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Abstract

We analyse average-based distributed algorithms relying on simple and pairwise

random interactions among a large and unknown number of anonymous agents.

This allows the characterization of global properties emerging from these local

interactions. Agents start with an initial integer value, and at each interaction

keep the average integer part of both values as their new value. The convergence

occurs when, with high probability, all the agents possess the same value which

means that they all know a property of the global system. Using a well chosen

stochastic coupling, we improve upon existing results by providing explicit and

tight bounds of the convergence time. We apply these general results to both

the proportion problem and the system size problem.

Keywords: Averaging stochastic process; Interacting particle systems; Markov

chain; Coupling; Distributed algorithms

1. Introduction

This paper focuses on the deep analysis of a particular type of averaging stochastic

processes. In the averaging process, as introduced in [1], the n agents start indepen-

dently from each other with an initial integer value, interact randomly by pairs, and

at each interaction, keep the average of both values as their new value. This type of

processes belongs to the general category of stochastic interacting particle systems [5],
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that are applied in many fields (biology, computer science, physic, etc) to characterize

global properties emerging from local interactions. For instance, in [8], the authors used

this model to analyze the rumor spreading time which is the number of interactions

needed for all the agents of the network to learn a rumor initially known by only one

agent. In [4], the authors analyze biological agents (gene or infectious disease) spreading

(mean spreading time and stable gene distribution) for diverse type of networks and

considering pairwise interactions.

In our context of large-scale distributed algorithms, where interaction-based algo-

rithms are represented by the population protocol model, agents have little computa-

tional power, limited size memory, are indistinguishable one another and are unaware

of the population size n of the system [2]. The key is to propose efficient algorithms

that make agents cooperate perform computational tasks such that such as determining

the proportion of agents that started their computation with a given integer value, or

computing the population size. Both problems (proportion of agents that start with

some initial value A and population size) can be solved by relying on average-based

population protocols. In a previous work [7], we analyzed the convergence time (also

called the mixing time) at which all the n agents of the distributed system are able to

determine the proportion of them that started with value A. This work has been used

in [3], where the authors tackle a consensus problem derived from the proportion one.

We introduce the discrete-time stochastic process C := {Ct, t ≥ 0}, where the

random vector Ct is defined by Ct := (C
(1)
t , . . . , C

(n)
t ), to represent the evolution of

the agent values. For all agents i = 1, . . . , n, C
(i)
t represents its value at time t ≥ 0.

Since C
(i)
t are integers for all time t, process C does not converge to a unique absorbing

state, as in [1, 6] when dealing with real numbers, but to an absorbing class of states

included in the open ball of center L = (`, . . . , `) ∈ Rn and radius 3/2 equipped with

the infinite norm, where ` :=
∑n
i=1 C

(i)
0 /n, as shown in Theorem 3. The discrepancy

of the system, that is the difference between the maximum and minimum value among

all nodes, defined by max1≤i≤n C
(i)
t −min1≤i≤n C

(i)
t , has been studied in [9], where the

authors show that its expectation is in O(1) for regular graphs. Moreover they note

that in many applications, agent values cannot be divided arbitrarily, and we need to

deal with the discrete case where the values of each node can only be integers. This

discretization entails a non-linear behavior due to its rounding errors, which makes this



Stochastic Analysis of Average Based Distributed Algorithms 3

analysis much harder than in the continuous case.

In most papers on the subject (e.g. [1, 3, 9]), the complexities are always of the

O(npolylog n) type, without any study of the constants arising in these complexities.

Indeed, these analyses are interesting but not sufficiently precise because if the con-

stants occurring in a O(npolylog n) complexity are large, they totally annihilate the

effect of the logarithm. That is why we focus in this work on precise values of the

complexities, i.e. of the type n(a ln(n) + b), where a and b are numerically obtained

constants. This is the main objective of this paper which necessitates a quite detailed

mathematical analysis of the behavior of the system.

We provide in this paper a rigorous theoretical analysis of the behavior of average

based distributed algorithms. The main contributions of this paper are the following.

• The process C converges to an absorbing class of states included in the open

ball of center L = (`, . . . , `) ∈ Rn and radius 3/2 equipped with the infinite

norm. More precisely, it is proved in Theorem 3 that for all δ ∈ (0, 1), and for

all t ≥ (n− 1) (2 ln (K +
√
n)− ln δ − ln 2), we have

P {‖Ct − L‖∞ ≥ 3/2} ≤ δ,

where K is a constant depending only on the initial vector condition C0. The

proof of this result is based on a quite novel coupling technique for which the

coupling process is called the shadow process of C. Using this result, it is shown

in Corollary 1 that the discrepancy of the system is equal to 0 or 1 with any high

probability, i.e. that

P

{
max
1≤i≤n

C
(i)
t − min

1≤i≤n
C

(i)
t > 2

}
≤ δ.

• First, we apply our result to the proportion problem (see Theorem 4), and show

that it significantly improves the one obtained in [7] (see Figure 1). We also

apply our result to another problem, the system size problem (see Lemma 7).

The remaining of the paper is orchestrated as follows. Section 2 presents the math-

ematical model which is based on random interactions between the agents. Section 3

details the analysis of the convergence. The main contribution is the use of the shadow

process, a novel stochastic coupling technique. In Section 4, we apply our results to

both the proportion and the system size problems. Section 5 concludes the paper.
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2. The model

We denote by Xt the random pair of distinct nodes chosen at time t to interact and

for every i, j = 1, . . . , n, with i 6= j, we define

pi,j(t) = P{Xt = (i, j)}.

The time unit is discrete and corresponds to a single interaction. At each discrete

instant t, two distinct indices i and j are chosen among 1, . . . , n with probability

pi,j(t). Once chosen, the pair of agents (i, j) interacts, and both agents update their

respective local value C
(i)
t and C

(j)
t by taking the mean value of their values prior to

this interaction. This average-based technique leads to(
C

(i)
t+1, C

(j)
t+1

)
=

(⌊
C

(i)
t + C

(j)
t

2

⌋
,

⌈
C

(i)
t + C

(j)
t

2

⌉)
and C

(r)
t+1 = C

(r)
t for r 6= i, j. (1)

We suppose that the sequence {Xt, t ≥ 0} is a sequence of independent and identi-

cally distributed random variables. Since Ct is entirely determined by the values of

C0, X0, X1, . . . , Xt−1, this means in particular that the random variables Xt and Ct

are independent and that the stochastic process C = {Ct, t ≥ 0} is a discrete-time

homogeneous Markov chain. Classically, we suppose that Xt is uniformly distributed,

that is,

pi,j(t) =
1{i 6=j}

n(n− 1)
,

where 1A denotes the indicator function, which is equal to 1 if condition A is true and

0 otherwise.

3. Convergence time of average-based algorithms

We will use in the sequel the Euclidean norm denoted simply by ‖.‖ and the infinite

norm denoted by ‖.‖∞ and defined for all x = (x1, . . . , xn) ∈ Rn by

‖x‖ =

(
n∑
i=1

x2i

)1/2

and ‖x‖∞ = max
i=1,...,n

|xi|.

We recall the following invariant result of average-based population protocols.

Lemma 1. For every t ≥ 0, we have

n∑
i=1

C
(i)
t =

n∑
i=1

C
(i)
0 .



Stochastic Analysis of Average Based Distributed Algorithms 5

Proof. For all integers k, we have k = bk/2c+ dk/2e, so the transformation from Ct

to Ct+1 described in Relation (1) does not change the sum of the entries of Ct+1. �

We denote by ` the mean value of the entries of Ct and by L the row vector of Rn

with all its entries equal to `, that is

` :=
1

n

n∑
i=1

C
(i)
t and L := (`, . . . , `). (2)

Remark that C has a finite value space composed of a set of transient vectors and an

absorbing class of vectors whose entries are equal to b`c or d`e. This absorbing class is

reduced to a single absorbing vector when ` is an integer.

We first show that the expected value E
(
‖Ct − L‖2

)
is bounded.

Theorem 1. For every t ≥ 0, we have

E
(
‖Ct − L‖2

)
≤
(

1− 1

n− 1

)t
E
(
‖C0 − L‖2

)
+
n

4
−

1{n odd}

4n
. (3)

Proof. In order to simplify the writing we use the notation Yt := ‖Ct − L‖2. One

can deduce from Relation (1) that

Yt+1 = Yt −
1

2

n∑
i=1

n∑
j=1

[(
C

(i)
t − C

(j)
t

)2
− 1{C(i)

t +C
(j)
t odd}

]
1{Xt=(i,j)}.

We recall that Xt and Ct are independent and that pi,j(t) = 1/(n(n−1)). Conditioning

first by Ct, then taking the expectations, we get

E (Yt+1|Ct) = Yt −
1

2

 n∑
i=1

n∑
j=1

[(
C

(i)
t − C

(j)
t

)2
− 1{C(i)

t +C
(j)
t odd}

] pi,j(t)

= Yt −
1

2n(n− 1)

n∑
i=1

n∑
j=1

[(
C

(i)
t − C

(j)
t

)2
− 1{C(i)

t +C
(j)
t odd}

]
.

Using that (see [6])

n∑
i=1

n∑
j=1

(
C

(i)
t − C

(j)
t

)2
= 2nYt and

n∑
i=1

n∑
j=1

1{C(i)
t +C

(j)
t odd} = 2qt(n− qt),

where integer qt is the number of odd entries of vector Ct, we deduce that

E (Yt+1 | Ct) =

(
1− 1

n− 1

)
Yt +

qt(n− qt)
n(n− 1)

. (4)
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Since qt ∈ {0, 1, . . . , n}, the function g defined, for x ∈ [0, n], by g(x) = x(n − x) has

its maximum at point x = n/2, so we have 0 ≤ g(x) ≤ n2/4. Thus g(qt) = qt(n− qt) ≤

n2/4. If n is even then qt can be equal to n/2 which means that the best upper bound

of g(qt) is n2/4. If n is odd then qt cannot be equal to n/2. The maximum of gt(qt) is

then reached either at point qt = (n−1)/2 or at point qt = (n+ 1)/2. For both points,

we have g(qt) ≤ (n − 1)(n + 1)/4 = n2/4 − 1/4, so the best upper bound of g(qt) is

n2/4− 1/4. Putting together the two cases, we obtain

qt(n− qt) ≤
n2

4
−

1{n odd}

4
.

Using this inequality in Relation (4), we get

E (Yt+1 | Ct) ≤
(

1− 1

n− 1

)
Yt +

n

4(n− 1)
−

1{n odd}

4n(n− 1)
.

Taking the expectation in both sides, we obtain

E (Yt+1) ≤
(

1− 1

n− 1

)
E (Yt) +

n

4(n− 1)
−

1{n odd}

4n(n− 1)
.

Solving this recurrence leads to Relation (3). �

3.1. A first bound on the convergence time

We introduce λ, the distance between ` and its nearest integer, that is

λ := min {`− b`c, d`e − `} = min {`− b`c, 1− (`− b`c)} .

It is easily checked that we have 0 ≤ λ ≤ 1/2. In Theorem 4 of [7], we dealt with

the case where λ is equal to 1/2. In the following, we extend that analysis first to the

case where λ =
(
n− 1{n odd}

)
/(2n) (see Theorem 2) and then, to all λ ∈ [0, 1/2] (see

Section 3.2). We start by the following two lemmas.

Lemma 2. Let h = b`c+1/2 and H = (h, h, . . . , h) ∈ Rn. If λ =
(
n− 1{n odd}

)
/(2n),

then

‖Ct − L‖2 = ‖Ct −H‖2 −
1{n odd}

4n
≥ n

4
−

1{n odd}

4n
. (5)

Proof. Vector Ct − L is orthogonal to vector e, with all entries equal to 1. Indeed,

〈Ct − L, e〉 =

n∑
i=1

(
C

(i)
t − `

)
= n`− n` = 0.
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Hence, since L−H = (`− h)e, we deduce that Ct − L and L−H are orthogonal too.

Applying Pythagore’s Theorem, we obtain

‖Ct − L‖2 = ‖Ct −H‖2 − ‖L−H‖2. (6)

We moreover have ‖L − H‖2 = n(` − h)2 = n (1/2− (`− b`c))2. By definition of

λ and since λ = (n − 1{n odd})/(2n), we have either ` − b`c = (n − 1{n odd})/2n or

`− b`c = (n+ 1{n odd})/2n. In both cases, we get

‖L−H‖2 =
1{n odd}

4n
. (7)

Observe that

‖Ct −H‖2 ≥ n min
1≤i≤n

∣∣∣C(i)
t − (b`c+ 1/2)

∣∣∣2 ≥ n|1/2|2 = n/4. (8)

Injecting (7) in Relation (6), and applying Inequality (8), we get Inequality (5). �

Lemma 3. If λ =
(
n− 1{n odd}

)
/(2n) then we have

max
1≤i≤n

C
(i)
t − min

1≤i≤n
C

(i)
t > 1⇐⇒ ‖Ct − L‖∞ >

n+ 1{n odd}

2n
. (9)

Proof. Note first that if λ =
(
n− 1{n odd}

)
/(2n) then we have

‖Ct − L‖∞ ≥ 1− λ =
n+ 1{n odd}

2n
. (10)

If max1≤i≤n C
(i)
t −min1≤i≤n C

(i)
t = 1 then, using Relation (2), we have

min
1≤i≤n

C
(i)
t ≤

1

n

n∑
i=1

C
(i)
t = ` ≤ max

1≤i≤n
C

(i)
t = min

1≤i≤n
C

(i)
t + 1.

It follows easily that min1≤i≤n C
(i)
t = b`c and max1≤i≤n C

(i)
t = d`e. Hence, we have

‖Ct − L‖∞ = max {`− b`c, d`e − `)} = 1− λ

since max {`− b`c, d`e − `)}+ min {`− b`c, d`e − `)} = 1. We deduce

max
1≤i≤n

C
(i)
t − min

1≤i≤n
C

(i)
t = 1 =⇒ ‖Ct − L‖∞ =

n+ 1{n odd}

2n
. (11)

If ‖Ct−L‖∞ = (n+1{n odd})/(2n) then ‖Ct−L‖∞ = max {`− b`c, d`e − `)}. Observe

moreover that

‖Ct − L‖∞ = max
1≤i≤n

∣∣∣C(i)
t − `

∣∣∣ = max

(∣∣∣∣ max
1≤i≤n

C
(i)
t − `

∣∣∣∣ , ∣∣∣∣ min
1≤i≤n

C
(i)
t − `

∣∣∣∣)
= max

(
max
1≤i≤n

C
(i)
t − `, `− min

1≤i≤n
C

(i)
t

)
.



8 Mocquard, Robin, Sericola and Anceaume

By identification, we have either

max
1≤i≤n

C
(i)
t − ` = `− b`c and `− min

1≤i≤n
C

(i)
t = d`e − `

or

max
1≤i≤n

C
(i)
t − ` = d`e − ` and `− min

1≤i≤n
C

(i)
t = `− b`c.

Hence, max1≤i≤n C
(i)
t − min1≤i≤n C

(i)
t = d`e − b`c. If ` is an integer (i.e. n divides∑n

i=1 C
(i)
0 = n`) then d`e − b`c = 0. This implies that λ = 0, which is impossible here

since λ is supposed to be equal to
(
n− 1{n odd}

)
/(2n) and n ≥ 2. Otherwise, if ` is

not an integer, then d`e = b`c+1. Combining this result with Relation (11), we deduce

that

max
1≤i≤n

C
(i)
t − min

1≤i≤n
C

(i)
t = 1⇐⇒ ‖Ct − L‖∞ =

n+ 1{n odd}

2n
.

Hence, combining this relation with Relation (10), we deduce Relation (9). �

We can now prove the following theorem.

Theorem 2. For all δ ∈ (0, 1), if λ =
(
n− 1{n odd}

)
/(2n) and if there exists a

constant K such that ‖C0 − L‖ ≤ K then, for every t ≥ (n − 1) (2 lnK − ln δ − ln 2),

we have

P

{
‖Ct − L‖∞ >

n+ 1{n odd}

2n

}
= P

{
max
1≤i≤n

C
(i)
t − min

1≤i≤n
C

(i)
t > 1

}
≤ δ, (12)

or equivalently,

P

{
max
1≤i≤n

C
(i)
t = min

1≤i≤n
C

(i)
t + 1

}
≥ 1− δ. (13)

Proof. We first show that

max
1≤i≤n

C
(i)
t − min

1≤i≤n
C

(i)
t > 1 =⇒ ‖Ct − L‖2 ≥

n

4
−

1{n odd}

4n
+ 2. (14)

Let h = b`c+ 1/2 and H = (h, h, . . . , h) ∈ Rn. In the same way, if max1≤i≤n C
(i)
t −

min1≤i≤n C
(i)
t > 1, then there exists an agent i such that |C(i)

t − h| ≥ 3/2, and for all

j ∈ {1, 2, . . . , n} \ {i}, |C(j)
t − h| ≥ 1/2. We can thus write

max
1≤i≤n

C
(i)
t − min

1≤i≤n
C

(i)
t > 1 =⇒ ‖Ct −H‖2 ≥

n− 1

4
+

(
3

2

)2

=
n

4
+ 2.

Applying Lemma 2, we thus obtain Relation (14), and deduce that

P

{
max
1≤i≤n

C
(i)
t − min

1≤i≤n
C

(i)
t > 1

}
≤ P

{
‖Ct − L‖2 ≥

n

4
−

1{n odd}

4n
+ 2

}
. (15)
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Then, from Relation (3) of Theorem 1, we obtain

E

(
‖Ct − L‖2 −

n

4
+

1{n odd}

4n

)
≤
(

1− 1

n− 1

)t
E(‖C0 − L‖2).

Let τ = (n− 1) (2 lnK − ln δ − ln 2). For t ≥ τ , we have(
1− 1

n− 1

)t
≤ e−t/(n−1) ≤ e−τ/(n−1) =

2δ

K2
.

Moreover, since ‖C0 − L‖ ≤ K, we get E(‖C0 − L‖2) ≤ K2 and thus

E

(
‖Ct − L‖2 −

n

4
+

1{n odd}

4n

)
≤ 2δ.

Using the Markov inequality (Lemma 2 ensures that we take the expectation of a non

negative random variable), we obtain for t ≥ τ ,

P

{
‖Ct − L‖2 −

n

4
+

1{n odd}

4n
≥ 2

}
≤ δ.

Hence, we deduce from Relation (15) that, for t ≥ τ ,

P

{
max
1≤i≤n

C
(i)
t − min

1≤i≤n
C

(i)
t > 1

}
≤ δ.

Remark that max1≤i≤n C
(i)
t cannot be equal to min1≤i≤n C

(i)
t here. Indeed, if so, then

vector Ct is equal to vector L, implying that ` is an integer. In such a case we have

λ = 0, which is impossible since n ≥ 2. Hence,

P

{
max
1≤i≤n

C
(i)
t − min

1≤i≤n
C

(i)
t ≤ 1

}
= P

{
max
1≤i≤n

C
(i)
t = min

1≤i≤n
C

(i)
t + 1

}
and we directly obtain Relation (13). Finally, applying Lemma 3, we deduce that

P

{
max
1≤i≤n

C
(i)
t − min

1≤i≤n
C

(i)
t > 1

}
= P

{
‖Ct − L‖∞ >

n+ 1{n odd}

2n

}
,

which ends the proof. �

Note that max1≤i≤n C
(i)
t = min1≤i≤n C

(i)
t + 1 implies that min1≤i≤n C

(i)
t = b`c and

max1≤i≤n C
(i)
t = d`e. Hence, Theorem 2 assures us that if λ =

(
n− 1{n odd}

)
/(2n),

then the protocol converges after at least (n−1) (2 lnK − ln δ − ln 2) interactions, with

any high probability 1 − δ towards a class of absorbing states which are vectors with

entries equal to either b`c or d`e.
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3.2. The shadow process and the main result

The goal of this section is to obtain a result identical to the one of Theorem 2, but

without any assumption on λ. This is done by using a stochastic coupling technique

in which the process coupled with process C is called the shadow process of C.

The shadow process associated with process C is denoted by D := {Dt, t ≥ 0} and

defined at time t = 0 by D
(i)
0 = C

(i)
0 +1{i∈B0}, where B0 is any fixed non empty subset

of b agents with b ≤ n− 1, i.e. B0 ⊂ {1, . . . , n} and |B0| = b.

For every t ≥ 1, the random vector Dt is defined as Ct, that is, when the couple

(i, j) is chosen to interact at time t, i.e. when Xt = (i, j), the vector Dt+1 is given by

(
D

(i)
t+1, D

(j)
t+1

)
=

(⌊
D

(i)
t +D

(j)
t

2

⌋
,

⌈
D

(i)
t +D

(j)
t

2

⌉)
and D

(r)
t+1 = D

(r)
t for r 6= i, j.

In other words, processes Ct and Dt are coupled by process Xt: they behave identically

in the sense that at each time, the same two agents are chosen for the interaction. The

only difference lies in their initial values. Lemma 4 shows that, if at time t = 0, D0 is

initially in the shadow of C0 then at any time t ≥ 0, Dt remains in the shadow of Ct.

Lemma 4. For all t ≥ 0, there exists a non empty set Bt of b agents, i.e. Bt ⊂

{1, . . . , n} and |Bt| = b, such that for all i ∈ {1, 2, . . . , n}, we have

D
(i)
t = C

(i)
t + 1{i∈Bt}. (16)

Proof. The proof is made by induction. Relation (16) is clearly true for t = 0 by

definition of D0. Suppose that at time t ≥ 0, there exists a set Bt ⊂ {1, 2, . . . , n} with

|Bt| = b, satisfying Relation (16). Let i and j be the two agents interacting at time t,

i.e. let Xt = (i, j), for both processes Ct and Dt. We distinguish the following cases.

• Case 1: i, j ∈ Bt. In this case, we have

D
(i)
t+1 =

⌊
D

(i)
t +D

(j)
t

2

⌋
=

⌊
C

(i)
t + C

(j)
t + 2

2

⌋
= C

(i)
t+1 + 1.

In the same way, we have D
(j)
t+1 = C

(j)
t+1 + 1, which means that i, j ∈ Bt+1. The

other entries being invariant, we have Bt+1 = Bt.

• Case 2: i, j /∈ Bt. In this case, we have D
(i)
t+1 = C

(i)
t+1 and D

(j)
t+1 = C

(j)
t+1 which

means that i, j /∈ Bt+1. The other entries being invariant, we have Bt+1 = Bt.
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• Case 3.1: i ∈ Bt and j /∈ Bt and C
(i)
t + C

(j)
t is even. In this case, we have

D
(i)
t+1 =

⌊
D

(i)
t +D

(j)
t

2

⌋
=

⌊
C

(i)
t + 1 + C

(j)
t

2

⌋
=

⌊
C

(i)
t + C

(j)
t

2

⌋
= C

(i)
t+1.

In the same way, we have D
(j)
t+1 = C

(j)
t+1 + 1, which means that i /∈ Bt+1 and

j ∈ Bt+1. We thus have Bt+1 = (Bt \ {i}) ∪ {j} and so |Bt+1| = |Bt| = b.

• Case 3.2: i ∈ Bt and j /∈ Bt and C
(i)
t + C

(j)
t is odd. In a similar way to the

case 3.1, we have D
(i)
t+1 = C

(i)
t+1 + 1 and D

(j)
t+1 = C

(j)
t+1, which means that i ∈ Bt+1

and j /∈ Bt+1 and so Bt+1 = Bt.

• Case 4.1: i /∈ Bt and j ∈ Bt and C
(i)
t + C

(j)
t is even. In a similar way to the

case 3.2, we have D
(i)
t+1 = C

(i)
t+1 and D

(j)
t+1 = C

(j)
t+1 + 1, which means that i /∈ Bt+1

and j ∈ Bt+1 and so Bt+1 = Bt.

• Case 4.2: i /∈ Bt and j ∈ Bt and C
(i)
t + C

(j)
t is odd. In a similar way to the

case 3.1, we have D
(i)
t+1 = C

(i)
t+1 + 1 and D

(j)
t+1 = C

(j)
t+1, which means that i ∈ Bt+1

and j /∈ Bt+1. We thus have Bt+1 = (Bt \ {j}) ∪ {i} and so |Bt+1| = |Bt| = b.

In all cases, we have shown that Bt+1 ⊂ {1, 2, . . . , n}, that |Bt+1| = |Bt| = b and that

(16) is true at time t+ 1, which completes the proof. �

As we did for process C, we denote by `D the mean value of the entries of Dt and

by LD the row vector of Rn with all its entries equal to `D, that is

`D :=
1

n

n∑
i=1

D
(i)
t and LD := (`D, . . . , `D).

We use the shadow process D to extend the results of Theorem 2 for any value of λ. We

first show that for any process C, we can construct a shadow process D verifying the

condition of Theorem 2, that is a shadow process D such that the fractional part λD of

`D, defined by λD := min {`D − b`Dc, d`De − `D} = min {`D − b`Dc, 1− (`D − b`Dc)}

verifies

λD =
n− 1{n odd}

2n
.

Recall, from Relation (2) and Lemma 1, that n` =
∑n
i=1 C

(i)
0 is an integer.

Lemma 5. For any process C, there exists a shadow process D with parameter b such

that `D − b`Dc = (n− 1{n odd})/(2n). More precisely, let d ≥ 0 be the smallest integer

such that n divides n`+ d. Then
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• If 0 ≤ d ≤ n/2, then b = d+ (n− 1{n odd})/2,

• If n/2 < d < n, then b = d− (n+ 1{n odd})/2.

Proof. Let B0 be a set of b agents with b ∈ {1, · · · , n−1} and Dt be the correspond-

ing shadow process, associated with process Ct, defined in Section 3.2. By definition

of `D, we have, from (16), `D = `+ b/n which gives `D − b`Dc = `+ b/n− b`+ b/nc.

Let d be the smallest integer such that n divides n` + d. Integer d thus belongs to

{0, · · · , n− 1} and we have `D − b`Dc = (b− d)/n− b(b− d)/nc.

• Case 1: if 0 ≤ d ≤ n/2 then, by taking b = d+ (n− 1{n odd})/2, we check that

b ∈ {1, · · · , n− 1}. Since 0 < (n− 1{n odd})/(2n) < 1, we have

`D − b`Dc =
n− 1{n odd}

2n
−
⌊
n− 1{n odd}

2n

⌋
=
n− 1{n odd}

2n
.

• Case 2: if n/2 < d < n then, by taking b = d− (n+ 1{n odd})/2, we also check

that b ∈ {1, · · · , n− 1}. Since −1 < −(n+ 1{n odd})/(2n) < 0, we have

`D − b`Dc = −
n+ 1{n odd}

2n
−
⌊
−
n+ 1{n odd}

2n

⌋
=
n− 1{n odd}

2n
.

Hence, `D − b`Dc = (n− 1{n odd})/(2n), which ends the proof. �

The shadow process D, associated with process C, is thus constructed from the rest of

the Euclidean division of n` by n. Taking the complement of this rest to n, we deduce

the value of parameter b of the shadow process D. In order to prove the main theorem

of this paper, we still need the following technical result.

Lemma 6. For all t ≥ 0, we have

‖Ct − L‖∞ − ‖Dt − LD‖∞ ≤
n− 1

n
and ‖Dt − LD‖ − ‖Ct − L‖ <

√
n.

Proof. From Lemma 4, we easily get

`D =
1

n

n∑
i=1

D
(i)
t = `+

|Bt|
n

= `+
b

n
.

Observing that

‖Dt − LD‖∞ = max{`D − min
1≤i≤n

D
(i)
t , max

1≤i≤n
D

(i)
t − `D},

‖Ct − L‖∞ = max{`− min
1≤i≤n

C
(i)
t , max

1≤i≤n
C

(i)
t − `},
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we first deduce that

‖Dt − LD‖∞ ≥
(
`D − min

1≤i≤n
D

(i)
t

)
and ‖Dt − LD‖∞ ≥

(
max
1≤i≤n

D
(i)
t − `D

)
. (17)

We distinguish the following two cases.

If ‖Ct − L‖∞ = `−min1≤i≤n C
(i)
t then, applying Relation (17), we obtain

‖Ct − L‖∞ − ‖Dt − LD‖∞ ≤
(
`− min

1≤i≤n
C

(i)
t

)
−
(
`D − min

1≤i≤n
D

(i)
t

)
,

and since, from Lemma 4, we have min1≤i≤nD
(i)
t ≤ min1≤i≤n C

(i)
t + 1, we deduce

‖Ct − L‖∞ − ‖Dt − LD‖∞ ≤ `− `D + 1 = 1− b

n
≤ n− 1

n
.

If ‖Ct − L‖∞ = max1≤i≤n C
(i)
t − ` then, applying Relation (17), we obtain

‖Ct − L‖∞ − ‖Dt − LD‖∞ ≤
(

max
1≤i≤n

C
(i)
t − `

)
−
(

max
1≤i≤n

D
(i)
t − `D

)
,

and since, from Lemma 4, we have max1≤i≤n C
(i)
t ≤ max1≤i≤nD

(i)
t , we deduce again

‖Ct − L‖∞ − ‖Dt − LD‖∞ ≤ `− `D =
b

n
≤ n− 1

n
,

which completes the proof of the first inequality.

To prove the second one, note that Dt − LD is orthogonal to unit vector e. Indeed

〈Dt − LD, e〉 =

n∑
i=1

(
D

(i)
t − `D

)
= n`D − n`D = 0.

Hence, since LD −L = (`D − `)e, we deduce that Dt−LD and LD −L are orthogonal

too. The Pythagore’s Theorem then gives ‖Dt − L‖2 = ‖Dt − LD‖2 + ‖LD − L‖2,

which implies that ‖Dt − LD‖ ≤ ‖Dt − L‖.

From Relation (16), we have D
(i)
t − C

(i)
t = 1{i∈Bt} for every i = 1, . . . , n. Since

|Bt| = b, this leads to ‖Dt − Ct‖ =
√
b. From the triangle inequality and since b < n,

we get ‖Dt − L‖ ≤ ‖Dt − Ct‖+ ‖Ct − L‖ = ‖Ct − L‖+
√
b ≤ ‖Ct − L‖+

√
n. �

The following theorem is the main result of this paper.

Theorem 3. For all δ ∈ (0, 1), if there exists a constant K such that ‖C0 − L‖ ≤ K,

then, for all t ≥ (n− 1) (2 ln (K +
√
n)− ln δ − ln 2), we have

P {‖Ct − L‖∞ ≥ 3/2} ≤ δ. (18)
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Proof. Let d be the smallest integer such that n divides n` + d. From Lemma 5,

there exists a shadow process D associated with a set B0 of b agents, such that

`D − b`Dc =
b− d
n
−
⌊
`+

b− d
n

⌋
=
n− 1{n odd}

2n
.

Hence,

λD = min

(
n− 1{n odd}

2n
, 1−

n− 1{n odd}

2n

)
=
n− 1{n odd}

2n
.

Moreover, combining the hypothesis ‖C0−L‖ ≤ K and Lemma 6, we get ‖D0−LD‖ ≤

‖C0 − L‖+
√
n ≤ K +

√
n. We can thus apply Theorem 2 to process D with λD, LD

and K +
√
n in place of λ, L and K respectively. We thus obtain, for all δ ∈ (0, 1) and

for every t ≥ (n− 1) (2 ln(K +
√
n)− ln δ − ln 2),

P

{
‖Dt − LD‖∞ >

n+ 1{n odd}

2n

}
= P

{
max
1≤i≤n

D
(i)
t − min

1≤i≤n
D

(i)
t > 1

}
≤ δ.

From Lemma 6, we get ‖Ct −L‖∞ ≤ ‖Dt −LD‖∞ + n−1
n . This inequality allows us to

write

‖Dt − LD‖∞ ≤
n+ 1{n odd}

2n
=⇒ ‖Ct − L‖∞ ≤

n+ 1{n odd}

2n
+
n− 1

n
<

3

2
,

thus

P

{
‖Ct − L‖∞ <

3

2

}
≥ P

{
‖Dt − LD‖∞ ≤

n+ 1{n odd}

2n

}
,

or equivalently

P

{
‖Ct − L‖∞ ≥

3

2

}
≤ P

{
‖Dt − LD‖∞ >

n+ 1{n odd}

2n

}
≤ δ,

which completes the proof. �

Theorem 3 thus extends the results of Theorem 6 of [7] to the case of any value for

λ. For any λ value, process Ct belongs to the open ball of radius 3/2 and center L, with

any high probability in the infinite norm, after no more than O(n ln(K +
√
n)) time or

O(ln(K+
√
n)) parallel time as shown in Relation (18). Note that in Relation (18), we

give explicitly the constant arising in this complexity. This constant depends on the

upper bound K of ‖C0 − L‖ and the initial vector C0 is given by the application the

user wants to deal with. In the next section, we calculate the upper bound K for two

different types of applications : the proportion problem and the system size problem.

We conclude this section with the following corollary which shows that under the
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condition of Theorem 3, the greatest difference among the entries of vector Ct, which

represents the values of the agents at time t, is less than or equal to 2 with any high

probability.

Corollary 1. For all δ ∈ (0, 1), if there exists a constant K such that ‖C0 −L‖ ≤ K,

then for all t ≥ (n− 1) (2 ln (K +
√
n)− ln δ − ln 2), we have

P

{
max
1≤i≤n

C
(i)
t − min

1≤i≤n
C

(i)
t > 2

}
≤ δ (19)

Proof. Observe that

‖Ct − L‖∞ < 3/2⇐⇒ max
1≤i≤n

C
(i)
t − ` < 3/2 and `− min

1≤i≤n
C

(i)
t < 3/2

=⇒ max
1≤i≤n

C
(i)
t − min

1≤i≤n
C

(i)
t < 3.

This leads to P{‖Ct − L‖∞ < 3/2} ≤ P{max1≤i≤n C
(i)
t − min1≤i≤n C

(i)
t ≤ 2}, since

the C
(i)
t are integers and we conclude by applying Theorem 3. �

4. Applications

In this section, we apply the average-based distributed algorithm studied above to

derive, from local average-based interactions, two global properties of our system: first

the proportion of agents whose initial value is equal to A and second the number of

agents n of the system.

We suppose that agents initially start their execution either with the initial value

A or B. Let nA be the number of agents starting with value A. If agent i starts with

value A, we set C
(i)
0 = m and if he starts with value B, we set C

(i)
0 = 0, where m is an

integer, known by all the agents, which will be determined later. We thus have

‖C0 − L‖2 = nA

(
m− nAm

n

)2
+ (n− nA)

(nAm
n

)2
= m2nA

(
1− nA

n

)
. (20)

4.1. Solving the Proportion Problem

The proportion problem consists for each agent to compute the proportion γA of

agents that initially started the average-based algorithm with the initial value A. We

have γA = nA/n. Recall that the number n of agents in the system is not known to the

agents. Relation (20) gives a function of nA which reaches its maximum for nA = n/2.



16 Mocquard, Robin, Sericola and Anceaume

At that value we obtain ‖C0 − L‖2 ≤ m2n/4, that is

‖C0 − L‖ ≤ m
√
n/2. (21)

Recall that C
(i)
t represents the local value of agent i at discrete time t. We show

that the local estimation of the proportion γA is given by the quantity C
(i)
t /m. More

precisely, the following theorem gives an evaluation of the first instant t from which

the distance between C
(i)
t /m and γA, for all the agents, is less than a fixed ε with any

high probability 1− δ, the integer value m being determined by the threshold ε.

Theorem 4. For all δ ∈ (0, 1) and for all ε ∈ (0, 1), by taking m = d3/(2ε)e, we

have, for all t ≥ (n− 1) (lnn− ln δ + 2 ln(2 + 1/ε) + ln(9/32)),

P

{∣∣∣C(i)
t /m− γA

∣∣∣ < ε, for all i = 1, . . . , n
}
≥ 1− δ.

Proof. Since m = d3/(2ε)e, we have, from Relation (21),

‖C0 − L‖ ≤
m
√
n

2
=

⌈
3

2ε

⌉ √
n

2
≤
(

3

2ε
+ 1

) √
n

2
=

(
3 + 2ε

4ε

)√
n.

By choosing K = (3 + 2ε)
√
n/(2ε), we obtain

2 ln(K +
√
n) = 2 ln

[(
3 + 6ε

4ε

)√
n

]
= lnn+ 2 ln(3/4) + 2 ln(2 + 1/ε).

We are now able to apply Theorem 3, which leads, for all δ ∈ (0, 1) and for all

t ≥ (n− 1) (lnn− ln δ + 2 ln(2 + 1/ε) + ln(9/32)), to

P {‖Ct − L‖∞ ≥ 3/2} ≤ δ

or equivalently, since ` = γAm, to

P

{∣∣∣C(i)
t /m− γA

∣∣∣ < 3/(2m), for all i = 1, . . . , n
}
≥ 1− δ.

The fact that m ≥ 3/(2ε) completes the proof. �

In Figure 1, we compare our new bound of the convergence time obtained in

Theorem 4 for the proportion problem with the one previously obtained in [7]. One

can observe that we have considerably improved it. As usual, the parallel convergence

time is the convergence time divided by the number n of agents.
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Figure 1: Bounds comparison of the parallel convergence time for the proportion problem.

For each n, we simulate the parallel convergence time (star points) using 105 experiments.

We also compute the two upper bounds of the parallel convergence time obtained in [7]

(dashed line) and in Theorem 4 (plain line). For each experiment the initial proportion of

agents starting with A is a uniform random number in [0,1] and we have taken δ = 10−4 and

ε = 10−2, which gives m = 150. Note the logarithmic scale of the x-axis.

4.2. Solving the System Size Problem

We now address the system size problem and suppose that each agent knows nA.

We prove that each agent is able to determine either the exact value of the number n

of agents or an approximation of this number, depending on the initial input value m

with any high probability.

We introduce the following two functions, ωmin and ωmax, which will be used by

each node to get the lower and the upper bound of n, respectively. They are defined,

for all integers k, by

ωmin(k) =

⌈
2nAm

2k + 3

⌉
and ωmax(k) =


+∞ if k ≤ 1⌊

2nAm

2k − 3

⌋
if k ≥ 2.

We first start by a general result on the convergence time for the system size problem.

Lemma 7. For all δ ∈ (0, 1), for all positive integers m and nA, and for all t ≥

(n− 1)
(

ln
(
m
√
nA(1− nA/n) +

√
n
)
− ln δ − ln 2

)
, we have

P

{
ωmin

(
C

(i)
t

)
≤ n ≤ ωmax

(
C

(i)
t

)
, for all i = 1, . . . , n

}
≥ 1− δ.
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Proof. From (20), we obtain ‖C0 − L‖ ≤ m
√
nA(1− nA/n). Applying Theorem 3

with K = m
√
nA(1− nA/n), we get

P {‖Ct − L‖∞ < 3/2} ≥ 1− δ, (22)

for all t ≥ (n − 1)
(

ln(m
√
nA(1− nA/n) +

√
n)− ln δ − ln 2

)
. Then, recalling that

` = nAm/n and using the fact that

‖Ct − L‖∞ < 3/2⇐⇒ for all i = 1, . . . , n, C
(i)
t − 3/2 < nAm/n < C

(i)
t + 3/2, (23)

we deduce first that, for all i = 1, . . . , n, nAm/(C
(i)
t + 3/2) < n, which implies that

ωmin

(
C

(i)
t

)
=
⌈
nAm/(C

(i)
t + 3/2)

⌉
≤ n.

By definition of ωmax, if C
(i)
t ≤ 1, then obviously in that case n ≤ ωmax(C

(i)
t ). If

C
(i)
t ≥ 2, we deduce from Relation (23) that n < nAm/C

(i)
t − 3/2, which means

that n ≤
⌊
nAm/(C

(i)
t − 3/2)

⌋
= ωmax(C

(i)
t ). We thus have shown that, for all t ≥

(n− 1)
(

ln(m
√
nA(1− nA/n) +

√
n)− ln δ − ln 2

)
, we have

‖Ct − L‖∞ < 3/2 =⇒ ωmin

(
C

(i)
t

)
≤ n ≤ ωmax

(
C

(i)
t

)
, for all i = 1, . . . , n. (24)

The use of Relation (22) completes the proof. �

Suppose that an upper bound N of n is known. Then we prove that with any high

probability, after a given number of interactions (computed below), any agent i can

locally compute the exact system size n, i.e. ωmin(C
(i)
t ) = ωmax(C

(i)
t ) = n.

Theorem 5. For all δ ∈ (0, 1), for all positive integers nA and N with n ≤ N , by

taking m ≥ 3N(N + 1)/nA, we have, for all t ≥ (n− 1) (lnnA + 2 lnm− ln δ),

P

{
ωmin

(
C

(i)
t

)
= ωmax

(
C

(i)
t

)
= n, for all i = 1, . . . , n

}
≥ 1− δ. (25)

Proof. Since n ≤ N , the condition on m gives 3n(n+ 1) ≤ nAm or equivalently to

3n2 ≤ nAm− 3n. Multiplying each side of this inequality by 4nAm/n
2, we obtain

12nAm ≤ (2nAm/n)2 − 12nAm/n = 4(nAm/n− 3/2)2 − 9. (26)

On the other hand, from (20), we have ‖C0 − L‖ ≤ m
√
nA(1− nA/n). Using the fact

that
√

1− x ≤ 1− x/2, for all x ≤ 1, we get

‖C0 − L‖ ≤
√
nAm

(
1− nA

2n

)
.
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Denoting by K this upper bound of ‖C0 − L‖ and using successively the condition

mnA ≥ 3n(n+ 1) and the fact that nA ≥ 1, we obtain

K +
√
n =
√
nAm+

√
n−

mnA
√
nA

2n
≤
√
nAm+

√
n− 3(n+ 1)

2
≤
√
nAm.

Using this inequality in Theorem 3, we get, for all t ≥ (n−1) (lnnA + 2 lnm− ln δ − ln 2),

P {‖Ct − L‖∞ < 3/2} ≥ 1 − δ. Observe now that ‖Ct − L‖∞ < 3/2 implies that

nAm/n− 3/2 < C
(i)
t , for all i, which in turn implies, from (26), that

0 ≤ 12nAm ≤ 4(nAm/n− 3/2)2 − 9 < 4(C
(i)
t )2 − 9,

in which we used the condition m ≥ 3n(n + 1)/nA to ensure that nAm/n − 3/2 > 0.

Combining these two results and using the definitions of the integer functions ωmin and

ωmax, we obtain

‖Ct − L‖∞ < 3/2 =⇒ 12nAm

4(C
(i)
t )2 − 9

< 1 =⇒ 2nAm

2C
(i)
t − 3

− 2nAm

2C
(i)
t + 3

< 1

=⇒ ωmax

(
C

(i)
t

)
− ωmin

(
C

(i)
t

)
< 1 =⇒ ωmax

(
C

(i)
t

)
= ωmin

(
C

(i)
t

)
.

From (24) in Lemma 7, we also have

‖Ct − L‖∞ < 3/2 =⇒ ωmin

(
C

(i)
t

)
≤ n ≤ ωmax

(
C

(i)
t

)
, for all i = 1, . . . , n.

Thus, 1− δ ≤ P {‖Ct − L‖∞ < 3/2} ≤ P
{
ωmin

(
C

(i)
t

)
= ωmax

(
C

(i)
t

)
= n

}
. �

5. Conclusion

In this paper we have presented a thorough analysis of the bound of the convergence

time of average-based population protocols, and applied it to both the proportion

problem and the system size one. Thanks to a well chosen stochastic coupling, we have

considerably improved existing results by providing explicit and tight bounds of the

time required to converge to the solution of these problems. Numerical simulations

illustrate the tightness of our bounds of convergence times.
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