

Local structure of Sr 2 CuO 3.3 , a 95 K cuprate superconductor without CuO 2 planes

Steven D. Conradson, Theodore Geballe, Changqing Jin, Lipeng Cao, Gianguido Baldinozzi, Jack Jiang, Matthew Latimer, Oliver Mueller

▶ To cite this version:

Steven D. Conradson, Theodore Geballe, Changqing Jin, Lipeng Cao, Gianguido Baldinozzi, et al.. Local structure of Sr 2 CuO 3.3 , a 95 K cuprate superconductor without CuO 2 planes. Proceedings of the National Academy of Sciences of the United States of America, 2020, pp.4565-4570. 10.1073/pnas.1918890117 . hal-02484590

HAL Id: hal-02484590 https://cnrs.hal.science/hal-02484590v1

Submitted on 26 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. 2 3

4

5

6

7

8

10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

9 **Q:6**

11 Q:7

Local structure of Sr₂CuO_{3.3}, a 95 K cuprate superconductor without CuO₂ planes

Steven D. Conradson^{a,b}, Theodore H. Geballe^{c,d,e,1}, Changqing Jin^f, Lipeng Cao^f, Gianguido Baldinozzi^g, Jack M. Jiang^{c,e}, Matthew J. Latimer^h, and Oliver Mueller^h

^aDepartment of Complex Matter, Jozef Stefan Institute; ^bDepartment of Chemistry ,Washington State University; ^CDepartment of Applied Physics, Stanford University, Stanford, CA ^dGeballe Laboratory for Advanced Materials, Stanford University, Stanford, CA; ^eStanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory, Stanford, CA; ^fInstitute of Physics, Chinese Academy of Sciences; ^gSPMS, CNRS CentraleSupélec Universite Paris-Saclay; and ^hStanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford, CA

Contributed by Theodore H. Geballe, December 19, 2019 (sent for review October 29, 2019; reviewed by Ivan Bozovic and Douglas J. J. Scalapino)

The local structure of the highly "overdoped" 95 K superconductor Sr₂CuO_{3.3} determined by Cu K X-ray absorption fine structure (XAFS) at 62 K in magnetically oriented samples shows that: 1) the magnetization is perpendicular to the c axis; 2) at these levels of precision the Cu sublattice is tetragonal in agreement with the crystal structure; the O sublattice has: 3) continuous -Cu-O- chains that orient perpendicular to an applied magnetic field; 4) approximately half-filled -Cu-O- chains that orient parallel to this field; 5) a substantial number of apical O vacancies; 6) O ions at some apical positions with expanded Cu-O distances; and 7) interstitial positions that imply highly displaced Sr ions. These results contradict the universally accepted features of cuprates that require intact CuO₂ planes, magnetization along the c axis, and a termination of the superconductivity when the excess charge on the CuO₂ Cu ions exceeds 0.27. These radical differences in charge and structure demonstrate that this compound constitutes a separate class of Cu-O-based superconductors in which the superconductivity originates in a different, more complicated structural unit than CuO2 planes while retaining exceptionally high transition temperatures.

overdoped cuprate | CuO₂ plane | high-temperature superconductivity | X-ray absorption fine structure spectroscopy

Although 135 K has remained the highest transition temper-ature in cuprates since 6 y after their initial discovery (1, 2), given that an accurate theory remains lacking still higher transition temperatures cannot be ruled out. Here we report X-ray absorption fine structure (XAFS) experiments on Sr₂CuO_{3,3} (SCO) prepared by high-pressure oxygen (HPO) methods that show that this compound lacks the CuO₂ planes found in all other cuprates while retaining a T_c of 95 K. The HPO cuprates (3-5) give a second, T_c vs. Cu-charge phase diagram whose superconducting region differs radically from the "dome" (6) common to the "conventional" materials that are doped by reaction with O₂. Instead of the superconductivity terminating with the formation of a Fermi liquid when the excess charge on the Cu atoms in the CuO₂ planes reaches ~0.27 per Cu, T_c plateaus or even continues to increase, opening a new region of superconductivity on the high Cu-charge side of the phase diagram. In addition, these HPO cuprates are tetragonal, their heat capacities demonstrate coexisting Fermi liquid and superconducting electrons (7, 8), and they do not adhere to the empirical correlation between T_c and the Cu-apical O (Oap) (9-11) or apical cation (12) distance. Ba₂CuO_{3,2} (8, 13, 14), a structural analog of SCO, exhibits an oblate Cu geometry with its Cu-Oap distance of less than 1.9 Å presumably inverting the ordering of the $d_x^2 v_y^2$ and d_z^2 states (8). SCO and related compounds were first prepared shortly after the initial discovery of cuprates (15). Jin and co-workers subsequently found multiple phases (16-18), but recent improvements in the synthesis now produce single-phase SCO with $T_c = 95$ K (SI Ap*pendix*, Fig. S1) (17, 18)

Between La₂CuO_{4+ δ} and Sr₂CuO_{3+ δ} (SCO) the structure changes radically. La₂CuO_{4+ δ} exhibits the common cuprate geometry (19)

O midway between, fully occupied Cu-Oap sites at 2.41 Å, and Cu-La at 3.24 Å. The structure of the other parent, Sr_2CuO_3 (20), is notable for its highly orthorhombic symmetry with -Cu-Ochains with a 3.91-Å Cu-Cu distance in the *a* direction and 3.48-Å Cu-Cu distances in the b direction that lacks bridging O. The disparate nature of the connections between the Cu sites along the crystallographic axes results in Sr₂CuO₃ being a "nearly ideal ... [one-dimensional] ... Heisenberg antiferromagnet" (21). The Oap sites are all occupied with the same 1.95 Cu-Oap distances as in the chains. This gives c-oriented SrCuO₂ planes with 3.22-Å Cu-Sr distances. Increasing the O stoichiometry by only ~10% in HPO SCO results in its transformation to a tetragonal space group with a Cu-Cu distance of 3.8 Å that is typical of cuprates. However, its bulk stoichiometry with a fractional number of O atoms differs from the formula of its unit cell that is constrained to integers, and the absence of superlattice peaks demonstrates that these excess O atoms are distributed aperiodically (or dynamically). This disorder within the constraints of the tetragonal symmetry that presumably does not apply to the O sites causes ambiguities in the crystallographic determination of its structure that include the possibility of vacancies in the CuO₂ planes (22, 23).

with fully ordered CuO₂ planes with 3.78-Å Cu-Cu distances with

XAFS is arguably the most incisive experimental method for probing these behaviors in mixed valence, transition metal, correlated materials. It complements the crystallographic analysis of

Significance

CuO₂ planes are a universal component of cuprate superconductors. Sr₂CuO_{3+ δ} that has a T_c of 95 K despite its excessively high doping level has been reported to have vacancies in these planes. Extended X-ray absorption fine structure measurements not only provide definitive proof but furthermore show that in magnetically oriented samples not only are there also apical O vacancies but that the -Cu-O- chains normal to the orienting field are complete while the O sites of the chains parallel with this field are only half filled. These unique characteristics of a material with such a high transition temperature demonstrate that there are still substantial gaps in our knowledge of exotic superconductivity, including such fundamental aspects as the types of structures that support it.

Author contributions: S.D.C., T.H.G., and C.J. designed research; S.D.C., C.J., and J.M.J. performed research; C.J., L.C., G.B., M.J.L., and O.M. contributed new reagents/analytic tools; S.D.C. and G.B. analyzed data; and S.D.C. wrote the paper.

Reviewers: I.B., Brookhaven National Laboratory; and D.J.J.S., University of California, Santa Barbara.

The authors declare no competing interest.

Published under the PNAS license.

¹To whom correspondence may be addressed. Email: geballe@stanford.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1918890117//DCSupplemental.

81

82

90

91

114

115

116

117

118

119

120

121

122

123

125 SCO because: 1) it does not depend on long-range order or 126 translational symmetry and therefore reveals aperiodic local 127 lattice distortions; 2) its element selectivity separates and isolates many of the atom pairs to give a better basis for detailed analysis 128 than X-ray or neutron pair distribution function analysis; and 3) 129 its intrinsic time and energy scale that correspond to collective 130 dynamical phenomena in correlated materials make it sensitive 131 to the dynamical and instantaneous aspects of the structure, S(q,132 ω) or S(q, t = 0) (24–28). The differences between the extended 133 XAFS (EXAFS) (29, 30) and complementary diffraction and 134 neutron scattering measurements (24, 31) were therefore key in 135 originally identifying and characterizing the Cu-Oap double-well 136 potential (32), its assignment to a tunneling polaron (25, 27, 33), 137 and its coupling to the superconductivity in other cuprates (28, 138 34, 35). Tunneling polarons differ from the common small polarons that exhibit thermally activated hopping between neigh-139 boring sites in a crystal, exchanging the normal crystal structure 140 adopted by the atoms at the second site with the distorted po-141 laron structure and excess charge that had been at the first. A 142 tunneling polaron is the oscillatory interchange between two 143 distinct arrangements of a given set of atoms that contain the 144 excess charge, with the two structures denoted by the charges 145 and positions/local geometries of the constituent atoms. The 146 tunneling polaron remains in the same location within a crystal, 147 where it could be pinned because of stationary defects or special 148 aspects of the atoms of its location. In addition, in contrast to the original, elementary, three-atom model of a Cu atom bracketed 149 by two Oap, it may involve a large number of atoms and the two 150 structures will be nondegenerate (36, 37). 151

A procedure that was key in these studies was the enhancement of the sensitivity of EXAFS to the different components of the structure (38) by orienting the samples in a magnetic field to align them along a unique crystallographic axis. The spectra therefore measure the projections of the neighbor atoms on the axis parallel to the orienting magnetic field and the plane perpendicular to it, rendering the problem one of cylindrical symmetry. The EXAFS will therefore help elucidate the characteristics of a crystallographically modulated structure (18), the widths of the distributions and whether they are continuous or consist of discrete, separated distances. The diffraction peaks of these samples were measured with the incident and diffracted X-rays in the plane normal to the axis along which the XAFS was measured (SI Appendix, Fig. S2). The (001) reflections of a YBa₂Cu₃O₇ and the two SCO samples were analyzed by the method of March and Dollase (39). The corresponding angular probability functions of the c crystallographic axis (Fig. 1) show that the E||H| sample and ELH samples are oriented, although to a somewhat lesser degree than for $YBa_2Cu_3O_7$. The alignment of its *c* axis normal

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186 0:27

Fig. 1. March and Dollase probability factors (39) for sample orientation in magnetic field. The result for the $YBa_2Cu_3O_7$ ||H sample that was prepared in the same mold as the SCO||H sample is included for reference to show the 90° rotation of the (001) axis (c axis) of the two compounds.

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

The capabilities and limitations of EXAFS in elucidating structure and dynamics in correlated materials are described in SI Appendix. EXAFS, $\chi(\mathbf{k})$, is best presented as its Fourier transform, $\chi(R)$, because the modulus peaks that originate in the constituent waves of the original $\chi(\mathbf{k})$ correspond to the contributions of the neighbor atom shells arranged from short to long absorber-neighbor distances to give an approximate representation of the partial pair distribution. Inspection of the Fourier transforms of the Cu K EXAFS of the two orientations (Fig. 2) show the same Sr and Cu contributions at, respectively, R = 2.9and 3.5 Å. The contribution of the Cu neighbors in both the a and bc-oriented spectra differs from all other cuprates where it occurs only in E||ab| spectra, corroborating this unique orientation found in the diffraction. Curve-fitting analysis finds 3.79 Å Cu-Cu distances. An identical Cu-Cu distance for both orientations demonstrates that the tetragonal symmetry found crystallographically is intrinsic and not the result of small, orthorhombic domains averaging to tetragonal. The amplitudes of the Cu signals that are $\sim 40\%$ of the amount displayed by other cuprates (29, 41) are also consistent with a division of the Cu contribution between the two orientations. The Cu-Sr pair is best fit with the principal and a smaller shell separated by an amount just above the resolution limit, 3.22/3.35-Å Cu-Sr distances for E||H and 3.24/3.38 Å for E1H. These are equal within the uncertainty for the two orientations. This result is indicative of an overall anharmonic distribution. The Cu-Cu and principal Cu-Sr distances are within 0.01–0.02 Å of the crystallographic values.

If the O sublattice is tetragonal then all of the Cu-O distances in the E||H spectrum from the *aa* plane must be found in the E \perp H spectrum, with any additional ones belonging to the c component. Deviation of the O positions from the tetragonal symmetry of the Cu-Sr sublattice is evident in the comparison of the locations of the peaks of the two spectra (Fig. 2). Unlike the tetragonal arrangement of the Cu and Sr atoms, the O sublattice is therefore orthorhombic with distinct a and b axes but insufficiently ordered to give a clear signature in the diffraction pattern dominated by the Cu and Sr. The E||H spectrum measures the a components of the Cu pair distribution. The O region of the spectrum for E||H is dominated by a single peak (Fig. 2A) (29, 42). Complete curve fits, however, require three O neighbors at 1.92, 2.09, and 2.31 Å, with a fourth low-amplitude shell at 2.64 Å giving a small improvement in the fit (Fig. 2Â, Inset and SI Appendix, Fig. S3). The 1.92-Å Cu-O distance is close to half of the 3.79-Å Cu-Cu distance. The E⊥H spectrum displays three distinct peaks in the O neighbor region. The lower position of the first one demonstrates a shorter Cu-O distance than in the *a* direction, just as the other peaks at higher R signify longer ones. This complicated spectrum is fit by four O neighbors at 1.83, 2.00, 2.27, and 2.61 Å (Fig. 2 B, Inset). An additional small feature in both spectra at $R \sim 2.5$ Å is fit by Sr and/or O at ~2.8-2.9 Å. The 1.83- and 2.00-Å distances with their equivalent amplitudes could be the two parts of an off-center O in a b-oriented -Cu-O- chain and/or two Cu-Oap distances of a distorted square Cu site with O vacancies in the ab plane. The differences between 1.83, 1.92, 2.00, and 2.09 Å are significantly larger than the normal EXAFS error ± 0.02 Å, confirming the separate a and b Cu-O distributions and division of the spectra into a and the combined bc component. Since the Cu-Cu wave in $\chi(\mathbf{k})$ in both spectra is defined by the amplitudes and phases of the

Fig. 2. EXAFS [Fourier transform or $\chi(R)$ representation] of SCO (A) along the same direction as the magnetic field and (B) perpendicular to the magnetic field. The main figures show the data and fit in real space, the Upper Right Insets the same in k, and the Lower Right Insets show the Fourier transform moduli 286^{**Q**:28} of the data, fits, and differences in their upper halves and the contributions of the individual neighbor shells, inverted for clarity, in their lower halves. The vertical chartreuse lines trace the position of the spectral features for, from low to high, the O neighbor at 1.92 Å, the O neighbor at 2.6 Å, the Sr neighbors, and the Cu neighbors with a bridging O ion between them. The relative numbers of atoms are reflected by the peak amplitudes, reduced by 1/R².

Cu-O-Cu moiety with the bridging O, a corresponding fraction of the 1.83- and 2.00-Å Cu-O pairs in the bc-oriented spectrum must be the bridging O of the Cu-O-Cu pairs along the b axis. Remaining O neighbors may be Oap, including the O at the longer distances if Sr displacements allow expansion of the Cu-Oap bond. Insofar as the most significant finding of this study is the location of the O ions and vacancies in the aa-oriented Cu planes a thorough analysis was performed that provides a graphic presentation of the relevant results. As explained previously, the 0.11-Å resolution derived from the upper limit of the spectra ensures that the individual Cu-O waves in $\chi(\mathbf{k})$ in the E||a spectrum are easily separable. Rather than rely solely on curve-fit results, the location of the O vacancies is addressed by directly comparing the isolated Cu-O-Cu and Cu-O EXAFS waves against appropriate standards, in this case the same waves from, respectively, the E||bc-oriented spectra and the E||a spectra from $YBa_2Cu_{2.75}Mo_{0.25}O_{7.54}$ that we have shown has fully ordered CuO₂ planes and CuO₃-type chains. This comparison not only gives the relative numbers of Cu-O-Cu pairs and bridging O in the E||H||a spectrum by direct comparison of their magnitudes but also tests the extent to which their originating structures are identical via the similarity of their phases and

amplitude envelopes. The Cu-O-Cu waves in $\chi(\mathbf{k})$ from the two

orientations (Fig. 3A) are almost identical, verifying this assignment

and the presumption that uncorrelated thermal motion makes the contributions of any unbridged Cu-Cu pairs negligible. Deriving the relative numbers of Cu atoms requires correcting the spectral amplitudes by the polarization geometry factors of 3 for the E||H||a spectrum and 3/2 for the E \perp H||bc (43). The essentially identical amplitudes therefore demonstrate that the numbers of Cu-O-Cu neighbors and therefore bridging O in the a direction are only close to half that for b. The a-oriented, partial -Cu-O- chains and presumably the mixed Cu(II, III) valence resulting from the added charge from the excess O account for the conversion of the rectangular arrangement of the Cu and Sr atoms of Sr₂CuO₃ to their square geometry in SCO, even while the O atoms separate into different arrangements along the a and b directions so that their sublattice has orthorhombic symmetry (40). This same parameter is obtained independently by comparing the Cu-O wave from the E||H||a spectrum with the one from, e.g., YSr₂Cu_{2.75}Mo_{0.25}O_{7.54} (Fig. 3B) with its known structure (6). The amplitude ratio is 0.6-0.7. After the same factor of 2 polarization correction, the corrected amplitude of 0.35 times the average 3-1/3 O/Cu neighbors in YSr₂Cu_{2.75}Mo_{0.25}O_{7.54} gives ~ 1.1 O atoms in the *a* direction for SCO. The numbers of O and Cu neighbors therefore show that the $b \perp H$ –Cu-O- chains are essentially intact from Sr_2CuO_3 and the *a*||H -Cu-O- chains

Fig. 3. EXAFS waves and amplitudes for direct comparison of relative atom numbers. (A) The Cu-Cu EXAFS from the two orientations of SCO. (B) The nearest-neighbor Cu-O waves and amplitudes from the a orientation of SCO and the ab orientation of YSr2Cu2.75Mo0.25O7.54 and the ratio of the amplitudes ×5. The Cu-O-Cu and Cu-O EXAFS from the spectra were separated by subtracting all of the other components (Fig. 2) from the fits followed by Fourier back-transformation over the width of the spectral feature from the Cu. These are the original waves; converting to relative numbers of atoms from the amplitude ratios requires the polarization correction described in the text.

are around half filled (Fig. 4A). This half filling corresponds to the Cu(II):(III) ratio.

Since ordering of the O vacancies in the b-oriented -Cu-O- chains would be observed in the diffraction, these are likely located aperiodically. However, within the constraints of an aperiodic distribution it is still possible that the O atoms in these -Cu-O- chains cluster. At

435 one extreme there is no cooperativity between them, these O 436 atoms are located randomly, and their overall distribution is ho-437 mogeneous on a scale sufficiently large to overcome small deviations (Fig. 4A). This random distribution results in Cu ions with 438 two, three, and four O neighbors within the aa Cu plane whose 439 Cu-O distances would be close to half of the 3.79-Å distance be-440 tween the pairs of Cu atoms that they bridge as in La_2CuO_4 (Fig. 441 4D). At the other extreme these O atoms may cluster into domains 442 with the ordered CuO_2 plane structure (Fig. 4 C and E) whose 443 only restriction is that their size must be below the diffraction 444 limit, which becomes larger if these domains are aperiodically 445 distributed in the material. This distribution results in a hetero-446 geneous, nanophase separated structure. Intermediate distribu-447 tions that would be inhomogeneous (Fig. 4B) are not antithetical 448 to any of these considerations. However, that which occurs does q:10 449 have consequences. If these O atoms are fully clustered then it is easily understood that the superconductivity resides in the CuO₂ 450 domains, enabled by the short pair-correlation lengths, and would 451 be very similar to conventional cuprates except it would percolate 452 between the domains instead of flowing unobstructed. In contrast, 453 in the homogeneous distribution, the superconductivity would be 0:11 454 quenched at either the vacancy or occupied sites and therefore 455 filamentary. For YSr₂Cu_{2.75}Mo_{0.25}O_{7.54}, the Mo served as a probe 456 for its own organization (6), but there is no comparable probe for 457 the O atoms within SCO. However, our unpublished EXAFS 458 spectra over a range of temperatures are more consistent with the 459 random, homogeneous type of structure. 460

The remaining issue for the structure is local, the disposition of the O neighbors with Cu-O distances greater than 2 Å and the possibility of Sr at ~2.8 Å. Assigning formal charges or valence, the Cu with four O neighbors therefore already has the preferred Cu^2 square planar geometry if Oap are missing or at longer distances that may be tilted from the c axis. Similarly, if the Oap are at their Sr₂CuO₃ positions the Cu ions with two *a*-chain O vacancies will have the same Cu(II) assignment with the axial positions on the *a* chain vacant. This scenario implies that the Cu ions with three O neighbors from the plane would be Cu(III) that accommodates a wider range of geometries that would include their Oap neighbors. Consistent with the added charge, each adventitious O therefore results in ~2 Cu(III) and a similar number of O in a-oriented -Cu-O- chains, with the second coming from a

С

B

caused by no cooperation between the O atoms; (B) a moderate tendency for clustering resulting in an inhomogeneous distribution; (C) a strong tendency for Q:29 clustering causing nanophase separation and a heterogeneous structure composed of domains below the diffraction limit in size consisting of either CuO₂ 434 planes or -Cu-O- chains. (D) The corresponding structure of A. (E) The corresponding structure of C.

461

462

463

464

465

466

467

468

469

470

471

472

473 474

475

476 477

478

479 480

481

482

483

484

485

486

487

488

489

490

491 492

493

494

495

- 549 550 551 552
- 553 554
- 555**Q:17** 556
- 557

5580:18

Fig. 5. Conceptual depictions of possible displacements in Sr₂CuO_{3.3}. (A) Sr₂CuO₃ with the Cu-O chains at the bottom, (B) the T structure of La₂CuO₄ with the CuO₂ planes derived from the Cu-O chains by the insertion of O bridges between the Cu pairs on the b axis of Sr₂CuO₃ at the bottom, and (C) Sr₂CuO_{3.3} with the Cu atoms in the ab planes at the bottom and Oap and one of the bridging O atoms removed. The structure in C with Sr is produced from B with La by removing the central apical and a b-oriented Cu-O- chain O atoms and displacing the central Sr atom and two of its O neighbors in the directions of the arrows in B, with expanded Sr-O bonds magenta and pink, expanded Cu-O bonds turquoise. The Oap vacancy in SCO creates a large volume for the Sr atom that the chain O vacancy renders asymmetric. The O excess results in comparable amounts of Cu(II) and (III). The displacement of the Sr atom accompanied by a rotation of the O-Cu-O moiety around the b axis is a possible mechanism for giving the longer Cu-O distances found by the EXAFS. These motions would be facilitated by cooperative action of the atoms in neighboring unit cell in which the inverse motions are synchronized so that this extended set of atoms oscillate between this structure and its mirror image coherently as a tunneling polaron.

displacement of an Oap into the bridging position in the chain. The varying Cu geometries will give the range of Cu-Oap distances, with disorder reducing the EXAFS amplitudes. Further insight is gained by tracking the evolution of the structure from Sr₂CuO₃ to T-La₂CuO₄ at the Sr site. The Sr in Sr₂CuO₃ has seven O nearest neighbors with Sr-O distances in a narrow range around 2.5 Å (Fig. 5A), whereas La₂CuO₄ has eight La-O from 2.6 to 2.8 Å and a ninth very short one to the apical O at 2.36 Å (Fig. 5B). Sr₂CuO₃ is presumably stable because of its high local symmetry and uniform Cu(II). In SCO this symmetry is destroyed by the half-filled b-oriented Cu-O- chains, apical O vacancies, and the mixed Cu valence. The noninteger bulk stoichiometry will also result in unit cells with different compositions and structures whose distribution lacks translational symmetry. The removal of the apical O opens an extremely large space for the Sr (Fig. 5C). Displacements of the Sr in combination with the Cu(II, III) mixture would cause collective displacements and highly unusual Sr and Cu geometries. One such possibility, a rotation of a CuO2 moiety, is depicted (Fig. 5C). The longer Cu-O pairs could thus be Cu-Oap expanded because of the displaced Sr. The very short ~2.8-Å Cu-Sr distance that gives the best fits of the Cu EXAFS at some temperatures would thus be somewhat analogous to the 2.7-Å Cu-Cu distances in the alkali metal MCuO₂ compounds, here caused by bent, double-O bridges.

The question of the whether the O vacancies are located in the apical positions or in highly disrupted CuO₂ planes is therefore moot; they are located in both positions. The vacancies will result 542_{Q:12} in substantial displacements of the O ions to give Cu and Sr geometries compatible with the Cu(II, III) combination. Collective 544 and cooperative effects could be expected to result in preferred configurations of sets of atoms, but these would be positioned 545 aperiodically throughout the crystal. Solving the structure in the 546 tetragonal space group would give the average position of their 547 projections onto the axes through the nearest Cu. In contrast, 548 EXAFS gives a more complete depiction of this system because of its sensitivity to local order. The unpaired electron density along the *a*-oriented Cu-O chains resides in a different orbital than in other cuprates, and the *a-b* anisotropy rotates the magnetization. Superconductivity in the disrupted $CuO_{1.5}$ planes has been described:

percolation of the short coherence length superconductivity that resides in domains with the conventional CuO₂ structure, or filamentary superconductivity through continuous Cu-O networks. If ordered, 2D structures with Cu and O atoms are required there q:1: It ordered, 2D structures with Cu and O atoms are required there $q_{:1}$ is an alternative: planes in the *c* direction with Sr that still have a square sublattice of Cu but with a type of Cu-Sr-O unit that will $q_{:14}$ have different Cu energy levels and occupations. These unique attributes of the composition, structure, magnetism, and other properties of SCO demonstrate the existence of a class of exotic Q:15 superconductors. This class of materials would have the secondhighest transition temperature after conventional cuprates. Under certain conditions, superconductivity can occur just as effectively via more structurally complex alternatives to the ubiquitous CuO₂ planes.

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

Materials and Methods

Single-phase SCO with $T_c = 95$ K (SI Appendix, Fig. S1) and 19% superconducting volume fraction was prepared by annealing Sr₂CuO₃ and KClO₄ in amounts giving a nominal composition of Sr₂CuO_{3.3} at around 7 GPa and 1,050 °C for 30 min (17, 18). The XAFS samples were prepared by having a mixture of the Sr₂CuO_{3,3} in epoxy set in the bore of a 16-T magnet. X-ray diffraction analysis of these samples showed only the Sr₂CuO_{3,3} pattern (SI Appendix, Fig. S2). XAFS was measured in the continuous transmission mode on beamline 2-2 at the Stanford Synchrotron Radiation Lightsource. XAFS spectra were analyzed by standard methods (44) with curve fits using amplitudes and phases calculated by the feff9 code (45). A more detailed description is found in SI Appendix. Original data are available from S.D.C. on request (st3v3n.c0nrads0n@icloud.com).

ACKNOWLEDGMENTS. The authors acknowledge the financial support from the Slovenian Research Agency (Research Core Funding P1-0040). Work at Washington State University is partially supported by the US National Science Foundation (NSF) DMR EAGER Grant 1928874. Work at IOPCAS was supported Q:16 by MOST and NSF of China through Research Projects 2018YFA03057001, 2017YFA0302901, 11820101003, 2016YFA0300301, 2015CB921000, and 112111KYS820150017. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract DE-AC02-76SF00515. Work at Stanford and SLAC is supported by the Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory, under Department of Energy, Office of Basic Energy Sciences Contract DEAC02-76SF00515.

- 1. J. G. Bednorz, K. A. Muller, Possible high-tc superconductivity in the Ba-La-Cu-O system, Z. Phys. B Condens, Matter 64, 189-193 (1986).
- 2. B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, J. Zaanen, From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).
- 3. A. Ono, Superconductivity in Cr-1212 cuprates Sr_{2-x}Ba_xYCu_{2.8}Cr_{0.2}O_z. Jpn. J. Appl. Phys. 34, 1528 (1995).
- 4. A. Ono, Oxygenation and critical-temperature optimization in M-1212 cuprates (Sr, Ba)(2)YCu(2.8)M(0.2)O(z) (M=Ti, Ga, Ge, Al). Jpn. J. Appl. Phys. 35, L201-L204 (1996). Q:19
- 5. D. Haskel, E. A. Stern, D. G. Hinks, A. W. Mitchell, J. D. Jorgensen, Altered Sr envi-
- ronment in La_{2-x}Sr_xCuO₄. *Phys. Rev. B* 56, R521–R524 (1997). 0:20 6. S. D. Conradson et al., Local lattice distortions and dynamics in overdoped YSr₂Cu_{2.75}Mo_{0.25}O_{7.54}. Proc. Natl. Acad. Sci. U.S.A. (2019)., in press. Q:21
 - PNAS Latest Articles | 5 of 6

621 622	 A. Gauzzi et al., Bulk superconductivity at 84 K in the strongly overdoped regime of cuprates. Phys. Rev. B 94, 180509 (2016). 	 A. R. Bishop, D. Mihailovic, J. M. de Leon, Signatures of mesoscopic Jahn-Teller po- laron inhomogeneities in high-temperature superconductors. J. Phys. Condens. Matter
622	8. W. M. Li et al., Superconductivity in a unique type of copper oxide. Proc. Natl. Acad.	15 , L169–L175 (2003).
623	Sci. U.S.A. 116, 12156–12160 (2019).	29. S. D. Conradson, I. D. Raistrick, A. R. Bishop, Axial oxygen-centered lattice instabilities
024	diagram of cuprate high-temperature superconductors. Nat. Commun. 7, 11413	30. C. A. Young et al., Reverse Monte Carlo study of apical Cu-O bond distortions in
625	(2016).	YBa ₂ Cu ₃ O _{6.93} . Z. Kristallogr. Cryst. Mater. 227 , 280 (2012).
626	10. E. S. Bozin et al., Charge-screening role of c-axis atomic displacements in YBa ₂ Cu ₃ O _{6+x}	31. M. Arai <i>et al.</i> , Local structural instability of high-T _c oxide superconductors studied by
627	and related superconductors. <i>Phys. Rev. B</i> 93, 054523 (2016).	inelastic neutron-scattering. J. Supercond. 7, 415–418 (1994).
628	teraction in cuprate superconductors. <i>Nat. Phys.</i> 13 , 1201–1206 (2017).	oxygen-centered lattice fluctuation associated with the superconducting transition in
629	12. S. Kim, X. Chen, W. Fitzhugh, X. Li, Apical charge flux-modulated in-plane transport	YBa ₂ Cu ₃ O ₇ . Phys. Rev. Lett. 65, 1675–1678 (1990).
630	properties of cuprate superconductors. <i>Phys. Rev. Lett.</i> 121 , 157001 (2018).	33. I. Batistic, A. R. Bishop, S. D. Conradson, S. A. Trugman, J. Mustre de Leon, Polaron
631	 M. Takano, M. Azuma, Z. Hiroi, Y. Bando, Y. Takeda, Superconductivity in the Ba-sr- Cu-O system. <i>Physica C</i> 176, 441–444 (1991) 	origin for anharmonicity of the axial oxygen in YBa2Cu3O7. Phys. Rev. Lett. 68 , 3236– 3239 (1992)
632	14. W. M. Li et al., Synthesis and structure stability of Ba ₂ CuO _{3+delta} under high pressure.	34. P. G. Allen, S. D. Conradson, A. R. Bishop, A. R. Bishop, J. Mustre de Leon, Charac-
633 Q:22	Int. J. Mod. Phys. B 29, 15420242 (2015).	terization of a split axial-oxygen site in TIBa ₂ Ca ₃ Cu ₄ O ₁₁ by extended x-ray-absorption
634	15. Z. Hiroi, M. Takano, M. Azuma, Y. Takeda, A new family of copper-oxide supercon-	fine-structure spectroscopy. <i>Phys. Rev. B Condens. Matter</i> 44 , 9480–9485 (1991).
635	16. H. Yang, O. O. Liu, F. Y. Li, C. O. Jin, R. C. Yu, TEM and EELS characterization of a	temperature superconductors. <i>Physica C</i> 220, 377–382 (1994).
()($Sr_2CuO_{3+delta}$ superconductor post-annealed at different temperatures: Enhancement	36. S. D. Conradson <i>et al.</i> , Possible demonstration of a polaronic Bose-Einstein(-Mott)
030	of T-c by apical oxygen reordering. Supercond. Sci. Technol. 20, 904–910 (2007).	condensate in $UO_{2(+x)}$ by ultrafast THz spectroscopy and microwave dissipation. Sci.
637	17. W. Liang <i>et al.</i> , Growth of $Sr_2CuO_{3+delta}$ superconductor single crystals at high pres-	Rep. 5, 15278 (2015).
638 Q:23	sure. Sci. China Phys. Mech. Astron. 56 , 691–693 (2013). 18. Y. Liu et al. A new modulated structure in Sr ₂ CuO _{2 date} superconductor synthesized	37. S. D. Conradson et al., Closure of the Mott gap and formation of a superthermal metal in the Frohlich-type nonequilibrium polaron Rose-Finstein condensate in
639	under high pressure. <i>Physica C</i> 497 , 34–37 (2014).	UO _{2+x} . Phys. Rev. B 96 , 125114 (2017).
640	19. P. S. Hafliger et al., Quantum and thermal ionic motion, oxygen isotope effect, and	38. G. Fabbris et al., Combined single crystal polarized XAFS and XRD at high pressure:
641	superexchange distribution in La ₂ CuO ₄ . <i>Phys. Rev. B</i> 89 , 085113 (2014).	Probing the interplay between lattice distortions and electronic order at multiple
642	20. C. L. Teske, H. Muller-Buchsbaum, Alkaline earth metals oxocuprate. 2. Sr ₂ CuO ₃ . 2. Anora. Alla. Chem. 371 , 325 (1969).	39. W. A. Dollase. Correction of intensities for preferred orientation in powder diffrac-
643	21. K. R. Thurber, A. W. Hunt, T. Imai, F. C. Chou, 170 NMR study of q = 0 spin excitations	tometry-Application of the march model. J. Appl. Cryst. 19, 267-272 (1986).
644	in a nearly ideal $S = 1 / 2$ 1D Heisenberg antiferromagnet, Sr2CuO3, up to 800 K. <i>Phys.</i>	40. J. Schlappa et al., Probing multi-spinon excitations outside of the two-spinon con-
645	Rev. Lett. 87, 247202 (2001). 22. B. Laffoz, X. L. Wu, S. Adachi, H. Yamauchi, N. Môri, Synthesis of superconducting	tinuum in the antiferromagnetic spin chain cuprate Sr ₂ CuO ₃ . Nat. Commun. 9, 5394
616 Q:24	Sr ₂ CuO _{3+delta} using high-pressure techniques. <i>Physica C</i> 222, 303–309 (1994).	41. S. D. Conradson, I. Batistic, A. R. Bishop, A. R. Bishop, J. Mustre de Leon, Correlation
(47	23. T. H. Geballe, M. Marezio, Enhanced superconductivity in Sr ₂ CuO _{4-v} . <i>Physica</i> C 469,	between axial-oxygen anharmonicity and T_c in YBa ₂ Cu ₃ O ₇ and related compounds.
04/	680–684 (2009).	Phys. Rev. B Condens. Matter 44, 2422–2425 (1991).
648	 T. Egami et al., Local structural anomaly near T_c observed by pulsed neutron-scat- tering. <i>Physica C</i> 185, 867–868 (1991) 	42. S. D. Conradson et al., Axial oxygen-centered lattice instabilities in YBa ₂ Cu ₃ O ₇ : An application of the analysis of extended x-ray-absorption fine structure in apharmonic
649	25. M. I. Salkola, A. R. Bishop, J. Mustre de Leon, S. A. Trugman, Dynamic polaron tun-	systems. Phys. Rev. B Condens. Matter 45, 2447–2457 (1992).
650	neling in YBa2Cu3O7: Optical response and inelastic neutron scattering. Phys. Rev. B	43. A. Manceau, D. Chateigner, W. P. Gates, Polarized EXAFS, distance-valence least-
651	Condens. Matter 49, 3671–3674 (1994).	squares modeling (DVLS), and quantitative texture analysis approaches to the struc-
652	26. M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function	tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25 , 347–365 (1998).
652 653	 M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B</i> <i>Condens. Matter</i> 51, 8878–8891 (1995). 	 tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25, 347–365 (1998). 44. S. D. Conradson <i>et al.</i>, Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. <i>Phys. Rev. B Condens.</i>
652 653 654	 M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B</i> <i>Condens. Matter</i> 51, 8878–8891 (1995). J. M. DeLeon et al., Applications of Synchrotron Radiation Techniques to Materials 	 tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25, 347–365 (1998). 44. S. D. Conradson et al., Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. <i>Phys. Rev. B Condens. Matter Mater. Phys.</i> 89 (2014). Q:26
652 653 654	 M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B</i> <i>Condens. Matter</i> 51, 8878–8891 (1995). J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials</i> <i>Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 	 tural refinement of Garfield nontronite. Phys. Chem. Miner. 25, 347–365 (1998). S. D. Conradson et al., Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. Phys. Rev. B Condens. Matter Mater. Phys. 89 (2014). Q:26 J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of the presence of the
652 653 654 655 Q:25	 M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B</i> <i>Condens. Matter</i> 51, 8878–8891 (1995). J. M. DeLeon et al., Applications of Synchrotron Radiation Techniques to Materials Science III, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. Phys. Chem. Miner. 25, 347–365 (1998). S. D. Conradson et al., Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. Phys. Rev. B Condens. Matter Mater. Phys. 89 (2014). Q:26 J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. Phys. Chem. Chem. Phys. 12, 5503–5513 (2010).
652 653 654 655 q:25 656	 M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B</i> <i>Condens. Matter</i> 51, 8878–8891 (1995). J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials</i> <i>Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. Phys. Chem. Miner. 25, 347–365 (1998). S. D. Conradson et al., Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. Phys. Rev. B Condens. Matter Mater. Phys. 89 (2014). Q:26 J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. Phys. Chem. Chem. Phys. 12, 5503–5513 (2010).
652 653 654 655 Q:25 656 657	 M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B</i> <i>Condens. Matter</i> 51, 8878–8891 (1995). J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials</i> <i>Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. Phys. Chem. Miner. 25, 347–365 (1998). S. D. Conradson et al., Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. Phys. Rev. B Condens. Matter Mater. Phys. 89 (2014). Q:26 J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. Phys. Chem. Chem. Phys. 12, 5503–5513 (2010).
652 653 654 655 q:25 656 657 658	 M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B</i> <i>Condens. Matter</i> 51, 8878–8891 (1995). J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials</i> <i>Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25, 347–365 (1998). S. D. Conradson <i>et al.</i>, Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. <i>Phys. Rev. B Condens. Matter Mater. Phys.</i> 89 (2014). Q:26 J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. <i>Phys. Chem. Chem. Phys.</i> 12, 5503–5513 (2010).
652 653 654 655 q:25 656 657 658 659	 M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B</i> <i>Condens. Matter</i> 51, 8878–8891 (1995). J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials</i> <i>Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25, 347–365 (1998). S. D. Conradson <i>et al.</i>, Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. <i>Phys. Rev. B Condens. Matter Mater. Phys.</i> 89 (2014). Q:26 J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. <i>Phys. Chem. Chem. Phys.</i> 12, 5503–5513 (2010).
652 653 654 655 q:25 656 657 658 659 660	 M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B</i> <i>Condens. Matter</i> 51, 8878–8891 (1995). J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials</i> <i>Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25, 347–365 (1998). S. D. Conradson <i>et al.</i>, Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. <i>Phys. Rev. B Condens. Matter Mater. Phys.</i> 89 (2014). Q:26 J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. <i>Phys. Chem. Chem. Phys.</i> 12, 5503–5513 (2010).
652 653 654 655 q:25 656 657 658 659 660 661	 M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B Condens. Matter</i> 51, 8878–8891 (1995). J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25, 347–365 (1998). S. D. Conradson <i>et al.</i>, Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. <i>Phys. Rev. B Condens. Matter Mater. Phys.</i> 89 (2014). Q:26 J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. <i>Phys. Chem. Chem. Phys.</i> 12, 5503–5513 (2010).
652 653 654 655 q:25 656 657 658 659 660 661 662	 M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B Condens. Matter</i> 51, 8878–8891 (1995). J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25, 347–365 (1998). S. D. Conradson <i>et al.</i>, Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. <i>Phys. Rev. B Condens. Matter Mater. Phys.</i> 89 (2014). Q:26 J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. <i>Phys. Chem. Chem. Phys.</i> 12, 5503–5513 (2010).
652 653 654 655 q:25 656 657 658 659 660 661 662 663	 26. M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B Condens. Matter</i> 51, 8878–8891 (1995). 27. J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25, 347–365 (1998). 44. S. D. Conradson <i>et al.</i>, Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. <i>Phys. Rev. B Condens. Matter Mater. Phys.</i> 89 (2014). Q:26 45. J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. <i>Phys. Chem. Chem. Phys.</i> 12, 5503–5513 (2010).
652 653 654 655 q:25 656 657 658 659 660 661 662 663 664	 26. M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B Condens. Matter</i> 51, 8878–8891 (1995). 27. J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25, 347–365 (1998). 44. S. D. Conradson <i>et al.</i>, Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. <i>Phys. Rev. B Condens. Matter Mater. Phys.</i> 89 (2014). Q:26 45. J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. <i>Phys. Chem. Chem. Phys.</i> 12, 5503–5513 (2010).
652 653 654 655 q:25 656 657 658 659 660 661 662 663 664 665	 26. M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B Condens. Matter</i> 51, 8878–8891 (1995). 27. J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25, 347–365 (1998). 44. S. D. Conradson <i>et al.</i>, Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. <i>Phys. Rev. B Condens. Matter Mater. Phys.</i> 89 (2014). Q:26 45. J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. <i>Phys. Chem. Chem. Phys.</i> 12, 5503–5513 (2010).
652 653 654 655 q:25 656 657 658 659 660 661 662 663 664 665 666	 26. M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B Condens. Matter</i> 51, 8878–8891 (1995). 27. J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25, 347–365 (1998). 44. S. D. Conradson <i>et al.</i>, Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. <i>Phys. Rev. B Condens. Matter Mater. Phys.</i> 89 (2014). Q:26 45. J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. <i>Phys. Chem. Chem. Phys.</i> 12, 5503–5513 (2010).
652 653 654 655 q:25 656 657 658 659 660 661 662 663 664 665 666 666 667	 26. M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B Condens. Matter</i> 51, 8878–8891 (1995). 27. J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25, 347–365 (1998). 44. S. D. Conradson <i>et al.</i>, Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. <i>Phys. Rev. B Condens. Matter Mater. Phys.</i> 89 (2014). Q:26 45. J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. <i>Phys. Chem. Chem. Phys.</i> 12, 5503–5513 (2010).
652 653 654 655 q:25 656 657 658 659 660 661 662 663 664 665 666 667 668	 26. M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B Condens. Matter</i> 51, 8878–8891 (1995). 27. J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25, 347–365 (1998). 44. S. D. Conradson <i>et al.</i>, Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. <i>Phys. Rev. B Condens. Matter Mater. Phys.</i> 89 (2014). Q:26 45. J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. <i>Phys. Chem. Chem. Phys.</i> 12, 5503–5513 (2010).
652 653 654 655 q:25 656 657 658 659 660 661 662 663 664 665 666 667 668 669	 26. M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B Condens. Matter</i> 51, 8878–8891 (1995). 27. J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25, 347–365 (1998). 44. S. D. Conradson <i>et al.</i>, Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. <i>Phys. Rev. B Condens. Matter Mater. Phys.</i> 89 (2014). Q:26 45. J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. <i>Phys. Chem. Chem. Phys.</i> 12, 5503–5513 (2010).
652 653 654 655 q:25 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670	 26. M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B Condens. Matter</i> 51, 8878–8891 (1995). 27. J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25, 347–365 (1998). 44. S. D. Conradson <i>et al.</i>, Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. <i>Phys. Rev. B Condens. Matter Mater. Phys.</i> 89 (2014). Q:26 45. J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. <i>Phys. Chem. Chem. Phys.</i> 12, 5503–5513 (2010).
652 653 654 655 q:25 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671	 26. M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B Condens. Matter</i> 51, 8878–8891 (1995). 27. J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25, 347–365 (1998). 44. S. D. Conradson <i>et al.</i>, Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. <i>Phys. Rev. B Condens. Matter Mater. Phys.</i> 89 (2014). Q:26 45. J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. <i>Phys. Chem. Chem. Phys.</i> 12, 5503–5513 (2010).
652 653 654 655 q:25 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 671	 26. M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B Condens. Matter</i> 51, 8878-8891 (1995). 27. J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25, 347–365 (1998). 44. S. D. Conradson <i>et al.</i>, Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. <i>Phys. Rev. B Condens. Matter Mater. Phys.</i> 89 (2014). Q:26 45. J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. <i>Phys. Chem. Chem. Phys.</i> 12, 5503–5513 (2010).
652 653 654 655 q:25 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672	 26. M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B Condens. Matter</i> 51, 8878-8891 (1995). 27. J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25, 347–365 (1998). 44. S. D. Conradson <i>et al.</i>, Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. <i>Phys. Rev. B Condens. Matter Mater. Phys.</i> 89 (2014). C:26 45. J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. <i>Phys. Chem. Chem. Phys.</i> 12, 5503–5513 (2010).
652 653 654 655 q:25 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673	 26. M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B Condens. Matter</i> 51, 8878–8891 (1995). 27. J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25, 347–365 (1998). 44. S. D. Conradson <i>et al.</i>, Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. <i>Phys. Rev. B Condens. Matter Mater. Phys.</i> 89 (2014). C:26 45. J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. <i>Phys. Chem. Chem. Phys.</i> 12, 5503–5513 (2010).
652 653 654 655 q:25 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674	 26. M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B Condens. Matter</i> 51, 8878–8891 (1995). 27. J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25, 347–365 (1998). 44. S. D. Conradson <i>et al.</i>, Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. <i>Phys. Rev. B Condens. Matter Mater. Phys.</i> 89 (2014). C:26 45. J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. <i>Phys. Chem. Chem. Phys.</i> 12, 5503–5513 (2010).
652 653 654 655 q:25 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675	 26. M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B Condens. Matter</i> 51, 8878–8891 (1995). 27. J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25, 347–365 (1998). 44. S. D. Conradson <i>et al.</i>, Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. <i>Phys. Rev. B Condens. Matter Mater. Phys.</i> 89 (2014). C:26 45. J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. <i>Phys. Chem. Chem. Phys.</i> 12, 5503–5513 (2010).
652 653 654 655 q:25 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676	 26. M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B Condens. Matter</i> 51, 8878-8891 (1995). 27. J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25, 347–365 (1998). 44. S. D. Conradson <i>et al.</i>, Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. <i>Phys. Rev. B Condens. Matter Mater. Phys.</i> 89 (2014). C:26 45. J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. <i>Phys. Chem. Chem. Phys.</i> 12, 5503–5513 (2010).
652 653 654 655 q:25 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677	 26. M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B Condens. Matter</i> 51, 8878-8891 (1995). 27. J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25, 347–365 (1998). S. D. Conradson et al., Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. <i>Phys. Rev. B Condens. Matter Mater. Phys.</i> 89 (2014). Q:26 J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. <i>Phys. Chem. Chem. Phys.</i> 12, 5503–5513 (2010).
652 653 654 655 q:25 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678	 26. M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B Condens. Matter</i> 51, 8878–8891 (1995). 27. J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. Phys. Chem. Miner. 25, 347–365 (1998). 44. S. D. Conradson et al., Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. Phys. Rev. B Condens. Matter Mater. Phys. 89 (2014). Q:26 45. J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. Phys. Chem. Chem. Phys. 12, 5503–5513 (2010).
652 653 654 655 q:25 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679	 26. M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B Condens. Matter</i> 51, 8878–8891 (1995). 27. J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25, 347–365 (1998). 44. S. D. Conradson et al., Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fcc Pu-Ga alloys. <i>Phys. Rev. B Condens. Matter Mater. Phys.</i> 89 (2014). Q:26 45. J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. <i>Phys. Chem. Chem. Phys.</i> 12, 5503–5513 (2010).
652 653 654 655 q:25 656 657 658 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 675 676 677 678 679 680	 26. M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B Condens. Matter</i> 51, 8878–8891 (1995). 27. J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25, 347-365 (1998). S. D. Conradson et al., Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fc Pu-Ga alloys. <i>Phys. Rev. B Condens. Matter Mater. Phys.</i> 89 (2014). Q:26 J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. <i>Phys. Chem. Chem. Phys.</i> 12, 5503–5513 (2010).
652 653 654 655 q:25 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 674 675 676 677 678 679 680 (81)	26. M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B Condens. Matter 51</i> , 8878-8891 (1995). 27. J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials science III</i> , L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. EDITOR EDITOR	 tural refinement of Garfield nontronite. <i>Phys. Chem. Niner.</i> 25, 347-365 (1998). 44. S. D. Conradson <i>et al.</i>, Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fc Pu-Ga alloys. <i>Phys. Rev. B Condens. Matter Mater. Phys.</i> 89 (2014). C:26 45. J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. <i>Phys. Chem. Chem. Phys.</i> 12, 5503–5513 (2010).
652 653 654 655 q:25 656 657 658 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 674 675 676 677 678 679 680 681 682	 M. I. Salkola, A. R. Bishop, S. A. Trugman, J. Mustre de Leon, Correlation-function analysis of nonlinear and nonadiabatic systems: Polaron tunneling. <i>Phys. Rev. B</i> <i>Condens. Matter</i> 51, 8878-8881 (1995). J. M. DeLeon et al., <i>Applications of Synchrotron Radiation Techniques to Materials</i> <i>Science III</i>, L. J. Terminello, S. M. Mini, H. Ade, D. L. Perry, Eds. (1996), vol. 437, pp. 189–199. 	 tural refinement of Garfield nontronite. <i>Phys. Chem. Miner.</i> 25, 347-365 (1998). S. D. Conradson <i>et al.</i>, Nanoscale heterogeneity, premartensitic nucleation, and a new plutonium structure in metastable delta fc Pu-Ga alloys. <i>Phys. Rev. B Condens. Matter Mater. Phys.</i> 89 (2014). Q:26 J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. <i>Phys. Chem. Chem. Phys.</i> 12, 5503–5513 (2010).

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

- Q: 1_Please (i) review the author affiliation and footnote symbols carefully, (ii) check the order of the author names, and (iii) check the spelling of all author names, initials, and affiliations. To confirm that the author and affiliation lines are correct, add the comment "OK" next to the author line.
- Q: 2_Please review the information in the author contribution footnote carefully. Please make sure that the information is correct and that the correct author initials are listed. Note that the order of author initials matches the order of the author line per journal style. You may add contributions to the list in the footnote; however, funding should not be an author's only contribution to the work.
- Q: 3_Please review your open access and license selection. If any information is incorrect, please note this in the margin.
- Q: 4_Certain compound terms are hyphenated when used as adjectives and unhyphenated when used as nouns. This style has been applied consistently throughout where (and if) applicable.
- Q: 5_If you have any changes to your Supporting Information (SI) file(s), please provide revised, readyto-publish replacement files without annotations.
- Q: 6_Please supply zip or postal codes for all affiliations, and a country and city for affiliations "a", "b", "f", and "g".
- Q: 7_Please spell out SPMS in affiliation g.
- Q: 8_Please check hyphens vs. en dashes, particularly in chains such as -Cu-O- chains.
- Q: 9_The Significance statement exceeds the maximum limit of 120 words; it is currently 123 words. Please eliminate at least three words to adhere to the limit.
- Q: 10_Please check our edits to sentence "However, that which occurs does have consequences."
- Q: 11_Claims of priority or primacy are not allowed per PNAS policy (https://www.pnas.org/page/ authors/format). Therefore, the term "novel" has been deleted.
- Q: 12_Claims of priority or primacy are not allowed per PNAS policy (https://www.pnas.org/page/ authors/format). Therefore, the term "new" has been deleted.
- Q: 13_Please spell out "2D". Does it stand for "two dimensional"? Please confirm.
- Q: 14_Claims of priority or primacy are not allowed per PNAS policy (https://www.pnas.org/page/ authors/format). Therefore, the term "novel" has been deleted.
- Q: 15_Claims of priority or primacy are not allowed per PNAS policy (https://www.pnas.org/page/ authors/format). Therefore, the term "novel" has been deleted.
- Q: 16_PNAS articles should be accessible to a broad scientific audience. As such, please spell out DMR, EAGER, IOPCAS, MOST in the Acknowledgments.
- Q: 17_Please confirm last page number for refs. 1, 11, 13, 15, 16, 18, 23, 24, 28, 31, 35, 38, 39, 43.

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

- Q: 18_Please confirm journal title for ref. 3.
- Q: 19_Please confirm journal title and last page number for ref. 4.
- Q: 20_Please confirm author names and last page number for ref. 5.
- Q: 21_Please update ref. 6 with complete information if it is published.
- Q: 22_Please verify that all et al. references contain 6 or more authors. If 5 authors or fewer, please supply complete author lists.
- Q: 23_Please confirm journal title and last page number for ref. 17.
- Q: 24_Please confirm author names and last page number for ref. 22.
- Q: 25_Please provide the publisher's name for ref. 27.
- Q: 26_Please provide page number for ref. 44.
- Q: 27_Please check that Figs. 1, 2, and 3 appear as intended. The original manuscript PDF contained two versions of these figures.
- Q: 28_Please clarify what is meant by "the same in k" in Fig.2, legend, "The main figures show the data and fit in real space, the *Upper Right Insets* the same in k, and the *Lower Right Insets* show the Fourier transform moduli of the data, fits, and differences in their upper halves and the contributions of the individual neighbor shells, inverted for clarity, in their lower halves."

Q: 29_Please clarify the "r" in the Fig. 4 legend.