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Introduction

This paper focuses on the deep analysis of a particular type of averaging stochastic processes. In the averaging process, as introduced in [START_REF] Aldous | A lecture on the averaging process[END_REF], the n agents start independently from each other with an initial integer value, interact randomly by pairs, and at each interaction, keep the average of both values as their new value. This type of processes belongs to the general category of stochastic interacting particle systems [START_REF] Liggett | Interacting Particle Systems[END_REF], that are applied in many fields (biology, computer science, physic, etc) to characterize global properties emerging from local interactions. For instance, in [START_REF] Mocquard | Probabilistic analysis of rumor spreading time[END_REF], the authors used this model to analyze the rumor spreading time which is the number of interactions needed for all the agents of the network to learn a rumor initially known by only one agent. In [START_REF] Haslegrave | Reaching consensus on a connected graph[END_REF], the authors analyze biological agents (gene or infectious disease) spreading (mean spreading time and stable gene distribution) for diverse type of networks and considering pairwise interactions.

In our context of large-scale distributed algorithms, where interaction-based algorithms are represented by the population protocol model, agents have little computational power, limited size memory, are indistinguishable one another and are unaware of the population size n of the system [START_REF] Angluin | Computation in networks of passively mobile finite-state sensors[END_REF]. The key is to propose efficient algorithms that make agents cooperate perform computational tasks such that such as determining the proportion of agents that started their computation with a given integer value, or computing the population size. Both problems (proportion of agents that start with some initial value A and population size) can be solved by relying on average-based population protocols. In a previous work [START_REF] Mocquard | Optimal Proportion Computation with Population Protocols[END_REF], we analyzed the convergence time (also called the mixing time) at which all the n agents of the distributed system are able to determine the proportion of them that started with value A. This work has been used in [START_REF] Cordasco | Space-optimal proportion consensus with population protocols[END_REF], where the authors tackle a consensus problem derived from the proportion one. We introduce the discrete-time stochastic process C := {C t , t ≥ 0}, where the random vector C t is defined by C t := (C (1) t , . . . , C

(n) t ), to represent the evolution of the agent values. For all agents i = 1, . . . , n, C (i) t represents its value at time t ≥ 0.

Since C (i) t are integers for all time t, process C does not converge to a unique absorbing state, as in [START_REF] Aldous | A lecture on the averaging process[END_REF][START_REF] Mocquard | Counting with population protocols[END_REF] when dealing with real numbers, but to an absorbing class of states included in the open ball of center L = ( , . . . , ) ∈ R n and radius 3/2 equipped with the infinite norm, where := n i=1 C (i) 0 /n, as shown in Theorem 3. The discrepancy of the system, that is the difference between the maximum and minimum value among all nodes, defined by max 1≤i≤n C

(i) t -min 1≤i≤n C (i)
t , has been studied in [START_REF] Sauerwald | Tight bounds for randomized load balancing on arbitrary network topologies[END_REF], where the authors show that its expectation is in O(1) for regular graphs. Moreover they note that in many applications, agent values cannot be divided arbitrarily, and we need to deal with the discrete case where the values of each node can only be integers. This discretization entails a non-linear behavior due to its rounding errors, which makes this analysis much harder than in the continuous case.

In most papers on the subject (e.g. [START_REF] Aldous | A lecture on the averaging process[END_REF][START_REF] Cordasco | Space-optimal proportion consensus with population protocols[END_REF][START_REF] Sauerwald | Tight bounds for randomized load balancing on arbitrary network topologies[END_REF]), the complexities are always of the O(n polylog n) type, without any study of the constants arising in these complexities.

Indeed, these analyses are interesting but not sufficiently precise because if the constants occurring in a O(n polylog n) complexity are large, they totally annihilate the effect of the logarithm. That is why we focus in this work on precise values of the complexities, i.e. of the type n(a ln(n) + b), where a and b are numerically obtained constants. This is the main objective of this paper which necessitates a quite detailed mathematical analysis of the behavior of the system. We provide in this paper a rigorous theoretical analysis of the behavior of average based distributed algorithms. The main contributions of this paper are the following.

• The process C converges to an absorbing class of states included in the open ball of center L = ( , . . . , ) ∈ R n and radius 3/2 equipped with the infinite norm. More precisely, it is proved in Theorem 3 that for all δ ∈ (0, 1), and for all t ≥ (n -1) (2 ln (K + √ n) -ln δ -ln 2), we have

P { C t -L ∞ ≥ 3/2} ≤ δ,
where K is a constant depending only on the initial vector condition C 0 . The proof of this result is based on a quite novel coupling technique for which the coupling process is called the shadow process of C. Using this result, it is shown in Corollary 1 that the discrepancy of the system is equal to 0 or 1 with any high probability, i.e. that

P max 1≤i≤n C (i) t -min 1≤i≤n C (i) t > 2 ≤ δ.
• First, we apply our result to the proportion problem (see Theorem 4), and show that it significantly improves the one obtained in [START_REF] Mocquard | Optimal Proportion Computation with Population Protocols[END_REF] (see Figure 1). We also apply our result to another problem, the system size problem (see Lemma 7).

The remaining of the paper is orchestrated as follows. Section 2 presents the mathematical model which is based on random interactions between the agents. Section 3 details the analysis of the convergence. The main contribution is the use of the shadow process, a novel stochastic coupling technique. In Section 4, we apply our results to both the proportion and the system size problems. Section 5 concludes the paper.

The model

We denote by X t the random pair of distinct nodes chosen at time t to interact and for every i, j = 1, . . . , n, with i = j, we define

p i,j (t) = P{X t = (i, j)}.
The time unit is discrete and corresponds to a single interaction. At each discrete instant t, two distinct indices i and j are chosen among 1, . . . , n with probability p i,j (t). Once chosen, the pair of agents (i, j) interacts, and both agents update their respective local value

C (i) t
and C

(j) t by taking the mean value of their values prior to this interaction. This average-based technique leads to

C (i) t+1 , C (j) t+1 = C 
(i) t + C (j) t 2 , C (i) t + C (j) t 2 and C (r) t+1 = C (r) t for r = i, j. (1) 
We suppose that the sequence {X t , t ≥ 0} is a sequence of independent and identically distributed random variables. Since C t is entirely determined by the values of C 0 , X 0 , X 1 , . . . , X t-1 , this means in particular that the random variables X t and C t are independent and that the stochastic process C = {C t , t ≥ 0} is a discrete-time homogeneous Markov chain. Classically, we suppose that X t is uniformly distributed, that is,

p i,j (t) = 1 {i =j} n(n -1)
,

where 1 A denotes the indicator function, which is equal to 1 if condition A is true and 0 otherwise.

Convergence time of average-based algorithms

We will use in the sequel the Euclidean norm denoted simply by . and the infinite norm denoted by . ∞ and defined for all x = (x 1 , . . . ,

x n ) ∈ R n by x = n i=1 x 2 i 1/2 and x ∞ = max i=1,...,n |x i |.
We recall the following invariant result of average-based population protocols.

Lemma 1. For every t ≥ 0, we have

n i=1 C (i) t = n i=1 C (i) 0 .
Proof. For all integers k, we have k = k/2 + k/2 , so the transformation from C t to C t+1 described in Relation (1) does not change the sum of the entries of C t+1 .

We denote by the mean value of the entries of C t and by L the row vector of R n with all its entries equal to , that is

:= 1 n n i=1 C (i) t
and L := ( , . . . , ).

(

Remark that C has a finite value space composed of a set of transient vectors and an absorbing class of vectors whose entries are equal to or . This absorbing class is reduced to a single absorbing vector when is an integer.

We first show that the expected value E C t -L 2 is bounded.

Theorem 1. For every t ≥ 0, we have

E C t -L 2 ≤ 1 -1 n -1 t E C 0 -L 2 + n 4 - 1 {n odd} 4n . (3) 
Proof. In order to simplify the writing we use the notation Y t := C t -L 2 . One can deduce from Relation (1) that

Y t+1 = Y t - 1 2 n i=1 n j=1 C (i) t -C (j) t 2 -1 {C (i) t +C (j) t odd} 1 {Xt=(i,j)} .
We recall that X t and C t are independent and that p i,j (t) = 1/(n(n-1)). Conditioning first by C t , then taking the expectations, we get

E (Y t+1 |C t ) = Y t -1 2   n i=1 n j=1 C (i) t -C (j) t 2 -1 {C (i) t +C (j) t odd}   p i,j (t) = Y t - 1 2n(n -1) n i=1 n j=1 C (i) t -C (j) t 2 -1 {C (i) t +C (j) t odd} .
Using that (see [START_REF] Mocquard | Counting with population protocols[END_REF])

n i=1 n j=1 C (i) t -C (j) t 2 = 2nY t and n i=1 n j=1 1 {C (i) t +C (j) t odd} = 2q t (n -q t ),
where integer q t is the number of odd entries of vector C t , we deduce that

E (Y t+1 | C t ) = 1 -1 n -1 Y t + q t (n -q t ) n(n -1) . (4) 
Since q t ∈ {0, 1, . . . , n}, the function g defined, for x ∈ [0, n], by g(x) = x(n -x) has its maximum at point x = n/2, so we have 0 ≤ g(x) ≤ n 2 /4. Thus g(q t ) = q t (n -q t ) ≤ n 2 /4. If n is even then q t can be equal to n/2 which means that the best upper bound of g(q t ) is n 2 /4. If n is odd then q t cannot be equal to n/2. The maximum of g t (q t ) is then reached either at point q t = (n -1)/2 or at point q t = (n + 1)/2. For both points, we have g(q t ) ≤ (n -1)(n + 1)/4 = n 2 /4 -1/4, so the best upper bound of g(q t ) is

n 2 /4 -1/4.
Putting together the two cases, we obtain

q t (n -q t ) ≤ n 2 4 - 1 {n odd} 4 .
Using this inequality in Relation (4), we get

E (Y t+1 | C t ) ≤ 1 -1 n -1 Y t + n 4(n -1) - 1 {n odd} 4n(n -1)
.

Taking the expectation in both sides, we obtain

E (Y t+1 ) ≤ 1 -1 n -1 E (Y t ) + n 4(n -1) - 1 {n odd} 4n(n -1)
.

Solving this recurrence leads to Relation (3).

A first bound on the convergence time

We introduce λ, the distance between and its nearest integer, that is

λ := min { - , -} = min { - , 1 -( - )} .
It is easily checked that we have 0 ≤ λ ≤ 1/2. In Theorem 4 of [START_REF] Mocquard | Optimal Proportion Computation with Population Protocols[END_REF], we dealt with the case where λ is equal to 1/2. In the following, we extend that analysis first to the case where λ = n -1 {n odd} /(2n) (see Theorem 2) and then, to all λ ∈ [0, 1/2] (see Section 3.2). We start by the following two lemmas.

Lemma 2. Let h = +1/2 and H = (h, h, . . . , h) ∈ R n . If λ = n -1 {n odd} /(2n), then C t -L 2 = C t -H 2 - 1 {n odd} 4n ≥ n 4 - 1 {n odd} 4n . (5) 
Proof. Vector C t -L is orthogonal to vector e, with all entries equal to 1. Indeed,

C t -L, e = n i=1 C (i) t - = n -n = 0.
Hence, since L -H = ( -h)e, we deduce that C t -L and L -H are orthogonal too.

Applying Pythagore's Theorem, we obtain

C t -L 2 = C t -H 2 -L -H 2 . ( 6 
)
We moreover have L -

H 2 = n( -h) 2 = n (1/2 -( - )) 2
. By definition of λ and since λ = (n -1 {n odd} )/(2n), we have either -= (n -1 {n odd} )/2n or -= (n + 1 {n odd} )/2n. In both cases, we get

L -H 2 = 1 {n odd} 4n . (7) 
Observe that

C t -H 2 ≥ n min 1≤i≤n C (i) t -( + 1/2) 2 ≥ n|1/2| 2 = n/4. (8) 
Injecting [START_REF] Mocquard | Optimal Proportion Computation with Population Protocols[END_REF] in Relation ( 6), and applying Inequality (8), we get Inequality [START_REF] Liggett | Interacting Particle Systems[END_REF].

Lemma 3. If λ = n -1 {n odd} /(2n) then we have max 1≤i≤n C (i) t -min 1≤i≤n C (i) t > 1 ⇐⇒ C t -L ∞ > n + 1 {n odd} 2n . (9) 
Proof. Note first that if λ = n -1 {n odd} /(2n) then we have

C t -L ∞ ≥ 1 -λ = n + 1 {n odd} 2n . ( 10 
) If max 1≤i≤n C (i) t -min 1≤i≤n C (i) t = 1 then, using Relation (2), we have min 1≤i≤n C (i) t ≤ 1 n n i=1 C (i) t = ≤ max 1≤i≤n C (i) t = min 1≤i≤n C (i) t + 1.
It follows easily that min 1≤i≤n C

(i) t = and max 1≤i≤n C (i) t =
. Hence, we have

C t -L ∞ = max { - , -)} = 1 -λ since max { - , -)} + min { - , -)} = 1. We deduce max 1≤i≤n C (i) t -min 1≤i≤n C (i) t = 1 =⇒ C t -L ∞ = n + 1 {n odd} 2n . ( 11 
) If C t -L ∞ = (n + 1 {n odd} )/(2n) then C t -L ∞ = max { - , -)}. Observe moreover that C t -L ∞ = max 1≤i≤n C (i) t -= max max 1≤i≤n C (i) t -, min 1≤i≤n C (i) t - = max max 1≤i≤n C (i) t -, -min 1≤i≤n C (i) t
.

By identification, we have either 

max 1≤i≤n C (i) t -= - and -min 1≤i≤n C (i) t = - or max 1≤i≤n C (i) t -= -and -min 1≤i≤n C (i) t = - . Hence, max 1≤i≤n C (i) t -min 1≤i≤n C (i) t = - . If is an integer (i.e. n divides n i=1 C (i) 0 = n ) then - = 0. This implies that λ = 0,
C (i) t -min 1≤i≤n C (i) t = 1 ⇐⇒ C t -L ∞ = n + 1 {n odd} 2n .
Hence, combining this relation with Relation (10), we deduce Relation [START_REF] Sauerwald | Tight bounds for randomized load balancing on arbitrary network topologies[END_REF].

We can now prove the following theorem.

Theorem 2. For all δ ∈ (0, 1), if λ = n -1 {n odd} /(2n) and if there exists a constant K such that C 0 -L ≤ K then, for every t ≥ (n -1) (2 ln K -ln δ -ln 2),

we have

P C t -L ∞ > n + 1 {n odd} 2n = P max 1≤i≤n C (i) t -min 1≤i≤n C (i) t > 1 ≤ δ, (12) 
or equivalently,

P max 1≤i≤n C (i) t = min 1≤i≤n C (i) t + 1 ≥ 1 -δ. (13) 
Proof. We first show that

max 1≤i≤n C (i) t -min 1≤i≤n C (i) t > 1 =⇒ C t -L 2 ≥ n 4 - 1 {n odd} 4n + 2. ( 14 
) Let h = + 1/2 and H = (h, h, . . . , h) ∈ R n . In the same way, if max 1≤i≤n C (i) t - min 1≤i≤n C (i)
t > 1, then there exists an agent i such that |C (i) t -h| ≥ 3/2, and for all j ∈ {1, 2, . . . , n} \ {i}, |C

(j) t -h| ≥ 1/2. We can thus write max 1≤i≤n C (i) t -min 1≤i≤n C (i) t > 1 =⇒ C t -H 2 ≥ n -1 4 + 3 2 2 = n 4 + 2.
Applying Lemma 2, we thus obtain Relation (14), and deduce that

P max 1≤i≤n C (i) t -min 1≤i≤n C (i) t > 1 ≤ P C t -L 2 ≥ n 4 - 1 {n odd} 4n + 2 . ( 15 
)
Then, from Relation (3) of Theorem 1, we obtain

E C t -L 2 -n 4 + 1 {n odd} 4n ≤ 1 - 1 n -1 t E( C 0 -L 2 ). Let τ = (n -1) (2 ln K -ln δ -ln 2). For t ≥ τ , we have 1 - 1 n -1 t ≤ e -t/(n-1) ≤ e -τ /(n-1) = 2δ K 2 . Moreover, since C 0 -L ≤ K, we get E( C 0 -L 2 ) ≤ K 2 and thus E C t -L 2 -n 4 + 1 {n odd} 4n ≤ 2δ.
Using the Markov inequality (Lemma 2 ensures that we take the expectation of a non negative random variable), we obtain for t ≥ τ ,

P C t -L 2 -n 4 + 1 {n odd} 4n ≥ 2 ≤ δ.
Hence, we deduce from Relation (15) that, for t ≥ τ ,

P max 1≤i≤n C (i) t -min 1≤i≤n C (i) t > 1 ≤ δ.
Remark that max 1≤i≤n C (i)

t cannot be equal to min 1≤i≤n C (i) t here. Indeed, if so, then vector C t is equal to vector L, implying that is an integer. In such a case we have λ = 0, which is impossible since n ≥ 2. Hence,

P max 1≤i≤n C (i) t -min 1≤i≤n C (i) t ≤ 1 = P max 1≤i≤n C (i) t = min 1≤i≤n C (i) t + 1
and we directly obtain Relation (13). Finally, applying Lemma 3, we deduce that

P max 1≤i≤n C (i) t -min 1≤i≤n C (i) t > 1 = P C t -L ∞ > n + 1 {n odd} 2n ,
which ends the proof.

Note that max 1≤i≤n C (i)

t = min 1≤i≤n C (i) t + 1 implies that min 1≤i≤n C (i) t = and max 1≤i≤n C (i) t = .
Hence, Theorem 2 assures us that if λ = n -1 {n odd} /(2n), then the protocol converges after at least (n-1) (2 ln K -ln δ -ln 2) interactions, with any high probability 1 -δ towards a class of absorbing states which are vectors with entries equal to either or .

The shadow process and the main result

The goal of this section is to obtain a result identical to the one of Theorem 2, but without any assumption on λ. This is done by using a stochastic coupling technique in which the process coupled with process C is called the shadow process of C.

The shadow process associated with process C is denoted by D := {D t , t ≥ 0} and defined at time t = 0 by D For every t ≥ 1, the random vector D t is defined as C t , that is, when the couple (i, j) is chosen to interact at time t, i.e. when X t = (i, j), the vector D t+1 is given by

(i) 0 = C (i) 0 + 1 {i∈B0} ,
D (i) t+1 , D (j) t+1 = D (i) t + D (j) t 2 , D (i) t + D (j) t 2 and D (r) t+1 = D (r) t for r = i, j.
In other words, processes C t and D t are coupled by process X t : they behave identically in the sense that at each time, the same two agents are chosen for the interaction. The only difference lies in their initial values. Lemma 4 shows that, if at time t = 0, D 0 is initially in the shadow of C 0 then at any time t ≥ 0, D t remains in the shadow of C t .

Lemma 4. For all t ≥ 0, there exists a non empty set B t of b agents, i.e. B t ⊂ {1, . . . , n} and |B t | = b, such that for all i ∈ {1, 2, . . . , n}, we have

D (i) t = C (i) t + 1 {i∈Bt} . (16) 
Proof. The proof is made by induction. Relation ( 16) is clearly true for t = 0 by definition of D 0 . Suppose that at time t ≥ 0, there exists a set B t ⊂ {1, 2, . . . , n} with |B t | = b, satisfying Relation (16). Let i and j be the two agents interacting at time t, i.e. let X t = (i, j), for both processes C t and D t . We distinguish the following cases.

• Case 1: i, j ∈ B t . In this case, we have

D (i) t+1 = D (i) t + D (j) t 2 = C (i) t + C (j) t + 2 2 = C (i) t+1 + 1.
In the same way, we have D

(j) t+1 = C (j)
t+1 + 1, which means that i, j ∈ B t+1 . The other entries being invariant, we have B t+1 = B t .

• Case 2: i, j / ∈ B t . In this case, we have

D (i) t+1 = C (i) t+1 and D (j) t+1 = C (j)
t+1 which means that i, j / ∈ B t+1 . The other entries being invariant, we have B t+1 = B t .

• Case 3.1: i ∈ B t and j / ∈ B t and

C (i) t + C (j) t
is even. In this case, we have

D (i) t+1 = D (i) t + D (j) t 2 = C (i) t + 1 + C (j) t 2 = C (i) t + C (j) t 2 = C (i) t+1 .
In the same way, we have D 16) is true at time t + 1, which completes the proof.

(j) t+1 = C (j) t+1 + 1,
As we did for process C, we denote by D the mean value of the entries of D t and by L D the row vector of R n with all its entries equal to D , that is

D := 1 n n i=1 D (i)
t and L D := ( D , . . . , D ).

We use the shadow process D to extend the results of Theorem 2 for any value of λ. We first show that for any process C, we can construct a shadow process D verifying the condition of Theorem 2, that is a shadow process D such that the fractional part λ D of D , defined by

λ D := min { D -D , D -D } = min { D -D , 1 -( D -D )} verifies λ D = n -1 {n odd} 2n .
Recall, from Relation (2) and Lemma 1, that n = • Case 1:

if 0 ≤ d ≤ n/2 then, by taking b = d + (n -1 {n odd} )/2, we check that b ∈ {1, • • • , n -1}. Since 0 < (n -1 {n odd} )/(2n) < 1, we have D -D = n -1 {n odd} 2n - n -1 {n odd} 2n = n -1 {n odd} 2n . • Case 2: if n/2 < d < n then, by taking b = d -(n + 1 {n odd} )/2, we also check that b ∈ {1, • • • , n -1}. Since -1 < -(n + 1 {n odd} )/(2n) < 0, we have D -D = - n + 1 {n odd} 2n -- n + 1 {n odd} 2n = n -1 {n odd} 2n .
Hence, D -D = (n -1 {n odd} )/(2n), which ends the proof.

The shadow process D, associated with process C, is thus constructed from the rest of the Euclidean division of n by n. Taking the complement of this rest to n, we deduce the value of parameter b of the shadow process D. In order to prove the main theorem of this paper, we still need the following technical result.

Lemma 6. For all t ≥ 0, we have

C t -L ∞ -D t -L D ∞ ≤ n -1 n and D t -L D -C t -L < √ n.
Proof. From Lemma 4, we easily get

D = 1 n n i=1 D (i) t = + |B t | n = + b n .
Observing that

D t -L D ∞ = max{ D -min 1≤i≤n D (i) t , max 1≤i≤n D (i) t -D }, C t -L ∞ = max{ -min 1≤i≤n C (i) t , max 1≤i≤n C (i) t -},
we first deduce that

D t -L D ∞ ≥ D -min 1≤i≤n D (i) t and D t -L D ∞ ≥ max 1≤i≤n D (i) t -D . (17) 
We distinguish the following two cases.

If C t -L ∞ = -min 1≤i≤n C (i) t
then, applying Relation (17), we obtain

C t -L ∞ -D t -L D ∞ ≤ -min 1≤i≤n C (i) t -D -min 1≤i≤n D (i) t
, and since, from Lemma 4, we have min 1≤i≤n D

(i) t ≤ min 1≤i≤n C (i) t + 1, we deduce C t -L ∞ -D t -L D ∞ ≤ -D + 1 = 1 - b n ≤ n -1 n . If C t -L ∞ = max 1≤i≤n C (i) 
t -then, applying Relation (17), we obtain

C t -L ∞ -D t -L D ∞ ≤ max 1≤i≤n C (i) t - -max 1≤i≤n D (i) t -D ,
and since, from Lemma 4, we have max 1≤i≤n

C (i) t ≤ max 1≤i≤n D (i) 
t , we deduce again

C t -L ∞ -D t -L D ∞ ≤ -D = b n ≤ n -1 n ,
which completes the proof of the first inequality.

To prove the second one, note that D t -L D is orthogonal to unit vector e. Indeed

D t -L D , e = n i=1 D (i) t -D = n D -n D = 0.
Hence, since L D -L = ( D -)e, we deduce that D t -L D and L D -L are orthogonal too. The Pythagore's Theorem then gives

D t -L 2 = D t -L D 2 + L D -L 2 , which implies that D t -L D ≤ D t -L .
From Relation (16), we have

D (i) t -C (i) t = 1 {i∈Bt} for every i = 1, . . . , n. Since |B t | = b, this leads to D t -C t = √ b.
From the triangle inequality and since b < n,

we get D t -L ≤ D t -C t + C t -L = C t -L + √ b ≤ C t -L + √ n.
The following theorem is the main result of this paper.

Theorem 3. For all δ ∈ (0, 1), if there exists a constant K such that C 0 -L ≤ K, then, for all t ≥ (n -1) (2 ln (K + √ n) -ln δ -ln 2), we have

P { C t -L ∞ ≥ 3/2} ≤ δ. (18) 
Proof. Let d be the smallest integer such that n divides n + d. From Lemma 5, there exists a shadow process D associated with a set B 0 of b agents, such that

D -D = b -d n -+ b -d n = n -1 {n odd} 2n .
Hence,

λ D = min n -1 {n odd} 2n , 1 - n -1 {n odd} 2n = n -1 {n odd} 2n .
Moreover, combining the hypothesis C 0 -L ≤ K and Lemma 6, we get

D 0 -L D ≤ C 0 -L + √ n ≤ K + √ n.
We can thus apply Theorem 2 to process D with λ D , L D and K + √ n in place of λ, L and K respectively. We thus obtain, for all δ ∈ (0, 1) and

for every t ≥ (n -1) (2 ln(K + √ n) -ln δ -ln 2), P D t -L D ∞ > n + 1 {n odd} 2n = P max 1≤i≤n D (i) t -min 1≤i≤n D (i) t > 1 ≤ δ.
From Lemma 6, we get

C t -L ∞ ≤ D t -L D ∞ + n-1 n .
This inequality allows us to write

D t -L D ∞ ≤ n + 1 {n odd} 2n =⇒ C t -L ∞ ≤ n + 1 {n odd} 2n + n -1 n < 3 2 , thus P C t -L ∞ < 3 2 ≥ P D t -L D ∞ ≤ n + 1 {n odd} 2n ,
or equivalently

P C t -L ∞ ≥ 3 2 ≤ P D t -L D ∞ > n + 1 {n odd} 2n ≤ δ,
which completes the proof.

Theorem 3 thus extends the results of Theorem 6 of [START_REF] Mocquard | Optimal Proportion Computation with Population Protocols[END_REF] to the case of any value for give explicitly the constant arising in this complexity. This constant depends on the upper bound K of C 0 -L and the initial vector C 0 is given by the application the user wants to deal with. In the next section, we calculate the upper bound K for two different types of applications : the proportion problem and the system size problem.

We conclude this section with the following corollary which shows that under the condition of Theorem 3, the greatest difference among the entries of vector C t , which represents the values of the agents at time t, is less than or equal to 2 with any high probability.

Corollary 1. For all δ ∈ (0, 1), if there exists a constant K such that C 0 -L ≤ K, then for all t ≥ (n -1) (2 ln (K + √ n) -ln δ -ln 2), we have

P max 1≤i≤n C (i) t -min 1≤i≤n C (i) t > 2 ≤ δ (19) 
Proof. Observe that

C t -L ∞ < 3/2 ⇐⇒ max 1≤i≤n C (i) t -< 3/2 and -min 1≤i≤n C (i) t < 3/2 =⇒ max 1≤i≤n C (i) t -min 1≤i≤n C (i) t < 3. This leads to P{ C t -L ∞ < 3/2} ≤ P{max 1≤i≤n C (i) t -min 1≤i≤n C (i) t ≤ 2}, since the C (i) t
are integers and we conclude by applying Theorem 3.

Applications

In this section, we apply the average-based distributed algorithm studied above to derive, from local average-based interactions, two global properties of our system: first the proportion of agents whose initial value is equal to A and second the number of agents n of the system.

We suppose that agents initially start their execution either with the initial value (i) 0 = 0, where m is an integer, known by all the agents, which will be determined later. We thus have

C 0 -L 2 = n A m - n A m n 2 + (n -n A ) n A m n 2 = m 2 n A 1 - n A n . (20) 

Solving the Proportion Problem

The proportion problem consists for each agent to compute the proportion γ A of agents that initially started the average-based algorithm with the initial value A. We have γ A = n A /n. Recall that the number n of agents in the system is not known to the agents. Relation (20) gives a function of n A which reaches its maximum for n A = n/2.

At that value we obtain C 0 -L 2 ≤ m 2 n/4, that is

C 0 -L ≤ m √ n/2. (21) 
Recall that C (i) t

represents the local value of agent i at discrete time t. We show that the local estimation of the proportion γ A is given by the quantity C

(i) t /m. More precisely, the following theorem gives an evaluation of the first instant t from which the distance between C (i) t /m and γ A , for all the agents, is less than a fixed ε with any high probability 1 -δ, the integer value m being determined by the threshold ε.

Theorem 4. For all δ ∈ (0, 1) and for all ε ∈ (0, 1), by taking m = 3/(2ε) , we have, for all t ≥ (n -1) (ln n -ln δ + 2 ln(2 + 1/ε) + ln(9/32)),

P C (i) t /m -γ A < ε, for all i = 1, . . . , n ≥ 1 -δ.
Proof. Since m = 3/(2ε) , we have, from Relation (21),

C 0 -L ≤ m √ n 2 = 3 2ε √ n 2 ≤ 3 2ε + 1 √ n 2 = 3 + 2ε 4ε √ n.
By choosing K = (3 + 2ε) √ n/(2ε), we obtain

2 ln(K + √ n) = 2 ln 3 + 6ε 4ε √ n = ln n + 2 ln(3/4) + 2 ln(2 + 1/ε).
We are now able to apply Theorem 3, which leads, for all δ ∈ (0, 1) and for all t ≥ (n -1) (ln n -ln δ + 2 ln(2 + 1/ε) + ln(9/32)), to

P { C t -L ∞ ≥ 3/2} ≤ δ or equivalently, since = γ A m, to P C (i) t /m -γ A < 3/(2m), for all i = 1, . . . , n ≥ 1 -δ.
The fact that m ≥ 3/(2ε) completes the proof.

In Figure 1, we compare our new bound of the convergence time obtained in Theorem 4 for the proportion problem with the one previously obtained in [START_REF] Mocquard | Optimal Proportion Computation with Population Protocols[END_REF]. One can observe that we have considerably improved it. As usual, the parallel convergence time is the convergence time divided by the number n of agents. For each n, we simulate the parallel convergence time (star points) using 10 5 experiments.

We also compute the two upper bounds of the parallel convergence time obtained in [START_REF] Mocquard | Optimal Proportion Computation with Population Protocols[END_REF] (dashed line) and in Theorem 4 (plain line). For each experiment the initial proportion of agents starting with A is a uniform random number in [0,1] and we have taken δ = 10 -4 and ε = 10 -2 , which gives m = 150. Note the logarithmic scale of the x-axis.

Solving the System Size Problem

We now address the system size problem and suppose that each agent knows n A .

We prove that each agent is able to determine either the exact value of the number n of agents or an approximation of this number, depending on the initial input value m with any high probability.

We introduce the following two functions, ω min and ω max , which will be used by each node to get the lower and the upper bound of n, respectively. They are defined, for all integers k, by

ω min (k) = 2n A m 2k + 3 and ω max (k) =      +∞ if k ≤ 1 2n A m 2k -3 if k ≥ 2.
We first start by a general result on the convergence time for the system size problem.

Lemma 7. For all δ ∈ (0, 1), for all positive integers m and n A , and for all t ≥ (n -1) ln m n A (1 -n A /n) + √ n -ln δ -ln 2 , we have

P ω min C (i) t ≤ n ≤ ω max C (i) t
, for all i = 1, . . . , n ≥ 1 -δ.

Proof. From (20), we obtain C 0 -L ≤ m n A (1 -n A /n). Applying Theorem 3 with K = m n A (1 -n A /n), we get , for all i = 1, . . . , n. (24)

P { C t -L ∞ < 3/2} ≥ 1 -δ, (22) 
The use of Relation (22) completes the proof.

Suppose that an upper bound N of n is known. Then we prove that with any high probability, after a given number of interactions (computed below), any agent i can locally compute the exact system size n, i.e. ω min (C 

C 0 -L ≤ √ n A m 1 - n A 2n .

  where B 0 is any fixed non empty subset of b agents with b ≤ n -1, i.e. B 0 ⊂ {1, . . . , n} and |B 0 | = b.

  means that i ∈ B t+1 and j / ∈ B t+1 . We thus have B t+1 = (B t \ {j}) ∪ {i} and so |B t+1 | = |B t | = b. In all cases, we have shown that B t+1 ⊂ {1, 2, . . . , n}, that |B t+1 | = |B t | = b and that (
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  For any λ value, process C t belongs to the open ball of radius 3/2 and center L, with any high probability in the infinite norm, after no more than O(n ln(K + √ n)) time or O(ln(K + √ n)) parallel time as shown in Relation (18). Note that in Relation (18), we
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  or B. Let n A be the number of agents starting with value A. If agent i starts with value A, we set C (i) 0 = m and if he starts with value B, we set C
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  which means that i / ∈ B t+1 and j ∈ B t+1 . We thus have B t+1 = (B t \ {i}) ∪ {j} and so |B t+1 | = |B t | = b.

	• Case 3.2: i ∈ B t and j / ∈ B t and C	(i) t + C	(j) t	is odd. In a similar way to the
	case 3.1, we have D	(i) t+1 = C	(i) t+1 + 1 and D t+1 = C (j)	(j)
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t+1 , which means that i ∈ B t+1 and j / ∈ B t+1 and so B t+1 = B t .

• Case 4.1: i / ∈ B t and j ∈ B t and C and j ∈ B t+1 and so B t+1 = B t .

• Case 4.2: i / ∈ B t and j ∈ B t and

C (i) t + C (j) t

is odd. In a similar way to the case 3.1, we have D

  for all t ≥ (n -1) ln(m n A (1 -n A /n) + √ n) -ln δ -ln 2 .Then, recalling that = n A m/n and using the fact thatC t -L ∞ < 3/2 ⇐⇒ for all i = 1, . . . ,n, C we deduce first that, for all i = 1, . . . , n, n A m/(C + 3/2) ≤ n. By definition of ω max , if C ≤ 1, then obviously in that case n ≤ ω max (C ≥ 2, we deduce from Relation (23) that n < n A m/C -3/2, which means that n ≤ n A m/(C ). We thus have shown that, for all t ≥(n -1) ln(m n A (1 -n A /n) + √ n) -ln δ -ln 2 , we have C t -L ∞ < 3/2 =⇒ ω min C

				(i) t -3/2 < n A m/n < C t + 3/2, (23) (i)
				(i) t + 3/2) < n, which implies that
	ω min C t (i)	= n A m/(C	(i)
			(i) t	(i) t ). If
	t C (i)			(i)
		(i) t -3/2) = ω max (C	(i)
			(i) t	≤ n ≤ ω max C	(i) t

t t t

Denoting by K this upper bound of C 0 -L and using successively the condition mn A ≥ 3n(n + 1) and the fact that n A ≥ 1, we obtain

Using this inequality in Theorem 3, we get, for all t ≥ (n-1) (ln n A + 2 ln m -ln δ -ln 2),

t , for all i, which in turn implies, from (26), that

in which we used the condition m ≥ 3n(n + 1)/n A to ensure that n A m/n -3/2 > 0.

Combining these two results and using the definitions of the integer functions ω min and ω max , we obtain

.

From (24) in Lemma 7, we also have

, for all i = 1, . . . , n.

Conclusion

In this paper we have presented a thorough analysis of the bound of the convergence time of average-based population protocols, and applied it to both the proportion problem and the system size one. Thanks to a well chosen stochastic coupling, we have considerably improved existing results by providing explicit and tight bounds of the time required to converge to the solution of these problems. Numerical simulations illustrate the tightness of our bounds of convergence times.