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Abstract—In the Lattice Agreement (LA) problem, orig-
inally proposed by Attiya et al. [1], a set of processes has to
decide on a chain of a lattice. More precisely, each correct
process proposes an element e of a certain join-semi lattice
L and it has to decide on a value that contains e. Moreover,
any pair p;, p; of correct processes has to decide two values
dec; and dec; that are comparable (e.g., dec; < dec; or
dec; < dec;).

In this paper we present new contributions for the
synchronous case. We investigate the problem in the
usual message passing model for a system of n processes
with distinct unique IDs. We first prove that, when only
authenticated channels are available, the problem cannot
be solved if f/ = n/3 or more processes are Byzantine.
We then propose a novel algorithm that works in a
synchronous system model with signatures (i.e., the au-
thenticated message model), tolerates up to f byzantine
failures (where f < n/3) and that terminates in O(log f)
rounds. We discuss how to remove authenticated messages
at the price of algorithm resiliency (f < n/4). Finally,
we present a transformer that converts any synchronous
LA algorithm to an algorithm for synchronous Generalised
Lattice Agreement.

Index Terms—Lattice Agreement, Byzantine Fault Tol-
erance

I. INTRODUCTION

Fault-tolerance is a key research topic in distributed
computing: reliable algorithms have been deeply inves-
tigated in classic message passing [2] and in newer
model of computations [3], [4], [S]. A special mention
has to be given to algorithms for distributed agreement
[2]. They represent a cornerstone of todays cloud-based
services. In particular, practical and efficient implemen-
tations of distributed consensus, transformed Internet
from a large computers network to a world-scale ser-
vice platform. Despite its fundamental role, distributed
consensus is impossible to solve deterministically in
asynchronous settings, where communication latencies
cannot be bounded. To cope with this limit, practical
systems trade off consistency criteria (allowing weaker
agreement properties) with liveness (guaranteeing ter-
mination only in long-enough grace periods where the
system “behaves” like a synchronous one).

Fig. 1. Hasse diagram of the semilattice induced over the power set of
{1,2, 3,4} using the union operation as join. Given two elements e, e’
of the lattice if e < €/, then there is an “upward” path connecting e
to e’ (e.g., {1} < {1,3,4}, but {2} £ {3}). Any two elements e, e’
of the semilattice have a joine@ e’ =eUe’ ande®e’ > e,€’ (e.g.,
{1} & {2,3} = {1,2,3} ). The red edges indicate a possible chain
(i.e., sequence of increasing values).

For such a reason, agreement properties weaker than
consensus proved to be extremely effective for the imple-
mentation of a broad family of distributed applications,
since they can be used in systems where consensus
cannot be solved, or they can be faster than consensus al-
gorithms circumventing time-complexity lower bounds.
Lattice Agreement. In this paper we investigate an
agreement problem that is weaker than consensus: the
Lattice Agreement (LA) problem. In LA, introduced by
Attiya et al. [1], each process p; has an input value
x; drawn from the join semilattice and must decide an
output value y;, such that (i) y; is the join of x; and
some set of input values and (ii) all output values are
comparable to each other in the lattice, that is they are
all located on a single chain in the lattice (see Figure
[[). LA describes situations in which processes need
to obtain some knowledge on the global execution of
the system, for example a global photography of the
system. In particular Attiya et al. [1] have shown that in
the asynchronous shared memory computational model,
implementing a snapshot object is equivalent to solving
the Lattice Agreement problem. Faleiro et al. [8]] have
shown that in a message passing system a majority of
correct processes and reliable communication channels



TABLE 1
COMPARISON OF ALGORITHMS FOR BYZANTINE LATTICE AGREEMENT WHEN THE LATTICE HAS AN HEIGHT THAT IS GREATER THAN f.

[ Model ] Assumption | Paper [ Resiliency [ Time [ Messages |
o . This paper f < In/4] O(log(f)) O(n2%log(f))
(SYNC) Auth. Links (No Sign.) - oot al, 0] < /3] o/7) Om*V)
Auth. Messages (Signatures) | This paper f<In/3 O(log(f)) O(n?log(f))
(ASYNC) Auth. Links (No Sign.) Di Luna et al. [7] f <[n/3] O(f) O(n?)
Auth. Messages (Signatures) | Di Luna et al. [7] f<In/3 O(f) O(f-n)

are sufficient to solve LA in asynchronous systems,
proposing a Replicated State Machine with commutative
updates built on top of a generalized variant of their
LA algorithm. Generalized Lattice Agreement (GLA) is
a version of LA where processes propose and decide
on a, possibly infinite, sequence of values. The restric-
tion of having only commutative updates is justified
by the possibility of developing faster algorithms. It
is well known [9] that consensus cannot be solved in
synchronous systems in less than O(f) rounds, even
when only crash failures are considered, on the other
hand it has been shown [10]] that, when crash failures are
considered, Lattice Agreement can be solved in O(log f)
rounds]
Byzantine Failures. All these papers consider process
failures, but assume that such failures are non-malicious.
More recently, some works started proposing LA al-
gorithms that tolerate Byzantine failures. The first one
has been by Nowak and Rybicki [11]: they introduced
LA with Byzantine failures and proposed a definition of
Byzantine LA in which decisions of correct processes
are not allowed to contain values proposed by Byzantine
processes. Using such definition, authors have shown that
the number of correct processes needed to solve LA
depends on the structure of the lattice, and they have
proposed a LA algorithm for specific kinds of lattices.
Successively, Di Luna et al. [7] proposed a less
restrictive definition of Byzantine LA, in which correct
processes can decide also values proposed by Byzantine.
Authors have then shown that LA can be solved for
any possible lattice when f < %: they proposed a
solution for Byzantine LA in asynchronous systems that
terminates in O( f) rounds; the same paper also proposed
a Generalized version of the algorithm and built on top of
it a Replicated State Machine that executes commutative
operations. In this paper we adopt the Byzantine LA
definition from [7]], since it allows to circumvent some
restrictions of [11]] and it is usable in many practical
scenario. The same definition has also been recently used
by Zheng and Garg [6], where they show that LA can

!Actually, it can be solved faster than log(f) on specific lattices,
the ones having height less than log f [L0], however in this paper we
are interested only in worst case performance.

be solved in synchronous systems with O(+/f) rounds
also in presence of Byzantine failures.

Contributions. In this paper we present new contri-
butions for the Byzantine LA problem in synchronous
settings. Our first results is for systems with only au-
thenticated channels (i.e., signatures are not available),
in such systems we show that Byzantine LA on arbitrary
lattices cannot be solved, in synchronous systems, with
f = [n/3] or more faulty processes (Section [II). Inter-
estingly, such proof shows that the algorithm of Zheng
and Garg [6] is tight in the number of tolerable failures.
On the positive side we show algorithms that solve LA
and Generalized LA, with and without signatures, having
better running time that the state-of-the-art. Looking at
the model with signatures, we show a novel algorithm
for LA that works in a synchronous system model,
tolerates up to f byzantine failures (where f < [n/3])
and that terminates in O(log f) rounds. The algorithm
improves over the LAg algorithm from Garg at al. [10]
by using a similar construction, but adding tolerance to
Byzantine failures. We make use of a modified Gradecast
algorithm that allows processes to prove that a message
has been seen by all correct processes in the system.
(Sections We conclude our investigation on LA
by briefly discussing how to remove signatures and make
our construction work only with authenticated channels
trading-off part of its resiliency: we are able to tolerate
[ < [n/4] failures (Section [VI). In the last part of
the manuscript, we devote our attention to Generalized
Lattice Agreement (Section [VII). Specifically, we show
a transformer that, using as building block a generic
LA algorithm, creates a Generalized Lattice Agreement
algorithm. To the best of our knowledge this is the
first time GLA is investigated in synchronous systems.
Table[l|compares our results with the literature. For space
reason some details and proofs are omitted and can be
found in the full version [12].

II. SYSTEM MODEL, NOTATION, AND
PRELIMINARIES

We use the usual message passing models with unique
identifiers (IDs). There is a set II of n processes with
unique IDs in {1,...,n} connected by a complete



communication graph. The system is synchronous, and
the execution of the algorithm can be divided in discrete
finite time units called rounds. In each round a process
is able to send messages to its neighbours (send phase),
and receive all messages sent to it at the beginning of
the round (receive phase). Processes in 11 are partitioned
in two sets I' and C. Processes in C' are correct, they
faithfully follow the distributed protocol. Processes in F'
are Byzantine, they arbitrarily deviate from the protocol.
As usual when Byzantine failures are considered, we as-
sume that the communication channels are authenticated
by mean of Message Authentication Codes (MAC). The
authenticated channels are the only assumption used in
Section [l In Section [Vl we assume that there is a
public key infrastructure that allows processes to crypto-
graphically sign messages, that can be lately verified by
other processes. This model has authenticated messages.
Byzantine processes are polynomially bounded and can-
not forge signatures of correct processes. For an easier
presentation we explain our algorithms for the case of
n = 3f + 1, where f = |F|, however they can be easily
adapted for any other n > 3f + 1.

Notation. With € we indicate the empty string. Given
a string G, with |G| we indicate the length of the string
(le] = 0), with G[j] and 0 < j < |G| we indicate
the character of string G in position j. With G[k : ]
(given 0 < k < [ < |G]), we indicate the substring
of G between position k£ and /. As an example given
G = ssms, we have G[0] = s and G[0 : 1] = ss. Given
two strings a and b with a - b we indicate the string
obtained by concatenating b after a.

a) The Byzantine Lattice Agreement Problem:
Each process p; € C starts with an initial input value
pro; € E with E C V (set F is a set of allowed
proposal values). Values in V' form a join semi-lattice
L = (V,®) for some commutative join operation @®:
for each u,v € V we have v < v if and only if
v=u®uv. Given V' = {v1,vs,...,05} €V we have
@V’:vl DvaD...Dvg.

The task that processes in C' want to solve is the one of
Lattice Agreement, and it is formalised by the following
properties:

« Liveness: Each process p; € C eventually outputs a
decision value dec; € V;

« Stability: Each process p; € C outputs a unique
decision value dec; € V;

o Comparability: Given any two pairs p;,p; € C' we
have that either dec; < dec; or dec; < dec;;

« Inclusivity: Given any correct process p; € C we have
that pro; < dec;;

o Non-Triviality: Given any correct process p; € C
we have that dec; < @(X U B), where X is
the set of proposed values of all correct processes
(X : {pro;| with p; € C}), and B C E is |B| < f.
Lattice definitions. A path of length k£ between two

distinct elements v and vof the latttice is a sequence of

k + 1 distinct elements (eq, ea, ..., e) such that ey =

u<e <ex<...<ep_1 < e =wv.Asanexample the

path between {1,2,3} and {1} in the lattice of Figure
has length 2. We say that a v € V is minimal if it
does not exists u € V, with u # v, such that u v =v

(i.e., it does not exists an u < v). As in [6] we define

the height of an element v in a lattice (V,@®) has the

length of the longest path from any minimal element to

v in the lattice (as an example the lattice in Figure [I]

has height 4). A sub-lattice of (V,®) is a subset U of V/

closed with respect to the join operation, the definition

of height for a sub-lattice does not change.
Preliminaries. In the rest of the paper we will assume
that L is a semi-lattice over sets (V is a set of sets) and

@ is the set union operation. This is not restrictive, it is

well known that any join semi-lattice is isomorphic to

a semi-lattice of sets with set union as join operation.

An important lattice is the one on the power set of

the first {1,...,n} natural numbers with the union as

join operation (see Figure [I)), we will use as shorthand
for such lattice the notation L,, (note that n is also the
number of processes). We will show that an algorithm
solving lattice agreement exclusively on such a lattice

(the GAC of Section can be used as building block

to solve lattice agreement on an arbitrary lattice (Section

E). When L, is considered, the height of an element e is

equal to its cardinality (i.e, |e| see Figure E]), given a sub

lattice of L,, its height is upper bounded by the difference
between the minimum and maximum cardinality of its
elements.

III. AUTHENTICATED CHANNELS AND NO
SIGNATURE - NECESSITY OF 3f + 1 PROCESSES IN
SYNCHRONOUS SYSTEMS

In the following we show that 3f + 1 processes are
necessary when there are no signatures.

Lemma 1. It does not exist any algorithm solving Byzan-
tine LA on arbitrary lattices in a synchronous system
with 3 processes when one is faulty. The impossibility
holds even when relaxing the Non-Triviality allowing
|B| < k for any fixed k.

Proof. We first discuss the case of k& = 1. Let A be
an algorithm solving LA with 3 processes when one
is faulty. Since .4 works on arbitrary lattices it should



also work on the lattices induced by the union operation
on the power set of the first 6 natural numbers with
E = {{1},{2},{3},{4},{5}, {6} }. Now let us consider
the hexagonal system of Figure Such a system is
constituted by 6 processes pi, P2, P3, P4, P5, D¢ With an
edge between each p;, p; such that © = j &= 1 and one
edge between p; and pg. Each of the six processes has as
input an unique value in [1, 6], just for simplicity process
p; has input {i}. Note that even if A is an algorithm
for three processes, it is possible to execute A on the
hexagon, but its behaviour does not necessarily follows
the LA specification.

In the figure we have 6 triangles, each triangle is
related to a corresponding edge in the hexagon. The rela-
tionship is such that the view of two neighbour processes
in the hexagon is equal to the view of two processes in a
triangle where the third process is a Byzantine simulating
the behaviour of the other processes in the hexagon. As
example: the view of processes pi,ps in the hexagon
is the same that pi,p; would have in triangle tg,cen,
analogously the view of pg,p; in the hexagon is the
same view of pg, p1 in tp4.. Note that A once executed
on any of the triangle in the figure has to follow the LA
specification.

A run of A on the hexagon in principle has an
undefined behaviour. However we observe that a run of
A on the hexagon eventually terminates on each process,
this is because each process has a local view that is
consistent with a system of 3 processes one of which is a
Byzantine. Recall, that the local view of each process p;
in the hexagon is exactly the same view that the process
has in the two triangles on the right, and A being a
correct algorithm when 3 processes are considered the
algorithm will correctly terminate in each triangle in the
right.

Moreover, each process will output a decision value
that must be the same that the process will output in the
corresponding triangles.

Let decy, deco, decs, decy, decs, decg be the decisions
of processes dictated by A (naturally we have dec;
decision of p;). The triangles on the right impose a
certain number of comparability relationships among
these decisions. Recall, that each decision is a subset,
not necessarily proper, of [1,6], and that the compara-
bility in this setting is the relationship of inclusion. An
example is triangle ¢ 4,.ccy, that imposes the comparability
between dec; and decs, that is either dec; C decy or
deco C decy. In the following we use dec; <+ dec;
to indicate that dec; must be comparable with dec;.
Before continuing with the proof we give the following

technical observation: consider a collection of m sets
S1,59,...,S,, such that for each S; we have i € S;. If
it holds that S; <+ S; 1 for all j € [1,m — 1] then there
exists an |Sg| > m.

Therefore, let us take w.l.o.g. dec;, and let us walk
in clockwise direction for 3 steps on the hexagon. On
this walk we have: dec; < deca <> decs < decy,
by the inclusivity property we have for each dec; that
i € dec;. We can apply the aforementioned observation
and state that one of the dec; has cardinality at least
4 violating the non-triviality property of 4 on some
triangle (recall that k being equal to 1 we have |B| < 1).
The generalised proof for an arbitrary £ follows the same
reasoning using: a lattice on the power set of the first
3(k + 1) natural numbers, E = {{1},...,{3(k +1)}}
and a 3(k+1)—gon instead of an hexagon. We then walk
on the 3(k+1)—gon for k+2 steps instead of 3. We will
have a chain dec; <> decy <> ... & decy4s where by
inclusivity of A on the corresponding triangle we have
i € dec;, and where our observation shows that one of
the decisions contains at least k + 3 distinct elements of
E violating the non-triviality on some triangle. O

From the above lemma, by using a classic simulation
argument we have:

Theorem 1. It does not exist any algorithm solving
Byzantine LA on arbitrary lattices in a synchronous
system with 3f processes and f faulty if |B| < f. The
same holds if n < 3f

The proof of Theorem (1| does not work in a system
with authenticated messages (i.e., signatures), it is there-
fore unkown whether 3f + 1 processes are necessary
also in this model. Interestingly, in [[7] it is shown that,
when the system is asynchronous, 3f + 1 processes
are necessary also when authenticated messages are
available.

IV. ALGORITHM FOR L,,: GRADE AND CLASSIFY
(GAC)

In this section we show an algorithm that works on
L,,. The algorithm terminates in O(log(n)) rounds. We
will then discuss in Section [V|how to use this algorithm
so solve LA on arbitrary join semi-lattices, and how to
adapt it to work in O(log(f)) rounds.

Our algorithm is based on the algorithmic framework
of Zheng et al. [10] adapted to tolerate Byzantine
failures. As in the original, the algorithm works by
continuously partitioning processes in masters and slaves
sets. Partitioning is recursively operated in successive
epochs. Processes that have been assigned to the same
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Fig. 2. Starting configuration of the Hexagon. For each edge there
is a corresponding triangle that is a legal starting configuration of A
with one Byzantine. As an example, take p1, p2 in the hexagon. They
have the exactly same view of p1,p2 in tgreen Where the other node
is bgreen a Byzantine that simulates the behaviour of p3, p4, ps, Pe
in the hexagon.
partition in each epoch are a “group”. We indicate a
generic group G at epoch ep with the string s - o, where
o is in {s,m}?~!. As an example, the string ssm
indicates the set of process that at the end of epochs 0
and 1 entered the group of slaves (string ss) and then, at
the end of epoch 2, entered in the masters group (string
ssm). When we write p € G, we indicate that process
p belongs to the group of processes identified by string
G.

The algorithm then enforces some properties on the
partitions generated at an epoch ep on a Group G:

« each master process in G -m adjusts its proposal to be
a superset of each possible decision of a slave process
in G- s.

« the height of a sub-lattice in which processes in G -m
(or G - s) are allowed to decide halves at each epoch.

Thanks to the above properties each group becomes
independent and has to solve the lattice agreement on
a lattice that has half of the height of the original. A
key concept for our algorithm is the one of “admissible
value”, a value is admissible, for a certain epoch, if
it is ensured that it will not conflict with decisions of
processes that have been elected as masters in a previous
epoch. This is done by showing a cryptographical proof
that such a value can be accepted by a slave since it is in
the proposal value of each master the slave could conflict
with. After O(log(n)) rounds the algorithm terminates
(each group operates on a lattice constituted by a single
point).

A. The Provable Gradecast Primitive

The algorithm makes use of the gradecast primitive
introduced by Ben-Or et al. in [13]]. Such primitive is
similar to a broadcast, we have a sender process p; that
sends a message m, each other process p;, after 3 rounds,
outputs a tuple (p;,m;,c;) where ¢; € {0,1,2} is a
score of the correctness of p;. The gradecast ensures the
following properties:

o for any two correct processes p;,p, if ¢; > 0 and
c¢ > 0 than m; = my.

« for any two correct processes p;, p, we have |c; —c| <
1

« if the gradecast sender is correct, than for any correct
process p; we have ¢; = 2.

« for any correct process p; if (p;, m;,0) then m; = L.

Intuitively, if we let processes communicate by mean
of the gradecast primitive we force Byzantines to send
at most two different messages to the set C' of correct
processes, and one of these messages has to be L. We
modify the original gradecast to make it “provable”. In
our version of the gradecast each correct process outputs
a tuple composed by 4 objects (p;, m;, i, Sim,;) Where
Sim; is a special object that can either be L or a seen-
all proof. In case S,-mj is different from L, then it is a
cryptographic proof that can be shown to other processes
and it implies that, any correct process p € C' has seen a
rank, for the gradecast of message m; from process p;,
that is at least 1. Moreover, we have that if ¢; = 2 then
Sim; # L. Practically, the modification of the original
gradecast are contained, and are limited to the second
and third round of the algorithm. The original gradecast,
with source ps works as follows: in the first round pg
broadcasts a message m to all processes; in the second
round each correct process relays the message received
by ps (it ignores messages from other processes); at the
end of the second round a correct process selects the
most frequent message received, and if such message
was received by at least a quorum of n — f processes
then it relays the message at the beginning of the third
round; at the end of the third round each correct selects
the most frequent message received and it ranks it 2 and
delivers it if the message was received by at least n — f
processes; if it was received by at least f + 1 it delivers
it and ranks it 1, otherwise it delivers 1 with rank 0.

In our version, see Algorithm [T} the relaying process
signs the relay sent at the beginning of round 3 (see line
and a process that sees a message with rank 2 collects
the n — f (i.e., 2f + 1 if n = 3f + 1) signed messages
(see line 22). These signed messages constitute a proof
that the message has been seen by all: delivered by each



correct with rank at least 1. Note that the algorithm is
for a single instance and a single determined sender,
however one can trivially run in parallel an instance for
each possible sender in the system.

We do not prove the properties discussed above for
our version of gradecast, they immediately derives from
the correctness of the original algorithm [[13]].

Algorithm 1 Provable GradeCast (PGC) - Algorithm
for sender process ps and receiver process p;

: SND phase of round 1
. if p; = ps then
BROADCAST(m)

> Executed only by sender ps

1

2

3

4: > Code executed by any correct process p; € 11

5: RCV phase of round 1

6: rcv = receive_messages()

7: m=select one message from ps in rcv

8: SND phase of round 2

9: BROADCAST(m)

10: RCV phase of round 2

11: rcv = receive_messages()

12: m = select the message in rcv received from the largest set of
distinct sources.

13: SND phase of round 3

14: if m has been received from at least n — f sources then

15: BROADCAST(m, sign(m)) > p; relays the most frequent
message signed by himself

16: RCV phase of round 3

17: rcv = receive_messages()

18: remove from rcv all messages that are not correctly signed

19: m; = select the message in rcv received from the largest set of
distinct sources..

20: if m; has been received by at least n — f sources then

21: cp =2

22: Sp,,m; = select n — f correctly signed messages in rcv for
message m;

23: else if m; has been received by at least f + 1 sources then

24: ¢ =1,8,m; =1

25: else

26: m; = J_,Ci = 07Spsvmi =1

27: return < my;,c;, Sp, m; >

Observation 1. Consider an instance of gradecast with
source ps. If a process p;, whether Byzantine or correct,
can produce a seen-all proof for a message m, then each
process p € C delivered message m with rank at least
1 at the end of the gradecast instance.

B. Detailed Algorithm Description

Processes communicate by provable gradecasts. The
three rounds necessary to execute a gradecast instance
form a single epoch. We assume that in each epoch there
are n concurrent instances of gradecast running, one for
each possible sender. The pseudo-code is in Algorithm
2

1) Epoch ep = 0: Epoch 0 has a special structure.
Correct processes belong to a single group G = e. In this

Algorithm 2 GAC - Algorithm for process p;

1: tg=0,ty =n,tm = L%‘J,G =¢,Proofs ={},pro, =10

2: function LA-PROPOSE(pro;)

3: pro; = pro;
4 GRADECAST(M = (pro;, G, 1))
5: P; =rcV()

6: G=G-s
7
8
9

> Epoch O - start

updateproofs(pros, P;,0)
for ep € [1,...,log(n)) + 1] do
: GRADECAST(M = (pro;, G, Proofs))
10: P; =RrCV()

> Epoch 0 - end

11: Vi =FILTER(P;)

12: if CLASSIFY(V;) = s then

13: G=G-s

14: td:tdvtu:tM7tm:td+Ltu;th
15: updateproofs(pro;, P, ep)

16: else

17: G=G-m

18: pro; =V;

19: tg =tm,tu = tu,tm = tg + L@J

20: DECIDE (€D pro;)
sets

> The €D is needed since V; is a set of

21: function CLASSIFY(V)
22: if |V| < tp then

23: return s
24 else
25: return m

26: function FILTER(P)

27: V = {Yw € M|M € P A M rank is greater than 0 A
ADMISSIBLE(v, M) A M source is in G A v in E}

28: return V'

29: function ADMISSIBLE(v, M)

30: if V¢t € [0,..,|G| — 1] such that GO : t] terminates with s,
there exists an admissibility proof for v in M then

31: return True

32: else

33: return False

34: function UPDATEPROOFS(pro;, P;, ep)
35: for all v € pro; do

36: proofv = [L]ePT1

37: if ep > O then

38: for all ¢ € [0,...,ep — 1] do

39: if G[t] = s then

40: Let p be a valid proof from P; for G[0 : t] (it
must exists since v is admissible).

41: proofult] = p

42: Construct a valid proof p for v and group G using messages
in P;.

43: proofvlep] = p

44: Proofs = ProofsU {proofv}

epoch all values in £ C {{1},...,{n}} are admissible
(i.e., they do not have to carry an admissibility proof),
and no classification step is executed. That is, at the end
of the epoch each process goes to group G = s and no
correct p; updates its value pro;. This phase is performed
to force Byzantine processes to commit to a certain set
of values that cannot be changed later; values that are
not associated with a seen-all proof, showing that they
have been gradecasted in epoch 0, will be ignored in the



next epochs.

2) Epoch ep > 1: Epochs 1 and onward share the
same structure. At the beginning of an epoch, all correct
processes belonging to a same group share the values
of three thresholds. At the beginning of epoch ep =
1, the group G = s encloses all the processes and the
thresholds are ¢4 = 0, t,, = § and &, = n.

a) Value gradecast.: An epoch starts by making
each correct process p; in a group G gradecast a message
M containing, its proposal value pro;, the group to
which p; belongs, and an admissibility proof for each
element in pro; (the structure and the precise purpose
of this proof is defined later).

Each other correct process p; in a group G re-
ceives, by mean of the gradecast, a set of tuples: P; :
{(po, Mo, co, SP(JJVIO)v (p1, M, ca, SP1,M1)7 e

We define a special set of values V; that is a subset of
values in messages contained in P;. Set V; contains all
“admissible values” in P; and such that: (1) the rank of
the message carrying the value is at least 1 and (2) the
sender of the message is in G.

Value v is admissible for process p; in epoch ep if the
message that carries v contains also an “admissibility
proof’ proving that v has been seen by all correct
processes in SLV(G[0:1],G[0:2],...,G[0: ep — 1)),
where SLV (Set) is a filter function that removes from
the set of string Set all the strings that end with
letter m. As an example considering G = ssmsm we
have SLV (s, ss, ssm, ssms, ssmsm) = {s, ss, ssms}.
Essentially, there must be a proof showing that v has
been seen with rank 1 by all processes in the epochs in
which processes in G have been classified as slave. The
actual structure of this proof is described later (Section
[V-B3).

Process p; becomes a group slave if |V;| < t,,, it
becomes a group master if ¢,, < |V;|. If p; becomes a
slave, it enters the group G - s. Otherwise, it becomes a
master, and it enters G - m.

b) Slaves actions: If a process p; is a slave, it
updates its set of thresholds as t; = tq,ty = tim,tm =
tq+ L%j Finally, a slave does not update its proposed
value pro;, in the next epoch it will have again the
exactly same value it had in the current epoch. Regarding
the admissibility proof, a correct slave has the duty to
collect an admissibility proof for its value proposed pro;
this is done by collecting the seen-all proof generated by
gradecasting its pro; at the beginning of the epoch.

¢) Masters actions: If process p; is a master, it
updates its set of thresholds as tq = t,,,ty

ta + |5 ]. Moreover, it updates its value pro; = V.

=ty,tm =

Epoch: 0

Epoch: 1

Epoch: 2

Epoch: 3

Fig. 3. Graphical representation of the purpose of an admissibility
proof.

Regarding the admissibility proof, a correct master has
no duty in creating an admissibility proof for its new
pro;, but it has to collect proofs to show that any value
inserted in pro; was admissible in G[0 : ep — 1].

3) Admissibility proof: A message m containing a
value v carries an admissibility proof for v and group
G if message m contains for each, also non-proper,
prefix G[0 : j] of G terminating with character s (for
j in {0,1,...,|G| — 1}), a seen-all proof for m with
a sender p in G[0 : j — 1]. From Oservation [1} it
is immediate to see that an admissibility proof for G
implies that all correct processes in SLV (G[0 : 1], G[0 :
2],...,G[0: |G| — 1]) received v in the value gradecast
phase and ranked the source of the gradecast at least
1. See Figure [3| for a graphical representation of the
usefulness of such a proof. Assume there exists an
admissibility proof for value v and group G' = ssms,
then there is a seen-all proof for the epochs 0,1,3 and
groups in G : {s,ss, ssms}(marked as green in the
figure). This implies that, in each of these epochs, value
v has been seen by each correct process with rank at least
1. In particular, a seen-all proof for value v and group
ss implies that v has been gradecasted by a process in
group s, and it has been received by all correct with
rank at least 1. This implies that v has been inserted in
the proposal of all correct masters in group sm (in the
figure we represent with an orange border the processes
that have v in their proposal). This means that a master
in ssm can update its proposal inserting v, and it knows
that it will still be comparable with the decision of
any process in a group with prefix sm. Iterating the
reasoning, a chain of seen-all proofs, the first for group
ss and the second for group ssms, implies that v is in the
proposal of all correct processes in a group with prefix
sm or ssmm, and thus a future master in ssmmsm can
safely include v in its proposal. The necessity of a seen-
all proof for epoch 0, and thus for group s is needed to
force Byzantine processes to commit to at most f values.
This is due to the fact that f Byzantine processes are
able to create admissibility proofs for at most f distinct



values in epoch 0.

4) Termination: A process p; terminates the above al-
gorithm when the epoch is log(n) + 1. Upon termination
it decides its value pro;.

C. Correctness of GAC

Definition 1. Let A(G) be the set of values admissible
for correct processes in group G during the gradecast
of epoch |G|

Given a group G the lemma below shows that the set
of admissible values of any other group G’ = G - o will
be a subset, not necessarily proper, of A(G).

Lemma 2. Lert us consider the group G it holds A(G") C
A(QG) for any G' =G - y.

Proof. The proof is by induction on y:

o Base case. G’ = GG - e: It is immediate by observing
that G’ = G. Thus A(G) = A(G").

« Inductive case. We assume the above is true up to
G’ = o, in the inductive step we have to show that
it holds for the two possible extensions of o. Case
(1): G’ = 0 - m, in such a case the set of admissible
values does not change. Thus A(c) = A(G’). Case
(2): G’ = o - s, suppose that a value v is in A(G”) but
not in A(o). In order to be admissible for G’ there
must exist a proof for each prefix of G’ ending with
an s, this is by construction also an admissibility proof
for 0. Therefore A(G") C A(o). 0

Definition 2. Given an epoch ep we define as We,, the
set of values that have been gradecasted by a process
in epoch ep and that have been seen by all correct
processes with gradecast rank at least 1. With We,(G)
we indicate the subset of W, that was sent by processes
claiming to belong to group G.

Lemma 3. Consider a correct master p; in the group
G = o - m. If p; decides, its decision, let it be dec;, is
comparable with the one of any correct slave in G' =
o-S.

Proof. To prove the above it is sufficient to show that
each value v in A(G’) is included in dec;. In order for a
value to be in A(G’) it must exist an admissibility proof
for group G’, the admissibility proof implies two things:
(1) that v is in W, (o) (see Observation ; (2) that v
is in A(o). From the above, and the code of a correct
master p;, v will be in the set V; of Line [l 1|at epoch |o]|.
Since a master never removes a value from its pro; its
decision dec; must include v. This complete the proof
since each correct slave p in G’ never put in its proposal

a value that is not in A(G’): by Lemma [2] the set of
values that a slave will consider in any possible future
execution of Line [11]is included in A(G"). O

Lemma 4. Let p be a correct process that decides dec;.
Its decision respects Inclusivity and Non-Triviality.

Lemma 5. Let p be a correct process that at some
epoch ep < log(n) + 1 updates its proposal pro; with a
new value w. For any possible G such that p € G and
log(n) + 1 > |G| > ep we have w € A(G).

Lemma 6. For any correct process p; € G with G # ¢
we have |A(G)| — |pro;| < n/2I1=1. Moreover, given
process p; € G we have |A(G)| < t, and pro; > tg,
where t,, and tq are the thresholds of group G.

Proof. We will show that for each p; € G it holds that
|A(G)| < ty, that |pro;| > t4, and, that t, — tg <
n/2|G|_1. Recall that ¢,,t; and t,, depend on G. The
proof is by induction on G.

e Base case: G = s: it derives immediately from the
structure of the lattice and the fact that {; = 0 and
t, = n for all processes in G.

o Inductive case: By inductive hypothesis the claim
holds for 0. We have G = o0 -m or G = o - s. Let
tu,tm,tq be the thresholds of group o, by inductive
hypothesis we have |A(c)| < ¢, that |pro;| > tq and
that ¢, — tg < n/2|G"1.

— Case G = o - m. First notice that for master pro-
cesses the set of admissible values does not change,
that is A(oc) = A(G) neither the threshold ¢,,. In
such a case we will show that the lattice “shrinks
from below” in the sense that by updating the lower
bound on pro; our claim holds. Since p; is in G we
have that it updates pro; and the new pro; contains a
number of elements that are at least {4+ | L5 [+1,
thus the new t}, = tq + [ 5% | + 1. By immediate
algebraic manipulations we have ¢, — ¢/, < futd
that proves our claim.

— Case G = ¢-s. In such a case we will show that the
lattice “shrinks from above”. Consider the generic
p; € G this implies that at the end of epoch |o| the
set V; contained at most ¢,,, elements. It is immedi-
ate that since p; is correct each value in A(c) that
is not in V; cannot be admissible in the extension
G. Therefore we have |A(G)| < t,,, now it remains
to show that |pro;| > ¢4 but this is immediate from
inductive hypothesis. Thus we have ¢/, = ¢, and
t!, = tq, that implies ¢}, — t/; <t,, —tq < %-D

Observation 2. Any correct process decides at epoch
log(n) + 1.



Lemma 7. Given any pair p;, p; of processes in C' their
decision dec; and dec; are comparable.

Proof. Let G; be the group where p; belongs at the end
of epoch r = log(n) + 1, and let G; the analogous for
p;. If G; and G; share a common prefix o such that
o -m is a prefix of G; and o - s is a prefix of G;, then
Lemma [3] shows the comparability.

The only case when the above (or the symmetric of the
above) does not hold is if G = G; = G);. In this case, we
will show that dec; = dec;. Suppose the contrary, then
we have that there exists at least a value v € dec; and
such that v & dec;. By Lemma [5| we have v € A(G),
and by Lemma 2] v is in each prefixes of G. Suppose
p; inserted v in its proposal in an epoch ep such that
it has been master again in epoch ep’ > ep, however
this implies that also p; is master in ep’, and p; being
correct in epoch ep’ it gradecasts v that will be included
in the proposal of p;. The above implies that v has been
received and inserted by p; in its proposal exactly in the
last epoch in which p; became master.

Let ep;qs: be such an epoch. Note that if ¢, —t; < 2
then v is also in the proposal of p; (both processes enter
in the master group in epj,s¢): in case t, —tg = 2 to
become master each process has to collect enough values
to trespass the threshold ¢,,, recall that ¢,, = t;+ 1 and
thus it has to collect ¢,, values, but those and are all the
admissible values (by Lemma @ In the other case, when
t, —tq = 1, a process has also to collect all admissible
values (¢, = tq and t,, = t,, + 1) (by Lemma [6).

Therefore, t,, —t4 > 2 in ep;qst, however by the struc-
ture of the algorithm and the number of epochs being
log(n) + 1 we eventually have an epoch ep’ > epjus
such that t,, —t4 = 1 and t,, = t4, when this happens
process p; will become master upon receipt of v from
p; (by Lemma E] v is admissible for p;). This contradicts
the fact that G; = G, since p; is never again a master
after epoch epjqst- O

From previous lemmas we have:

Theorem 2. Given the lattice L constituted by the power
set of the first n natural numbers with union as join
operation, GAC is a correct LA algorithm on L, that
terminates in O(log(n)) rounds and tolerates up to
n/3 — 1 Byzantine processes.

V. ADAPTING GAC TO WORK ON ARBITRARY
SEMI-LATTICES IN log(f) ROUNDS

We first explain how to adapt the GAC algorithm to
work in log(f) on L, when each correct proposes a
different unique value in {{1},{2},...,{n}}. We call

such an algorithm GAC;,, we then discuss how to
adapt GACy,s; to work on a generic join semi-lattice
dropping the assumption of different proposal values.
The main idea is to modify epoch 0 to satisfy two needs:
(1) to force Byzantines to commit to a certain value; (2)
to make all processes collect at least n — f different
proposal values. This allows the thresholds to be set to
tao=n—f,ty =n,t, =|n— %j in all processes at the
end of epoch 0. The modified epoch 0 is Algorithm
The code follows the old one with the notable exceptions
that: a correct process updates its proposal by including
all values, in E, that have been seen with rank at least

2, and it updates its thresholds accordingly.

Algorithm 3 GACy,,;: Collect and Commit Epoch O -
Algorithm for process p;
I: G =e¢,pro;, Proofs = {}

2: function LA-PROPOSE(pro;)
pro; = pro;
GRADECAST(M = (pro;, G, 1))
P; =rcv()
Vi ={Yv € M|M € P; A M rank is equal 2 A\v € E'}
G=G-s
pro; =V;
updateproofs(pro;, P;,0)
ty—t

td:nffvtu =n,tm =tq + LTdJ

. > Remain as Algorithm 2] but for line [§]

> Epoch 0 - start

> Epoch 0O - end

—_ =
=N Al

The remaining of the algorithm is the same as
Algorithm [2] but for line [§] where we have ep €
1...,log(f)+1].

a) Correctness discussion: The same lemmas and
observations of Section hold with the following
exceptions:

Lemma 8. For any correct process p; € G with G # €
we have |A(G)| — |pro;| < f/2I¢171. Moreover, given
process p; € G we have |A(G)| < t, and pro; > tg,
where t,, and tq are the thresholds of group G.

Theorem 3. Given the lattice L constituted by the power
set of the first n natural numbers with union as join
operation and where each correct process proposes a
distinct element in {{1},...,{n}}, GACqs is a correct
LA that terminates in O(log(f)) rounds and tolerates up
to n/3 — 1 Byzantine processes.

A. Arbitrary Semi-lattices L a

We adapt GACy,; to work on an arbitrary join semi-
lattice Ly = (V4,®), an arbitrary set E4 C V4 of
allowed proposal values, and an arbitrary mapping of
proposal values and correct processes (recall that in
previous section we were assuming a different proposal
value for each correct). The adaptation works by running



GACjq,: on an intermediate semi-lattice L*. Lattice L*
is the one induced by the union operation over the power
set of V* = II x E4. The set V* is constituted by
all possible pairs process ID and initial proposed value
pro; (each pro; is in E4). Each correct process p; starts
GAC 44 with input (p;, pro;).

Note that epoch 0, with is commitment functionality,
forces the algorithm to effectively decides on a lattice L*
that is the power set of a subset X of V* of cardinality
at most n and at least n — f. Such a lattice is isomorphic
to the lattice on which the correctness of GACy,; has
been shown in Section Once GAC,; terminates each
process p; € C' has a decision dec;. This decision dec;
is a set {(p;,val;),. .., (pz,val,)}, from such a set the
process p; obtains a decision dec} on L4 where dec; is
dec, = @ D; given D; : {y|V(z,y) € dec; Ny € E4}.
This strategy enforces that the decisions dec] and dec); of
any two correct processes p;,p; are comparable points
on the semi-lattice L 4. It is also immediate that non-
triviality and inclusivity hold. From the above we have:

Theorem 4. Given f Byzantine processes and n pro-
cesses in total, if n > 3f + 1, there exists a Byzantine
lattice agreement algorithm terminating in O(log f)
rounds in the authenticated message model.

1) Message Complexity: The provable gradecast gen-
erates at most O(n?) messages at each round. Each
epoch is composed by 3 rounds and in each epoch all
correct processes do a gradecast, thus we have a total
of O(n®log f) messages. However, as pointed out in
[6], it is possible to use O(n?) messages in total to run
n parallel instances of gradecast (each message will be
structured with n locations one for each possible grade-
caster). Therefore, our algorithm can be implemented
using O(n?log f) messages.

VI. TRADE-OFF BETWEEN SIGNATURES AND
NUMBER OF PROCESSES

Signatures are used to implement the seen-all proof of
our provable gradecast primitive (explained in Section
[[V-A). By assuming n > 4f + 1 processes we may
implement an interactive version of the seen-all proof
that does not use signatures. We explain the interactive
provable gradecast algorithm when n 4f + 1, the
extension for n > 4f+1 is immediate. The modifications
with respect to Section are as follows:

e The threshold of line remains f + 1, the one of
line [20| becomes 3f + 1, the threshold of line [14] is
3f + 1. Therefore, a message will have rank 1 if seen
with multiplicity at least f 4+ 1, a message has rank 2
if seen with multiplicity at least 3f + 1.
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« The seen-all proof S, ,,, is simply a set of IDs. These
IDs are the ones of processes from which p; receives
m; in the receive phase of round 3.

The seen-all proof Sp, ., is checked in an interactive
way by querying each process contained in the set
Sp.,m;- The proof passes if at least 2f 4+ 1 of such
processes confirm to have relayed m; in the relevant
gradecast instance. It is obvious that by increasing the
two thresholds we do not affect the original properties
of the gradecast (discussed in Section [IV-A)).

Using the interactive provable gradecast and the
straightforward interactive variant of the admissibility
proof we have:

Theorem 5. Given f Byzantine processes and n pro-
cesses in total, if n > 4f + 1, then there exists a
byzantine lattice agreement algorithm terminating in
O(log f) rounds in the authenticated channel model.

We argue that the interactive provable gradecast gen-
erates at most O(n?) messages at each round. The
additional cost introduced by the interactive proof is at
most O(n) per round. Thus the total asymptotic cost
remains the same: O(n?log f) messages.

VII. AN UNIVERSAL TRANSFORMER FROM LA TO
GENERALISED LA

In this section we show a transformer algorithm that
builds upon a LA algorithm to create a Byzantine
tolerant Generalised LA algorithm. We consider the
definition of [7] adapted for a synchronous system. In
the Synchronous Generalised LA, each correct process p;
receives input values from an infinite sequence Pro; =
(prog, proy, pros, ...y where each proy, is a value inside
a set of admissible values E (note that £ is not neces-
sarily finite). Without loss of generality we imagine that
at each round r, p; receives a value pro, € Pro; (note
that this is not restrictive since we could modify the
lattice to admit a neutral element, such as (). A correct
process p; must output an infinite number of decision
values Dec; = (decy, decy, deca, . ..). The sequence of
decisions has to satisfy the following properties:

o Liveness: each correct process p; € C per-
forms an infinite sequence of decisions Dec;
(decy, decy, deca, . . .);

o Local Stability: For each p, € C its sequence of
decisions is non decreasing (i.e., dec, C decp41, for
any decy, € Dec;);

o Comparability: Any two decisions of correct pro-
cesses are comparable, even when they happen on
different processes;



« Inclusivity: Given any correct process p; € C, if Pro;
contains a value prog, then proy, is eventually included
in decy, € Dec;;

Non-Triviality: Given any correct process p; € C' if
p; outputs some decision decy at a round r, then
dec,, < &@(Prop[0 : r] U B[0 : g¢(r)]), where,
Prop[0 : r] is the union of the prefixes, until index
r, of all sequences Pro; of correct processes; and,
B0 : g(r)] is the union of all prefixes, until index r,
of f infinite sequences B;, one for each Byzantine
process. Function g is ¢ : N — N. Each B, is a
sequence of elements in E.

Intuitively, function g upper bounds the number of
values that Byzantine processes can insert.

a) Transformer: We now explain the high level
idea behind the transformer. Let £A4 be a one shot
synchronous lattice agreement algorithm that terminates
in § rounds. We divide the time in terms, a term lasts
for & rounds and it allows to execute, from start to
termination, an instance of £.A4. At the beginning of term
k, correct processes start the k-th instance of LA, we
denote it as k-LA. Each correct process receives from
upper layer a stream of elements in £, and it batches
such elements until a new instance of LA starts. Let C},
be the k-th batch, at the beginning of term k, process p;
starts the instance k-L.A with input (p;, decy—1 @ Ch),
where decy_1 is the output of the (k — 1)-L.A instance.
There are few minor details to add to this description
to get an actual algorithm (see pseudocode in Algorithm
M), the most important being the mechanism needed to
bound the number of values that could be added by
Byzantine processes. The key idea is to start the instance
k-LA with a set of admissible values Pr;_1)4s, that
is the set of all subsets of E of size less or equal to
T(k — 1) 4+ 0. Function T is a function mapping each
index of the decision sequence of a correct process to an
upper bound on the maximum size of the decision, where
the size is counted as number of elements in the decision.
We assume T'(—1) = 0; we have that T(0) = § - n:
each correct process that starts the first instance of LA
proposes at most ¢ values; the closed form for k£ > 0 of
T'(k) is in the statement of Lemma [9]

b) Correctness discussion: Assuming that each £A
is an instance of a correct LA algorithm (according to
definition in Section[[I-Oa)), we argue that the Generalised
LA algorithm obtained by using our transformer is a
correct algorithm for definition in Section The
liveness property is satisfied by the liveness of each
instance of LA. The local stability and the inclusivity
derive directly from the fact that once a process p outputs
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deci_1, the next instance of LA will have as input
a value that contains (p,deck—1 @ Cy). Therefore, by
inclusivity of LA we have that the decision of k-LA
contains the pair (p, deck_1 @ Cy), and this means that
deci_1 @ O < deck. It remains to show the non-
triviality:

Lemma 9. Consider the sequence of decisions of a

correct process p executing the transformer in Algo-

rithm 4| Each decy, in the sequence, decided at round

r, respects the Non-Trivigl{ty property for a function
Sn((f+D) -1

9(r) < (T(k) = 22UE—=1),

Algorithm 4 Transformer - Algorithm for process p;

1: C=0,dec=10
2: upon event PROPOSE(proy)

> Batch of values, Decision

3: C =CU{pro-}
4: upon event r =0 - (k+ 1) FOR SOMEk € N
5: Start the instance k of LA over lattice £; with admissible

values F, = II X PT(k_1)+5

6: k-LA-PROPOSE((p;,dec @ C))
7: c=0
8: upon event DECISION FROM THE CURRENT INSTANCE OF

LA(dec)
X : {yl(z,y) € dec’)
dec=PX
Decisiong (dec)

9:
10:
11:
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