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The local structure of the highly “overdoped” 95 K superconductor
Sr2CuO3.3 determined by Cu K X-ray absorption fine structure
(XAFS) at 62 K in magnetically oriented samples shows that: 1)
the magnetization is perpendicular to the c axis; 2) at these levels
of precision the Cu sublattice is tetragonal in agreement with the
crystal structure; the O sublattice has: 3) continuous -Cu-O- chains
that orient perpendicular to an applied magnetic field; 4) approx-
imately half-filled -Cu-O- chains that orient parallel to this field; 5) a
substantial number of apical O vacancies; 6) O ions at some apical
positions with expanded Cu-O distances; and 7) interstitial positions
that imply highly displaced Sr ions. These results contradict the uni-
versally accepted features of cuprates that require intact CuO2

planes, magnetization along the c axis, and a termination of the
superconductivity when the excess charge on the CuO2 Cu ions ex-
ceeds 0.27. These radical differences in charge and structure demon-
strate that this compound constitutes a separate class of Cu-O–based
superconductors in which the superconductivity originates in a dif-
ferent, more complicated structural unit than CuO2 planes while
retaining exceptionally high transition temperatures.

overdoped cuprate | CuO2 plane | high-temperature superconductivity |
X-ray absorption fine structure spectroscopy

Although 135 K has remained the highest transition temper-
ature in cuprates since 6 y after their initial discovery (1, 2),

given that an accurate theory remains lacking still higher tran-
sition temperatures cannot be ruled out. Here we report X-ray
absorption fine structure (XAFS) experiments on Sr2CuO3.3
(SCO) prepared by high-pressure oxygen (HPO) methods that
show that this compound lacks the CuO2 planes found in all
other cuprates while retaining a Tc of 95 K. The HPO cuprates (3–
5) give a second, Tc vs. Cu-charge phase diagram whose super-
conducting region differs radically from the “dome” (6) common
to the “conventional” materials that are doped by reaction with
O2. Instead of the superconductivity terminating with the forma-
tion of a Fermi liquid when the excess charge on the Cu atoms in
the CuO2 planes reaches ∼0.27 per Cu, Tc plateaus or even con-
tinues to increase, opening a new region of superconductivity on
the high Cu-charge side of the phase diagram. In addition, these
HPO cuprates are tetragonal, their heat capacities demonstrate
coexisting Fermi liquid and superconducting electrons (7, 8), and
they do not adhere to the empirical correlation between Tc and
the Cu-apical O (Oap) (9–11) or apical cation (12) distance.
Ba2CuO3.2 (8, 13, 14), a structural analog of SCO, exhibits an
oblate Cu geometry with its Cu-Oap distance of less than 1.9 Å
presumably inverting the ordering of the dx

2
-y
2 and dz

2 states (8).
SCO and related compounds were first prepared shortly after the
initial discovery of cuprates (15). Jin and co-workers subsequently
found multiple phases (16–18), but recent improvements in the
synthesis now produce single-phase SCO with Tc = 95 K (SI Ap-
pendix, Fig. S1) (17, 18)
Between La2CuO4+δ and Sr2CuO3+δ (SCO) the structure changes

radically. La2CuO4+δ exhibits the common cuprate geometry (19)

with fully ordered CuO2 planes with 3.78-Å Cu-Cu distances with
O midway between, fully occupied Cu-Oap sites at 2.41 Å, and
Cu-La at 3.24 Å. The structure of the other parent, Sr2CuO3
(20), is notable for its highly orthorhombic symmetry with -Cu-O-
chains with a 3.91-Å Cu-Cu distance in the a direction and
3.48-Å Cu-Cu distances in the b direction that lacks bridging O.
The disparate nature of the connections between the Cu sites
along the crystallographic axes results in Sr2CuO3 being a “nearly
ideal . . . [one-dimensional] . . . Heisenberg antiferromagnet” (21).
The Oap sites are all occupied with the same 1.95 Cu-Oap dis-
tances as in the chains. This gives c-oriented SrCuO2 planes with
3.22-Å Cu-Sr distances. Increasing the O stoichiometry by only
∼10% in HPO SCO results in its transformation to a tetragonal
space group with a Cu-Cu distance of 3.8 Å that is typical of
cuprates. However, its bulk stoichiometry with a fractional number
of O atoms differs from the formula of its unit cell that is con-
strained to integers, and the absence of superlattice peaks dem-
onstrates that these excess O atoms are distributed aperiodically
(or dynamically). This disorder within the constraints of the te-
tragonal symmetry that presumably does not apply to the O sites
causes ambiguities in the crystallographic determination of its
structure that include the possibility of vacancies in the CuO2
planes (22, 23).
XAFS is arguably the most incisive experimental method for

probing these behaviors in mixed valence, transition metal, cor-
related materials. It complements the crystallographic analysis of
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SCO because: 1) it does not depend on long-range order or
translational symmetry and therefore reveals aperiodic local
lattice distortions; 2) its element selectivity separates and isolates
many of the atom pairs to give a better basis for detailed analysis
than X-ray or neutron pair distribution function analysis; and 3)
its intrinsic time and energy scale that correspond to collective
dynamical phenomena in correlated materials make it sensitive
to the dynamical and instantaneous aspects of the structure, S(q,
ω) or S(q, t = 0) (24–28). The differences between the extended
XAFS (EXAFS) (29, 30) and complementary diffraction and
neutron scattering measurements (24, 31) were therefore key in
originally identifying and characterizing the Cu-Oap double-well
potential (32), its assignment to a tunneling polaron (25, 27, 33),
and its coupling to the superconductivity in other cuprates (28,
34, 35). Tunneling polarons differ from the common small po-
larons that exhibit thermally activated hopping between neigh-
boring sites in a crystal, exchanging the normal crystal structure
adopted by the atoms at the second site with the distorted po-
laron structure and excess charge that had been at the first. A
tunneling polaron is the oscillatory interchange between two
distinct arrangements of a given set of atoms that contain the
excess charge, with the two structures denoted by the charges
and positions/local geometries of the constituent atoms. The
tunneling polaron remains in the same location within a crystal,
where it could be pinned because of stationary defects or special
aspects of the atoms of its location. In addition, in contrast to the
original, elementary, three-atom model of a Cu atom bracketed
by two Oap, it may involve a large number of atoms and the two
structures will be nondegenerate (36, 37).
A procedure that was key in these studies was the enhancement

of the sensitivity of EXAFS to the different components of the
structure (38) by orienting the samples in a magnetic field to align
them along a unique crystallographic axis. The spectra therefore
measure the projections of the neighbor atoms on the axis parallel
to the orienting magnetic field and the plane perpendicular to it,
rendering the problem one of cylindrical symmetry. The EXAFS
will therefore help elucidate the characteristics of a crystallo-
graphically modulated structure (18), the widths of the distribu-
tions and whether they are continuous or consist of discrete,
separated distances. The diffraction peaks of these samples were
measured with the incident and diffracted X-rays in the plane
normal to the axis along which the XAFS was measured (SI Ap-
pendix, Fig. S2). The (001) reflections of a YBa2Cu3O7 and the
two SCO samples were analyzed by the method of March and
Dollase (39). The corresponding angular probability functions
of the c crystallographic axis (Fig. 1) show that the EjjH sample
and E⊥H samples are oriented, although to a somewhat lesser
degree than for YBa2Cu3O7. The alignment of its c axis normal

to YBa2Cu3O7 EjjH is evident. The induced magnetization in
SCO is therefore orthogonal to the c axis, unlike all other cuprates
where the c axis orients strongly along the field direction. SCO
maintains at least some of the magnetic anisotropy from the CuO2
chains in undoped Sr2CuO3 (40) despite its tetragonal space
group. This confirms the prior suggestion that the crystal structure
is incomplete, augmented by showing that the properties of SCO
are coupled to these extracrystallographic factors. The unique
direction parallel to the magnetization will be labeled “a,” the
orthogonal direction in the Cu planes “b.”
The capabilities and limitations of EXAFS in elucidating

structure and dynamics in correlated materials are described in
SI Appendix. EXAFS, χ(k), is best presented as its Fourier
transform, χ(R), because the modulus peaks that originate in the
constituent waves of the original χ(k) correspond to the contri-
butions of the neighbor atom shells arranged from short to long
absorber–neighbor distances to give an approximate represen-
tation of the partial pair distribution. Inspection of the Fourier
transforms of the Cu K EXAFS of the two orientations (Fig. 2)
show the same Sr and Cu contributions at, respectively, R = 2.9
and 3.5 Å. The contribution of the Cu neighbors in both the a
and bc-oriented spectra differs from all other cuprates where it
occurs only in Ejjab spectra, corroborating this unique orienta-
tion found in the diffraction. Curve-fitting analysis finds 3.79 Å
Cu-Cu distances. An identical Cu-Cu distance for both orienta-
tions demonstrates that the tetragonal symmetry found crystallo-
graphically is intrinsic and not the result of small, orthorhombic
domains averaging to tetragonal. The amplitudes of the Cu signals
that are ∼40% of the amount displayed by other cuprates (29, 41)
are also consistent with a division of the Cu contribution between
the two orientations. The Cu-Sr pair is best fit with the principal
and a smaller shell separated by an amount just above the reso-
lution limit, 3.22/3.35-Å Cu-Sr distances for EjjH and 3.24/3.38 Å
for E⊥H. These are equal within the uncertainty for the two ori-
entations. This result is indicative of an overall anharmonic dis-
tribution. The Cu-Cu and principal Cu-Sr distances are within
0.01–0.02 Å of the crystallographic values.
If the O sublattice is tetragonal then all of the Cu-O distances in

the EjjH spectrum from the aa plane must be found in the E⊥H
spectrum, with any additional ones belonging to the c component.
Deviation of the O positions from the tetragonal symmetry of the
Cu-Sr sublattice is evident in the comparison of the locations of
the peaks of the two spectra (Fig. 2). Unlike the tetragonal ar-
rangement of the Cu and Sr atoms, the O sublattice is therefore
orthorhombic with distinct a and b axes but insufficiently ordered
to give a clear signature in the diffraction pattern dominated by
the Cu and Sr. The EjjH spectrum measures the a components of
the Cu pair distribution. The O region of the spectrum for EjjH is
dominated by a single peak (Fig. 2A) (29, 42). Complete curve fits,
however, require three O neighbors at 1.92, 2.09, and 2.31 Å, with
a fourth low-amplitude shell at 2.64 Å giving a small improvement
in the fit (Fig. 2 A, Inset and SI Appendix, Fig. S3). The 1.92-Å Cu-O
distance is close to half of the 3.79-Å Cu-Cu distance. The E⊥H
spectrum displays three distinct peaks in the O neighbor region.
The lower position of the first one demonstrates a shorter Cu-O
distance than in the a direction, just as the other peaks at higher
R signify longer ones. This complicated spectrum is fit by four O
neighbors at 1.83, 2.00, 2.27, and 2.61 Å (Fig. 2 B, Inset). An
additional small feature in both spectra at R ∼ 2.5 Å is fit by Sr
and/or O at ∼2.8–2.9 Å. The 1.83- and 2.00-Å distances with their
equivalent amplitudes could be the two parts of an off-center O in
a b-oriented -Cu-O- chain and/or two Cu-Oap distances of a dis-
torted square Cu site with O vacancies in the ab plane. The dif-
ferences between 1.83, 1.92, 2.00, and 2.09 Å are significantly
larger than the normal EXAFS error ±0.02 Å, confirming the
separate a and b Cu-O distributions and division of the spectra
into a and the combined bc component. Since the Cu-Cu wave in
χ(k) in both spectra is defined by the amplitudes and phases of the

Fig. 1. March and Dollase probability factors (39) for sample orientation in
magnetic field. The result for the YBa2Cu3O7jjH sample that was prepared in
the same mold as the SCOjjH sample is included for reference to show the
90° rotation of the (001) axis (c axis) of the two compoundsQ:27 .
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Cu-O-Cu moiety with the bridging O, a corresponding fraction of
the 1.83- and 2.00-Å Cu-O pairs in the bc-oriented spectrum must
be the bridging O of the Cu-O-Cu pairs along the b axis.
Remaining O neighbors may be Oap, including the O at the longer
distances if Sr displacements allow expansion of the Cu–Oap bond.
Insofar as the most significant finding of this study is the location

of the O ions and vacancies in the aa-oriented Cu planes a thor-
ough analysis was performed that provides a graphic presentation
of the relevant results. As explained previously, the 0.11-Å reso-
lution derived from the upper limit of the spectra ensures that the
individual Cu-O waves in χ(k) in the Ejja spectrum are easily
separable. Rather than rely solely on curve-fit results, the location
of the O vacancies is addressed by directly comparing the isolated
Cu-O-Cu and Cu-O EXAFS waves against appropriate standards,
in this case the same waves from, respectively, the Ejjbc-oriented
spectra and the Ejja spectra from YBa2Cu2.75Mo0.25O7.54 that we
have shown has fully ordered CuO2 planes and CuO3-type chains.
This comparison not only gives the relative numbers of Cu-O-Cu
pairs and bridging O in the EjjHjja spectrum by direct comparison
of their magnitudes but also tests the extent to which their origi-
nating structures are identical via the similarity of their phases and
amplitude envelopes. The Cu-O-Cu waves in χ(k) from the two
orientations (Fig. 3A) are almost identical, verifying this assignment

and the presumption that uncorrelated thermal motion makes
the contributions of any unbridged Cu-Cu pairs negligible. De-
riving the relative numbers of Cu atoms requires correcting the
spectral amplitudes by the polarization geometry factors of 3 for
the EjjHjja spectrum and 3/2 for the E⊥Hjjbc (43). The essen-
tially identical amplitudes therefore demonstrate that the num-
bers of Cu-O-Cu neighbors and therefore bridging O in the a
direction are only close to half that for b. The a-oriented, partial
-Cu-O- chains and presumably the mixed Cu(II, III) valence
resulting from the added charge from the excess O account for
the conversion of the rectangular arrangement of the Cu and Sr
atoms of Sr2CuO3 to their square geometry in SCO, even while
the O atoms separate into different arrangements along the a
and b directions so that their sublattice has orthorhombic sym-
metry (40). This same parameter is obtained independently by
comparing the Cu-O wave from the EjjHjja spectrum with the
one from, e.g., YSr2Cu2.75Mo0.25O7.54 (Fig. 3B) with its known
structure (6). The amplitude ratio is 0.6–0.7. After the same
factor of 2 polarization correction, the corrected amplitude of 0.35
times the average 3–1/3 O/Cu neighbors in YSr2Cu2.75Mo0.25O7.54
gives ∼1.1 O atoms in the a direction for SCO. The numbers of O
and Cu neighbors therefore show that the b⊥H –Cu-O- chains
are essentially intact from Sr2CuO3 and the ajjH -Cu-O- chains

Fig. 2. EXAFS [Fourier transform or χ(R) representation] of SCO (A) along the same direction as the magnetic field and (B) perpendicular to the magnetic
field. The main figures show the data and fit in real space, the Upper Right Insets the same in k, and the Lower Right Insets show the Fourier transform moduli
of the data, fits, and differences in their upper halves and the contributions of the individual neighbor shells, inverted for clarity, in their lower halvesQ:28 . The
vertical chartreuse lines trace the position of the spectral features for, from low to high, the O neighbor at 1.92 Å, the O neighbor at 2.6 Å, the Sr neighbors,
and the Cu neighbors with a bridging O ion between them. The relative numbers of atoms are reflected by the peak amplitudes, reduced by 1/R2.
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are around half filled (Fig. 4A). This half filling corresponds to
the Cu(II):(III) ratio.
Since ordering of the O vacancies in the b-oriented –Cu-O- chains

would be observed in the diffraction, these are likely located aperi-
odically. However, within the constraints of an aperiodic distribution
it is still possible that the O atoms in these –Cu-O- chains cluster. At

one extreme there is no cooperativity between them, these O
atoms are located randomly, and their overall distribution is ho-
mogeneous on a scale sufficiently large to overcome small devia-
tions (Fig. 4A). This random distribution results in Cu ions with
two, three, and four O neighbors within the aa Cu plane whose
Cu-O distances would be close to half of the 3.79-Å distance be-
tween the pairs of Cu atoms that they bridge as in La2CuO4 (Fig.
4D). At the other extreme these O atoms may cluster into domains
with the ordered CuO2 plane structure (Fig. 4 C and E) whose
only restriction is that their size must be below the diffraction
limit, which becomes larger if these domains are aperiodically
distributed in the material. This distribution results in a hetero-
geneous, nanophase separated structure. Intermediate distribu-
tions that would be inhomogeneous (Fig. 4B) are not antithetical
to any of these considerations. However, that Q:10which occurs does
have consequences. If these O atoms are fully clustered then it is
easily understood that the superconductivity resides in the CuO2
domains, enabled by the short pair-correlation lengths, and would
be very similar to conventional cuprates except it would percolate
between the domains instead of flowing unobstructed. In contrast,
in the homogeneous distribution Q:11, the superconductivity would be
quenched at either the vacancy or occupied sites and therefore
filamentary. For YSr2Cu2.75Mo0.25O7.54, the Mo served as a probe
for its own organization (6), but there is no comparable probe for
the O atoms within SCO. However, our unpublished EXAFS
spectra over a range of temperatures are more consistent with the
random, homogeneous type of structure.
The remaining issue for the structure is local, the disposition of

the O neighbors with Cu-O distances greater than 2 Å and the
possibility of Sr at ∼2.8 Å. Assigning formal charges or valence,
the Cu with four O neighbors therefore already has the preferred
Cu2+ square planar geometry if Oap are missing or at longer
distances that may be tilted from the c axis. Similarly, if the Oap
are at their Sr2CuO3 positions the Cu ions with two a-chain O
vacancies will have the same Cu(II) assignment with the axial
positions on the a chain vacant. This scenario implies that the Cu
ions with three O neighbors from the plane would be Cu(III) that
accommodates a wider range of geometries that would include
their Oap neighbors. Consistent with the added charge, each ad-
ventitious O therefore results in ∼2 Cu(III) and a similar number
of O in a-oriented -Cu-O- chains, with the second coming from a

Fig. 3. EXAFS waves and amplitudes for direct comparison of relative atom
numbers. (A) The Cu-Cu EXAFS from the two orientations of SCO. (B) The
nearest-neighbor Cu-O waves and amplitudes from the a orientation of SCO
and the ab orientation of YSr2Cu2.75Mo0.25O7.54 and the ratio of the
amplitudes ×5. The Cu-O-Cu and Cu-O EXAFS from the spectra were separated
by subtracting all of the other components (Fig. 2) from the fits followed by
Fourier back-transformation over the width of the spectral feature from the
Cu. These are the original waves; converting to relative numbers of atoms from
the amplitude ratios requires the polarization correction described in the text.

Fig. 4. Conceptual depictions of O vacancies in Sr2CuO3.3. The a-oriented –Cu-O- chain occupancy distribution for: (A) a random, homogeneous distribution
caused by no cooperation between the O atoms; (B) a moderate tendency for clustering resulting in an inhomogeneous distribution; (C) a strong tendency for
clustering causing nanophase separation and a heterogeneous structure composed of domains below the diffraction limit in size consisting of either CuO2

planes or -Cu-O- chains. (D) The corresponding structure of A. (E) The corresponding structure of C.
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displacement of an Oap into the bridging position in the chain.
The varying Cu geometries will give the range of Cu-Oap dis-
tances, with disorder reducing the EXAFS amplitudes. Further
insight is gained by tracking the evolution of the structure from
Sr2CuO3 to T-La2CuO4 at the Sr site. The Sr in Sr2CuO3 has seven
O nearest neighbors with Sr-O distances in a narrow range around
2.5 Å (Fig. 5A), whereas La2CuO4 has eight La-O from 2.6 to 2.8 Å
and a ninth very short one to the apical O at 2.36 Å (Fig. 5B).
Sr2CuO3 is presumably stable because of its high local symmetry
and uniform Cu(II). In SCO this symmetry is destroyed by the
half-filled b-oriented Cu-O- chains, apical O vacancies, and the
mixed Cu valence. The noninteger bulk stoichiometry will also
result in unit cells with different compositions and structures
whose distribution lacks translational symmetry. The removal of
the apical O opens an extremely large space for the Sr (Fig. 5C).
Displacements of the Sr in combination with the Cu(II, III) mix-
ture would cause collective displacements and highly unusual Sr
and Cu geometries. One such possibility, a rotation of a CuO2
moiety, is depicted (Fig. 5C). The longer Cu-O pairs could thus be
Cu-Oap expanded because of the displaced Sr. The very short
∼2.8-Å Cu-Sr distance that gives the best fits of the Cu EXAFS at
some temperatures would thus be somewhat analogous to the 2.7-Å
Cu-Cu distances in the alkali metal MCuO2 compounds, here
caused by bent, double-O bridges.
The question of the whether the O vacancies are located in the

apical positions or in highly disrupted CuO2 planes is therefore
moot; they are located in both positions. The vacancies will result
in substantial displacements of the O ions to giveQ:12 Cu and Sr ge-
ometries compatible with the Cu(II, III) combination. Collective
and cooperative effects could be expected to result in preferred
configurations of sets of atoms, but these would be positioned
aperiodically throughout the crystal. Solving the structure in the
tetragonal space group would give the average position of their
projections onto the axes through the nearest Cu. In contrast,
EXAFS gives a more complete depiction of this system because of
its sensitivity to local order. The unpaired electron density along
the a-oriented Cu-O chains resides in a different orbital than in other
cuprates, and the a-b anisotropy rotates the magnetization. Super-
conductivity in the disrupted CuO1.5 planes has been described:

percolation of the short coherence length superconductivity that
resides in domains with the conventional CuO2 structure, or
filamentary superconductivity through continuous Cu-O networks.
If ordered, 2D Q:13structures with Cu and O atoms are required there
is an alternative: planes in the c direction with Sr that still have a
square sublattice of Cu but with a Q:14type of Cu-Sr-O unit that will
have different Cu energy levels and occupations. These unique
attributes of the composition, structure, magnetism, and other
properties of SCO demonstrate the existence of a Q:15class of exotic
superconductors. This class of materials would have the second-
highest transition temperature after conventional cuprates. Under
certain conditions, superconductivity can occur just as effectively
via more structurally complex alternatives to the ubiquitous CuO2
planes.

Materials and Methods
Single-phase SCO with Tc = 95 K (SI Appendix, Fig. S1) and 19% super-
conducting volume fraction was prepared by annealing Sr2CuO3 and KClO4

in amounts giving a nominal composition of Sr2CuO3.3 at around 7 GPa and
1,050 °C for 30 min (17, 18). The XAFS samples were prepared by having a
mixture of the Sr2CuO3.3 in epoxy set in the bore of a 16-T magnet. X-ray
diffraction analysis of these samples showed only the Sr2CuO3.3 pattern (SI
Appendix, Fig. S2). XAFS was measured in the continuous transmission mode
on beamline 2–2 at the Stanford Synchrotron Radiation Lightsource. XAFS
spectra were analyzed by standard methods (44) with curve fits using am-
plitudes and phases calculated by the feff9 code (45). A more detailed de-
scription is found in SI Appendix. Original data are available from S.D.C. on
request (st3v3n.c0nrads0n@icloud.com).
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