0. In particular, we have //zgdgf;‘?] = MF¢ . by

definition. There is a duality functor D> on the category ,//49{23} such that for every object M

of //ﬁ[ﬁofu], the object DI%? (M) is defined as follows:
O the underlying O, ®z, O-module of D**(M) is Homo,, (M, F,,/OF,);
O Fil'D(M) = Homo,, (M/Fil*"' " M, F, /O, );
O for f € FilI' DI®(M) and m € Fil! M, we have

& () (@ () = {ga”f T s

0 iti+7 > a.
It is easy to see that DI%® (M) is a well-defined object of 4%, (see [(HT0S, Page 34]), and that
DDA (M) = M.
Let O[T'r,]"" be the category of &-modules of finite length equipped with a continuous action
of I'p,. In [CHTOS8, 2.4.1], the authors defined an exact fully faithful, covariant &-linear functor

Gy: MFp — Og, ™
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whose essential image is closed under taking sub-objects and quotient objects.®" The length of an
object M in A% ,, as an O-module equals [F, : Q] times the length of G, (M) as an &-module.

If M belongs to //dgf{gﬂ, then we have
G, (D"(M)) = G (M) (~a),

where G, (M)Y == Homg (G, (M), Ey/O) with the dual Galois action. For two objects My, My of
M ., We have a canonical isomorphism

Hom 4z, , (My, My) = H°(F,,, Homg(G, (M), G, (Ms)))
and a canonical injective map
Ext s, (M, Ms) = Extypr (G (M), Gy (M),

where the target is canonically isomorphic to H!(F,,, Hom (G, (M), G, (M>))) if My, My are both
objects of AP, ..

I'r,

Example E.3.2. For an integer a satisfying 0 < a < £—2 and an object R of %é, we have an object
R{a} of #F s ., defined as follows: the underlying O, ®z, 0-module is simply ((F3,/OF,) @ R)e,,
with the filtration given by

Fil' R{a} =

((Fy/OF,) ® R)e, ifi < a;
0 iti > a.

Finally, the Frobenius structure is determined by ®“(e,) = e,. Then we have
Gy (R{a}) = R(-a)

as O[l'r,]-modules, where (—a) denotes the Tate twist, and DI*(R{a}) ~ R{b — a} for every
integer b satisfying a < b < ¢ — 2.

Construction E.3.3. We construct a functor =: #%¢ ,, = M#F¢ ., as follows: for an object M
of M7 ., the underlying O, ®z, 0-module of M? is O, ®o,,, - M with the induced filtration
and Frobenius structure. Then we have M? = M, ,,-1 for every 7 € 3, and that G, (M) is
isomorphic to G, (M) but with the action of I'r, twisted by the absolute Frobenius of F,: if we
denote by p and p, the actions of I'r, on G, (M) and G, (M), respectively, then they satisfy

po(g) = p(67g5),
where & € Gal(F'}/Qy) is a lift of the absolute Frobenius.
We now let =°: A% s, — MF o, be the [Ff : Qg-th iteration of the functor =7 constructed
above. Take an object M of .#%;.,,. Suppose that M is finite free over Op, ® R for some object
R of ‘Ké. Then giving an isomorphism M ~ DI®4l(M¢) is equivalent to giving a perfect pairing

(,): M®x M — R{a}

in the category #%¢.,,, where R{a} is the object in Example E.3.2. The latter is equivalent to
giving, for each 7 € 3,,, an R-bilinear perfect pairing ( , ),: M, x M, — (Q;/Z;) ® R satisfying
that
(1) for every i,j € Z and every x € Fil' M, and y € Fil! M,, (®icx, ®iy), equals (4~ (x, y),
(resp. 0) if i +j < a (resp. i +j > a); and
(2) for every i € Z, the annihilator of Fil' M, under (, ), is Fil*"'™" M,; in particular, { , ),
induces an R-linear isomorphism gri M, ~ Hompg(gr* "M, (Q;/Zs) ® R).

31n fact, if Ug is the contravariant functor from .#%4 ,, to O[T, ]! defined in [F1.82], then we have G, (M) ~
Us(DI%21(0)) (2 — ).
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Definition E.3.4. Let R be an object of %é, and p: I'r, — GL,(R) a continuous representation.
We say p is crystalline with Fontaine—Laffaille weights in [0, a] for some 0 < a < ¢ — 2 if (R™, p)
lies in the essential image of the functor G, : ,//l%{gfu] — O[Tk, ]''; in this case, we say that p has

reqular Fontaine—Laffaille weights if so does G,'(p).

Now we consider a pair (7, y) from Notation E.2.1 with T’ = [prand I'=Tp NTp =T, We
do not assume that E) is F-inclusive. We choose an F-inclusive finite unramified extension FY of
E\, with the ring of integers ¢ and the residue field £'.

Assumption E.3.5. There exist an integer a satisfying 0 < a < ¢ — 2 and an element b € Z/27
such that

(1) x = ngegy; and

(2) 7 ®y k' is crystalline with regular Fontaine-Laffaille weights in [0, a].
Definition E.3.6. Under Assumption E.3.5, we define 2'" to be the local deformation problem
of 7 that classifies the liftings r: '+ — 9n(R) of 7 to objects R of €} such that for every Artinian

quotient R’ of R®4 0, r* @ R’ is crystalline with Fontaine—Laffaille weights in [0, a] (Definition
E.3.4).

Remark E.3.7. 1t is straightforward to check that Assumption E.3.5 and Definition E.3.6 do not
depend on the choice of Fj.

Lemma E.3.8. Suppose ¢ > N and assume Assumption E.3.5. We have

dimy, L(2") — dim;, HY(F,",ad 7) = [F : Q] - N(NQD
Proof. We may assume FE) = F.

Suppose first that v is split in F. Then we have F,, = 7, and that a lifting r in 2"%(R) of 7 is of
the form 7 = (p, ¢, ,): I'r, — GLx(R) x R* such that for every Artinian quotient R’ of R, p®@r R
lies in the essential image of the functor G,,. Then the lemma is exactly [CHT08, Corollary 2.4.3].

Suppose now that v is inert in F; and denote by I/, the Galois group of the quadratic extension

F,/FE;}. Then the restriction map induces an isomorphism
H'(Ef ad7) = HY(F,,ad ) /.
Put M = G_(7%). Then the deformations of 7 to k[e]/(?) that lie in the essential image of

G, are classified by Ext}/lgk (M, M), which is canonically a I'y,,-stable subspace of HY(F,,adT).
Therefore, we have

L(2") = Extl,z (M, M)NH'(F,,ad7) /" = Ext, (M, M)"/".

In fact, the induced action of I'y,/, on Extll//gk,w(M , M) can be described as follows. Recall the
functor —¢ in Construction E.3.3. Then G,,(M°®) is isomorphic to 7|, . Since 7 and 7V (—a)
are conjugate, we have M ~ DI%@()/¢). We fix such an isomorphism M =~ D®9(}/¢) hence obtain
a pairing (, ) (with R = k) as in Construction E.3.3. Then for an element [E] € Exti/ﬁk’w(M, M)
represented by an extension 0 - M — E — M — 0, the image of [E] under the action of the

(unique) non-trivial element in T, is obtained by applying the functor D% (=) to 0 — M —
E—M-—=0.
To compute Extifgk (M, M)"wre, we recall first the following long exact sequence in [CHTOS,

Lemma 2.4.2]:
(E.3)
10 @ ° B 1
0 — End 4, (M) — Fil"Homo,, &,,0(M, M) — Homo,, &, 6.0e1(er*M, M) — Ext 45 (M, M) —=0,
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where

O Fil° Homoy, @,,0(M, M) denotes the Op, ®z, O-submodule of Homo,, &, (M, M) of en-
domorphisms that preserve the filtration;

O the map « takes an element f € Fil° Homo,, @, o(M, M) to (f®' — @' f)icz; and

O the map J3 is defined as follows: if ¢ = (¢')iez is a 0 @ 1-linear map from gr*M to M,
then () is given by the extension class of £ = M @ M with the filtration Fil' E =
Fil' M & Fil' M and the Frobenius structure

i (P
ol = ( 0 £i> .

To prove the lemma, we need to derive an analogous long exact sequence similar to (E.3) but with
the last term Ext(l//gk (M, M) . For the first term, note that we have a canonical isomorphism
End 4z, (M) ~ HO(Fw, ad 7), which contains H°(F\,ad 7) as a submodule. For the second term,
let Fil° Homo,, @,,¢(M, M)* be the submodule of F i Homo,,, @z,0(M, M) consisting of elements
f = (fr)res, such that — f. is the adjoint of f, under the pairing (, ), for every 7 € ¥,,. For the

third term, let Homoy,, g, 0,001(gr* M, M)* denote by the submodule of Homo,,, &, 6,001 (gr* M, M)
consisting of ¢ = (p");ez such that

(E4) (% (@), 07" W) + (7 (2), 277 (y))r = 0
is satisfies for every x € gr'M,. and y € gr* "M, .
Then (E.3) induces an exact sequence

0 —=H(F, ad7) — Fil’ Homo,, &, o(M, M)" —>Homo,, @, 0.001(gr*M, M)* L. Ext'y, (M, M) —0

of k-vector spaces. We now compute the dimension of the middle two terms. From the description
of Fil° Homon®Zeﬁ(M , M)t it is clear that fc is determined by f, for every 7 € ¥,. On the
other hand, for each fixed 7, all the possible choices of f, form a k-vector space of dimension

W. Thus, we have

. : N(N +1
dim, Fil" Homo,, &,,¢(M, M) =[F:Q]- <2>
For Homoy, g,,0.001(8r* M, M)*, we first note that the map

P oL: gr* M, — Mooy

is an isomorphism for every 7 € %,,. It follows from (E.4) that ¢, = ; ¢, is determined by
©; =@, p.. On the other hand, for each fixed 7, all the possible choices of ¢, : gr* M, — M, .,
form a k-vector space of dimension N2. Thus, we have

dimy, Homon®Z£@,,®1(gr'M, M)t =[FS :Q - N%
The Lemma follows immediately. U

Proposition E.3.9. Suppose { > N and assume Assumption E.3.5. The local deformation prob-

lem 2"V is formally smooth over Spf &' of pure relative dimension N? + [F.[ : Q] - w

Proof. By Lemma E.3.8, it suffices to show that 2% is formally smooth over ¢. We may again
assume E) = E}. When v is split in F'/FT, the proposition has been proved in [CHT08, Lem-
ma 2.4.1].

Now we suppose that v is inert in F. Fix a subset ¥} C X, so that ¥, = X7 [I3}°. Let R be

an object of Cﬁé and I C R an ideal satisfying mgl = (0). Let r be a lifting of 7 to R/I, and put
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M = G (r%). Note that M is an object of ,//lﬁz[ﬁofj, and that for every 7 € ¥,, M, is free of rank

N over R/I and Fil' M, is a R/I-direct summand of M.

Recall the functor —¢ in Construction E.3.3. Then G,,(M¢) is isomorphic to 7¢|r,. . Since 7#*
and 7%V (—a) are conjugate, we have M ~ D4l (M1¢). We fix such an isomorphism M ~ DI%4()/)
hence obtain a pairing ( , ) (with R = R/I) as in Construction E.3.3. In view of Assumption
E.3.5(2), let m,; < --- < m,n be the T-Hodge Tate weights of M for every 7 € X,,. Then there
exists a basis e;1,...,e,n of M, over R/I satisfying Fil""N+1= M, = 211(3/1)€r,j for every
1 <i < N. By duality, we have mc; + m; ny+1-; = a. Then we may choose the basis (e,;) such
that (ere;, e )y = 0; n41-; for every 7 € ¥ and every 1 <i,j < N.

We now define an object M = D.ex,, M, of MF ¢, that reduces to M, whose underlying
Op, ® O-module is free over O, ® R, and an isomorphism M ~ D[O’“](M ¢) that reduces to the
previous isomorphism M =~ DI%@()/¢) as follows. As an R-module, we take M, = R®N with
the basis (€,;) that lifts the basis (€.;) of M,. We lift ( , ), to an R-bilinear perfect pairing
M. x M. — R such that (€re iy €rj)r = 0; N+1—; still holds for every 7 € X and every 1 <4, j <
N. For the filtration, we put Fil™ MT = 69;:1 Re. ; for m satisfying m, y_; < m < m; yy1-5.
Then M ®z R/I is isomorphic to M as filtered Op, ® R/I-modules; and the condition (2) in
Construction E.3.3 holds for M as well. For the Frobenius structure on M , we first define maps
OT': Fil™ M, — ]\770071 for 7 € ¥ by the recursive induction on i. For i = N, we take PN
to be an arbitrary lift of ®7'" : Fil™ N M, — M,o,-1 for 7 € ©F. For i < N — 1, we take &'
to be a lift of ®;'"": Fil™ M, — M..,—1 that restricts to frri=meini I on FilMraert M By
Nakayama’s lemma, we have

M yog1 = > ®mni(Fil™ M.,)

for every 7 € 7. Finally, we define CEZT M,c = M coy—1 for 7 € Y1 to be the unique R-linear
map satisfying the condition (1) in Construction E.3.3 for M. This finishes the construction of M
and the isomorphism M ~ Dlodl (M ¢), which together give rise to a lifting 7 of 7 to R that reduces
to r. Thus, 2" is formally smooth over €.

The proposition is proved. U

E.4. Representations of the tame group. In this subsection, we will study conjugate self-dual
representations of the tame group, and define the notion of minimally ramified deformations of
such representations.

Definition E.4.1. Let ¢ > 1 be a positive integer coprime to £. We define the g-tame group,
denoted by T, to be the semidirect product topological group t* x ¢ where ¢, maps t to t¢,
that is, qbqtgb;l = t9. For every integer b > 1, We identify T a as a subgroup of T, topologically
generated by ¢ and ¢ = ¢

We consider a reductive group G over 0, together with a surjective homomorphism v: G — H
over ¢, where H is an algebraic group over ¢ of multiplicative type. Consider a pair (g, ) in
which p: T, — G(k) and pu: T, — H(O) are continuous homomorphisms satisfying v o p = i and
w(t) = 1. Similar to the case in Subsection E.2, let ngOC be the 0-algebra in %, that parameterizes
32

liftings o of p satisfying v o p = pu The following proposition generalizes the tame case of

[Shol8, Theorem 2.5].

loc

32Here, once again we omit the similitude character p in the ring R 0

, in order to be consistent with the previous
convention.
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Proposition E.4.2. The ring RléOC is a local complete intersection, flat and of pure relative di-
mension d over O, where d is the relative dimension of the kernel of v over .

Proof. We follow the same line as in the proof of [Shol8, Theorem 2.5]. Let Gy and G be the fibers
at 1 and u(¢,) of the homomorphism v, respectively. Define the subscheme .Z (G, q) of GoXgpec 6G1
such that for every object R of €, .# (G, q)(R) consists of pairs (A, B) € Go(R)x G (R) satisfying

(E.5) BAB' = A"

It suffices to show that .Z (G, q) is a local complete intersection, flat and of pure relative dimension
d over O, since RléOC is the completion of .Z (G, q) at the k-point (o(t), o(¢,))-

First, we show that every geometric fiber of .Z (G, q) — Spec & is of pure dimension d. Consider
the natural projection

b: '//(Ga q) — GO

to the first factor. Take a geometric point Spec K — Spec €. For a point Ay € Go(K) in the image
of p(K), let Z(Ayp) be the centralizer of Ay in G i as a closed subscheme of Gy g, and C(Ap)
the conjugacy class of A, which is a locally closed subscheme of Gy i isomorphic to Gy i /Z(Ayp).
Then C(A,) lies in the image of px. For every point A € C(Ap)(K), the fiber pi'(A) is a torsor
under the group Z(A), which is conjugate to Z(Ag). Thus, pi' (C(Ay)) is irreducible of dimension

dim pit(C(Ap)) = dim C(Ap) + dim Z(Ag) = dim Gy ;¢ = d.

To continue, we choose an embedding e: Gk — GL,, i of algebraic groups over K for some integer
m > 1. By (E.5), the image of (K)o p(K) consists only of matrices whose generalized eigenvalues
are (¢™ — 1)-th roots of unity, hence finitely many conjugacy classes in GL,,(K). We claim that
the image of p(K) consists of finitely many conjugacy classes in Go(K) as well, which implies that
A (G, q)k is of pure dimension d. In fact, we have the following commutative diagram

Go(K) [ Go(K) — GLn(K) / GLin (K)

| |

(Goxc | Go.xc)(K) — (GLni¢ ) GLin 1) (K)

of sets, in which the bottom map is finite since the morphism Go x/Gox — GLp i J GLn i 1s;
and the left map is also finite due to the finiteness of unipotent conjugacy classes [[.us76]; it follows
that the upper map is finite as well.

The above discussion shows that the morphism .Z (G, q) — Spec & is of pure relative dimension
d. Now we take a closed point (A, B) of .# (G, q), which induces a homomorphism

O w(G.a).(AB) — 060,a®006, 5
of corresponding complete local rings. As both Gy and G are smooth over & of pure relative
dimension d, both Og, 4 and Oy, p are power series rings over & in d variables. The relation
(E.5), or equivalently, the relation A = B~'AYB, is defined by d equations in ﬁGmA@ﬁﬁGhB. In
other words, .Z (G, q) is a local complete intersection hence Cohen-Macaulay. Therefore, .# (G, q)
is flat over &'. The proposition is proved. O

Take an integer n > 1. Now we apply the above discussion to the homomorphism v: ¢, — GIL4
in Notation E.1.1. Consider a pair (9, ) from Notation E.2.1 with I' = T, and I' = T2, such that
p(t) = 1. In particular, p: T, — %, (k) is a homomorphism and p: T, — 0> is a (continuous)
similitude character. Write

(E.6) o(t) = A=(A1,1), 0o(¢) =B =(B,~u(¢,),c)
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for A, B € GL,(k). For a lifting o of 9 to an object R of Co, we write o(t) = A = (A, 1,1) and
o(¢,) = B = (B, —u(¢,), ). Then the pair (A, B) reduce to (A, B), and satisfy the relation

(E.7) B'A™'B™! = A4

Corollary E.4.3. The ring ngOC is a local complete intersection, flat and of pure relative dimension

n? over O.

Proof. This follows immediately from Proposition E.4.2 since the kernel of v: ¥4, — GL; is of
dimension n?2. 0

From now till the end of this subsection, we assume [ > n. Denote by N,, (resp. U,,) the closed
subscheme of M,, (resp. GL,) defined by the equation X™ = 0 (resp. (A — 1)" = 0). For every
object R of €y, we have the truncated exponential map exp: N,(R) — U,(R) defined by the

formula
n—1

(n—1)V
which is an bijection. Its inverse is given by the truncated logarithm map log: U,(R) — N, (R)
defined by the formula

expX=1+X+---+

n—1 %
log A = Z(—l)i_IM.
i=1
Let 3, be the set of partitions of n. By the classification of nilpotent orbits in GL,,, for K = k, E),
we have canonical surjective maps 7: N, (K) — B,, such that the fibers of 7 are exactly the orbits
in AV,,(K) under the conjugate action of GL,(K).

By the continuity of g, we know that A in (E.6) is unipotent, which implies A € U, (k). Put
X :=log A € N, (k). Following [Boo19, Definition 3.9], we define the functor Nilg: €, — Set that
sends an object R of €, to the set of elements X € N, (R) that reduce to X and are of the form
CX,C~', where Xy is an element in N, (&) satisfying m(X,) = 7(X) and C € GL,(R), where we
regard X, as an element in N, (E)) in the notation m(Xj).

1

Definition E.4.4. We say that a lifting o of ¢ to an object R of € is minimally ramified if there
exists an element X € Nilg(R) such that ¢%(t) = exp X.

Let 2" be the local deformation problem of ¢ (Definition E.2.3) that classifies minimally
ramified liftings of .

Proposition E.4.5. The local deformation problem @g‘in is formally smooth over Spf O of pure
relative dimension n?.

Proof. We follow the approach of [Bool9, Proposition 5.6], where a similar result for symplectic
or orthogonal representations was proved.

Consider the morphism a: _@g‘in — Nily that sends a lifting o to log A if ¢*(t) = A. In the
definition of Nil ¢, we may fix the nilpotent element Xy € N,,(€). Moreover, up to conjugation in
GL,(0), we may assume

I,

XOZ )
JIn,

where n = ny+- - -+n,., and J,, is the Jordan block of size n;-by-n; as in Subsection 1.3. Let Z,, (X))
be the centralizer of X in GL,, &, which is a closed subscheme of GL,, 4. By [Boo19, Remark 4.18],
Zn(Xp) is smooth over &. By [Bool9, Lemma 3.11], Nil ¢ is represented by a formal power series
ring over ¢ in n? — dimy Z,(X,) variables, where dimg Z,,(Xj) denotes the relative dimension
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of Z,(Xo) over €. Thus, it suffices to show that « is represented by a formal scheme formally
smooth of pure relative dimension dimg Z,,(Xy) over Nil 5.

Take a lifting ¢ of ¢ to an object R of €¢5. Then o(¢,) has the form (B, —pu(¢,),¢) with
B € GL,(R) that reduces to B and satisfies
(E.8) B'XB'=—¢X
by (E.7). For each given X € Nilg, if there exists B € GL,(R) that reduces to B and satisfies
(E.8), then the set of all elements B form a torsor under the group

Z.(X)(R) = {g € 1+ M,(mp) | gXg~" = X},

which is isomorphic to the group of R-valued points of the formal completion of the group scheme
Zn(Xo) along the unit section. Thus, to finish the proof, it suffices to show that the equation (E.8)
admits at least one solution for B that reduces to B.

Assume first X = X in N, (R). Then
_ A\ni—1
A, (—q)

By = , where A, = - ,

—q
An, 1

is a solution to (E.8). In the general case, we write X = CX,C~! for some C' € GL,(R). Then
B = CB,'C satisfies the equation (E.8). Up to multiplying C by an element in Z,(Xo)(R) from
the right, we can make B € GL,(R) to reduce to B. This finishes the proof of the proposition. [J

Recall from Definition E.2.4 that L(Z2™) C H'(T,, ad p) is tangent space of the local deforma-
tion problem Z™.

Corollary E.4.6. We have dimy, L(Z5™) = dim; H(T,, ad 0).
Proof. Suppose 2" = Spf R™*. By (E.1), we have
dinmy mgmin / (A, mag,i,,) = dimy, L(2"™) 4+ n* — dim; H’(T,, ad 9).
From this, the corollary follows immediately from Proposition E.4.5. U

To end this subsection, we record the following lemma concerning decomposition of representa-
tions of the g-tame group, in which part (1) will be used later and part (2) is only for complement.

Lemma E.4.7. Let (p, M) be an unramified representation of T, = t% x (bg over k of dimension
N. Suppose that M admits a decomposition

M=M®e---& M,
stable under the action of p(¢,) such that the characteristic polynomials of p(¢p,) on M; are mu-

tually coprime for 1 < i < s. Let (p, M) be a lifting of (p, M) to an object R of €,. Then we
have

(1) There is a unique decomposition
M=M®@--- &M,

of free R-modules, such that M; is stable under the action of p(¢,) and it is a lifting of M;
as a ¢g-module.

(2) Write p(t) = (p(t);;) with p(t); ; € Hompg(M;, M;). Suppose that q is not an eigenvalue for
the canonical action of ¢, on Homy(M;, M;) for alli # j. Then we have p(t);; = 0 for all
i # j; in other words, the decomposition in (1) is stable under the whole group T,,.
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Proof. For (1), let P(T) € R[T] be the characteristic polynomial of p(¢,) on M. By Hensel’s
lemma, P(T) admits a unique decomposition

= [[ A1)

such that P;(T)modmpg is the characteristic polynomial of p(¢,) on M; for 1 < i < s. We put
Qi(T) = Il P;(T) for 1 <4 < 5. We put M; == Qi(¢q)M and N; := Pi(¢q)M. Then both M,;
and N; are both stable under ¢,; M; is annihilated by P;(¢,); N; is annihilated by Q;(¢,); hence
M; N N; = {0}. Using Nakayama’s lemma, it is easy to see that (P;(T"),Q;(T")) = R[T]. Thus,
there exist polynomials F;, G; € R[T] such that F;P;, + G;Q; = 1 in R[T]. We then obtain

Fi(¢g)Ni + Gi(dg) M; = M,

hence M = M; © N;. To complete the proof of (1), it suffices to show that N; = @, M;. By
definition, it is clear that M; C N; for every j # i, hence @, M; C N;. The inverse inclusion
follows from the fact that the ideal of R[] generated by @); for j # i is same as the ideal generated
by P;.

For (2), we choose a basis of M over R adapted to the decomposition of M in (1). We identify
p(t) and p(¢,) with their matrices under this basis. We have p(¢,);; = 0 for i # j since each M,
is stable under p(¢,). Let J C R be the ideal generated by the coefficients of p(t); ; for ¢ # j. We
have to show that J = 0. By Nakayama’s lemma, it suffices to show that J =mgJ. As

P07 = (14 (p(t) — 1))7 = 1+ q(p(t) — 1) +z() "

a>2

and p(t) = 1 mod mg, we have

(p(t)")ig = qp(t)i; mod mp.J
for i # j. The relation ¢,t = t%¢, implies that

p(Dq)iir(t)ij = (p(t))ijp(0q)5 = qp(t)ijp(9q)j; mod mpJ.
It follows that

p(t)i Pi(ap(dq);5) = Pi(p(dq)ii)p(t)i; =0 mod mpJ

for i # j. By assumption, if & is an eigenvalue of p(¢, )i, then ¢ '@ is not an eigenvalue of p(¢,); ;.

It follows that P;(gp(¢y);;) is invertible, hence p(t); ; = 0mod mpg.J.
The lemma is proved. 0

E.5. Minimally ramified deformations. In this subsection, we define and study the minimally
ramified deformations at places coprime to £. Thus, we take a nonarchimedean place v of F'™ that
is not above /.

When v is split in F', the problem has been studied in [CHT08, 2.4.4]. So we assume that v is
nonsplit in F'. Let w be the unique prime of F" above v. Let I+ C I'pt be the inertia subgroup,
and P+ the maximal closed subgroup of I+ of pro-order coprime to ¢. Put T, = '+ /Pp+.
Similarly, we have I'r,, Ig,, Pr,, and T,,. Finally, put T} =T P /Pg,.

Remark E.5.1. The group T, is a ||v||-tame group (Definition E.4.1). When w is unramified over
v, we have Pp, = P+, Tf = T,, and that the subgroup T,, of T, is a [|v||*tame group. When w
is ramified over v, we have P+ /Pr, ~ 7Z/27, that the natural map T,, — T, is an isomorphism,

and a canonically split short exact sequence

1= Pp+/Pp, = Tp = Ty = 1.
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We recall some facts about extensions of representations of P, from [C'HT08]. For an irreducible
representation 7 of Py, with coefficients in k, we put

[, ={c€lp, |77 ~71},
where we recall from Subsection 1.3 that 77 denotes the representation given by 79(g) = 7(o0go™!)
for g € Pp,. Let T, be the image of I'; in Ty, = I'r,,/Pp,. As Pp, is normal in I'p+, we may
similar define

If = {o € Ty |77~ 7),
and denote by T its image in T.

Lemma E.5.2. We have the following properties for T:

(1) the dimension of T is coprime to {; and T has a unique deformation to a representation T
of Pg, over O;

(2) 7 in (1) admits a unique extension to a representation of I'-NIg, over O whose determinant
has order coprime to {;

(8) there exists an extension of T in (2) to a representation of I'; over 0.

Proof. This is [CHT08, Lemma 2.4.11]. O

Now we consider a pair (7, ) from Notation E.2.1 with ' = Iprand'=Tps NI'r =g, Our
first goal is to define the notion of minimally ramified liftings of ¥ (Definition E.5.8).

Recall from Notation E.1.2 that we have the induced homomorphism 7%: T', — GLy(k). For
an irreducible representation 7 of P, with coefficients in k, we put

M. () == Homyp,, |(T, ).

Then 7 ®;, M, (7) is canonically the T-isotypic component of 7. As 7 extends to a representation of
[';, the k-vector space M, (7) is equipped with a natural action by T,; and 7 ®; M. (7) is equipped
with a natural action by I',.

We denote by T = F(r) the set of isomorphism classes of irreducible representations 7 of Pg,
such that M, (r) # 0. Then I'r, acts on T by conjugation, whose orbits we denote by T/T'g, . For
T € T, we write [7] for its orbit in T/T'p, .

Definition E.5.3. We say that F) is r-inclusive if every 7 € T(r) is absolutely irreducible.

We first suppose that E) is 7-inclusive. Let E,\ be an unramified quadratic extension of FE),
with the ring of integers & and the residue field k.
Choose an element 7 € 't \I'g,. By Lemma E.1.3, the homomorphism 7 is determined by an

element W € GLy (k) satisfying
P = To it o U, Ul = () ().
In what follows, we will adopt the following simplified notation: for a representation 7 of a
subgroup of I'p+, we write 7 for x7Y. Due to the existence of ¥, we know that if 7 € T, then

7% € ¥ as well. As 4% € T',, the assignment 7 — 77* induces an involution on the set T/T'f, ,
which does not depend on the choice of ~.

Construction E.5.4. We now would like to construct a ['p, -stable partition T = %7 LI Ty LI T3.
For each subset ¥;, we will specify, for every 7 € ¥;, an extension of 7 in Lemma E.5.2(2) to a
representation of I'. with coefficients in & (5’ if i = 3) in a compatible way, specified below.

We start from the following observation. Suppose [7] = [77*] in T/T'p,. Then there exists an
element h € I'p,, unique up to left multiplication by an element in I';, such that 77" ~ ™" or
equivalently, 777 ~ 7*. Then we have (hv)? € ', but hy &€ I';. Denote by [ the subgroup of T Pt
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generated by I'; and h~y, which contains I'; as a subgroup of index two. Let T, be the image of
[, in T}, which contains T, as a subgroup of index two.

(1) We define T; to be the subset of T consisting of 7 such that [7] # [77*]. We choose a subset
TV C %, such that {7, 77* |7 € T} is a set of representatives for the I',-action on T;. For
each element 7 € Ty, we choose an extension of 7 in Lemma E.5.2(2) to a representation
of I, with coefficients in &', which we still denote by 7. For a general element 7 € T,
there are two cases. If 7~ 7" for (unique) 7, € ¥y and some h € T'f,, then we choose 7
to be 7, as the extension to I'y = h~'I'; h. If 7 ~ (7})%* for (unique) 7, € T} and some
h € T'p,, then we choose 7 to be (7)Y, as the extension to I'; = v *h~'T, hy.

(2) We define T, to be the subset of T consisting of 7 such that [7] = [77*], and that the images
of I'; and fT inI’ Pt / IFJ are different. We choose a subset ‘Ig C %5 of representatives for
the I'-action on 5. For each element 7 € ‘Zg, we choose an extension 7 from Lemma
E.5.6(1) below to a representation of I'; with coefficients in &. For 7 € T, in general, we
have 7 ~ 7§ for (unique) 7 € Ty and some h € I'p,; and we choose 7 to be 7, as the
extension to I'; = h™1T, h.

(3) We define T3 to be the subset of T consisting of 7 such that [7] = [77*], and that the images
of I'; and f‘T in I P /1 F+oare the same. We choose a subset ‘I?? C %3 of representatives
for the I'-action on Ts. For each element 7 € Ty, we choose an extension 7 from Lemma
E.5.6(2) below to a representation of I'; with coefficients in &. For 7 € Ty in general, we
have 7 ~ 7/ for (unique) 75 € T35 and some h € ', ; and we choose 7 to be 7J, as the
extension to ['; = h™1T,h.

In addition, we put ¥ = TY UTy U ‘3;53.

Remark E.5.5. The partition ¥ = T, U %y U T3 does not depend on the choice of v. Moreover, if
T3 is nonempty, then w is ramified over v.

Lemma E.5.6. Let 7 € T be an element of dimension d.

(1) If T € Ty, then the representation T in Lemma E.5.2(2) extends to a representation of I';
with coefficients in O such that 77 ~ 7 still holds for every v € T'; \ ;.

(2) If T € T3, then the representation T in Lemma E.5.2(2) extends to a representation of T';
with coefficients in O such that 77 ~ 7* still holds for every ~' € I, \T..

Proof. We fix a splitting I'y+ o Py x T, and an isomorphism T, ~ T, = t* x ¢ with the g-tame
group (Definition E.4.1) where ¢ = ||v||. Then we have the induced splitting I'; ~ P, x T,, where
T, = t% x ¢Z is a subgroup of Ty, with ¢, = t* and ¢, = ¢} for unique integers a > 0 and b > 0.
To extend 7 in Lemma E.5.2(2) to a representation of I';, it suffices to specify 7(¢,).

For (1), there are two cases.

First, we suppose that w is unramified over v. Then b is even; and T, is the image of T,
in T,. Then T, is generated by T, and an element 7/ € T, of the form (fT,gbg/ %) such that
y? = (fd ¢?) lies in T'y. As [7] = [r7"], we have 77" ~ 7*. We choose a basis of T hence
regard 7 as a homomorphism 7: Pr, — GLg4(k). By Lemma E.5.2(1,2), we have a continuous
homomorphism 7: I'; N1p, — GLg(&) such that 7|p, is a lifting of 7, unique up to conjugation
in 14+ Mg4()A). In particular, there is an element A € GL4(&'), unique up to scalar in &*, such that
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#(g) = B7*(g9)B* for every g € I; N1p,. Since ¢, = -77""14/% we have

7~_(¢Tg¢;1) %(f;qb/z71,}//2gv/—2t~gb/2+1) _ 7~_(E;qu,l>7~_(’}/,2gfy,—2>7~_(&{b/2+1)
T—qb/2— ~ % -1 1~ rgb/2
(T YBF (Y gy )BTIR(ELT

FET (B BT R(9) (BBTRHET)

Il
N

for every g € ', N1p,. We put 7(¢,) == —X(¢2/2)%(t~;qb/2_1)(3tB‘l). Then we obtain the desired
extension as in (1).

Second, we suppose that w is ramified over v. By the definition of %5, the image of [, in
[yt /Ips contains ¢7 as a subgroup of index two. Thus, there exists an element v’ € I, \I'; such
that 4* = h¢, for some h € I'; N1p,. The remaining argument is same to the abgve case.

For (2), by the definition of T3, the image of I'; in [+ /It coincides with #Z. In particular,
we can find an element 4/ € T, \ I'; contained in Ip+ \ Ip,. By Lemma E.5.2(1,2), we have a
continuous homomorphism 7: I'; NI, — GL4(&) such that 7|p,, is a lifting of 7, unique up to
conjugation in 1 + Mg(\). As we have 77" ~ 7% and 7% ~ 7, there are elements A, B € GL4(0)
such that

(E.9) 7' (g) = AF*(g) A7,

(E.10) 77(g9) = Bi(9)B™",

for every g € T’y N1p,. It follows from (E.9) that the desired element 7(¢,) € GL4(&) has to
satisfy the equation

(B.11) X(O)AF(6,) AT = F(Y o) = (b 07 NF (),
where we note that v’ngV’_lgb;l € I, Nlg,. However, by (E.10), we have

o r—1 ~ — _ ~ ~ — — —

70 (g) = F(Ye 0 B (9) (F (Y e o) B)
for every g € I'; N 1p,. On the other hand, by (E.9) and (E.10), we have

77 (g) = (A'BT AT H(g)(A'B AT
for every g € I'; N1p,. Since 7 is absolutely irreducible, it follows that there exists g € & such
that
A'BTIAT = 8- 7(Yoy ") B.

Take an element v € 6 such that o = Bx(¢,). Then it is clear that 7(¢,) = aB € GL4(0) is a

solution to (E.11).
The lemma is proved. U

Using Construction E.5.4, we now discuss the structure of liftings of 7. We replace Ey by Ej so
that every representations 7 in Construction E.5.4 have coefficients in &. Let r: 't — 9y (R)
be a lifting of 7 to an object R of €. By Lemma E.1.3, to give such a lifting r is equivalent to
giving an element ¥ € GLy(R) that reduces to ¥ and satisfies

rm —To Xru,v o \ijl’ \Ilt\Ilfl — —X(”y)flrh(’yz)‘
For every 7 € X, put
M. (r) = HomR[pFw](f' ®e R, Tu)7

which is a finite free R-module equipped with the induced continuous action by T,. Denote by
m, > 1 the rank of M, (r). Let 7 € T be the unique element such that 77 ~ 7*. Choose an
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isomorphism ¢,: 77 = 7/*, which, by construction E.5.4, lifts to an isomorphism ¢z: 77 = 7* of
representations of I'.,. Then we have isomorphisms
M. (r)" = Hompgp, (77 ®¢ R, TM) = HomR[pFw](%'* ®e R, Th’*) = HomR[pFw}(rh, 7 ®¢ R),
where the second isomorphism is induced by ¢z and W. As 7’ is absolutely irreducible, we obtain
a perfect R-bilinear pairing
M(r)" x M (r) = Endgp, (7' ® R) = R,
which induces an isomorphism
Oz, M, (r)Y = My (r)" = Homg(M.(r), R)
of R[T]-modules. In particular, we have
(E.12)

o (@, (Indp™ (7 @5 Mo (1)) @ Ind ™ (777 @5 Mo (1)) @ (0, cx0000 Indp ™ (7 @4 M- (1))

as representations of I'p, .
Now for every 7, we fix an isomorphism b, : M, (r) = k%™ of k-vector spaces, and let g, : T, —
GL,,. (k) be the induced homomorphism. There are two cases.

(a) Suppose 7 € %;. Then M,/(r) is determined by M, (r). If we choose an isomorphism
M. (r) ~ R®¥™ of R-modules that reduces to b, then we obtain a continuous homomor-
phism

o-: T = GL,,,,(R)
that reduces to o-.

(b) Suppose 7 € T, U T3. Let h be element from Construction E.5.4. Then 6:, induces an
isomorphism M, (r)" = M,(7)¥ of R[T,]-modules. Applying Lemma E.1.3 to r = 7, we
obtain a homomorphism

o T = 9, (k)
satisfying 971 (GL,,, (k) x k*) = T, and v o g, = n# for some yu, € Z/2Z determined by
7.3 In general, if we choose an isomorphism M, (r) ~ R®™" of R-modules that reduces b,,
then we obtain a continuous homomorphism

or: T, =9, (R)
that reduces to o, and satisfies v o p, = nl'7.
The following proposition is the counterpart of [CHT08, Corollary 2.4.13] when v is nonsplit in
F.

Proposition E.5.7. We keep the choices of v € I'p+ \ ', , those in Construction E.5.4, v., and
b,. We also recall that E) now is an unramified quadratic extension of a r-inclusive extension of
Qy. For every object R of €, the assignment

T (QT)TETQy

establishes a bijection between deformations of ¥ to R and equivalence classes of tuples (0:)ezo
where

(a) forT € XY, 0,1 T, — GLy, (R) is a continuous homomorphism that reduces to o,;
(b) forT€ TS UTY, 00 Tr = D (R) is a continuous homomorphism that reduces to o. and
satisfies v o pr = nhT.

331n fact, when 7 € Ty, one can always modify 7 to make g, = 0; but when 7 € Ts, p, is determined by 7.



ON THE BEILINSON-BLOCH-KATO CONJECTURE FOR RANKIN-SELBERG MOTIVES 193

Here, two tuples (0;)reso and (0.);czo are said to be equivalent if o, and o, are conjugate by
elements in 1 + M,,. (mg) for every 7 € TV.

Proof. We now attach to every tuple (¢,),czv as in the statement a lifting r explicitly. Denote by
M, the R[T,]-module corresponding to g,. Consider

M= | @ (Indp™ (7 @, M;) ® Indp™ (7" @ MP)) | D | P Indi™ (7@, M,) |,

TETY TETY UTY

which is a free R-module of rank N, equipped with a continuous action by I'r,. Moreover, we
have M ®@g R/mp ~ 7 as representations of 'z, by (E.12). Thus, we may fix an isomorphism
M =~ R®N such that the induced continuous homomorphism p = py: T'r, — GLy(R) reduces
to 7%. Thus, by Lemma E.1.3, to construct the desired lifting r from p, it amounts to finding an
element ¥ € GLy(R) satisfying

(E.13) pr=Toxp oW WU =—x(y)""p(+*).

We will construct ¥ as a direct sum of ¥, for 7 € TV.
For 7 € X7, we note that 7(7~2) ® o,(7~2) induces an isomorphism

— ~ - * ’Y’* ~ -
Ind” Indﬁf:; (7" @0 M) 2 (Indp 2 (77" @5 M) 5 Indp ™ (7 @ M,).
Thus, we obtain an isomorphism

(E.14)
(Indp?™ (7 @4 M) & Indp™ (7" @, M)

~

,k

= Indp™ (7 ®¢ M) @ Indp"™ (77 ®, M)
as the composition of the canonical isomorphism

(Indp?™ (7 @4 My) & Indp™ (7% @5 MPY))™ 5 Indp " (777 @ M2Y) & (Indp e (77 @, M2Y))'
and the isomorphism

IndLPe (77 7V PP (2% )T Pry (= PP (2, TV

ndp ™ (77 @g M) @ (IndFTv (77 Qg MY )) — Indp* (T ®g M;) © Indp™ (77 @0 M)

) Ind™

given by the matrix <§) —X(y 0

2
). We now let U, be the matrix representing the isomor-
phism
Try /~ Try (=% i) * ~ Try /1~ Lry [ ~v,x vy)Y

(Indp™ (7 @ M) @ Indp ™ (77 @, MPY)) " S (Indp* (7 @0 M) @ Indp ™ (7 @ MYV))
induced from (E.14) by duality.

For 7 € TS LTy, let h be the element in Construction E.5.4. Put 4" := hy, which is an element
in I'; \ I';. The homomorphism ¢,: : T, — ¥%,,_(R) induces an isomorphism M;/ = MY by

Lemma E.1.3(1), which induces an isomorphism M = M. On the other hand, by Lemma
E.5.6, we have an isomorphism 77* ~ 7*~'. Thus, we obtain an isomorphism
(E.15) (Indp? (7 @6 M,)) " = Indi* (7 @, M)
as the composition of the canonical isomorphism
(Indp™ (7 @4 M) = Indple (77 @ M),

s

the isomorphism
Indp® (F7 @ MPY) & Indp™ (77 ®, M}
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specified above, and the isomorphism
Indp” | (7" @p MP™) = Indp!” (7 0 M;)
given by the action of A=, We now let ¥, be the matrix representing the isomorphism
(Indp (F @4 M,))" = (Indp (7 @6 M,))

induced from (E.15) by duality.

Finally, we put ¥ := @, czv V.. Then (E.13) follows by construction. In other words, we have
assigned a lifting r from the tuple (o;),czo. It is straightforward to check that such assignment is
inverse to the assignment in the proposition. The proposition follows. 0

From now till the end of this subsection, we assume [ > N. Using Proposition E.5.7, we can
define minimally ramified liftings of . We now do not assume that E) is r-inclusive. We choose
an unramified quadratic extension Ef of an r-inclusive unramified extension of £, with the ring
of integers &" and the residue field k'. We also keep the choices of v € T'p+ \ I'r,, those in
Construction E.5.4, ¢,, and b,, as in Proposition E.5.7 (with respect to EY).

Definition E.5.8. We say that a lifting r» of 7 to some object R of Gy is minimally ramified if
in the tuple (¢;);ezo corresponding to the composition I'z+ = Gy(R) — 9v(R ®4 O), every
homomorphism o, is a minimally ramified lifting of o, in the following sense.

(1) For 7 € Y, minimally ramified liftings of g, is defined in the sense of [CHT08, Defini-
tion 2.4.14].

(2) For 7 € Ty, note that T, is isomorphic to the g,-tame group for some power ¢, of l|v]]
under which the subgroup T is the ¢?-tame group. Thus, we may define minimally ramified
liftings of o, using Definition E.4.4 (with respect to the similitude character n*~, which is
trivial on T,);

(3) For 7 € 5, note that T, ~ T, x Z/2Z. Then, by Lemma E.1.3, we may regard the
homomorphism g, as a continuous homomorphism g, : T, — G(R), where G is a symplectic
(resp. orthogonal) group of rank m., if p, is O (resp. 1). Thus, we may define minimally
ramified liftings of o, using [Bool9, Definition 5.4].

Remark E.5.9. It is straightforward to check that Definition E.5.8 do not depend on the choice of
E\, v € T+ \ I'g,, those in Construction E.5.4, ¢,, and b,.

Now we allow v to be a nonarchimedean place of F™ that is not above £, but not necessarily
nonsplit in F'. Again, we consider a pair (7, x) from Notation E.2.1 with ' = IprandI' = T NP,

Definition E.5.10. We define 2™ to be the local deformation problem of # that classifies
minimally ramified liftings in the sense of Definition E.5.8 (resp. [CHT08, Definition 2.4.14]) when
v is nonsplit (resp. split) in F.

Proposition E.5.11. We have

(1) The ring R is a reduced local complete intersection, flat and of pure relative dimension
N? over 0.

(2) Every irreducible component of Spf R is a local deformation problem (Definition E.2.3).

(3) If € > N, then 2™" is an irreducible component of Spf R and is formally smooth over
Spf O of pure relative dimension N?.

Proof. We may assume F) = E.
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For (1), when v splits in F', this is [Sho18, Theorem 2.5]. Thus, we may assume that v is nonsplit
in F'. By Proposition E.5.7, R}-,OC is a power series ring over

n loc
®1’ETQj RéT :
We now claim that for every 7 € TV, Rloc a local complete intersection, flat and equidimensional.

Indeed, for 7 € 7, this is [Shols, Theorem 2.5]; for 7 € %5, this is Corollary E.4.3; for 7 € T;?, this
is Proposition E.4.2 for G a symplectic or orthogonal group with the trivial similitude character.
On the other hand, by [BG19, Theorem 3.3.2] or [BP, Theorem 1], we know that R¢[1/¢] is
reduced and of pure dimension dim %y = N2. Thus, R is a local complete intersection, flat and
of pure relative dimension N? over &. Since RYC is generically reduced and Cohen—Macaulay, it
is reduced. (1) is proved.

For (2), take an irreducible component 2 of Spf Rl¢, and let %y be the formal completion of
GLy ¢ along the unit section. Then the conjugation action induces a homomorphism £y Xgpr ¢
9 — Spf RY® whose image contains 2. Since £y is irreducible, the image is irreducible hence has
to be Z. In other words, ¥ is a local deformation problem.

For (3), since ™" is Zariski closed in SpfRY® from its definition, it suffices to show that
2™ g formally smooth over Spf @ of pure relative dimension N2. When v splits in F, this is
[CHTO8, Corollary 2.4.21]. Thus, we may assume that v is nonsplit in . For 7 € T, let 72" be
the local deformation problem of o, classifying minimally ramified liftings of o, in various cases
in Definition E.5.8. By Proposition E.5.7 and Definition E.5.8, 2™ is formally smooth over

1T 72"

TEIY

We claim that for every 7 € TV, .@gfn is formally smooth over Spf @. Indeed, for 7 € Y, this
is [CHTO08, Lemma 2.4.19]; for 7 € %5, this is Proposition E.4.5; for 7 € %y, this is a part of

[Buo Theorem 1.1]. Thus, 2™ is formally smooth over Spf &.
[t remains to compute the dimension. By (E.1), it suffices to show that
(E.16) dimy L(2™") = dim;, H*(E)", ad 7).

For every 7 € TV, let L(Z™) be the tangent space of the deformation problem Z:", which is a
subspace of H'(T,,ad @) (resp. HY(T,,ad 9)) if 7 € Ty (resp. 7 € T3 LITS). By Proposition E.5.7,
we have
(E.17) dim, L(2™") = »_ dim, L .Qmm)

T€3C
We claim that
dimy, H(T,,ad o,) if 7 € Iy;

E.18 dimy L(2™) = _
( ) #L(Z5) {dimk HY(T, ado,) ifT €% UTY.

Indeed, for 7 € Y, this is [(HT08, Corollary 2.4.20]; for 7 € T3, this is Corollary E.4.6; for
7 € Ty, this is a part of [Bool9, Theorem 1.1] as dimy, H(T,, ad g,) = dimj, H(T,,ad’ ,). From
(E.12) for 7, we have

HY(EF adr) ~ | @ H(T,,ado,) || @ HYT.,ado,)

TeTY TETY UTY

Together with (E.17) and (E.18), we obtain (E.16).
The proposition is proved. U
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Now we discuss one example of minimally ramified liftings, which is used in Proposition
8.1.5. Consider an elliptic curve A over Ff. For every rational prime ¢, we fix an isomorphism
HY, (Aug, Z¢) ~ Z3?, hence obtain a continuous homomorphism pa: I p+ — GLa(Zg). Suppose
N > 2. We obtain a continuous homomorphism

TAe: FFJ — gN(Zg) = (GLN(ZZ) X Z?) X {1,C}

by the formula r4¢(y) = (Sym®™ ' pae(v),n¥~ Lei .V (7),¢(7)), where ¢(y) = ¢ if and only if v €

[+ \ I'r. Denote by 74, the composition of 74, and the projection ¥y (Z) — Gn(F).

Proposition E.5.12. For all but finitely many rational pm’mes ¢ > N, every lifting of T4, to
an object R of €z, (with respect to the similitude character n e N) is minimally ramified in the
sense of Definition E.5.8.

Proof. For simplicity, we only prove the proposition for v nonsplit in F. The split case is similar
and easier, which we leave to readers. Thus, let w be the unique place of F' above v. Fix a finite
extension F! of F,, in F'}" so that A’ == A® F F! has either good or split multiplicative reduction.
We further request that F) /F,, is totally ramified if A" has good reduction. Let T’ be the image

of the Gal(F'f/F!) of T'g, in T, = g, /Pg,. We fix an isomorphism T, ~ T, = t% x gbqZ with
the ¢g-tame group, where ¢ = ||w||. We now assume ¢ > [F : F,,)]. Then T/ is generated by ¢ and

¢! for a unique integer b > 0. We then also assume ¢ > ¢"N'(> N). Let T = T(Fa,) be the set of

isomorphism classes of absolutely irreducible representations of Pp, appearing in 7’54 ¢ as before.

We first consider the case where A’ has split multiplicative reduction. Let u be the valuation
of the j-invariant j(A) in F/, which is a negative integer. Assume further that ¢ is coprime to u.
Then par(t) is conjugate to ( 1) in GLa(Zy), which implies that Sym™ ™" p ,(t) is conjugate to
1+ Jy in GLy(Z,). Tt follows that ¥ is a singleton, say {7}; and every lifting o, of g, is minimally
ramified. Thus, every lifting  of 74 ¢ is minimally ramified.

We then consider the case where A’ has good reduction. Then T/ = T, hence b = 1. Let
a, 3 € Q¢ be the two eigenvalues of par(¢,). Then a, 3 are Weil ¢~/2numbers in Q, which
depend only on A’, not on £. We further assume that ¢ satisfies that o, 3 € Z), and that
the image of the set {(a/B)V 1, (a/B)N73,... (a/B)> 7N, (a/B) "N} in F) does not contain ¢. It
follows that for every 7 € ¥, every lifting o, of ¢, is actually unramified, hence minimally ramified.
Thus, every lifting 7 of 74 ¢ is minimally ramified.

Since in both cases, we only exclude finitely many rational primes ¢, the proposition follows. [J

More generally, we would like to propose the following conjecture. As in the initial setup of
Subsection 6.1, let II be a relevant representation of GLy(Ag) (Definition 1.1.3), and E C C a
strong coefficient field of II (Definition 3.2.5). Then for every prime A of E, we have a continuous
homomorphism pr x: I'r = GLy(E)).

E.6. Level-raising deformations. In this subsection, we discuss level-raising deformations. As-
sume ¢ > N > 2. We take a nonarchimedean place v of F'™ that is inert in F and not above /.
Let w be the unique place of F' above v. Recall that we have T, = T'1.+ /P p+and Ty =Tg, /Pg,.
Then T, is isomorphic to the g-tame group and the subgroup T,, is the ¢*>-tame group (Definition
E.4.1), where g = ||v]|.

We consider a pair (7, ) from Notation E.2.1 with ' = I'prand I' = T'pe NT'p = I'p,, such
that 7 is unramified and x = n'e, 1N for some p € Z/27. Then by Lemma E.5.2(1), every lifting
r of 7 to an object R of 6, factors through T,. In particular, we may apply the discussion in
Subsection E.4 to the pair (7, x).

Now assume /£ 1 (¢ — 1) and that the generalized eigenvalues of 7*(¢,,) in F, contain the pair
{q7N, ¢ V*2} exactly once. By Lemma E.4.7(1), for every lifting r of 7 to an object R of €, we
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have a canonical decomposition
(E.19) RN = My @ M,

of free R-modules such that if we write Py(T) for the characteristic polynomial for r%(¢,), then
Py(T)= (T — ¢ ™)(T — ¢ V) mod mp.

Definition E.6.1. Let (7, x) be as above. We define 2™ to be the local deformation problem
of 7 (Definition E.2.3) that classifies liftings r to an object R of € such that

O the decomposition (E.19) is stable under the action of (I, );
O the action of rf(Ir,) on M, is trivial;
O for every t € Ip,, the characteristic polynomial of 7#(t) on My is (T — 1)2

We define
(1) 2" to be the local deformation problem contained in 2™ so that the action of 7#(If,)
on My is also trivial;

(2) 2™ to be the local deformation problem contained in 2™ so that Py(T) = (T —q )(T—
¢ N*t2) in R[T].

It is clear that 2" coincides with 2™ from Definition E.5.10.

Proposition E.6.2. Suppose £ { (¢> — 1) and that the generalized eigenvalues of ¥ (¢y) in Fy
contain the pair {g=, ¢ N*2} exactly once. Then the formal scheme 2™ is formally smooth
over Spf Oz, x1]]/(xoz1) of pure relative dimension N? — 1 such that the irreducible components
defined by ro = 0 and x1 = 0 are "™ and P, respectively. In particular, ™™ is formally
smooth over Spf € of pure relative dimension N2.

Proof. We fix an isomorphism T, ~ T, = t%¢ x gbg so that ¢, = gbg We write k8N = M, @ M,
so that fh(gbg) has eigenvalues ¢~V and ¢~V*2? on M. Without lost of generality, we may assume

that M, is spanned by the first two factors and M, is spanned by the last N — 2 factors. Thus,

we obtain two unramified homomorphisms 7: Ty — % (k) and 71: T, = 9n_2(k). Let &, be the

local deformation problem of 7y classifying liftings 7y of 7y so that the characteristic polynomial

of ri(t) is (T — 1) Let Z; be the local deformation problem of 7; classifying unramified liftings.
Suppose N > 3. We say that lifting r of r to an object R of €y is standard if

= (3 ) o= (3 5) o)

for some Ag, By € GLy(R) and By € GLy_5(R). Let Z5'1* € 2™ be the locus of standard liftings.
Then we have a natural isomorphism

mix
Dor" = Do Xspto Dr

of formal schemes over Spf 7.

For n > 1, denote by .Z,, the formal completion of GL,, » along the unit section. Then £y acts
on 2™ by conjugation. We claim that .@5?11" generates 2™ under the action of Zy. For this, it
suffices to show that for every lifting r of r to an object R of €, the maps

B: My — R®N — M,, B: M, — R®N — M,
induced by B from Lemma E.1.3(1) for v = ¢, are both zero. Since the two maps intertwine the
actions 7 and r“v\/@eé_N of T2, it suffices to show that the generalized eigenvalues of Tg’v®eé_N (gbf])

and the generalized eigenvalues of rt{(qﬁg) are disjoint. However, this follows from the condition
that the generalized eigenvalues of 7(¢,,) in Fy contain the pair {g=, ¢ V*2} exactly once.
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The above claim induces a canonical isomorphism
mi ~ mi
.@0’1X XSpt @ (.;% XSpf 6 gN_Q\gN) — g™,

By Proposition E.4.5, 2, is formally smooth over Spf & of pure relative dimensions (N —2)%. Since
Ly Xspt o Ln—2\ZLy is formally smooth over Spf & of pure relative dimension N? — (N —2)? — 4,
it suffices to prove the proposition for N = 2.

Now we assume N = 2. After changing a basis, we may assume

0B, e B = () O

Then we have
2 1)tlgl- Nptp-1 — g 0
() = (-1 .

For every object R of €, the set 2™>(R) is bijective to the set of pairs (B, X) where B € GLy(R)
and X € My(R) satisfying B = Bmodmg, X = 0modmg, that the characteristic polynomial of
X is T2, and the relation

(E.20) B'XB™' = —¢X.

Indeed, the bijection is given by r(¢,) = (B, (=1)*"*1¢*=V ¢) and r(t) = 15 + X. We let Z5"* be
the subscheme of 2™ defined by the condition that r%(¢?) = (=1)*¢'"¥B‘B~! is a diagonal
matrix. Take a lifting r € Z5"*(R) corresponding to the pair (B, X); we must have

_( 0 (=D (1+w) oy _ (VA +a)(1+y)! 0
b= (q(l +9) 0 ) - 79 = ( 0 NP1+ y)(1+ :E)‘1>

for some z,y € mp. Then by (E.20), X = (2 §) for some xy € mp satisfying (z — y)zo = 0. Put
x1 =2 —y. Then we obtain an isomorphism

D5 ~ Spf O [0, 71, Y]]/ (vox1)

such that

O xg = 0 if and only if r is unramified;
O x; = 0 if and only if Py(T) = (T — ¢ V) (T — ¢ V*t?), where By is the characteristic
polynomial of r#(¢,) = r#(¢2).

Finally, not that % acts on 2™ by conjugation, which induces a canonical isomorphism
lex XSpf 0 (.,fl XSpf o gl\gg) i) gmix.

The proposition (for N = 2) follows as &} Xgpre Z1\-Z% is formally smooth over Spf & of pure
relative dimension 2. The entire proposition is now proved. 0

E.7. An almost minimal R=T theorem. In this subsection, we prove a version of the R=T
theorem for a global Galois representation. Assume ¢ > N > 2 and that £ is unramified in F.

We consider a pair (7, x) from Notation E.2.1 with I' = T'py and I' = T'p, in which y = n#e;
for some p € Z/27Z. We take two finite sets X, and 3" of nonarchimedean places of F™ such
that

O Xt 3, and BF are mutually disjoint;

Ir»
O ¥t contains E+ .

min ram’

O every place v € F't is inert in F' and satisfies £ 1 (|[v||* — 1).

Definition E.7.1. We say that 7 is rigid for (X1, o) if the following are satisfied:
(1) For v in X7,

min»

every lifting of 7, is minimally ramified.
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(2) For v in i, the generalized eigenvalues of 7 (¢,,) in F; contain the pair {||v|| =", |Jv||=¥*+2}
exactly once, where w is the unique place of ' above v.

(3) For v in X/, 7 is crystalline with regular Fontaine-Laffaille weights in [0, N —1] (Definition
E.3.4).

(4) For a nonarchimedean place v of F'* not in ¥, U X U X}, the homomorphism 7, is
unramified.

Suppose now that 7 is rigid for (X, 3;"). Consider a global deformation problem (Definition

E.2.6)
S = (/F? nufz N ij_nn U E {‘@ }'UGE7L UE+UE+)

min

where

O forv e Emm, 2, is the local deformation problem classifying all liftings of 7,;
O for v € X, 9, is the local deformation problem 2™ of 7, from Definition E.6.1;
O for v € 3}, 9, is the local deformation problem P of 7, from Definition E.3.6.

Then we have the global universal deformation ring RZY from Proposition E.2.7.

Remark E.7.2. Tt is possible that 7 is rigid for two pairs (3.,,, ) and (31, ). Then RYY
and RYY are different in general, where .’ denotes the corresponding global deformation problem
for (Si. 5

Now we state an R=T theorem. Let V be a standard definite or indefinite hermitian space

(Definition 3.2.1) over F of rank N, such that V, is not split for v € ¥;7. We fix a self-dual

+
ogstust ust Or,-lattice Ain V®p A? Y 5 and an element K € R(V) (Definition 3.1.11)

of the form

K= H K, x H U<A)(OF;")
vext. unt vgriuxt. ust
in which K, is special maximal for v € ;.
Let 3T be a finite set of nonarchimedean places of F* containing 3, U ¥t: so we have the

abstract unitary Hecke algebra T% (Definition 3.1.9). Let ¢: T% — k be a homomorphism such
that

O for every nonarchimedean place v of F'* not in 7 U X that induces one place w of F,
we have ¢|r, , = ¢a (Construction 3.1.8) where o = (a, ..., ay) is the unitary abstract
Hecke parameter at v (Deﬁnition 3.1.3) satisfying that {aq|lv]|V 1, ..., ay|lv]|¥ 7'} are the
generalized eigenvalues of 74 (¢z!) in Fy;

O for every nonarchimedean place v of F' not in XTUX} that splits into two places w; and ws

of I, we have @l , = ¢o (Construction 3.1.8) where o = ((ay1,...,1,n); (21, ..., 2 n))

is the unitary abstract Hecke parameter at v (Definition 3.1.3) satisfying that for i = 1,2,
N-1 N-1 —

{as /vl .o aany/llv]l }P are the generalized eigenvalues of 7 (¢, !) in F,.

We write m for the kernel of ¢.

Theorem E.7.3. Suppose 3t = 0 if N is odd. Under the above setup, we further assume
(D1): ¢ is unramified in F, and £ > 2(N + 1);

(D2): f“|Gal(f/F(Q)) is absolutely irreducible;

(D3): 7 is rigid for (Xf,, X)) (Definition E.7.1);

(D4): ¢ is cohomologically generic (Definition D.1.1) when V is indefinite.

34Recall that we have fixed an isomorphism ¢¢: C Q@g at the beginning of this section. Thus, for every positive
integer ¢ coprime to £, /g is a well-defined element in Z, hence in F,.
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Let T be the image of T% in Endgy(HY '(Sh(V,K)z, €)) (resp. Endg(O[Sh(V,K)])) when V is
indefinite (resp. definite). If Ty, # 0, then we have the following:

(1) There is a canonical isomorphism REY = Ty, of local complete intersection O-algebras.

(2) When 'V is indefinite (resp. definite), Hy ' (Sh(V,K)z, O)w (resp. O[Sh(V,K)|y) is a finite
free Tn-module.

(8) We have = N mod 2.

The rest of this subsection is devoted to the proof of the theorem. We will use the Taylor—
Wiles patching argument following [CHT08] and [Thol2]. Put S = X}, UL U, To prove
the theorem, we may replace E) by a finite unramified extension. Thus, we may assume that k
contains all eigenvalues of matrices in 7%(I'z).

Remark E.7.4. By (D1), we know that F' is not contained in F'*((;). Thus, by [Thol2, Theo-
rem A.9], (D1) and (D2) imply that #(Gal(F'/F*((,))) is adequate in the sense of [Thol2, Defini-
tion 2.3].

Recall that a prime v of F'* is called a Taylor—Wiles prime for the global deformation problem
S it
O v ¢ S; v splits in F; and ||v]| = 1 mod ¢;
O 71, is unramified;
O 7(¢y) is not a scalar and admits an eigenvalue &, € k, called special eigenvalue, such that
7 (¢y) acts semisimply on the generalized eigenspace for @,, where w is the place of F
above v induced by the inclusion F' C F.

A Taylor-Wiles system is a tuple (Q, {@, }veq) where Q is a finite set of Taylor-Wiles primes, and
@, is a special eigenvalue for every v € Q. For such a system, we write r§ = r® @ r° for every
v € Q, where r? (resp. r7) is the generalized eigenspace for @, (resp. for generalized eigenvalues
other than «,). Then we have another global deformation problem (see [Thol2, Definition 4.1])

‘Sﬂ(Q) = (fv UMG%_N7 S U Qa {‘@U}’UGSUQ)

where &, is the same as in . for v € S; and for v € Q, %, is the local deformation problem of 7,
that classifies liftings r, so that 77 is of the form r® @ r2 in which r® is a lifting of 78 on which I,
acts by scalars, and r; is an unramified lifting of 7.

We now discuss the existence of Taylor—-Wiles systems. For each v € S, we have the tangent space
L(2,) C HY(F;,ad7) from Definition E.2.4. Let L(%,)* C HY(F,,ad7(1)) be the annihilator of
L(2,) under the local Tate duality induced by the perfect pairing ad 7 x ad7(1) — k(1) sending
(z,y) to tr(zy). Recall that I'p+ g is the Galois group of the maximal subextension of F'/F* that
is unramified outside S. For every subset T C S, we define HY, (I'p+s,ad7(1)) to be the kernel
of the natural map

H'(Tp+ g,ad (1)) — € HY(E, ad7(1))/L(Z,)".
veS\T
Recall the @-algebras Ry (E.2) and Rg?Q) from Proposition E.2.7. Moreover, RE}(Q) is naturally
an algebra over RSy

Lemma E.7.5. Let the situation be as in Theorem FE.7.3. Let T be a subset of S. For every
integer b > dimy Hiﬂ’T(FFhS,ad 7(1)) and every integer n > 1, there is a Taylor—Wiles system
(Qny {@w}veq,) satisfying

(1) |Qnl =0
(2) ||v]| = 1mod £™;
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(3) RgT(Qn) can be topologically generated over R};’,‘fT by
NN = 1) L (1

2

gy = b— Z [Fj:Qé]

veTNE)

— N[FT: Q]

elements.

Proof. By (E.1), Proposition E.3.9(3), Proposition E.5.11, and Proposition E.6.2, we have for
every v € . that

P o LU T I)
dlmk L(-@v) —dlmk HO(Fj,adf(l)) _ [ v @Z] 2 I v ’ ;
0 if vt

Then the lemma follows from [Thol2, Proposition 4.4]*" in view of Remark E.7.4. O
Now we take a Taylor-Wiles system (Q,, {® }veq,) as in the above lemma. For each v € Q,,
we
O put d, = dimy 77;
O let P4, € GLy be the standard upper-triangular parabolic subgroup corresponding to the
partition (N — d,,d,);
O let k, be the residue field of F)\, and A, the maximal quotient of . of {-power order;
O fix an isomorphism K, ~ GLN(OF;) and denote by K, C K, the parahoric subgroup
corresponding to Py, ;
O let K, 1 be the kernel of the canonical map

Kyo — Py, (k) = GLg, (k) <% kX — A,
We then

O put Aq, = [l,eq, Av; and let ag, be the augmentation ideal of O[Aq,];
¢

O write mq, for the kernel of the composite homomorphism T,E\[+UQ" ST 5k
O or¢=0,1, put
Kz(Qn) = H K, x H Kv,i;
v€Qn veEQR
which are subgroups of K.

In particular, K;(Q,) is a normal subgroup of K¢(Q,,); and we have a canonical isomorphism
(E.21) Ko(Qn)/K1(Qn) = Aq,.

Now we introduce some patching module from automorphic input. For every open compact
subgroup k € {K, Ko(Qx), K1(Qn)}, we put

O[Sh(V, k)] if V is definite;
“ 7 \Hy_1(Sh(V,k)(C), &) if V is indefinite.

Here, Hy_; stands for the singular homology for complex manifolds. By (E.21), Hx, (q,) is canon-
ically a module over O[Aq, .

Lemma E.7.6. Let the situation be as in Theorem E.7.3. The O[Aq,|-module Hy,(q,)mq, 15 @
finite and free. Moreover, the canonical map

HK1(Qn),an/aQn — HKO(Q7L)7an
is an isomorphism.

35Strictly speaking, the set S in [Thol2, Proposition 4.4] consists of only places split in . But the same
argument works in our case as well.
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Proof. Note that by Definition 3.1.11, every open compact subgroup k € {K,Ky(Q,), Ki(Q,)} is
neat; in particular, ¢ 'U(V)(£")t Nk has no torsion elements for every ¢ € U(V)(A%,).

When V is definite, the lemma (even without localization at mq, ) follows by the same argument
for [Thol2, Lemma 6.4].

Suppose now that V is indefinite. For an abelian group A, we let C,(Sh(V,k)(C), A) be the
complex of singular chains for the complex manifold Sh(V, k)(C) with coefficients in A. By Artin’s
comparison theorem between the singular cohomology and the étale cohomology, the dual complex
Hom 4 (C.(Sh(V,k)(C), A), A) calculates Hg, (Sh(V,k)c, A). Now take A = &/\™ for integers
m > 1. By (D4), we know that

H;(Sh(V, k)(C), O /AN )mg,, = Hi(Co(Sh(V,k)(C), O/A"))mg, =0

for every i # N — 1. On the other hand, by [KT17, Lemma 6.9], for every m > 1,
Ce(Sh(V,K;1(Qn))(C),0/ ™) is a perfect complex of free €/N"[Aq,]-modules; and there is a

canonical isomorphism
Ca(Sh(V, K1 (Qn))(C), O/A™) ®giaq,) O1Aq,]/aq, = Co(Sh(V,Ko(Qn))(C), O/A™).

Then the lemma follows easily by taking the homology group and passing to the limit for m —
00. 0

Proof of Theorem E.7.3. When V is indefinite, by (D4) and Artin’s comparison theorem be-
tween the singular cohomology and the étale cohomology, we have a canonical isomorphism
Hyg =~ Homg(HY"Y(Sh(V,K)%, O)m, O), under which Ty, is identified with the image of T
in Endgs(Hg ). Thus, in both cases, Hg n is a finite free &-module.

First, we need to construct a canonical homomorphism RZ"Y — T,. It is well-known that
Tw[1/(] is a reduced finite E)-algebra. As Hk , is a finite free &-module, Ty, is a reduced finite
flat O-algebra. Every point & € Spec Ty[1/¢] corresponds to a relevant representation II, of
GLy(AFp) (Definition 1.1.3) such that

O the associated Galois representation pyy, ,, from Proposition 3.2.4(2) is residually isomor-
phic to 7 ®@;, Fy (hence residually absolutely irreducible by (D2));

O there exists a cuspidal automorphic representation of U(V)(Ap+) satisfying BC(m) ~ II
and 7 = {0}.

In fact, prm,,, comes from a continuous homomorphism
P FF — GLN(TJ;),

which is a lifting of 7%. By a theorem of Carayol [C'ar04, Théoréme 2], the product homomorphism

I[I pe:Tr— GLy(J]To)

z€Spec Tw[1/4]

is conjugate to some continuous homomorphism py,: I'r — GLx(Ty) that is a lifting of 7%. More-
over, by Proposition 3.2.4(2), we know that py, is (1 — V)-polarizable (Definition 2.4.7). Thus, by
Lemma E.1.3, we obtain a continuous homomorphism

Tm: FF+ — gN(Tm)

satisfying r?, = py, which is a lifting of 7. We claim that r, satisfies the global deformation problem
. Indeed, since I1,,, is unramified for nonarchimedean places w of F not above ¥, U X, we
know that 7, , belongs to 25 for v € X} by [CH13, Theorem 3.2.3(b,c)]; and 7y, is unramified
for v ¢ S by Proposition 3.2.4(2). By Lemma C.2.4 and Proposition 3.2.4(2), 7y, belongs to 2,
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univ

for v € X;.%% Therefore, by the universal property of R, we obtain a canonical homomorphism
(E.22) 0: RUY — Ty,

of O-algebras. Moreover, it is clear that our homomorphism r, satisfies [CHT08, Proposi-
tion 3.4.4](2,3) as well, which implies that ¢ is surjective. Thus, it remains to show that ¢ is
injective.

We follow the strategy for [Thol2, Theorem 6.8]. We take an integer n > 1, and a Taylor—Wiles
system (Qy, {@ }veq, ) from Lemma E.7.5. For each v € Q,,, we

O let Art,: I — I'?" be the local Artin map;

O let @, € F, be the uniformizer such that Art,(w,) coincides with the image of ¢,' in
Fab .

Fl
O let pr, be the commuting projection defined in [Thol2, Propositions 5.9 & 5.12];

O for every a € Oy, let Vi € Z[K,1\Ky,0/Ky,1] be the characteristic function of the double
coset ’
In-1 O
K'v,l ( ]\([) ! Oé) Kv,l

For : = 0,1, we put
Minn = ( H prwv) HKi(Qn)van’
vEQnR
and let T, q, be the image of T?UQ” in Endg(M; q,). We also put
M = HK,m-

Then the canonical map M — Hx m, is an isomorphism, hence we obtain canonical surjective
homomorphisms
T, = Toq. = Tm

of O-algebras. Similar to T,,, we obtain a continuous homomorphism
riqn Ure = 9n(Tiqu),

which is a lifting of r, for ¢ = 0, 1. We have the following two claims:

(1) For every v € Qy, there is a continuous character v,: O, — T{, such that

X
b

(b) ri’QM has a (unique) decomposition 77 , @ 1{q, , such that r}q . is a lifting of 7

a) for every a € O the actions of V¢ and v,(a) on M; o coincide;
y v 7QTL

on which I+ acts via the character v, o Art,, ! and 77.Q, 18 an unramified lifting of

o.
(2) The composite map

H’u Qn Plew,
M = Hgmg, — Hko(Qu)mg, ——— Moq,

is an isomorphism. In particular, the canonical homomorphism Ty q, — Tw is an isomor-
phism; and 7¢ g, and ry, are equivalent liftings of 7.

36This is not correct if N is odd, which is the only reason that we suppose th = () if N is odd in the statement
of the theorem.



204 YIFENG LIU, YICHAO TIAN, LIANG XIAO, WEI ZHANG, AND XINWEN ZHU

Indeed, these claims follow easily from [Thol2, Propositions 5.9 & 5.12].
It follows from (1) that r; g, satisfies the global deformation problem .#(Q,,), which induces a
canonical surjective homomorphism

univ

pnt R, = Tran
of 0-algebras. Now we claim that ¢, is naturally a homomorphism of &[Aq,]-algebras. Indeed,

univ univ

take a universal lifting r () for r over R, ). Then for each v € Qy, there is a unique character

umv

vitve Ay = (RYE,)) ™ such that Ty acts on T'2(Guw Via the character

Art; 1

v

vgniv
Lt X+ = Ky = A, —— (Ruan )

Then RY,,) becomes an O[Aq,J-algebra via the character [T,eq, vi™"': Aq, — (RY{,))” More-
over, ©, 1s a homomorphism of &[Aq,]-algebras. By (2) and Lemma E.7.6, we obtain a canonical
commutative diagram

~

univ

y(Qn)/ aqQ, Rggiv

Sﬁn/aQn l l@

TlaQn/aQn = TOvQ'n - Tm

of 0-algebras where all horizontal arrows are isomorphisms.
Now we fix a subset T C S of cardinality ¢. Choose universal liftings

uan FF+ % gN ( Rul’llV) , r-l;l(lv ) FF+ _) gN( unév ) )

for 7 over RZY and R};Bz‘én), respectively, such that r@v = ry‘(‘é ymodagq,. By Proposition

E.2.7(2), we obtain isomorphisms
univ ~ O univ ~ 0
ROV [ Xusijllvern<ijen = RS REG N [ KXo jlloera<ijan = Ryq,)

of O-algebras. In particular, we have a surjective homomorphism REﬁT — R2V, which makes R
an algebra over RIOC
We put

Soo = O[[Xvyi jllvern<ij<n|[[Y1, ... Vol];
and let a,, C S, be the augmentation ideal. Put

R, R1°C ol Z1s- .\ Zg, .]]

where g, 7 is the number appeared in Lemma E.7.5. Applying the usual patching lemma (see the
proof of [BLGG 11, Theorem 3.6.1], or [Thol2, Lemma 6.10]), we have the following:

O There exists a homomorphism S,, — R, of 0-algebras so that we have an isomorphism
Reo /0o Roo ~ RUY of RIS -algebras.
O There exist an Ry-module M., and an isomorphism My, /as Mo >~ M of R‘“rllV modules.
O As an Sy-module, M is finite and free.
In particular, we have
depthy_(Mo) > dim Se = 14 |T|N? +b.

On the other hand, by Proposition E.3.9, Proposition E.5.11(3), and Proposition E.6.2, we know
that R};’ﬂfT is a formal power series ring over ¢ in

N(N —1)

TIN Y (R Qd =

veTNS;
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variables. It follows that R, is a regular local ring of dimension
N(N

—1
2)+gb,T:1+|T|N2+b—N[F+;Q]

1+ (=1)H=N

L+|TIN? + 3 [F Qi 5

veTNE;
As dim Ry > depthy_ (M), we obtain Theorem E.7.3(3). By the Auslander-Buchsbaum the-
orem, M, is a finite free R,-module. Thus, M is a finite free RZ"V-module. In particular, the
surjective homomorphism ¢ (E.22) is injective hence an isomorphism. Theorem E.7.3(1,2) are

proved. 0

E.8. Rigidity of automorphic Galois representations. In this subsection, we study the rigid-
ity property for reduction of automorphic Galois representations. Let us take the initial setup of
Subsection 6.1, hence let II be a relevant representation of GLy(Ap) (Definition 1.1.3) for N > 2,
and £ C C a strong coefficient field of IT (Definition 3.2.5). Then for every prime A of E, we have
a continuous homomorphism pry: I'r — GLy(E)).

Conjecture E.8.1. Let IT and E be as above. Fiz a finite set X of nonarchimedean place of F'*
containing ¥ (Notation 3.1.4). Then for all but finitely many primes X of E, we have

(1) pux is residually absolutely irreducible (so we have the residual homomorphism prx and
may put Ty = prua+ from Remark 6.1.6), with the similitude character ) = ng/FJr e N
(2) prialcaF re,)) 8 absolutely irreducible, where € is the underlying rational prime of A;

(8) Fra is rigid for (34, 0) (Definition E.7.1).

Remark E.8.2. When N = 2, Conjecture E.8.1 is not hard to verify. In fact, if the coefficient field
of II is @Q, then it follows from Proposition E.5.12 and Serre’s theorem on the image of residual
Galois representations of elliptic curves [Ser72].

Concerning Conjecture E.8.1(1), we have the following lemma.

Lemma E.8.3. Let Il and E be as above. Suppose that there exists a nonarchimedean place w of
F such that 11, is supercuspidal. Then there exists a finite set Ay of primes of E depending on
1L, only, such that for every X & Ay, prx is residually absolutely irreducible.

Proof. Let Wg, be the Weil group of F,,. Since II,, is supercuspidal, we have the induced con-
tinuous representation pr,: Wg, — GLy(C) via the local Langlands correspondence, which is
irreducible. Fix an arithmetic Frobenius element ¢, in Wg, . We have a natural quotient map
Wpg, — Z sending ¢,, to 1. For every integer b > 1, let W%w be the inverse image of bZ. Then
there exist an absolutely irreducible representation 7 of Iz, and a character y of W%w, such that

the underlying representation of pyy,, is isomorphic to Indgf v 7®Y, where b is the smallest positive
Fy

integer satisfying T ~ 7. We may choose a finite extension £’ of F inside C, and a finite set
A" of primes of £, such that both 7 and x are defined over Og (p/y. In particular, the image of
pr,, is contained in GLy(Og (any), up to conjugation. We claim that there exists a finite set A of
primes of E’ containing A’, such that the composite map

P, - WFw — GLN(OE’,(A’)) — GLN(OE//)\/)

is absolutely irreducible for A ¢ A]. Now let A; be the set of primes of £ underlying A}. Then
the lemma follows by Proposition 3.2.4(2).
[t remains to show the claim. In fact, let A} be the smallest set of primes of £’ containing A’
such that every X' & A satisfies
O the underlying rational prime does not divide b|Ig, / ker pr,, |;

OTv=r Q0 (ar Op/ /N remains absolutely irreducible;
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b
O b remains the smallest positive integer that satisfies 7:;{10 Ty
Then A is a finite set, meeting the requirement in the claim. The lemma is proved. O

Concerning the entire Conjecture E.8.1, we have the following theorem.

Theorem E.8.4. Let Il and E be as above. Suppose that there exist two nonarchimedean places
we and ws of F' such that 11,,, is supercuspidal and 11,,, is a twist of the Steinberg representation,
respectively, in which wg is not above XF . Then Conjecture E.8.1 holds for 11 and E.

ram-*

The rest of this subsection is devoted to the proof of the theorem. Let v, and v, be the primes
of F™ underlying w, and wy, respectively, both of which are in ;. Without lost of generality, we
may assume that w, and w, are induced by the embedding F' — ch and F' — f;fs, respectively.
Let ps be the underlying rational prime of wg, which is then unramified in F'.

Lemma E.8.5. Under the situation of Theorem FE.S.J, there exists a finite set Ny of primes of E
containing Ny such that for every X\ not in As, the restriction ﬁH7/\‘Ga1(F/F(Ce)) remains absolutely
irreducible, where £ is the underlying rational prime of X.

Proof. By twisting II with a Dirichlet character, we may assume that I, is just the Steinberg
representation.
We first use the integral model of certain Shimura variety to compute the reduction of the

monodromy operator at w,. Choose a finite extension F' C a C C satisfying

O Fis a CM field, with F't .= Fe=1;

O F/F is Galois and soluble;

O F contains an imaginary quadratic field;

O [EF*: Q] is even;

O p, is unramified in F:;

O the extension F' / F* is unramified at all nonarchimedean places;

O every place of '+ above p splits in Fif p underlies X;};

O w, splits completely in F';

O for every prime w of F' not above v, the local base change of II,, to F; has nonzero Iwahori

fixed vectors for every prime w of F above w.

Let w, be the prime of F induced by the embedding F e Fj;s which is above w;, and ¥4 the prime
of F* underlying w,. Let II be the base change of II to F by [AC&9], which is again a relevant
representation of GLy(A). Moreover, we have py \ = pra|ga# p for every prime A of E, and
that py , is absolutely irreducible for every A not in A; from Lemma E.8.3 (with w = w,).

We fix following data

O a central division algebra B over F' of dimension N2 as in [HT01, Section 1.7], whose
invariants at w, and w¢S are 1/N and —1/N, respectively, and that splits at all other places
of F ;

O an element 5 € B* asin [HT01, Lemma 1.7.1] with 7 the default archimedean place, which
gives rise to a reductive group G := G over Q;

O a cuspidal automorphic representation 7 of G(A) (as in [HT01, Theorem VI.2.1]) satisfying

— for every rational prime p not underlying X{}, 7, is unramified;
— BC(n) = (¢,11p), where IIj is the Jacquet-Langlands transfer of IT to (B°?)*, and ¢
is a Dirichlet character that is unramified at p,;
— 7 is defined over E (by possibly replacing E by a finite extension in C);
O a decomposable open compact subgroup U of G(A*) satisfying
— U is neat;
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— 77 # {0}

— U, is hyperspecial maximal for p not underlying i;;

— Uy, is of the form Z; x Uy, X Ug’: in which Uy, is the maximal open compact subgroup

of B .

Then we obtain a Shimura variety Xy over F as in [HTO1, Section III.1], which is projective
and smooth of relative dimension N — 1. Moreover, Xy ® Fw admits a natural projective
integral model X over Op_ , which is strictly semlstable whose strata on the special fiber
are strata of the reduced subscheme of Drinfeld’s formal upper half space of relative dimension
N —1 (see, for example, [Thol4, Theorem 6.2]). For every prime A of E, we have the associated
weight spectral sequence EI; converging to HY +q(X v ®p F,0,), together with a monodromy map
pa: ETS — E'Jr2 *~2. Now since strata of the reduced subscheme of Drinfeld’s formal upper half
space satisfy [ 005, Assumption 2.1] by the proof of [Ito05, Theorem 1.1], we have a canonical
finite bicomplex E{'? of finite free Og-modules with only horizontal differentials together with a
monodromy map p: E}* — E'Jr2 *~2 such that for every prime \ of E, EV$, ®o Oy is canonically
isomorphic to E{’5, as bicomplexes in Mod(O,), under which ;1 ®¢, Oy coincides with p,. Let E5?
be the cohomology of Ef"? (under horizontal differentials). Let Ay be the support of the finite
Opg-module @, ,(E5?)ior, which is a finite set of primes of £. Then for every prime A\ € Ay, the
spectral sequence ng\ degenerates at the second page by the incompatibility of weights, similarly
to the proof of [Thol4, Proposition 6.5]. Moreover, if we put

H; . (Xv,0p) = @ E*

p+q=n
with the induced monodromy map fimet : Hp,o (Xv, Op) — Hp,o (X, Op), then for every A € Ap,
we have a canonical isomorphism H? . (Xy, Op) ®0, Ox ~ HZ (Xy ®z F, Oy) such that there exists
a topological generator ¢ in the Z,-quotient of I» ~ whose action on HZ (Xy @ F,0,) is given

by 1+ fimot.
Put H? . (Xy,C) == H} . (Xv,Og) ®o, C. Note that the Hecke algebra Z[UP\G(A>?)/UP] act-

s on E"? hence on H?  (Xy,C). Let HI . (Xy,C)[n] be the 7°P-isotypic part of HZ . (Xy, C),
and put H(Xy,Op)[r] = Hp (X, C)[r] N HY (X, Og).  For every A & Apet, we put
H? ( Xy, Oy\)[r] = H} . (Xu, Op)[7] ®0, O, which is a subspace of HY (Xy ®pz F,O,) stable

under the action of Gal(F/F), and is nonzero if and only if n = N — 1. Now we characterize
H" . (Xy, 0x)[n] as an O5[Gal(F/F)]-module for A & Ay U Aot For A & Ay U Ay, pri.y is resid-
ually absolutely irreducible, for which we may fix a Gal(F/ I3 )-stable lattice R, which is a free
Ox-module of rank N. Now we let RY be the O)[Gal(F/F)]-module on which Gal(F/F) acts

by pr , twisted by the character res(1)) (_}il(f 1y 88 in [HTO1, Corollary VII.1.10], which is again
residually absolutely irreducible. By [HT01, Corollary VII.1.10], we obtain an isomorphism
(E.23) Hy o (X, O))[7] ®0, Ex = (R} @0, Ex)"

of Ey\[Gal(F/ F )]-modules, for some positive integer m independent of A. Since ﬁws is the Stein-
berg representation and res(1)) 511 F/E) is unramified at ps, by Proposition 3.2.4(2), the restriction
endomorphism 1 + pimet of H  (Xy, Op)[n] is conjugate to (1 + Jy)®™. Thus, there exists a
finite set Ay of primes of E containing A; U Ay and all those A whose underlying rational

prime ramifies in F, such that for every A ¢ A,, the reduction of 1 + e as, an endomor-

phism of Hmot(XU,OE)[ | ®o, Og/A, is again conjugate to (1 4+ Jy)®™. By (E.23), RY is an
OA/ALGal(F/F)] -submodule of H" _ (X;;, Og)[7] ®0, Og/X. Thus, the image of Gal(F/F(¢,)) in

End(RY), hence pﬁ’/\(Gal(F/F(Cg))), contain a unipotent matrix that is conjugate to 1+ Jy. In



208 YIFENG LIU, YICHAO TIAN, LIANG XIAO, WEI ZHANG, AND XINWEN ZHU

particular, py y|gaF)# () 18 absolutely indecomposable. On the other hand, since Gal(F/F(()) is

a normal subgroup of Gal(F/F) of finite index, PrilGal(F/ P (c,)) 1S absolutely semisimple, hence has
to be absolutely irreducible. Thus, pr, )\‘Gal(f /F(c,)) Temains absolutely irreducible for A\ g€ Ay, O

Proof of Theorem E.8.J. Let Ay be the set in Lemma E.8.5. It suffices to study (3) in Theorem
E.8.4. We take a prime A of F not in Ay, whose underlying rational prime ¢ does not underlie X%,
and satisfies £ > 2(N + 1). In particular, we have

(a) ¢ is unramified in F’

(b) I1,, is unramified for every place w of F' above ¢;

(¢) PrualcaF/r,y is absolutely irreducible, which implies that 7 (Gal(F/F*(())) is ade-
quate by Remark E.7.4;

(d) Proposition E.3.9 holds for the local deformation problem 2'* of 711, for every v € &/ ;

(e) Proposition E.5.11 holds for 7y 5, for every v € X7F.

loc

For a collection Zs+ = {2, |v € ¥*} in which Z, is an irreducible component of Spf Ri?¢, ~ for
v € X1, we define a global deformation problem (Definition E.2.6)

S (Ds+) = (fr, n;,/FJreé_N, >tuxf, {Pv}vesust)

where for v € X1, 9, is the prescribed irreducible component (which is a local deformation
problem by Proposition £.5.11(2)) in Zg+; and for v € ¥, 9, is the local deformation problem
P*L of T, from Definition E.3.6. Now by (a—e), and the same proof of [Thol2, Theorem 10.1]
(which assumes that X7 U] consists only of places split in F), we know that the global universal

univ

deformation ring Ry(@2+) is a finite &-module. Moreover, we have y = N mod 2. By (d,e), and
the same proof of [Geell, Lemma 5.1.3] (which assumes that 37 U X consists only of places

split in F), we know that the Krull dimension of RY(Y, ) is at least one. Thus, RYYY, [1/{] is
nonzero. By choosing a Q-point of Spec R}‘;(i‘éw) [1/€], we obtain a relevant representation I1( Zs+)
of GLy(Ap) satisfying
O II(Zs+) is unramified outside X7
O for every place w of F above X1, there is an open compact subgroup U, of GLy(F,)
depending only on II,,, such that TI(Zs+)Y» # {0};

O 2y, )0 and pnx @p, Qp are residually isomorphic.

In fact, the second property is a consequence of Proposition E.5.7. Note that there are only finitely
relevant representations of GLy(Ag) up to isomorphism, satisfying the first two properties. By
the strong multiplicity one property for GLy [P579], we know that for ¢ large enough, II is the
only relevant representation of GLy(Ar) up to isomorphism, satisfying all the three properties.

Now we claim that for two different collections Zs+ and %%, the relevant representations
II(Zs+) and II(Z%) are not isomorphic. Assuming this claim, then for ¢ large enough, we have
only one collection, which is {Z™" | v € X1}, that is, 7y is rigid for (X7},0). The theorem is
proved.

For the claim itself, we take a place v € ¥*. Then the local components of I1(Zs+) above v
give rise to a continuous homomorphism r: I'pe — 4n(Qy), which corresponds to a Q-point x,

in Spec le‘;c’A [1/¢]. Now the dimension of the tangent space of Spec R}‘;‘} [1/4] at x, is equal to

N? 4 dimg, H'(F,,adr) — dimg, H*(F},adr) = N? + dimg, H*(F,},ad r)
= N? + dimg, HY(F", (adr)(1)) < N* + dimg, H(F,, (ad r*)(1)),

where w is the place of F induced by the embedding F' — F;". However, since I1(Zs+ )., is generic,
we have dimg, H°(F,, (adr®)(1)) = 0 by [BLGGT14, Lemma 1.3.2(1)]. Thus, by Proposition
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E.5.11(1), SpecR ¢  [1//] is smooth at z,, which implies that x, can not lie on two irreducible

TII,\ v
components. The claim then follows. O

Remark E.8.6. In fact, using the same proof, one can obtain Theorem E.8.4 for II satisfying a
weaker condition, namely, by asking II to be regular algebraic rather than Definition 1.1.3(3).
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