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23 Originality-Significance Statement

24 This study explores at the city-scale, the microbial assemblage of the communities forming 

25 mats in the street gutters of Paris, France. High-throughput sequencing of both bacterial and 

26 eukaryotic amplicons combined with statistical analyses revealed the importance of 

27 connectivity and co-occurrences in structuring these urban microbiomes while abiotic factors 

28 such as pH and conductivity appeared to be less important drivers. Various taxa were identified 

29 including primary producers, saprotrophic, symbiotic and parasitic organisms as well as bacteria 

30 involved in nutrient cycling. The results of this study highlight the importance and the diversity 

31 of street microbes, support the need to monitor this compartment but also to bring together 

32 urban biodiversity and waste management services, in order to elaborate action plans for cities.

33
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34 Summary

35 Streets are constantly crossed by billions of vehicles and pedestrians. Their gutters which 

36 convey stormwater and contribute to waste management, and are important for human health 

37 and well-being, probably play a number of ecological roles. Street surfaces may also represent 

38 an important part of city surface areas. To better characterize the ecology of this yet poorly 

39 explored compartment, we used filtration and DNA metabarcoding to address microbial 

40 community composition and assembly across the city of Paris, France. Diverse bacterial and 

41 eukaryotic taxonomic groups were identified, including members involved in key 

42 biogeochemical processes, along with a number of parasites and putative pathogens of human, 

43 animals and plants. We showed that the beta diversity patterns between bacterial and 

44 eukaryotic communities were correlated, suggesting interdomain associations. Beta diversity 

45 analyses revealed the significance of biotic factors (cohesion metrics) in shaping gutter 

46 microbial community assembly and, to a lesser extent, the contribution of abiotic factors (pH 

47 and conductivity). Co-occurrences analysis confirmed contrasting nonrandom patterns both 

48 within and between domains of life, specifically when comparing diatoms and fungi. Our results 

49 highlight microbial coexistence patterns in streets and reinforce the need to further explore 

50 biodiversity in urban ground transportation infrastructures.
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51 Introduction

52 Understanding urban microbiome structure might have implications on human health and risk 

53 management (e.g., in indoor environments including hospital and mass transit systems, urban 

54 recreational water, etc.) and promote our understanding on the impacts of long-term 

55 anthropogenic pressure on environmental resources (Khreis et al., 2016; Shamarina et al., 

56 2017). Microbial diversity and species assemblages have been shown to respond to 

57 urbanization and to be largely influenced by site characteristics, land cover or architectural 

58 design (Kembel et al., 2012). Deciphering the microbiome compositions in transportation 

59 systems remains a key issue for urban development and city sustainability. In this respect, 

60 studies have reported microbial biodiversity in train stations (Dong and Yao, 2010; Patel et al., 

61 2018) or subway systems (Dybwad et al., 2012; Dybwad et al., 2014; Leung et al., 2014; 

62 Afshinnekoo et al., 2015; Hsu et al., 2016; Fan et al., 2017). However, the street network 

63 system, which receives and conveys oil and other engine fluids that spill from transportation, 

64 dust, and atmospheric pollutants, along with human litter and waste, has surprisingly received 

65 much less attention (Janke et al., 2017).

66

67 Studies have reported the substantial roles of streets in conveying runoff and discharge of 

68 environmental, fecal and antibiotic-resistant bacteria to various surrounding water systems, 

69 such as streams (Baral et al., 2018), lakes (Zhang et al., 2016), waterways (Calderon et al., 2017) 

70 or groundwater (Voisin et al., 2018). Analyses of soils from a motorway or highly trafficked road 

71 in Copenhagen have revealed the presence of microbial polycyclic aromatic hydrocarbon 

72 degraders (Johnsen et al., 2006; Johnsen et al., 2014). An analysis of urban soils from the street 
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73 green belts of the city of Chicago, USA, revealed that soils along a one-way street showed 

74 higher Shannon and phylogenetic diversities than other soils, including those along a two-way 

75 street, a feature that could be correlated with soil pH, moisture, and texture (Wang et al., 

76 2018). We believe that the microorganisms living in the street, in street gutters and on 

77 pedestrian surfaces may present specific surface-associated diversity, such as the ones 

78 identified on concrete (Domingo et al., 2011; Li et al., 2012; Gomez-Alvarez et al., 2015; Jiang et 

79 al., 2016; Cayford et al., 2017; Cowle et al., 2017; Li et al., 2017) or buildings and monuments 

80 (Ragon et al., 2011; Chimienti et al., 2016; Gaylarde et al., 2017; Adamiak et al., 2018; Dyda et 

81 al., 2018). 

82

83 Because surfaces are important to the interaction between bacteria and microeukaryotes, 

84 addressing the biodiversity and identifying the keystones species present in the street systems, 

85 including the ones made in concrete, stone and bitumen, is essential. In a previous study, we 

86 analyzed the eukaryotic diversity from street gutters biofilms/mats and found a gutter-specific 

87 diversity (Hervé et al., 2018). Our study aimed here at: (i) identifying microeukaryote-associated 

88 bacteria in street gutter biofilms, (ii) describing bacteria-eukaryote association patterns, (iii) 

89 identifying the factors structuring these complex microbial communities, and (iv) identifying 

90 potential keystone taxa in these biofilms. Because of the physical structure of these 

91 environmental biofilms, we hypothesized that biotic factors and microbial co-occurrences will 

92 play a significant role in the street gutter assembly. 

93
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94 To focus on the bacterial communities that are specifically associated with 

95 microeukaryotes, we used a size fractionation approach. We expected that such procedure 

96 would give valuable information on resident bacteria along with the ecto- and endosymbiotic 

97 bacteria. Co-occurrence analysis was used to determine the intra- and interdomain (hereafter 

98 referring to domains of life) interactions and revealed different positive and negative patterns 

99 for bacteria alone, eukaryotes alone or eukaryotes and bacteria. To predict “keystone species” 

100 in gutter biofilms/mats, we used a cohesion algorithm (Herren and McMahon, 2017, 2018). 

101 Based on the biodiversity found in the street gutters, we discuss potential functional roles for 

102 these urban microbiomes.

103

104

105 Results

106 Complexity of the urban street gutter microbiome

107 Our aim was to understand the microbial community composition in street gutter biofilms, to 

108 infer putative interactions and interspecific cooperation between microeukaryotes (protists and 

109 Fungi) and bacteria as well as to identify taxa that might be involved in primary production, 

110 nutrient recycling or that might correspond to putative pathogens. Because we were interested 

111 in microeukaryote-bacterial interactions, the 60 gutter biofilms/mats sampled in Paris were 

112 filtered through a 5 µm membrane. We extracted the environmental DNA from the filter 

113 membrane and created two independent amplicon libraries for the 16S rRNA and 18S rRNA 

114 encoding genes. After amplicon sequencing, followed by sequence processing (see 
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115 Experimental procedures), 3,981 OTUs and 5,899 OTUs were obtained for the 18S and 16S rRNA 

116 gene library, respectively.

117

118 The eukaryotes present in the street gutters were assigned to 9 taxonomic groups and 

119 to unclassified-eukaryotes. The highest richness was found among the Stramenopile (1,324 

120 OTUs, including 764 OTUs belonging to the Bacillariophyta clade), followed by the Opistokonta 

121 (938 OTUs, among which we found 837 fungal OTUs), Rhizaria (461 OTUs), Alveolata (364 

122 OTUs), and Archaeplastida (360 OTUs), and then by the Amoebozoa (79 OTUs), Hacrobia (63 

123 OTUs) and Apusozoa (8 OTUs) (Fig. 1A). However, both the abundance and the diversity showed 

124 large variations depending on the sampling site, with some sites specifically rich in Fungi and 

125 others in Bacillariophyta (Supplementary Fig. S1). We also observed that Ciliophora, 

126 Chlamydomonadales, Fungi, Glissomonadida, Chrysophyceae and Oomycota were present in all 

127 samples. Within the fungal kingdom, Chytridiomycota was the most prevalent group, being 

128 present in 59 out of the 60 samples.

129

130 The bacterial OTUs were assigned to 35 phyla and candidate phyla (Fig. 1B). The 

131 Proteobacteria phylum was the richest (2,097 OTUs, and 55.9 % of the total abundance) and 

132 was composed, in decreasing order, of Alphaproteobacteria (738 OTUs, 27.4 %), 

133 Deltaproteobacteria (509 OTUs, 1.9 %), Betaproteobacteria (411 OTUs, 13.7 %), 

134 Gammaproteobacteria (394 OTUs, 10.7 %) and Epsilonproteobacteria (8 OTUS, 0.6 %). The 

135 other dominant phyla corresponded to Bacteroidetes (1,284 OTUs, 24.7 % total abundance), 

136 Cyanobacteria (4.8 %), Actinobacteria (4.4 %), Firmicutes (1.8 %), Acidobacteria (1.3 %), 
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137 Deinococcus-Thermus (1.3 %) and Verrucomicrobia (1.3 %). Members of the bacterial genera 

138 Flavobacterium, Saccharibacteria and Hymenobacter were present in all samples, suggesting a 

139 ubiquitous distribution of these bacteria in Parisian street gutters. In contrast with the 18S 

140 rRNA gene library, the abundance profiles at the bacterial phylum-level showed low variability 

141 among the 60 samples (Supplementary Fig. S1). 

142

143 Diversity patterns of eukaryotic and bacterial communities

144 In the street gutters, bacterial richness corresponded on average to 657 OTUs, ranging from 

145 210 to 1,246 OTUs. Eukaryotic richness was lower (mean value = 210 OTUs), ranging from 96 to 

146 548 OTUs. Overall, bacterial richness was significantly higher than the eukaryotic richness 

147 across the samples (Wilcoxon test, p-value < 2.2e-16) (Fig. 2A). 

148

149 Regarding the beta diversity, dissimilarity based on Canberra distances was significantly 

150 higher in eukaryotic than in bacterial communities (Wilcoxon test, p-value < 2.2e-16), suggesting 

151 more divergence in the eukaryotic community composition between the microbial mats 

152 compared to the bacterial community composition (Fig. 2B). A strong and positive correlation 

153 between eukaryotic and bacterial beta diversities was observed (partial Mantel test accounting 

154 for geographic distances, rM = 0.658, p-value < 1.10-5), indicating that among the microbial 

155 mats, changes in eukaryotic and bacterial community composition were correlated and 

156 followed a similar trend. At the scale of the city, no significant correlation was found between 

157 the microbial community composition and the geographic distances (partial Mantel test, 
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158 accounting for water chemistry variables, rM = 0.054, p-value = 0.1 for the eukaryotes and rM = 

159 0.033, p-value = 0.4 for the bacteria) (Supplementary Fig. S2).

160

161 Factors shaping the street gutter microbiome

162 Subsequently, factors shaping the street gutter microbiome were investigated. Because of the 

163 observed correlation between beta diversity metrics, the contribution of biotic factors was 

164 suspected. Thus, we used a recently developed statistical method named cohesion to quantify 

165 the degree of connectivity (positive and negative cohesions) (Herren and McMahon, 2017). 

166 Additionally, we evaluated the influence of two important physico-chemical parameters, 

167 namely pH and conductivity, on the microbial community composition. Multivariate analysis of 

168 deviance of the GLMs revealed similar trends for the effects of biotic and abiotic factors on 

169 bacterial and eukaryotic community composition (Table I). The two-cohesion metrics (p-value < 

170 0.005), conductivity (p-value < 0.005) and pH (p-value < 0.05) had a significant effect on 

171 community composition. The contribution of pH (Dev = 1960 and Dev = 726 for bacterial and 

172 eukaryotic community, respectively) to community composition was always lower than the 

173 contribution of conductivity (Dev = 2635 and Dev = 1061 for bacterial and eukaryotic 

174 community, respectively). However, in the present dataset, biotic factors (positive and negative 

175 cohesions) always show a much higher explained deviance compared to the tested abiotic ones, 

176 indicating that cohesion explains more of the variation than pH and conductivity. 

177

178 Regarding the cohesion metrics, we observed different patterns between bacterial and 

179 eukaryotic communities. For bacteria, positive cohesion (Dev = 7,639) appears to be more 
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180 important than negative cohesion (Dev = 5,410) in explaining community composition. 

181 Opposite results were observed for the eukaryote where negative cohesion (Dev = 2,027) 

182 contributed more than positive cohesion (Dev = 1,781), suggesting that connectivity patterns 

183 differ between bacteria and eukaryotes. The same analysis was performed after merging both 

184 the bacterial and eukaryotic OTU matrices. The four variables remained significant, with biotic 

185 factors (Dev = 8,040 and Dev = 5,349 for positive and negative cohesion, respectively) still 

186 showing higher explained deviance compared to abiotic factors (Dev = 2,567 and Dev = 3,420 

187 for pH and conductivity, respectively).

188

189 Bacterial and eukaryotic OTU co-occurrences

190 Because biotic factors appeared to be the highest driving forces in the street gutter 

191 microbiome, we computed co-occurrence probabilities to identify co-occurring taxa (see 

192 Experimental procedures). We found 228,695 positive and 83,749 negative significant co-

193 occurrences, representing 16.2 % of the nonrandom co-occurrences. To gain insight into the 

194 intra- and interdomain co-occurrence patterns (eukaryote-eukaryote, eukaryote-bacteria and 

195 bacteria-bacteria), we then inspected these co-occurrences at bacterial phylum and eukaryotic 

196 clade level (Supplementary Fig. S3, S4 and S5). Circos visualizations revealed that in several 

197 clades, including Apusozoa, Bacillariophyta, Alveolata or Rhizaria, the patterns of positive and 

198 negative co-occurrences can be significantly different for their eukaryotic-eukaryotic 

199 interactions (Supplementary Fig. S3). Among the bacteria-bacteria interactions, we see a 

200 general pattern in the much higher number of intra-phylum positive co-occurrences compared 

201 to the negative ones, which might indicate synergistic relationships (Supplementary Fig. S5).
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202

203 We then focused on the co-occurrences associated with the two eukaryotic clades that 

204 present the highest diversity and abundances. For the Bacillariophyta, the highest number of 

205 positive co-occurrences was with themselves (71.2 %), followed by the ones with 

206 Archaeplastida (7.5 %), other Stramenopiles (5.4 %) and Fungi (4.6 %), while their negative co-

207 occurrences were with Fungi (44.0 %), other Stramenopiles (17.3 %), Rhizaria (13.8 %) and 

208 Alveolata (12.7 %) (Fig. 3A, left panel). For the Fungi, we found 2.9 % of their positive co-

209 occurrences and 55.3 % of their negative ones with Bacillariophyta (Fig. 3A, right panel), 

210 suggesting interferences or competition for space and/or resources in street gutter 

211 biofilms/mats. Looking at the co-occurrences with bacteria, the Bacillariophyta presented 

212 17,765 positive and 4,945 negative co-occurrences, whereas the Fungi presented 11,455 

213 positive and 13,648 negative co-occurrences. For these two clades, the highest number of 

214 positive and negative co-occurrences was with the Proteobacteria (Bacillariophyta: 38.2 % 

215 positive and 39.3 % negative; Fungi: 31.0 % positive and 40.2 % negative), followed by the 

216 Bacteroidetes (Bacillariophyta: 28.0 % positive and 30.0 % negative; Fungi: 29.1 % positive and 

217 34.2 % negative) (Fig. 3B). For the other bacterial phyla, we found that most of them (except 

218 Firmicutes, Fusobacteria and Saccharibacteria) showed more positive than negative co-

219 occurrences with Bacillariophyta. The Fungi presented more negative than positive co-

220 occurrences with most of the phyla, except for the Actinobacteria, Chroroflexi and FBP (Fig. 3B). 

221 At the order level, the main differences in co-occurrences between the bacteria and diatoms 

222 were for the OPB35_soil_group (Verrucomicrobia), SC-I-84 (Betaproteobacteria) and OM190 

223 (Planctomycetes), with ratios of positives/negatives co-occurrences of 293, 164 and 134, 
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224 respectively. The other orders, such as Aeromonadales (Gammaproteobacteria) and 

225 Corynebacteriales (Actinobacteria), showed more negative than positives co-occurrences with 

226 ratios of 0.019 (2/103) and 0.044, respectively. Between the bacteria and Fungi, the main 

227 differences were for Frankiales (Actinobacteria) and Longimicrobiales (Gemmatimonadetes) 

228 with ratios of 235 or 63, respectively, whereas Bradymonadales (Deltaproteobacteria), OM190 

229 (Planctomycetes), and Chromatiales (Gammaproteobacteria) showed more negative co-

230 occurrences, with ratios of 0.037, 0.041, and 0.047, respectively. Altogether, these analyses 

231 demonstrated differences in intra- and interdomain co-occurrence patterns.

232

233 Identification of highly connected taxa

234 The cohesion algorithm mentioned above was also used to identify the highly connected OTUs 

235 within the gutter microbial mats, which can be assimilated as keystone taxa (Herren and 

236 McMahon, 2018). Because both positive and negative cohesions had a significant impact on the 

237 microbial community composition (Table I), the 15 bacterial and eukaryote OTUs presenting the 

238 highest positive or negative connectedness were further investigated. In fact, since an OTU 

239 could be ranked among the 15 most positive but also among the 15 most negative 

240 connectedness values, we identified 25 OTUs for the eukaryotes (10 positives, 10 negatives and 

241 5 OTUs that were among the most positive and negative) and 28 OTUs for the bacteria (13 

242 positives, 13 negatives and 2 OTUs that were among the positive and negative) as potential 

243 keystone taxa. When necessary, the taxonomy assignment of some of the most connected 

244 OTUs was improved by BLASTn analyses and phylogenetic trees reconstruction.

245
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246 The data presented in Fig. 4A revealed that the eukaryotes presenting the highest positive 

247 and lowest negative connectedness values corresponded to Fungi (these included eight OTUs 

248 from the Ascomycota lineage and four Chytridiomycota, two Basidiomycota and one 

249 Blastocladiomycota), Bacillariophyta (three OTUs assigned to the genus Melosira), Cercozoa (six 

250 members of the class Sarcomonadea), and Pythiales (the single OTU corresponded to the genus 

251 Pythium). For the bacteria, we identified thirteen members of the Proteobacteria lineage (eight 

252 Alphaproteobacteria, two Betaproteobacteria, one Deltaproteobacteria, one 

253 Gammaproteobacteria and one unclassified with a best BLASTn corresponding to the genus 

254 Paracoccus), eight Bacteroidetes (four Sphingobacteriales, two Cytophagales, one 

255 Flavobacteriales and one Bacteroidetes Order II. incertae sedis likely to correspond to the order 

256 Rhodothermales), three Planctomycetes (two from the family Planctomycetaceae and one with 

257 best blast to uncultured bacterium), two Actinobacteria, one Acidobacteria and one 

258 Verrucomicrobia (Fig. 4B). 

259

260

261 Discussion

262 Even if more data are needed on the total surface area covered by streets in cities, existing 

263 evaluations vary from 10 to 50 %, with about 25 % for Paris. Depending on the city size, the 

264 street transportation systems correspond to hundreds to thousands of kilometers. Therefore, 

265 the number of microorganisms living worldwide in streets and street gutters is likely to be 

266 enormous and undoubtedly these organisms might play fascinating roles in urban 

267 environments including in food webs, biogeochemical cycles, pollutants detoxification, or waste 
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268 and stormwater treatments. Additionally, these microorganisms should require further 

269 attention for human health and well-being concerns. 

270

271 Biofilm assembly in gutter mats

272 Using a 5 µm filtration procedure to enrich the bacterial fraction that was closely associated 

273 with the eukaryotes from sixty gutter biofilms sampled across Paris, we describe here the 

274 molecular diversity of both bacteria and eukaryotes via a metabarcoding approach (Fig. 1). A 

275 comparison of the beta diversity of these two domains of life revealed a positive and significant 

276 correlation. We also found that both the street water pH and conductivity had a significant 

277 effect on bacterial and eukaryotic community composition (Table I). Water chemistry is known 

278 to have an impact on aquatic biofilm community structure (Besemer, 2015). At the city scale, 

279 we did not observe any significant correlation between microbial community dissimilarity and 

280 geographical distance (Supplementary Fig. S2), indicating no spatial autocorrelation (see: 

281 (Hanson et al., 2012)). This suggests no dispersal limitation among the street gutter microbial 

282 communities of Paris. Microbial dispersal could be facilitated by rains, water transport, wind 

283 and cleaning processes (i.e., street sweeping and washing and vacuum vehicles).

284

285 Regarding the factors shaping the microbial beta diversity, the multivariate analysis of 

286 deviance of GLMs indicated that the biotic factors (cohesion metrics) explained more variation 

287 than the abiotic factors (pH and conductivity). Nonetheless, further studies should include 

288 measurements of more abiotic variables to confirm our results. The importance of cohesion, 

289 i.e., the degree of connectivity of a microbial community, might be explained by the physical 

Page 14 of 47

Wiley-Blackwell and Society for Applied Microbiology



For Peer Review Only

15

290 structure of the microbial community being sampled. Within a biofilm, microorganisms are 

291 enclosed in a matrix containing extracellular polymeric substances (Battin et al., 2016). These 

292 microbial aggregates present enhanced intercellular communications and a higher level or 

293 organization compared to single cells (Flemming and Wuertz, 2019). Overall, supported by 

294 three different statistical approaches (Mantel test, co-occurrences and cohesion analyses), our 

295 study highlights the importance of microbial associations in street gutters.

296

297 Bacteria and eukaryotes diversity in biofilms/mats from street gutters

298 The 5,899 bacterial OTUs were assigned to 35 phyla and candidate phyla, in decreasing order 

299 beginning with the Proteobacteria (55.9 % of the total abundance), followed by the 

300 Bacteroidetes (24.7 %), Cyanobacteria (4.8 %), Actinobacteria (4.4 %), Firmicutes (1.8 %), 

301 Acidobacteria (1.3 %), Deinococcus-Thermus (1.3 %) and Verrucomicrobia (1.3 %). The 

302 Alphaproteobacteria, which corresponded to 27.4 % of the total abundance, was dominated by 

303 the order Sphingomonadales (58.8 % of the relative abundance within this class). Interestingly, 

304 among the 126 Sphingomonas-related OTUs, three of them could be defined as keystones 

305 species (see below). This bacterial order that presents interesting metabolic pathways, 

306 including carotenoid pigment synthesis (Siddaramappa et al., 2018), was found in various 

307 environments from the caves (Marques et al., 2019) to thermal springs (Pedron et al., 2019) 

308 and clouds (Amato et al., 2017), and recently, in the drinking water distribution system in Paris 

309 (Perrin et al., 2019). Microbial biofilm diversity and community composition have been 

310 addressed in several urban drinking and draining water distribution systems, and enrichments 

311 of specific communities within biofilms have been reported (Bertelli et al., 2018; Bruno et al., 
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312 2018; Douterelo et al., 2018; Douterelo et al., 2019; McLellan and Roguet, 2019). Interestingly, 

313 in the street gutter biofilms/mats, we identified 21 OTUs (three Arcobacter, twelve 

314 Acinetobacter, five Aeromonas and one Trichococcus) from genera that were previously shown 

315 to be dominant in sewer pipe (McLellan and Roguet, 2019). Among these OTUs, five of them 

316 (one Arcobacter, two Acinetobacter, one Aeromonas and one Trichococcus) were among the 50 

317 most abundant OTUs in our dataset. 

318

319 We also identified several bacteria that could correspond to potential opportunistic 

320 pathogens for human, animals or plants. In particular, we found OTUs assigned to the 

321 Enterobacteriaceae family (i.e., Escherichia-Shigella, Serratia, Pectobacterium, Enterobacter, 

322 Dickeya, etc.), Legionellaceae (i.e., 16 OTUs of the genus Legionella), Pseudomonadaceae (i.e., 

323 17 OTUs of the genus Pseudomonas), Aeromonadaceae (i.e., three rare and five abundant OTUs 

324 of the genus Aeromonas), Streptococcaceae (i.e., Streptococcus), Enterococcaceae (i.e., 

325 Enterococcus), Mycobacteriaceae (i.e., Mycobacterium), Dietziaceae (i.e., Dietzia) and 

326 Corynebacteriaceae (i.e., Corynebacterium). Furthermore, we found that the Rickettsiales 

327 order, harboring parasitic and mutualistic intracellular bacteria, was prevalent in the gutter 

328 biofilms, with 97 OTUs present in 90 % of the samples. Within this order, three OTUs belonging 

329 to the genus of Rickettsia were identified. Many members of this latest genus are arthropod 

330 endosymbionts and include some species that are causative agents of human diseases such as 

331 typhus and spotter fever (Perlman et al., 2006). Four OTUs were assigned to Candidatus 

332 Odyssela, a bacterial genus with members that live intracellularly in Amoebozoa (Birtles et al., 

333 2000). We are aware that to further characterize the presence of putative pathogens in the 
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334 street surfaces, the complete bacterial community should be analyzed (using 0.2 µm filters), 

335 along with the virome (Fresia et al., 2019).

336

337 Among the 3,981 eukaryotic OTUs we identified putative symbiotic eukaryotes. Among 

338 them, six OTUs were assigned to Glomeromycota, which forms arbuscular mycorrhizas with the 

339 roots of many land plants. Most likely, these sequences were amplified from fungal spores 

340 which would indicate that gutters could act as vector. A number of known plant and algae 

341 (including diatoms) parasites belong to the Oomycetes clade (Kuhn and Hofmann, 1999; Scholz 

342 et al., 2016; Garvette et al., 2018; Leonard et al., 2018). Among the Oomycetes, 14 OTUs 

343 assigned to the Phytophthora genus were identified in eighteen samples. This genus is 

344 composed exclusively of plant pathogens targeting a wide range of hosts. Thus, street gutters 

345 might act as a reservoir of plant pathogens. We also found a keystone species belonging to the 

346 Pythium genus, along with a number of other parasite-related sequences, including from 

347 Pirsonia and “pseudofungus,” such as Hyphochytrium. Finally, regarding the fungal diversity, 

348 239 out of 837 fungal OTUs were assigned to unclassified fungi, representing a potential 

349 fraction of fungal dark matter (Grossart et al., 2016) in urban environments and thus, making 

350 street gutters potential hotspots of hidden diversity.

351

352 Keystone taxa in street gutters and co-occurrences between bacteria and eukaryotes

353 As mentioned above, cohesion metrics were used to identify the most highly connected OTUs, 

354 which might correspond to potential keystone taxa that influence community structure (Herren 

355 and McMahon, 2018). Among the 53 keystone OTUs that we identified, three of them 
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356 correspond to a primary producer, and in particular to the diatom genus Melosira, further 

357 confirming the importance of diatoms in street gutters (Hervé et al., 2018). Indeed, among the 

358 100 most abundant OTUs, 26 corresponded to this clade with 24 related to raphid-pennate 

359 species and two to Melosira (abundance ranked 1st and 20th). Even if the dominance of pennate 

360 diatoms in fouling biofilm is a ubiquitous observation (see: (Richard et al., 2017; Zhang et al., 

361 2017)), the presence of Melosira, a true cosmopolitan centric form capable of forming 

362 filaments, suggests that it might live and proliferate entangled within the urban biofilm 

363 matrices. Moreover, we found that diatoms present, mostly intraclade positive co-occurrences, 

364 and their negative co-occurrences were dominated by interactions with Fungi (Fig. 3A) and, in 

365 particular, with the most abundant and diverse subphylum, the Pezizomycotina. This observed 

366 pattern of negative fungi-diatoms associations could be explained by antagonistic interactions, 

367 such as allelopathic interactions between aquatic fungi and diatoms that have previously been 

368 reported and showed a negative impact of fungi on primary production (Allen et al., 2017).

369

370 Among the fifteen keystone OTUs related to Fungi, seven of them were related to 

371 Pezizomycotina (four Eurotiomycetes, two Dothideomycetes and one unclassified 

372 Pezizomycotina). BLASTn analyses revealed the proximity of these OTUs to Bradymyces and to 

373 Knufia, two fungal genera that have been found in various environments such as outdoor rocks 

374 or indoor granites surface (Reblova et al., 2016; Tesei et al., 2017). A putative member of the 

375 Cucurbitariaceae also corresponded to a keystone taxa, which suggests that members of this 

376 family usually regarded as saprotrophs or necrotrophs could play roles in street microbial 

377 community structure (Doilom et al., 2013; Jaklitsch et al., 2018). 
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378

379 Keystone taxa found here also belong to the Glissomonadida, an important cercozoan 

380 order of predominantly biflagellate gliding bacterivores. By recognizing the importance of 

381 micropredators in the structure of microbial communities, we can hypothesize that bacteria are 

382 used as food source in this environment and that Cercozoans play important roles in 

383 biofilms/mats formation (Cavalier-Smith and Chao, 2003). A putative phytopathogen belonging 

384 to the genus Pythium (best BLASTn hit) was also identified as a eukaryotic keystone taxon. The 

385 Pythiaceae that are well-known plant pathogens (Meng et al., 2009) with saprotrophic 

386 behavior, have been isolated from sediments and plant materials in decomposition in 

387 freshwater inland ecosystems (Kachour et al., 2016). Whatever their urban origin (i.e., plants 

388 covering green roofs and green walls, parking lot and sidewalk, etc.), Pythiaceae might 

389 contribute to plant organic matter decomposition in the street network system (also see 

390 below).

391

392 The 25 bacterial keystone taxa identified here belong to Proteobacteria (thirteen OTUs), 

393 Bacteroidetes (eight OTUs), Planctomycetes (three OTUs), Actinobacteria (two OTUs), one 

394 Acidobacteria, and one Verrucomicrobia (Fig. 4B). The presence of three keystone taxa 

395 belonging to Sphingomonadaceae (Proteobacteria, Alphaproteobacteria), a family that harbors 

396 aromatic hydrocarbon-degrading species (Shi et al., 2001; Marques et al., 2019; Sanchez-

397 Gonzalez et al., 2019) suggests the need to develop studies on the mechanisms of aromatic 

398 compound biodegradation in the street gutters. Interestingly, the Sphingobacteriales (4 

399 keystone OTUs) correspond to another clade to investigate for putative roles in street gutter 
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400 bioremediation. For example, this order was found to be enriched in urban rivers influenced by 

401 wastewater treatment plant effluents (Drury et al., 2013). 

402

403 As mentioned above, bacteria-eukaryote interactions are known to be important for the 

404 functioning of various ecosystems, and street gutters appear to be no exception. Indeed, co-

405 occurrence analysis demonstrated preferential patterns that are phylum-specific, and in 

406 particular, the many nonrandom bacterial-fungal and bacterial-diatom co-occurrences (Fig. 3). 

407 As in freshwater or marine water environments, our data demonstrated that Proteobacteria 

408 and Bacteroidetes are the main bacterial phyla interacting with the diatoms; hence, these 

409 bacteria are expected to influence their growth, behavior and physiology in street biofilms 

410 (Amin et al., 2012; Buchan et al., 2014; Sison-Mangus et al., 2014; van Tol et al., 2017). The 

411 Cyanobacteria phylum (4.8 % of the total abundance) presented very few negative co-

412 occurrences with the diatoms (493 positives and 29 negatives), a result which suggests a 

413 foreseeable association between diatoms and autotrophic nitrogen-fixing Cyanobacteria (Amin 

414 et al., 2012). We also found contrasting patterns in intra- and interphylum interactions when 

415 comparing diatoms and Fungi, especially for some order like the Planctomycete lineage OM190, 

416 Verrucomicrobia Subdivision 3, Aeromonadales, Corynebacteriales, Frankiales, Bradymonadales 

417 or Chromatidales. We believe that a number of these nonrandom species co-occurrence and 

418 enrichment patterns might correspond to differences in trophic level interactions between 

419 diatoms and Fungi with their associated microbial communities, for nutrient fluxes or energy 

420 production. 

421
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422 Putative functional roles of microbes in street gutters

423 While the present study is only based on small subunit rRNA gene amplicons functional 

424 inference can be proposed based on the presence of certain taxa. Regarding the carbon cycle, 

425 various phototrophic bacteria were observed, including purple sulfur bacteria (11 OTUs 

426 assigned to the genus Rheinheimera), purple non-sulfur bacteria (Rhodobacter and 

427 Roseomonas) and oxygenic photosynthetic Cyanobacteria (92 OTUs). Methylotroph 

428 (Methyloversatilis and Methylobacterium) and methane-oxidizing bacteria (Candidatus 

429 Methylomirabilis) were also detected. The presence of ammonia-oxidizing bacteria 

430 (Nitrosospira and Nitrosomonas) and nitrite-oxidizing bacteria (Candidatus Methylomirabilis, 

431 and Nitrospira) suggest a role of gutter mats in nitrogen cycling. Similarly, the presence of iron-

432 reducing (Ferribacterium) and iron-oxidizing bacteria (Sideroxydans) as well as sulfate-reducing 

433 bacteria (Desulfomicrobium, Desulfobulbus, Desulfovibrio, and Desulfobacca) are early evidence 

434 of the contribution of the gutter microbiome to urban nutrient cycling. Meanwhile, we also 

435 found OTUs related to bacteria that have been shown to be predominant in activated sludge 

436 and contribute to pollutant degradation such as members of the Nocardiaceae (i.e., Gordonia, 

437 Nocardia, Rhodococcus, Nocardioides, etc.) or the Propionibacteriaceae (i.e., Propioniciclava).

438

439 Among the bacterial taxa present in all gutter samples, we found Flavobacterium, 

440 Saccharibacteria and Hymenobacter. Saccharibacteria, formerly known as Candidate phylum 

441 TM7, still lacks isolates from axenic culture. Thus, gutter mats could represent samples of 

442 choice for targeted isolation of this phylum. Regarding the richness of this clade in the gutter 

443 mats, 116 OTUs were assigned to this phylum, with an average of 11 OTUs per sample. This 
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444 phylum was also reported to be diverse in activated sludge, with some phylotypes able to 

445 utilize glucose, amino acids and N-acetylglucosamine (Kindaichi et al., 2016). The latter 

446 compound is likely to be abundant in the street gutters due to the abundant presence of fungi 

447 that possess chitin cell walls. Both Flavobacterium (165 OTUs identified) and Hymenobacter (82 

448 OTUs identified) belong to the Bacteroidetes phylum. Further research effort should focus on 

449 isolating and characterizing members of these two genera to better understand their metabolic 

450 potential and functional role in the streets. More generally, the taxonomic inventory generated 

451 in the present study could provide a foundation for investigating gutter functional ecology via 

452 both in situ and in vitro experiments to better understand the role of their microorganisms in 

453 the urban landscapes.

454

455

456 Experimental procedures

457 Field sampling strategy, DNA preparation and sequencing

458 The sampling procedure, used herein to address the street gutter microbial communities in a 

459 metropolitan area of Paris, has been previously described (Hervé et al., 2018), except that here 

460 we focused on 60 gutter mats for which both the 16S rRNA and 18S rRNA genes could be 

461 successfully amplified. Briefly, samples were homogenized on a rotating wheel, prefiltered 

462 using a 300 µm mesh to remove putative debris, and then filtered through a 5 µm TMTP filter 

463 (Millipore). The filters were stored at -80°C until they were used. The pH and the conductivity of 

464 the samples were measured on arrival in the laboratory (within a few hours after the sampling) 

465 using a Benchtop Multiparameter Meter (Thermo Fisher Scientific).
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466

467 Total environmental DNA was extracted from the filters using a PowerBiofilm DNA Isolation kit 

468 according to the manufacturer’s recommended procedure (MO BIO). To prepare the 16S and 

469 18S rRNA gene libraries, PCR amplifications were performed with primers that contained a tag 

470 preceded by 2-4 random bases at the 5' end. The V4 region of the 18S rRNA gene region was 

471 amplified using the D512for (5'-NtagATTCCAGCTCCAATAGCG-3') and D978rev (5'-

472 NtagGACTACGATGGTATCTAATC-3') primers (Zimmermann et al., 2011). The V3-V4 region of the 

473 16S was amplified with the 341F (5′-NtagCCTACGGGNGGCWGCAG-3′) and 805R (5’-

474 NtagGACTACHVGGGTATCTAATCC-3’) primers (Herlemann et al., 2011). Preparation of the DNA 

475 libraries and sequencing were performed by Fasteris SA, using the following procedure. PCR 

476 amplifications were performed using 1 µL of DNA (5-10 ng) in the following mix: 1.00 µL DNA, 

477 1.00 µL Forward Primer (10 µM), 1.00 µL Reverse Primer (10 µM), 0.75 µL DMSO, 0.25 µL BSA 

478 (10x), 8.50 µL H2O, and 12.50 µL PCR Master Mix 2x (KAPA2G Robust HotStart DNA polymerase 

479 ReadyMix, KAPA Biosystems). The following amplification program was used: 95°C 5min / 30 x 

480 (95°C 15 sec / 52°C 15 sec /72°C 30 sec) / 72°C 3 min. The PCR products were checked on 

481 agarose gels, purified using Agencourt AMPure XP beads (Beckman Coulter), and quantified 

482 using a Qubit dsDNA HS assay kit. The PCR products were then normalized and pooled (2 pools). 

483 The libraries were prepared using 1 µg DNA from the pools and the Illumina TruSeq Genomic 

484 Nano Library Preparation Kit. The supplier's protocols were followed, with the exception of the 

485 use of a modified End-Repair mix to avoid production of chimeric constructs, and no PCR cycle 

486 was done to finalize the libraries. The resulting libraries were quantified by qPCR and 

487 sequenced using a MiSeq 2 x 300 paired-end run.
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488

489 Sequence processing

490 Amplicons of the 16S and 18S rRNA gene sequences were analyzed independently with mothur 

491 software version 1.39.5 (Schloss et al., 2009). Reads were processed largely following the 

492 Schloss standard operating procedure for Illumina MiSeq data (Kozich et al., 2013). First, contigs 

493 between the read pairs were assembled. Then, barcode, primer sequences and low-quality 

494 sequences were removed (minimum length of 400 bp and maximum length of 470 bp for 16S 

495 rRNA genes, minimum length of 370 bp and maximum length of 460 bp for 18S rRNA genes, 

496 removing any sequences with ambiguous bases and removing any sequences with 

497 homopolymers longer than 8 bp). Subsequently, sequences were aligned to the SILVA reference 

498 database release 128 (Quast et al., 2013) and preclustered (pre.cluster, diffs = 1). Singletons 

499 were excluded, and chimeras were removed with VSEARCH (Rognes et al., 2016) implemented 

500 in mothur. Then, sequences were classified using the k-nearest neighbor (knn) algorithm 

501 implemented in mothur and the BLASTN search method with the SILVA reference database 

502 release 128. After classification, unknown sequences along with nonbacterial, chloroplast and 

503 mitochondria and noneukaryotic were excluded from the rRNA gene datasets. To account for 

504 differences in sampling efforts, 8,631 and 4,244 sequences from the 16S and 18S rRNA gene 

505 datasets respectively, were then randomly subsampled from each sample (Weiss et al., 2017). 

506 Operational taxonomic units (OTUs) were generated using the OptiClust algorithm (Westcott 

507 and Schloss, 2017), with an OTU being defined at the 97 % and 99 % sequence similarity level 

508 for the 16S and 18S rRNA gene reads, respectively. Finally, sequences were classified using the 

509 knn algorithm implemented in mothur and the BLASTN search method (cut-off of 80 %) with the 
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510 SILVA reference database release 128 and the PR2 database (Guillou et al., 2013) for the 16S 

511 and 18S rRNA gene reads, respectively. The raw sequence data have been deposited in the 

512 NCBI Sequence Read Archive under the BioProjects PRJNA546091 (16S rRNA genes) and 

513 PRJNA316490 (18S rRNA genes).

514

515 Diversity and statistical analysis

516 All statistical analyses were computed using R software version 3.4.4. Alpha and beta diversity 

517 metrics were computed using the vegan package (Oksanen et al., 2015). To test the relationship 

518 between the bacterial and eukaryotic community matrices and between microbial community 

519 matrices and geographical location, partial Mantel tests were performed using the ecodist 

520 package (Goslee and Urban, 2007)⁠, with Pearson correlation coefficient and 106 random 

521 permutations. Microbial community matrices were computed with Canberra distance. 

522 Geographical (latitude and longitude) and water chemistry (pH and conductivity) matrices were 

523 computed with Euclidean distances.

524

525 Cohesion (positive and negative) metrics were computed for bacterial, eukaryotic and 

526 microbial (bacterial and eukaryotic matrices merged) communities using an OTU persistence 

527 cutoff of 10 %, the “focal taxon” null model and 1,000 iterations (Herren and McMahon, 2017). 

528 After this persistence cutoff had been applied, the following were identified: 1,570 bacterial 

529 OTUs, 425 eukaryotic OTUs, and 1,995 microbial OTUs. Cohesion analysis was also used to 

530 identify the most connected OTUs, which have been shown to be potential keystone taxa of a 

531 community (Herren and McMahon, 2018). Here, we used the 15 bacterial and eukaryotic OTUs 
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532 with the highest positive connectedness and the lowest negative connectedness, which 

533 corresponded to 1 % and 3.5 % of the bacterial and eukaryotic richness, respectively, as 

534 recommended by Herren et al. (Herren and McMahon, 2018).

535

536 The impacts of the abiotic (pH, conductivity) and biotic (cohesion metrics) variables of 

537 community structure were investigated with generalized linear models (GLMs) for multivariate 

538 abundance data using the mvabund package (Wang et al., 2012), a method that has been 

539 shown to have more statistical power than distance-based multivariate analysis such as 

540 PERMANOVA (Warton et al., 2012). After the data had been examined, a negative binomial 

541 distribution was assumed. Subsequently, the statistical significance of the GLMs was tested 

542 with an analysis of deviance of the GLMs, performed with Monte Carlo resampling (1,000 

543 iterations) and likelihood ratio tests.

544

545 For the evaluation of the co-occurrence probability between and among bacterial and 

546 eukaryotic OTUs, the Veech probabilistic model of species co-occurrence with a hypergeometric 

547 distribution (Veech, 2013) was applied using the cooccur package (Griffith et al., 2016). The 

548 same OTU persistence cutoff of 10 % used for the cohesion and GLM analyses was also applied 

549 to avoid detection of spurious co-occurrences. Negative and positive co-occurrences (p-value < 

550 0.05) were then analyzed according to the taxonomic classifications of the OTUs and 

551 subsequently visualized with Circos v0.63-9 (Krzywinski et al., 2009).

552

553
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559 Figure Legends

560

561 Fig. 1. Global abundance and richness of eukaryotic and bacterial OTUs from 60 street gutter 

562 mats. (A) Richness (Left) and Abundance (Right) obtained from high-throughput sequencing of 

563 18S rRNA gene amplicons. (B) Richness (Left) and Abundance (Right) obtained from 16S rRNA 

564 gene amplicons assigned to the phylum level. 

565

566 Fig. 2. Alpha and beta microbial diversity in street gutter mats. (A) OTU richness. (B) 

567 Dissimilarity distances were calculated using Canberra distance. Statistical significance between 

568 bacterial and eukaryotic communities were tested using Wilcoxon signed-rank test.

569

570 Fig. 3. Circos representations of co-occurrences of the Fungi and Bacillariophyta OTUs. (A) Left 

571 panel, Bacillariophyta-eukaryote co-occurrences, which correspond to 84 diatom OTUs, co-

572 occurring positively with 259 eukaryotic OTUs and negatively with 238 eukaryotic OTUs. Right 

573 panel, Fungi–eukaryote co-occurrences, which correspond to 95 Fungi OTUs, co-occurring 

574 positively with 373 eukaryotic OTUs and negatively with 304 eukaryotic OTUs. (B) Left panel – 

575 Bacillariophyta-bacterial co-occurrences, which correspond to 84 diatom OTUs presenting 

576 positive co-occurrences with 1,194 bacterial OTUs and negative co-occurrences with 805 

577 bacterial OTUs. Right panel - Fungi-bacterial co-occurrences. These data involved 94 fungal 

578 OTUs, co-occurring positively with 1,341 bacterial OTUs and negatively with 1,099 bacterial 

579 OTUs. The color code used for the different clades is presented below the figures, and black and 

580 the white correspond to the positive and negative co-occurrences, respectively.
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581

582 Fig. 4. Taxonomic distribution of the most highly connected OTUs. The data correspond to the 

583 15 bacterial and eukaryotic OTUs that show the highest positive connectedness and the lowest 

584 negative connectedness. Since some OTUs could be among both the most positively and 

585 negatively connected, 25 and 28 eukaryotic and bacterial OTUs are presented here, 

586 respectively. (A) Eukaryotic OTUs. (B) Bacterial OTUs. The presented taxonomic assignment 

587 varies among the OTUs from the kingdom, phylum, subphylum to class. The green, blue and red 

588 bars correspond to the positively, positively and negatively, or negatively connected OTUs.

589

590 Table I. Multivariate analysis of the deviance of generalized linear models fitting microbial 

591 communities to biotic and abiotic factors.
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826 Additional Supporting Information may be found in the online version of this article at the 

827 publisher’s web-site:

828

829 Fig. S1. Relative abundance and richness of bacterial and eukaryotic OTUs in street gutter 

830 mats. (A) Abundance (top panel) and diversity (bottom panel) obtained from 18S rRNA gene 

831 amplicons. (B) Abundance (top panel) and richness (bottom panel) obtained from high-

832 throughput sequencing of 16S rRNA gene amplicons assigned to the phylum level. The 60 

833 samples were sorted according to the abundance of the Bacillariophyta clade.

834

835 Fig. S2. Relationship between geographical distance and (A) eukaryote and (B) bacterial 

836 community dissimilarity. Community dissimilarity was computed based on Canberra distances. 

837 The significance of the relationship was tested using partial Mantel tests, to control for the 

838 effect of water chemistry (pH and conductivity).

839

840 Fig. S3. Eukaryote-Eukaryote co-occurrence patterns. Circos visualization of the eukaryote-

841 eukaryote positive (black) and negative (white) co-occurrences. The total set corresponds to 

842 12,128 positive co-occurrences involving 425 eukaryotic OTUs and 3,908 negative co-

843 occurrences involving 408 eukaryotic OTUs. 

844

845 Fig. S4. Eukaryote-Bacteria co-occurrence patterns. Circos visualization of the eukaryotic-

846 bacterial positive (black) and negative (white) co-occurrences. The set corresponds to 60,776 
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847 positive co-occurrences involving 425 eukaryotic OTUs and 1,546 bacterial OTUs and 38,122 

848 negative co-occurrences involving 425 eukaryotic OTUs and 1,515 bacterial OTUs. 

849

850 Fig. S5. Bacteria-Bacteria co-occurrence patterns. Circos visualization of the bacteria-bacteria 

851 positive (black) and negative (white) co-occurrences. The total set corresponds to 155,790 

852 positive co-occurrences involving 1,557 bacterial OTUs, and 41,719 negative co-occurrences 

853 involving 1,553 bacterial OTUs. 

854
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Fig. 1. Global abundance and richness of eukaryotic and bacterial OTUs from 60 street gutter mats. (A) 
Richness (left) and Abundance (right) obtained from high-throughput sequencing of 18S rRNA gene 

amplicons. (B) Richness (left) and Abundance (right) obtained from 16S rRNA gene amplicons assigned to 
the phylum level. 
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Fig. 2. Alpha and beta microbial diversity in street gutter mats. (A) OTU richness. (B) Dissimilarity distances 
were calculated using Canberra distance. Statistical significance between bacterial and eukaryotic 

communities were tested using Wilcoxon signed-rank test. 
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Fig. 3. Circos representations of co-occurrences of the Fungi and Bacillariophyta (diatoms) OTUs. (A) Left 
panel, Bacillariophyta-eukaryote co-occurrences, which correspond to 84 diatom OTUs, co-occurring 

positively with 259 eukaryotic OTUs and negatively with 238 eukaryotic OTUs. Right panel, Fungi-eukaryote 
co-occurrences, which correspond to 95 Fungi OTUs, co-occurring positively with 373 eukaryotic OTUs and 

negatively with 304 eukaryotic OTUs. (B) Left panel – Bacillariophyta-bacterial co-occurrences, which 
correspond to 84 diatom OTUs presenting positive co-occurrences with 1,194 bacterial OTUs and negative 
co-occurrences with 805 bacterial OTUs. Right panel - Fungi-bacterial co-occurrences. These data involved 

94 fungal OTUs, co-occurring positively with 1,341 bacterial OTUs and negatively with 1,099 bacterial OTUs. 
The color code used for the different clades is presented below the figures, and black and the white 

correspond to the positive and negative co-occurrences, respectively. 
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Fig. 4. Taxonomic distribution of the most highly connected OTUs. The data correspond to the 15 bacterial 
and eukaryotic OTUs that show the highest positive connectedness and the lowest negative connectedness. 
Since some OTUs could be among both the most positively and negatively connected, 25 and 28 eukaryotic 

and bacterial OTUs are presented here, respectively. (A) Eukaryotic OTUs. (B) Bacterial OTUs. The 
presented taxonomic assignment varies among the OTUs from the kingdom, phylum, subphylum to class. 

The green, blue and red bars correspond to the positively, positively and negatively, or negatively connected 
OTUs. 
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Table I. Multivariate analysis of the deviance of generalized linear models fitting microbial 

communities to biotic and abiotic factors.

Factor Bacteria Eukaryotes Bacteria and Eukaryotes

Deviance p value Deviance p value Deviance p value

Positive Cohesion 7,639 < 1x10-3 1,781 < 1x10-3 8,040 < 1x10-3

Negative Cohesion 5,410 < 1x10-3 2,027 < 2x10-3 5,349 < 1x10-3

pH 1,960 0.018 726 0.018 2,567 0.041

Conductivity 2,635 < 1x10-3 1,061 < 2x10-3 3,420 < 2x10-3
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