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3Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire, USA7

Key Points:8

• The Spatio-Temporal-Difference method is extended to determine non mono-dimensional9

spacecraft trajectories.10

• Two new methods are developed for this determination: the Single and the Multi11

Variate Fit methods. They are compared to previous ones.12

• A Gradient-Directed Monte Carlo approach is applied to optimize the results. The13

spacecraft path and magnetopause thickness are so computed.14

Corresponding author: Laurence Rezeau, laurence.rezeau@lpp.polytechnique.fr

–1–



manuscript submitted to JGR-Space Physics

Abstract15

When spacecraft (s/c) missions probe plasma structures (PS) the relative location of16

the s/c with respect to the PS is unknown. This information is however needed to mea-17

sure the geometrical features of the PS (orientation and thickness) and to understand18

the physical processes underlying the PS dynamics. Methods to determine the s/c lo-19

cation exist but they need strong assumptions to be satisfied (stationarity and special20

spatial dependencies). The number of cases for which these assumptions are likely to be21

valid for the entire PS seems to be limited and even weak departures from these hypoth-22

esis may affect the results. For a quasi-1D geometry in particular, the determination of23

the velocity component along the two quasi-invariant directions is very inaccurate and24

the assumption of strict stationarity may lead these quantities to diverge. In this paper25

we present new methods to compute the s/c trajectory through a PS, without a priori26

assumption on its spatial geometry, and able to work even in the presence of weak non-27

stationarities. The methods are tested both on artificial and real data, the latter pro-28

vided by the Magnetospheric MultiScale (MMS) mission probing the Earth’s magnetopause29

(MP ). 1D and 2D trajectories of the MMS are found that can be used as an initial step30

for future reconstruction studies. Advanced minimization procedures to optimize the re-31

sults are discussed.32

1 Introduction33

When spacecraft (s/c) cross plasma structures (PSs), the different parameters char-34

acterizing these structures are measured only as time series along the s/c trajectories.35

The shape and the motion of the PSs being unknown, it is quite difficult to determine36

both only from such temporal data. Multi-spacecraft missions like Cluster (Escoubet,37

Schmidt, & Goldstein, 1997) and the Magnetospheric MultiScale (MMS) (Burch, Moore,38

Torbert, & Giles, 2016b) have enabled considerable progress to determine the shape and39

motion of PSs since they make measurements at multiple locations, which helps to sep-40

arate spatial and temporal variations. Nevertheless, in the general case of a complex ge-41

ometrical shape for a PS and of a complex relative path of the s/c with respect to it,42

getting a full determination of the shape and motion of PSs remains challenging. Such43

determinations cannot be done, in general, without strong assumptions. But informa-44

tion about the shape and location of PSs is necessary for understanding the physical45

processes being studied. Regarding the Earth’s Magnetopause (MP ) for instance, which46

is the field and particle boundary between the shocked solar wind and the Earth’s mag-47

netosphere, one has to know first whether this boundary can be approximated by a 1D48

plane structure, as the simplest models assume, or not. If so, one only has to determine49

what is the direction of its normal and what is its global thickness (and the thickness50

of its different sub-structures if any (Rezeau, Belmont, Manuzzo, Aunai, & Dargent, 2018)).51

Actually, such a plane-like equilibrium is easily perturbed and it is rarely observed. Per-52

turbations generally involve 2D and 3D variations, either due to inhomogeneities in the53

incident solar wind or to surface instabilities such as, for instance, Kelvin-Helmholtz (KH)54

or tearing instabilities. One has then to determine what are the shape and the dimen-55

sions of the vortices in the KH case (Faganello & Califano, 2017), or, in the case of re-56

connection, one has to determine the invariance directions, the shapes and dimensions57

of the ion and electron demagnetized regions, the location of the separatrices, the ex-58

haust flow, etc. (Burch et al., 2016c), which is a very difficult task.59

The first basic assumption that makes possible the conversion from temporal to spa-60

tial data consists in assuming the PSs to be stationary in their proper frame, even if this61

frame, relatively to the s/c, can undergo variable accelerations in all directions, directly62

driven by the incident solar wind or due to local surface waves. The fact that the proper63

frame of the structure can experience accelerations can be exemplified, concerning the64

MP , by the existence of multiple and close crossings, such as those observed on 16 Oc-65

tober 2015 (Rezeau et al., 2018), which are clearly due to a back and forth motion of the66
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MP . Under these conditions, it makes sense to draw a complex s/c path across a fixed67

structure, this relative motion being mainly due, in reality, to motions of the MP itself,68

rather than due to the s/c motion, which is quite slow. This assumption has long been69

used by experimenters for drawing hand-made sketches to interpret data in the recon-70

nection context (see Figure (3) of Burch et al. (2016c), reproduced hereafter in the left71

part of Figure (8)).72

The observed PSs are not always strictly stationary in their own frame. They can73

undergo modifications during the crossing due, for instance, to slowly growing MHD in-74

stabilities. We will show that these departures -even weak- from strict stationarity can75

lead to difficulties if the usual methods are used without caution for determining the rel-76

ative motion between a structure and a s/c. For a quasi-1D structure for instance, the77

determination of the velocity components along the two quasi-invariant directions can78

be very inaccurate. This property, which is mentioned in the very recent review paper79

by Shi et al. (2019) will be demonstrated hereafter in this paper. We will show that any80

weak non-stationarity causes these components to diverge when using a method that as-81

sumes strict stationarity. The projection of the trajectory along the 1D direction is ac-82

tually not much affected by this problem, but it is difficult to know a priori when the83

second and the third component can be reliably used or not. In the present paper we84

will therefore relax the assumption of strict PSs stationarity and replace it by a more85

moderate ”quasi-stationarity” assumption. This means that we consider the PS to be86

stationary on time scales that are smaller than the time needed for the crossing of the87

entire PS (namely the MP crossing). In this sense we will discriminate the ”global” from88

the ”local” features of the PS characterizing, respectively, the entire PS and its sub parts.89

In the experimental example given below, the stationarity is assumed on ∼ 10 data points90

only (∼ 0.1 s) while the global crossing takes ∼ 1200 points (∼ 10 s). It therefore con-91

cerns a portion of about 0.8% of the total MP width. We will characterize as much as92

possible the local features of a PS, taking into account the possible slow modifications93

that can affect its structure during the crossing time. This will enable us to investigate94

its internal structure. Such information cannot be obtained by methods addressing the95

PS as a whole (e.g.: the MVA method Sonnerup and Cahill (1967) or the BV method96

Dorville, Belmont, Rezeau, Aunai, and Retinò (2014b) both returning a global frame97

known as LMN frame, where N is the direction of the normal and M and L are two other98

directions perpendicular to N and to each others). The methods that use multiple field99

and particle data sets may a priori be very beneficial for investigating PSs. But they100

can be difficult in practice because the different data sets often evidence gradients that101

are shifted from each other. This can be interpreted as the presence of different discon-102

tinuities. For instance, the MP is sometimes made of a slow shock (mainly seen on par-103

ticles) and a rotational discontinuity (mainly seen on the magnetic field) (Dorville, Bel-104

mont, Rezeau, Grappin, & Retinò, 2014a).105

Recently it has been possible to determine local PS normals thanks to methods106

providing a point-by-point reference frame (hereafter defined as a ”local frame” in con-107

trast to the ”global frame” valid for the entire PS). These methods allow one to ac-108

count for the spatio-temporal modifications of the orientation of the crossed PS (MDD109

(Denton et al., 2018; Shi et al., 2005) and LNA (Rezeau et al., 2018) techniques). When110

the local variations are quasi 1D in particular, these methods are efficient to obtain the111

corresponding varying normal (and the dimensionality, 1D or not, can be determined thanks112

to the MDD technique itself).113

On the other hand, even if one can determine the dimensionality of the local vari-114

ations as well as the local normal when it exists, the geometrical shape of the PS can-115

not be determined without strong hypotheses. When a s/c crosses a PS, the measure-116

ments provide data only along its trajectory. Beyond the determination of a local nor-117

mal, one would like to determine the shape of the observed PS all around, in the vicin-118

ity of the trajectory. This problem is referred in the literature as a ”reconstruction prob-119
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lem”. The most known method consists in assuming the structure is stationary and that120

the relative path of the s/c with respect to the structure is just a straight line, traveled121

with a constant velocity. This knowledge is then used as a ”boundary condition” for in-122

tegrating the MHD Grad-Shafranov equations. This has been done under different as-123

sumptions: 2D or 3D structure, stationary or slowly evolving, with a computation based124

on MHD or electron-MHD equations (see for instance Sonnerup, Hasegawa, Teh, and Hau125

(2006), Hasegawa, Sonnerup, Eriksson, Nakamura, and Kawano (2015), among many other126

papers). It has also been applied to MMS observations of the electron diffusion region127

observed on 16 October 2015, 13:07 UT, nearly one minute later than the case we study128

Burch et al. (2016c); Hasegawa et al. (2017).129

Our paper does not deal with such reconstructions, but with the determination of130

the path of the s/c relative to the PS. It can be understood as a necessary first step, prior131

to any reconstruction study. As this path can be, as it will be shown hereafter, quite dif-132

ferent from a straight line traveled at a constant velocity, relaxing this assumption should133

allow to greatly improve the reliability of the reconstruction results. Obtaining the path134

information is the object of this paper. Beyond the straight line assumption, efforts have135

been made to improve the determination of the spacecraft path across the magnetopause,136

by considering different (but pre-determined) forms for this path Hasegawa et al. (2004);137

Q. Hu and Sonnerup (2003). Other authors have taken into account possible intrinsic138

temporal evolution of the structures Hasegawa, Sonnerup, Hu, and Nakamura (2014);139

Hasegawa, Sonnerup, and Nakamura (2010); Sonnerup and Hasegawa (2010). However,140

in all these studies the spacecraft velocity, even locally, is assumed to be the deHoffmann-141

Teller velocity, whereas the target of this paper is to recover the velocity without any142

a priori assumption.143

(De Keyser, 2008) has introduced a different method that he called ”empirical re-144

construction”. It is a multi-spacecraft method that allows determining a s/c path in the145

1D hypothesis, and even in the 2D hypothesis, but under restrictive assumptions: no plasma146

flow across the PS, the 2D shape is supposed known a priori (for instance it is a surface147

wave).148

Note that the integration of the flow normal velocity, used in (De Keyser, 2008)149

and also in BV (Dorville et al., 2014a) (which uses the magnetic field B and the ion ve-150

locity V) to determine the path along the normal, is very sensitive to inaccuracies in the151

determination of the normal direction. The large tangential flows that exist in the mag-152

netosheath can indeed, when projected on an approximate normal direction, provide an153

apparent normal flow that is very inaccurate, even if the inaccuracy in the normal di-154

rection is small.155

Finally, the Spatio-Temporal Difference technique (STD, (Shi et al., 2006)) deserves156

a separate discussion since, in contrast to the other methods, it is not affected by any157

of the strong assumptions previously discussed, except for the stationarity of the PS.158

With respect to a fixed frame, the STD method is able to recover the PS velocity (∂t,0X,159

where X is the PS position) by means of inversion of the equation160

∂t,scB = ∂t,0X · ∇B (1)

The left hand side (LHS) term represents the temporal derivative of the magnetic161

field in the s/c frame and the right hand side (RHS) term involves the spatial deriva-162

tive. These are computed by means of the reciprocal vector method (Chanteur, 1998)163

that exploits the multi-point measurement of missions such as CLUSTER or MMS (Burch164

et al., 2016c)). For the sake of clarity, we have specified here and everywhere afterwards165

in the text that the methods are applied to the magnetic field data. These methods re-166

main valid, however, if B is replaced by any other quantity (e.g.: E, Vi, Ve, etc...). The167

assumption of stationarity causes the method to fail when the term ∂t,0X ·∇B becomes168

comparable to or smaller than the intrinsic temporal variations of the PS magnetic struc-169
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ture: (∂t,0B), i.e. when the PS can no longer be considered as strictly stationary in its170

own reference frame. When the intrinsic temporal variation of the PS is not negligible,171

we will have to replace Equation (1) by Equation (2), which is its generalization:172

∂t,scB = ∂t,0X · ∇B+ ∂t,0B (2)

The subscripts 0 indicate the particular frame used: supposing that a quasi-stationary173

frame does exist, in which the intrinsic variation ∂t,0B is minimum, the term ∂t,0X rep-174

resents the s/c velocity in this frame.175

This paper will present new methods to perform this generalization (sections 2.1.2176

and 2.1.3). These new methods are tested on artificial magnetic fields mimicking linear177

(section 3.1.1) and back and forth motions (section 3.1.2) of the MP . The results are178

compared to those from a modified version of the STD method able to suppress singu-179

larities occurring to STD in analyzing nearly 1D PSs (section 2.1.1). We will present180

1D and 2D reconstructions of the MMS s/c path during two real MP crossings (section181

3.2). Finally, a summary of our results and a discussion of future perspects for these meth-182

ods is presented in section 4.183

2 Methods184

In the following sections, we explain the methods used to compute the s/c path with185

respect to the observed PS. In sub-section (2.1) we discuss the problems that occur when186

using the STD method for that purpose and how we solve them. This is done in two dif-187

ferent ways: via the suppression of the singularities that occur in STD when the PS is188

not sufficiently three-dimensional (sub-section 2.1.1) and via new methods that extend189

the computation beyond the strict stationarity assumption (sub-sections 2.1.2 and 2.1.3).190

In sub-section (2.2) we show how to integrate the s/c velocity to obtain the s/c path.191

Finally, in sub-section (2.3), we present the optimization procedure we adopt to deter-192

mine the optimal values for the different threshold parameters that are used in the meth-193

ods.194

2.1 The computation of ∂t,0X195

2.1.1 From STD to STD+: the suppression of singularities196

As previously discussed, the STD method of (Shi et al., 2006) computes point-by-197

point values of ∂t,0X by inverting Equation (1):198

∂t,0X = ∂t,scB ·
[

∇B
]

−1
=

∂t,scB ·
[

∇B
]A

det
[

∇B
] (3)

In this expression, the superscript A indicates the adjoint matrix. Combined with the199

MDD method (Shi et al., 2005), the STD allows computation of both the dimensional-200

ity (1D, 2D or 3D) of the space variations and the orientation of the PS. It also allows201

one to calculate the thickness of the crossed PS (via the cumulative sum of ∂t,0X) un-202

der the strong assumption that ∂t,0B ≪ ∂t,scB and ∂t,0B ≪ ∂t,0X · ∇B. As we ob-203

serve from Equation (3), the method is particularly sensitive to the conditions for which204

the determinant det
[

∇B
]

becomes very small. This determinant tends to zero everywhere205

the variations are not sufficiently three-dimensional, i.e. everywhere there is locally one206

or two nearly invariant directions. Under these conditions, the numerator and denom-207

inator of Equation (3) both tend toward zero and the result becomes undetermined: its208

value then strongly depends on any noise or to any departure from a strict stationarity209

that can make the numerator null at a place slightly different from the denominator.210
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Following (Shi et al., 2006), this problem can be in practice circumvented by re-211

ducing the matrix ∇B used in Equation (3) to its non singular part, i.e. by retaining only212

the largest partial derivatives, the number of which depends on the dimensionality of the213

PS. For instance, when the variations are approximately 1D (with a threshold empir-214

ically determined for the eigenvalues), one can keep only the derivative along the local215

normal and determine only this normal trajectory, so giving up for the determination216

of a 2D or 3D path. However, one may foresee that this reduction process would cause217

an unnecessary loss of information. Actually, the 2D or 3D local variations that always218

exist may be significant enough, even if weak, to be used for determining the 2D or 3D219

paths. (Shi et al., 2006) also evoked the possibility of adding some artificial noise (called220

”random errors”) to ensure that, even in the strictly 1D case, the determinant is non-221

null almost everywhere. This artificial noise actually would come in addition to the ”nat-222

ural noise” as defined in the present paper (see section 3.1). The velocity component along223

the maximum gradient direction would a priori not be much affected by this noise ad-224

dition. On the contrary, the two other components, which would only be due to the noise225

when the physics is really 1D, should then be rejected, even out of the singular points.226

This method would therefore not allow one to reach the goal proposed in the present pa-227

per, which is to draw as much information as possible from the small variations that can228

be extracted out of the noise.229

For the sake of clarity, let’s define the directions l, m and n as the three linearly230

independent directions of the local frame coincident to the eigenvectors of G = ∇B ·231

∇BT associated, respectively, to the minimum, intermediate and maximum eigenvalues232

of G. Note that the two frames, lmn and LMN (the latter coming from MVA, its axes233

corresponding respectively to the largest, intermediate and minimum variance directions)234

have the same ”normal” directions (n = N) as soon as the local properties are iden-235

tical to the global ones, but that their axes in the tangential plane are not the same. The236

eigenvectors associated with the smallest eigenvalues of G are often significantly affected237

by high frequency variations, which may lead one to prefer, for some applications, pro-238

jecting the motion onto a more stable global frame. In Figure (1), the time interval cho-239

sen in this paper for discussing the methods is presented. It shows the high frequency240

irregular oscillations of the GSE components of the m and the l directions (panels 1.c241

and 1.d) in contrast to the more stable n direction (panel 1.b) during the 16 October 2015,242

13:05:30+60s UT (i.e., 13:05:30–13:06:30 UT) MP crossing (the magnetic field is shown243

in panel 1.a).244

The method that we propose consists in taking into account as much as possible250

any small departure from the 1D geometry in order to determine 2D or 3D paths across251

the magnetic structure. When the structure is approximately mono-dimensional, the lo-252

cal determinant has a very small value, fluctuating in time and changing its sign. It is253

the product of one large eigenvalue, with little inaccuracy, and two small eigenvalues with254

possibly fluctuating signs. Each of the zero crossings of the small eigenvalues leads to255

a singularity for the velocity component in the direction of the corresponding eigenvec-256

tor. This effect is evidenced in Fig. (2), as well as the effect of the corrections made.257

In this figure, the results are shown in GSE frame, so that all components are to265

be corrected in the same way. It is clear that in the local (l, m, n) frame, only the com-266

ponents l and m can be concerned by the singularity problem since the eigenvalue cor-267

responding to the largest spatial derivative is never zero as long as the signal is not strictly268

constant. Nevertheless, this local frame is varying inside the magnetopause crossing, so269

that even the global N direction (as obtained via a global MVA or by average on the lo-270

cal n directions) is not exempted from the singularity problem: even a 1 degree varia-271

tion in the direction of n has significant consequences in the global normal direction if272

the singularity leads to values larger than 100 times the neighbouring values. This is im-273

portant since we need to know the velocity in a fixed frame to be able to calculate the274

path by integration.275
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As we do not know a priori at which threshold the structure is to be considered276

as 1D or not, we propose here to consider by default that it is 3D and derive the three277

components of the velocity. We do not add any artificial noise and we expect that the278

”natural one” will not change much the results as soon as we get rid of the singularities279

in the calculated velocity, which would lead to non physical jumps in the calculated path.280

Doing so, the choice of keeping the 1D, 2D or 3D projections of the path can be done281

a posteriori.282

In order to avoid the reduction process (determining only one projection of the path),283

we use here the entire ∇B matrix with a procedure for suppressing automatically the284

singularities affecting some components of the velocity of the structure when using the285

original STD method without caution. For this purpose, we introduce a “very local” cor-286

rection to force the numerator of Equation (3) to be zero at the times t∗ when the de-287

nominator (det
[

∇B
]

) is zero. In order to do so, we add to each of the three components288

of ∂t,scB·
[

∇B
]A

a signal made by a linear combination of gaussian curves each of which289

1) is centered at times t∗, 2) has a amplitude equal to −∂t,scB(t∗) ·
[

∇B(t∗)
]A

and 3)290

is narrow enough not to modify the signal for a period larger than 1% of the global pe-291

riod analyzed (i.e. ≃ 10 data points for the cases studied in this paper) and not to over-292

lap the nearby corrections. In section 3.2.1 the LHS of Equation (3) with and without293

corrections will be compared for a real case study.294

Hereafter, we dub the above method STD+. It aims at circumventing pragmati-295

cally the problem of singularities but without tackling directly the main cause of the prob-296

lem: the small non-stationarities affecting the data. As previously mentioned, the STD297

method assumes strict stationarity. Unfortunately, the presence of weak non stationar-298

ities can cause infinite values for some components of the velocity determined by this method.299

Even if the non-stationarity ∂t,0B is weak, it cannot be ignored wherever it is non-negligible300

with respect to the convective term ∂t,0X · ∇B. This systematically occurs when the301

latter tends to zero, i.e. wherever the s/c is approximately at rest with respect to the302

PS. In this case, ∂t,scB must be replaced by ∂t,scB−∂t,0B in the numerator of Equa-303

tion 3. It is then clear from this equation that the effect of this change on the determi-304

nation of X is all the larger as the determinant of det
[

∇B
]

is smaller, i.e. when the spa-305

tial variations are not sufficiently three-dimensional (we know that det
[

∇B
]

→ 0 when-306

ever one or two eigenvalues tend to zero) . Note that, at the limit det
[

∇B
]

= 0, the307

STD method leads to divergences whatever the velocity ∂t,0X is. Therefore, in order to308

generalize the computation of the s/c velocity (∂t,0X) to non stationary PS cases, we309

need to distinguish the sources of the time variations ∂t,scB of the magnetic field seen310

by the s/c: convective (∂t,0X ·∇B) and pure temporal variation of the PS itself (∂t,0B).311

We will therefore have to retrieve the ∂t,0X term from Equation (2) instead of Equation312

(1), i.e. without neglecting the intrinsic variation ∂t,0B.313

In the following two sub-sections, we explain how we manage to obtain ∂t,0X from314

Equation (2).315

2.1.2 The Multi-Variate fit method (MVF)316

In Equation (2), the unknowns are the ∂t,0X and the ∂t,0B terms while the ∂t,scB317

and the ∇B terms are computed from data via a temporal derivative and the recipro-318

cal vector method (Chanteur, 1998) thanks to the multi-point measurements provided319

by MMS. In any but the local lmn frame, this equation represents an intertwined rela-320

tion between the temporal and spatial variations of the different components of B via321

the X ·∇B term. The determination of ∂t,0X and ∂t,0B can be done by means of a multi-322

variate fit procedure assuming the two unknowns are approximately constant over a short323

interval lasting p experimental points. A fit is performed that minimizes analytically the324

total squared difference between the observed temporal variations (∂t,scB) and the re-325

constructed ones (∂t,0X ·∇B+∂t,0B), normalized to the mean magnetic field tempo-326
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ral derivative:327

D ≡

∑

p

{

∑

i [∂t,scBi − (∂t,0Xj ∂jBi + ∂t,0Bi)]
2
}

p

∑

p

[

∑

i (∂t,scBi)
2
]

p

(4)

where i, j = {x, y, z}. Once the ∂t,0X and the ∂t,0B terms are obtained, a selection pro-328

cedure is made according to the comparison between the associated error (given by the329

Equation (4)) and a threshold Dlim,MV F : if D > Dlim,MV F the results are discarded,330

otherwise the results are retained. Since D is expected to be very small for a fit result331

to be retained, Dlim,MV F is chosen to be very small too, e.g.: 10−1 or 10−2. The fits are332

performed on a number of data points that can vary (in accordance with the optimiza-333

tion procedure described in appendix A.1) from a lower integer value pmin to a maxi-334

mum integer value pmax based on the local curvature of the curve to be fitted. We use335

MMS magnetic field data recorded in ”burst mode” at νs = 128Hz (Torbert et al., 2016)336

and preliminarily filter data in Fourier space to frequencies below νc in order to select337

the frequency windows to observe. This filtering is necessary to get rid of the small scale338

fluctuations and waves that are present at the MP and that have an intensity much higher339

than the instrument noise (Rezeau, Roux, & Russell, 1993). Then we set340

{pmin, pmax} = {int

(

νs
4νc

)

, 13}. (5)

As a matter of facts, the highest frequency component of a signal filtered using νc could341

still have large variations in a period ν−1
c /4 long. This period corresponds to νs/(4νc)342

data points if the original signal is probed at νs. On the other hand, we do not want a343

fit to represent more than one hundredth of the total crossing duration. Since the MP344

crossing examined in this study are no longer than 10s and thanks to the high magnetic345

field probing rate of MMS, the maximum time period corresponds to 13 data points. The346

∂t,0X and the ∂t,0B terms which do not survive the selection procedure are replaced by347

means of interpolation. This method assumes the PSs to be stationary for, at least, an348

interval pν−s 1 long, i.e. much smaller than the periods during which other methods as-349

sume the PSs to be stationary.350

2.1.3 The Single-Variate fit method (SVF)351

The working principle for MVF is the minimization of the total error D which is352

the squared modulus of the vectorial normalized error when fitting the temporal deriva-353

tive of B (Equation (4)). For this reason, the MVF method is not able to discriminate354

which component of Equation (2) causes the fit to be rejected: a large error in the l com-355

ponent leads to rejection of the entire velocity while the n component might well be de-356

termined. The method can be improved by performing the fit procedure in the local lmn357

frame. In this frame, the ∇B matrix is diagonal so that the three components of Equa-358

tion (2) do not share common unknowns; therefore the fit procedure can be performed359

independently for each component, disentangling the high quality fits of one component360

from the low quality fits of the others. Nevertheless, it is worth remembering that in some361

cases the lmn frame is far from being stable (remember Figure (1)): the SVF method362

can be applied anyway in these cases but it is clear that the local lmn frame has then363

no real physical significance. Only the directions corresponding to large derivatives are364

expected to be reliable and thus stable.365

2.2 The projection and the integration of ∂t,0X366

STD+, MVF and (in some cases) SVF, generally compute a 3D ∂t,0X; the goal of367

this section is to explain how we obtain a 3D path X(t) from ∂t,0X. Actually, due to an368

intrinsic limitation of the methods which base their computations on the ∇B matrix,369

we will first focus on the projection of ∂t,0X on the eigenvector that corresponds to the370

largest eigenvalue (here called n), which is a priori the best determined component. The371
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final result will be therefore a 1D displacement XN (t) describing the position of the s/c372

with respect to the PS along its normal as a function of time. The reason why the m373

and l components of ∂t,0X may be less accurate than the n component can be easily un-374

derstood. Writing Equation (1) in the lmn frame, which corresponds to the eigenvec-375

tors of G ≡ ∇B · ∇BT , ∂t,0Xi ∝ 1/λi (with i = {l,m, n}) , which clearly goes to in-376

finity when λi goes to zero. We come here across the same difficulty that was causing377

the singularities in STD. In the rest of this section, we will concentrate only on the best378

determined normal projection of the s/c path. We will however show in section 3.2 that379

2D maps of the s/c path can be obtained quite satisfactorily under favorable conditions380

(λm not much smaller than λn during the major part of the crossing).381

Due to the previous considerations and since we ultimately need a global direction382

along which to plot the s/c path, the 1D map XN (t) is computed in the following way:383

XN =

∫

(∂t,0X(t) · n (t)) (n (t) ·Nglob) dt (6)

where Nglob is defined as the mean of the n (t) directions computed over the main mag-384

netic field gradient interval (between the two vertical dotted red lines in Figure (1)). This385

double projection ensures that we use the best determined n component of the ∂t,0X ve-386

locity, but projected on the global direction Nglob. The projection involved in Equation387

(6) is performed only when the PS is quasi 1D and the magnetic field variations are re-388

lated to the main current layer. Following (Rezeau et al., 2018), these requirements can389

be checked for each data point by using the parameters K1D and KdtB . We require that390

(λn − λm)/λn > K1D (7)

with K1D ≪ 1 and391

dB/dt > KdtB [dB/dt]max (8)

with KdtB ≪ 1, B ≡ |B| and, as usual, λn and λm are the two largest eigenval-392

ues of G.393

The time derivatives dB/dt are those measured in the s/c frame. As before (sec-394

tion 2.1.2), the data points that do not survive the selection procedure are replaced by395

means of interpolation.396

2.3 A Gradient-Directed Monte Carlo approach for thresholds decision397

The methods described in the previous sections require values for a large number398

of thresholds. These thresholds are the minimum and the maximum number of fit points399

for the MVF and the SVF methods (pmin,SV F , pmin,MV F and pmax,SV F , pmax,MV F ),400

the thresholds that set a limit to the fit errors for a SVF or a MVF result to be retained401

or not (Dlim,SV F and Dlim,MV F ), and the thresholds for the selection procedures of 1D402

PSs associated with large currents (K1D and KdtB). In the present study we fix man-403

ually the parameters pmin,SV F , pmin,MV F , pmax,SV F and pmax,MV F as discussed in sec-404

tion 2.1.2 in order to limit the fit procedures to periods between 0.04 and 0.1s; this al-405

lows to handle a sufficient number of data points per fit and fits per event. We collect406

all the remaining parameters in a vector407

Cr ≡ {Dlim,SV F , Dlim,MV F ,K1D,KdtB} (9)

that points to a general state in a 4D phase space FCr
. The spacecraft displacement XN (t)408

is an unknown nonlinear function of the Cr components. As it is very sensitive to small409

variations of Cr ∈ FCr
, it is reasonable to let it automatically evolve toward values that410
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make the SVF and MVF outcomes to be as close as possible to each other wherever they411

can both be determined and make this common interval of validity as long as possible.412

Such a problem is efficiently solvable by means of an iterative minimization procedure413

based on a gradient descent algorithm known as Gradient-Directed Monte Carlo Approach414

(GDMC, (X. Hu, Beratan, & Yang, 2008)). The GDMC technique is a stochastic approach415

for optimization procedures. It was conceived to find the best C∗

r that optimizes some416

result R (Cr) via the random sampling of the best candidates for C∗

r in regions of FCr
417

as suggested by −∇F , where F is a function that evaluates the distance between R (Cr)418

and the expected result. In our case, we use the GDMC to select the optimal C∗

r that419

minimizes (maximizes) the distance (the shared period) between the two XN (t) result-420

ing from the application of the SVF and MVF methods to the same data set. The GDMC421

approach has been conceived in molecular design to study the proteins folding proper-422

ties (X. Hu et al., 2008) and, since it is necessary to obtain the optimal solution in our423

problem, we describe in detail how we adapt it for our purposes in Appendix (A.2).424

3 Results425

In the following sections we apply the methods that we have described to artificial426

and real magnetic fields representing -and probed across- the Earth’s Magnetopause (MP ).427

During southward IMF conditions, the MP is characterized by a jump in magnetic field428

from positive values (within the magnetosphere) to negative values (within the magne-429

tosheath). With this magnetic configuration we use the magnetic field in Equations (3)430

and (2) to recover, for each case, three different s/c displacements XN (t) across the MP431

and, therefore, the magnetic field profile across this physical discontinuity. The MP has432

gradients also in other quantities (E, Vi, Ve, etc...). The profiles of these quantities can433

be investigated in the same way, but we will not do this in the present paper.434

3.1 Tests on artificial magnetic fields435

The artificial magnetic fields we use to test the routines are created by a linear com-436

bination of a 1D model (Bmodel) and a random noise (Brandom). The Bmodel term is437

Bmodel(x) = {0, By0 +By1tanh(
x

L
), Bz0 +Bz1tanh(

x

L
)} (10)

so that the MP normal is oriented toward the X direction and has a thickness equal to438

∼ 6L, if one define the thickness as twice the distance where each component of the cur-439

rent (∂x(Bmodel)) falls to 1% of its maximum value, i.e. twice the distance x∗ where:440

L∂x(tanh(x
∗/L)) ≃ k∗ (11)

with k∗ = 0.01. Each virtual s/c measures a slightly different Bmodel since their tra-441

jectories are modeled to be ∼ 10 km apart, similar to the smallest MMS separation.442

Finally, the ”noise” is designed to model all the waves and turbulence always present443

in these regions, and which have typically amplitudes much larger than the instrumen-444

tal errors Rezeau et al. (1993). This noise, superposed to the large scale fields could have445

an impact and may therefore alter the results. Such a ”natural noise” is observed on the446

small scale fluctuations that remain after the filtering procedure discussed in section (2.1.2).447

Its amplitude and spectrum have been chosen differently for the test signals in the two448

following examples. In both cases, the amplitudes remain compatible with the observa-449

tions and the spectrum decays at frequencies above νc, the upper frequency limit above450

which the MMS data are filtered. The second example contains more large scale vari-451

ations, mimicking the possible large scale evolution of the magnetopause PS.452

3.1.1 A straight crossing453

Figure (3) shows results for the first test case in which the virtual spacecraft cross454

an artificial MP along a straight path traveled at constant velocity. The modeled mag-455
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netic field Bmodel is defined by Equation (10) with {By0, By1, Bz0, Bz1} = {12, 0, 10, 30}456

nT and L = 250 km. The mean MDD normal found from the virtual s/c data along457

their paths is NMDD ≃ {0.99,−0.02, 0.02}, which is slightly different from the true nor-458

mal {1, 0, 0} due to the noise Brandom. The displacements XN found from the three meth-459

ods are plotted in panel 3.c in comparison with the model (the result obtained with STD460

is the same as the one obtained with STD+ and therefore is not shown). Also plotted461

in panel 3.a and 3.b are the magnetic fields and the currents found from the curlome-462

ter technique; the panel 3.d shows the differences between each pair of XN (call it ∆XN,ij463

with i, j equal to a 2-permutation choice between STD+, SVF and MVF). From panel464

3.d we observe that465

1. During the time for which the current is large, the ∆XN,ij are comparable to -466

and often lower than- 10 km, marked by the horizontal black dashed line. This467

is roughly equal to the mean electron inertial length δe and the MMS inter-spacecraft468

distance adopted by the mission to probe the MP at the magnetospheric nose (Burch469

& Torbert, 2016a);470

2. The width of the main current layer defines the limits of the MP so that the to-471

tal MP thickness can be estimated by the difference of the two displacements XN472

at the upper and lower limits of this interval. In this case, these limits are at about473

t ∼ 6s and t ∼ 15s so that the MP thickness is ∼ 1.4×103 km thick, i.e. ∼ six474

times the parameter L used in Equation (10) for this case, as expected;475

3. Outside the [6, 15]s interval, the differences ∆XN,ij become larger at the left and476

the right sides. In these regions the results should be ignored since the displace-477

ments are no longer associated with the main MP current.478

From these XN values we can determine the relative error of the s/c location within the479

[6, 15]s interval, which, for this case, can be estimated to ∼ ∆XN,ij/(6L) ≃ 7 · 10−3.480

3.1.2 A back and forth crossing485

Figure (4) shows a test case that is more similar to observations than the test per-486

formed in the previous section, both in regards to the MP thickness and the kinemat-487

ics. The artificial MP is defined using Equation (10) with {By0, By1, Bz0, Bz1} = {5,−15, 10, 30}488

nT and L=70 km. The MP is now 6di,MSh wide (where di,MSh is the ion inertial length489

measured within the magnetosheath). There is now a back and forth motion starting at490

about the middle of the crossing with two stagnation points at t1 = 3.75s and at t2 =491

4.3s.492

Moreover, we take Brandom with a larger amplitude (by a factor of 3.5). The elec-493

tric current is so made clearly ”noisier” than that computed in section 3.1.1 (compare494

panel 3.b of Figure 3 with panel 4.b of Figure 4) and so closer to the observed one (panel495

6.b, Figure 6). Let us recall that what we call ”noise” in this paper is not the instrumen-496

tal one, which is quite negligible, but the ”plasma noise”, just discussed above. Note that497

this ”plasma noise” can also model any other non stationarity affecting the boundary,498

such as the large scale ones that affect the magnetopause in the vicinity of a reconnec-499

tion X point.500

Looking at panels 4.c and 4.d we observe that the STD+, the MVF and the SVF501

methods yields quite similar displacements (as before, the STD results are not shown502

being equal to the STD+ results); SVF gives the best results, which is closest to that of503

the model. The agreement between MVF and STD+ is expected since no pure tempo-504

ral variations are introduced in Bmodel. The enhancement of the noise makes the range505

of applicability of the three routines smaller than 6L and prevents them to be safely ap-506

plied outside the [2-5.5]s interval. For this reason our methods could not determine the507

total MP thickness which was about 6L = 420 km, about 1.5 times larger than what508

the methods detected. It is clear that this under-estimation is just due to the definition509
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of the MP thickness that has been used here and can easily be corrected. The MP thick-510

ness is defined as twice the distance x∗ at which the asymptotic current falls to a frac-511

tion k∗ of its maximum. Taking k∗ = 0.01 in Equation 11 is clearly too small with re-512

spect to the value of the noise. Using k∗ = 0.1 instead of k∗ = 0.01 would make the513

expected MP thickness (3.6L = 252 km) equal to what is found. This must be kept514

in mind for future studies.515

3.2 Applications to MMS data520

3.2.1 Case study I: 1D and 2D projections of the MMS path521

The 1D projection522

We applied the STD+, SVF and MVF methods to magnetic field data probed in523

burst mode (128 Hz) by MMS on 16 October 2015 during the 13:05:30+60s UT cross-524

ing. This crossing is very well known in the literature (Burch et al., 2016c; Le Contel et525

al., 2016; Rezeau et al., 2018; Torbert et al., 2016) and so it is a good test case to bench-526

mark our methods. During this crossing, there was a reconnection outflow jet within the527

MP coming from a nearby northward magnetic reconnection event that was probed by528

MMS just a minute later (Figure 3 of (Burch et al., 2016c)); the reconnection outflow529

velocity, reaching a maximum of ∼350 km/s near the magnetosheath side, prevents de-530

termination of the normal displacement XN (t) from integration of the normal compo-531

nent of the bulk velocity, even though the outflow is mostly tangential to the MP. This532

is because even a small inaccuracy (say ±5◦) in the determination of the normal direc-533

tion can cause the integration to yield an erroneously large normal flow.534

The crossing occurred at [8.3, 8.5,−0.7]RE in the GSE frame, when the IMF was543

southward so that there was a clear rotation of the magnetic field within the MP. This544

can be seen in Figure 5, where we plot the magnetic field hodogram. In this figure, the545

out-of-plane direction coincides with the mean MDD normal Nglob, which is computed546

as the mean of the instantaneous MDD normals n satisfying our dimensionality and vari-547

ation conditions (Equations. 7 and 8) with the parameters K1D = 0.73, KdtB = 0.11548

within the [13:05:43 - 13:05:49] interval. The t2 direction is the direction along which549

the tangential magnetic field varies the least.550

In this reference frame, the resulting magnetic field is shown in panel 6.a of Fig-551

ure (6): the Bn and the Bt2 components are quasi-constant whereas the Bt1 component552

has an irregular tanh dependence, changing from magnetospheric values (∼ 30 nT at553

early times) to magnetosheath values (∼ −25 nT at late times). The local peak in Bt1554

at around t = 15.0s has already been suspected to be caused by a back and forth mo-555

tion of the MP (Rezeau et al., 2018). The panel 6.b shows the curlometer current; as556

expected the largest component is that directed toward the -t2 direction. The modulus557

of the current reduces on the left and on the right extremes of the interval signing the558

overall MP thickness. The panel 6.c shows the XN (t) resulting from five different meth-559

ods. The STD+, SVF and MVF displacements are quite close to each other (see panel560

6.d to evaluate their mutual distances ∆XN,i,j), all confirming the back and forth mo-561

tion, while the red and purple lines, which come from two different integrations of the562

ion velocity, are significantly different. The red curve results from the integration of the563

ion bulk velocity Vi projected on Nglob, i.e.
∫

Vi ·Nglobdt. The purple curve also re-564

sults from the integration of Vi but projected as shown in Equation (6), i.e.
∫

(Vi · n(t)) (n(t) ·Nglob) dt.565

The red curve does not agree with those resulting from the other methods: it does not566

yield either the same MP thickness or the back-and-forth motion of the MP . The pur-567

ple curve succeeds in finding the back-and-forth motion but fails to yield a thickness sim-568

ilar to those computed with the STD+, SVF and MVF methods. Since a non negligi-569

ble Bn component is present, the MP is not a tangential layer and the differences be-570

tween the purple curve and the STD+, SVF and MVF displacements are caused by the571

existence of a normal flow across the MP . The panel 6.e of Figure (6) shows the nor-572
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mal flow computed as [(Vi − ∂t,0X) · n(t)] (n(t) ·Nglob) and normalized point-by-point573

to the normal component of the local Alfvén speed Va,n. Comparing Figure (6) with Fig-574

ure (5), where the color code indicates the magnitude of the normal flow, we observe that575

the normal flow tends to reach ±Va,n values everywhere the MP sub-structures tend to576

be purely rotational, which a quite satisfying result.577

Let us now compare the spacecraft velocities obtained using Equation (3) when the578

singularities explicated in section 2.1.1 are corrected (STD+) and when they are not cor-579

rected (STD). Panel 6.f shows the modulus of the LHS terms of Equation (3), i.e. |∂t,0(XSTD)|580

and |∂t,0(XSTD+)|. The orange curve is obtained by using Equation (3) without correct-581

ing the singularities. We observe that it is affected by large and very narrow spikes, that582

would lead to nonphysical jumps in the calculation of the s/c path. The figure shows also583

that the gaussian corrections do not modify the overall behaviour except during the very584

small periods where the STD results become large, preserving in this way the informa-585

tion provided by the original STD. They so allow computing the s/c path across the mag-586

netopause.587

Finally this crossing does not show any significant non-stationary behavior since588

the displacements from the SVF and MVF methods agree within a few percent with that589

of the STD+ method. This indicates that the ∂t,0B term in Equation (2), used by SVF590

and MVF, does not lead to a significant correction to the displacements. The conclu-591

sion is verified through a direct comparison of the three terms of each component of Equa-592

tion (2). Figure (7) shows such a comparison. Panels 7.b, 7.c and 7.d compare the three593

terms of Equation (2) for each of its components and show that the ∂t,0B terms (green594

curves), though non negligible, are always smaller than the observed ∂t,scB terms (blue595

curves) and the computed ∂t,0X ·∇B terms (orange curves). This can explain why, at596

some times, the SVF and MVF results are closer to each other in panel d than that of597

STD+, (see for instance between t = 15s and t = 18s).598

The 2D projection601

During the crossing the MDD eigenvalues ratios λm/λn and λl/λn (with λn > λm >602

λl) oscillate around, 1.2·10−1 and 9.5·10−3, respectively. The first and the second ra-603

tios are larger than 10−1 and 10−2 for, respectively, 37% and 19.5% of the selected time604

interval. Corrections due to the calibration errors (Denton et al., 2010) have been taken605

into account but results does not change significantly. These considerations suggest that,606

at least, a 2D reconstruction of the s/c path can be meaningful, since λm is not too much607

smaller than the λn for a relative long period of time.608

Figure (8) shows the automatic calculation (AC) of the MMS path resulting from616

the application of the MVF technique to the 16/10/15, 13:05:42 UT - 13:06:04 UT pe-617

riod (multi-colored curve on the right) in comparison with that of two hand-made sketches618

of the s/c path on a larger scale (left and central sketches). The AC refers to the path619

included within the red squares drawn on both the hand made sketches. The left sketch620

is adapted from (Burch et al., 2016c) and was inferred from the MMS observations in621

combination with a 2D PIC numerical simulation. The sketch in the center is drawn us-622

ing the instantaneous orientations of the MDD normal (purple arrows) with respect to623

the local magnetic field and the Shue magnetopause model (Shue et al., 1997). All the624

three drawings have the magnetosphere on the left, the magnetosheath on the right and625

the MP located approximately at their center. The color code of the AC indicates the626

GSE Bz component (positive/red within the magnetosphere and negative/blue within627

the magnetosheath) and the black and the purple arrows departing from the curve at628

regular intervals indicate the local directions of, respectively, the magnetic field and the629

MDD normals. We observe that630

1. the mutual orientations of B and n from the AC are almost perpendicular every-631

where as expected since the remoteness of the reconnection point (cf. the left and632
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the central sketches) suggests that Bn should be small (i.e. the MP should be close633

to a tangential discontinuity);634

2. the AC and the MDD-normal-driven sketches635

(a) look very similar;636

(b) agree in describing the back and forth motion already shown in panel 6.c of Fig-637

ure (6);638

(c) suggest a more complex motion of the s/c relative to the MP than that sketched639

in the hand made sketch of (Burch et al., 2016c) and640

(d) show a local MP curvature opposite to the global curvature of the magneto-641

spheric boundary ( this is at a much smaller scale: tenths of km instead of tens642

of thousands km).643

3.2.2 Case study II: spatial profiles compared to time series644

On the morning of the same day of case study I, between 10:36:55 and 10:37:50 UT,651

a crossing occurred that shows clearly that visualization of spacecraft data as a function652

of time can be misleading. Our analysis of this event is shown in Figure (9). There, the653

same data have been plotted twice: once as function of time (left column) and once as654

a function of space (right column). The different rows of panels show: the GSE magnetic655

field (panels 9.a and 9.a∗); the ion spectrograms where the local maxima with respect656

to energy have been marked at each time by black points (panels 9.b and 9.b∗); the ion657

temperatures (panels 9.c and 9.c∗); the electron temperatures (panels 9.d and 9.d∗); the658

bulk velocity for ions (panels 9.e and 9.e∗) and for electrons (panels 9.f and 9.f∗). We659

make the following observations:660

1. quantitative measures:661

(a) The length scale of the magnetic field gradient is 500km≃ 6.5di,MSh (see panel662

9.a∗); this value agrees both with case study I and the typical magnetopause663

thickness based on statistical studies (Berchem & Russell, 1982);664

(b) The magnetic field gradient is significantly displaced to the right compared to665

the region of the largest variations in the particles (compare panel 9.a∗ with re-666

spect to panel 9.b∗, 9.c∗, 9.d∗, 9.e∗ and 9.f∗);667

(c) The low energy magnetosheath plasma and the high energy magnetospheric plasma668

mix in a ∼ 1di,MSh ∼ 100 km thick sub layer (observe the black points in the669

panel 9.b∗).670

2. qualitative considerations:671

(a) The spatial profiles of the ion and the electron temperatures appear approx-672

imately monotonic while the temporal ones do not (cf. panels 9.c and 9.d with673

respect to panels 9.c∗ and 9.d∗)674

(b) The feature that looks like a multiple electron beam (panel panels 9.f , between675

12s and 16.5s) is actually one electron beam probed multiple times (panel pan-676

els 9.f∗, between XN = 200km and 300km).677

Here, as well as for the case study analysed in section (3.2.1), the ∂t,0B term is negli-678

gible with respect to the observed ∂t,scB term and the computed ∂t,0X · ∇B term.679

4 Conclusions680

In this paper we discuss methods to compute spacecraft (s/c) trajectories across681

weak-stationary plasma structures (PSs). We present two new methods (SVF, section682

2.1.3 and MVF, section 2.1.2) conceived for the computation of the s/c velocity with re-683

spect to the PS and therefore useful to find a s/c path by temporal integration. These684

–14–



manuscript submitted to JGR-Space Physics

methods allow us to observe the PS kinematics and the details of its internal structures685

avoiding the assumption of strict stationarity, i.e. when the PS itself can be subjected686

to weak modifications during the crossing. By using data provided by MMS crossing the687

Earth’s MP , we have been able to determine features down to temporal and spatial scales688

∼ 5× 10−3 times smaller than, respectively, the time period needed by MMS to cross689

the MP and the MP thickness.690

The methods are first tested on artificial data mimicking an MMS crossing of a sta-691

tionary 1D MP . Both constant velocity and back-and-forth motions of the s/c relative692

to the artificial MP are examined (sections 3.1.1 and 3.1.2). Since the artificial MP is693

precisely stationary (time independent), the results of both the new methods agree with694

those of an improved version of the STD method (Shi et al., 2006) (which we called STD+)695

specifically modified to deal with problems of singularities affecting the original STD.696

The SVF and MVF methods are then applied to two real MP crossings observed697

by MMS on 16 October 2015. The calculated s/c paths are first limited to 1D projec-698

tions along the normal to the MP due to a common intrinsic inaccuracy of the three meth-699

ods (SVF, MVF and STD+) in computing the magnetic field structure velocity along700

the tangential directions. Nevertheless these results (section 3.2) lead to detailed infor-701

mations about the kinematics and the thickness of the MP structure. Regarding the 13:05:30+60s702

crossing (case study I, section 3.2.1) the displacements XN (t) resulting from the SVF,703

MVF and STD+ methods agree with each other in describing a back-and-forth motion704

of the MP , as indicated also by previous studies (Rezeau et al., 2018) but with less ac-705

curacy. The fundamental importance of the time-to-space translation of the s/c data is706

ultimately underlined by the analysis performed for the 10:36:55 + 55s crossing (case707

study II, section 3.2.2). The analysis of this crossing by means of our techniques allows708

us to determine 1) the position and the extension of the layer where the magnetosheath709

and the magnetospheric plasmas actually mix, 2) the spatial profiles of the different quan-710

tities that mark the MP boundary and 3) the exact attribution of multiple signatures711

to plasma structures that are probed multiple times because back-and-forth motions.712

Finally, thanks to the particular conditions occurring during the 13:05:30+60s cross-713

ing (section 3.2.1), a 2D reconstruction of the s/c path gives a more detailed picture of714

the motion of the s/c relative to the MP than that of hand-made reconstructions (Burch715

et al., 2016c). The weak assumptions and the optimisation procedures used to set the716

parameters used by these methods (sections 2.3 and Appendixes) make the results of the717

SVF and MVF methods reproducible and unbiased by any strong assumptions about the718

PSs and/or by any non-objective decision about the input parameters needed to anal-719

yse data.720

The SVF and the MVF methods open new possibilities to exploit the ability of multi-721

spacecraft missions to discriminate temporal from spatial dependencies of observed PSs.722

For any quantity Q, they allow distinguishing the two kinds of contributions in its vari-723

ations: 1) the advection of Q due to the bulk motion of the PS with respect to the s/c724

and 2) the purely temporal variations of Q. The methods therefore allow independent725

computations of the spatial profiles of different quantities Q across the MP . Therefore,726

they can be used to better understand the real dispositions and thicknesses of the sev-727

eral kinds of sub-structures that may be the elements of the MP , without a priori as-728

sumptions, giving a better access to the phenomena at play. Used as inputs in the re-729

construction techniques, these methods should help to improve their results. Used as in-730

puts for numerical simulations, they should help in getting more realistic initial condi-731

tions. The SV F and MV F methods could also be fruitfully used in turbulence studies732

for testing the Taylor’s Hypothesis (Taylor, 1938) with multi-s/c missions.733
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A Appendices734

A.1 The optimization of fit periods735

The SVF and the MVF methods use linear fits performed with small sequences of736

data points. As we discussed in the text (section 2.1.2), each fit uses p points where pmin ≤737

p ≤ pmax, and pmin and pmax are found from Equation (5). In the following, we de-738

scribe the operative algorithm we implemented to set dynamically the parameter p all739

along the examined interval in order to cut it into sub-intervals of unequal lengths where740

the linear fits are the best possible.741

Let N be the total number of data points in the total interval to be examined. This742

interval is divided into two sub-intervals with one point i in common. This point belongs743

to the interval [pmin, N − pmin] and there are therefore N − 2pmin possibilities for i.744

For each possible value of i, the linear fits are performed over the two sub-intervals and745

the corresponding error Di is recorded. The curve D = {Di, with i ∈ [pmin, N−pmin]}746

has an absolute minimum for some imin0, which is the value of i for which the error is747

minimized when fitting the entire interval by two straight lines. The point imin0 is there-748

fore taken as a fixed boundary for the next iteration. The second iteration works as the749

previous one but applied to each of the two intervals [0, imin0] and (imin0, N ]. The re-750

sult is that the whole interval is so divided into four sub-intervals: [0, imin1], (imin1, imin0],751

(imin0, imin2], (imin2, N ], where imin1 and imin2 are the new fixed boundaries for which752

the error in fitting the entire period [0, N ] by four straight lines is minimized. The pro-753

cedure is so repeated until there are no more divisions are allowed since there are no more754

intervals longer than pmax points.755

A.2 The GDMC method756

The STD+, the SVF and the MVF methods depend on some thresholds that de-757

fine the minimum quality of the fits to be retained (Dlim,SV F and Dlim,MV F ) and the758

minimum MP properties (K1D and KdtB) for which the methods are valid. In order to759

set these parameters automatically, we use a gradient-directed Monte Carlo Approach760

(GDMC, see section (2.3)) to find the thresholds that make the displacements XN (t) for761

SVF and MVF as close as possible to each other for the longest time period. In section762

(2.3) we introduced the GDMC approach briefly. Here we explain how we implemented763

it for our purposes in more details.764

We organize the ensemble of thresholds in a vector Cr (see Equation 9) that rep-765

resents a general state in a 4D phase space FCr
. The goal is to find the particular C∗

r766

that minimizes the distance between the displacements XN (t) of the SVF and MVF meth-767

ods for the maximum amount of time. The resulting K1D and KdtB parameters are so768

used to evaluate the XN (t) displacement according to the STD+ method too.769

For a particular crossing, the optimization algorithm proceeds as follows:770

1. We manually define a starting C∗

r usually having K1D ≤ 1 and KdtB ≃ Dlim,SV F ≃771

Dlim,MV F ≪ 1;772

2. Then the following operations are iterated (iteration index: i):773

(a) A population Λi of Crs is generated, each deviating from C∗

r by a relatively small774

variation ǫ of one (or more than one) of its components (note: Λi occupies a775

sub region f i ∈ FCr
);776

(b) The SVF and MVF methods are applied to the same data set for every Cr ∈777

Λi. All the Cr of this ensemble are sorted according to a fitness function F (Cr)778

that evaluates the closeness of XSV F
N (t) and XMV F

N (t) (see later, Equation (A.1));779
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(c) A new sub-region f i+1 ∈ FCr
is individuated by a procedure explained here-780

after, allowing to extrapolate the trend of the best Crs ∈ Λi in the direction781

where the fitness function is surmised to be minimized;782

(d) If f i+1 6= f i a new population Λi+1 is generated sampling randomly the sub-783

space f i+1 and the previous instructions are repeated. Otherwise, the target784

is selected between the highest ranked Crs ∈ Λi ∈ f i.785

The above algorithm therefore looks for a minimum of F (Cr) in FCr
, by sampling786

new possible candidates, at each iteration, in the direction given by −∇F (Cr) (until ∇F (Cr) ≃787

0).788

Now we explain 1) how we defined the fitness function F (Cr) and 2) how a new789

population Λi+1 is generated learning from the errors made by the population Λi:790

1. The fitness function F judges each Cr according to the following criteria:791

(a) The closer the XN displacements are for SVF and MVF, the better the Cr is792

and793

(b) The longer the time period for which XN can be calculated for both SVF and794

MVF is, the better the Cr is.795

Therefore we define the fitness function as a linear combination of the ranks r∆XN
796

and r∆t with which a particular C∗

r ∈ Λi is classified in comparison with the oth-797

ers Cr ∈ Λi according to, respectively, the total distance between the displace-798

ments XN and the extension of the time period during which both the displace-799

ments can be computed:800

F (Cr) ≡ k∆XN
r∆XN

(Cr) + k∆tr∆t (Cr) (A.1)

Both r∆XN
and r∆t are integer values ∈ [1, card(Λi)] with 1 for the best result801

and card(Λi) for the worst. Here both the weights k∆XN
and k∆t are set to 1, the802

two ranking criteria being of equal importance.803

2. The procedure for generating a new population Λi+1 is governed by the gradient813

of F (Cr), where Cr ∈ Λi. A sub-set of Cr is first determined, gathering the best814

ranked vectors. Then, for each component m of Cr in this sub-set, a linear fit is815

performed and this trend is extrapolated in the direction that minimizes F . The816

mth component of the new set f i+1 is then chosen around this extrapolated trend.817

The new population Λi+1 is finally randomly chosen in the new sub-region f i+1.818

The number of the best-ranked Crs to be fitted, the extension of the extrapola-819

tion and the random generation of the new elements around the extrapolated trend820

are details to be set according to a preliminary analysis. Anyway, they do not in-821

fluence the shape of the displacements XN but only the speed of convergence of822

the optimization process. This procedure, likewise the cross-over procedure adopted823

by the genetic algorithms (GA, (Holland, 1992)), allows one to modify ongoing824

the sub-regions f ∈ FCr
but, in contrast to GAs, it allows one to take into ac-825

count a smaller initial population Λi=0 (good for reducing computational cost) since,826

at the generation i > 0, it allows to generate Crs that are not already produced827

by some crossing-over combination of the Cr ∈ Λ0. In some sense, the GDMC828

approach can be seen as a GA with two main differences: it is applied to an op-829

timization problem where the parameters to be found are continuous variables and830

its mutation rate (Holland, 1992) has been pushed to its maximum (which is oth-831

erwise very low in GAs).832

Figure (A.1) illustrates the optimization procedure. It concerns the 1st compo-833

nent of Cr (i.e. Dlim,SV F ) in the case of the real crossing studied in section 3.2.1.834

Each of the three panels represents one iteration (i = {0, 20, 40}). Panel A.1.a835

represents the starting step: a population Λ0 of 250 Crs is randomly generated836

and all the 1st components (blue ”+”) are sorted by means of the fitness function837
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F (Equation A.1). We observe that the points having the best rank show a clear838

trend (see the green line which is the fit of the first 70 best ranked elements). The839

red dashed line extrapolates this trend to a region where the elements are expected840

to get better ranks if they were taken into account. Therefore, a new population841

Λ1 of possible Dlim,SV F are randomly generated around the red dashed line and842

ranked according to Equation (A.1) (orange ”x”). The generation procedure main-843

tains the number of Cr constant and all new components are chosen with posi-844

tive ordinates since negative values of Dlim,SV F are meaningless. After 20 gen-845

erations (panel A.1.b), both the spread of the points and the slope of their fit have846

decreased: the algorithm is converging. As a matter of fact, at generation 40 (panel847

A.1.c), all the Dlim,SV F values ∈ Λ40 are located in a small region near ∼ 1.7848

and the next -randomly generated- values of Dlim,SV F ∈ Λ41 shares the same849

region: the algorithm has so converged.850
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nique for investigating 1-D interfaces. Journal of Geophysical Research: Space884

Physics, 119 (3), 1709–1720. doi: 10.1002/2013JA018926885

Dorville, N., Belmont, G., Rezeau, L., Grappin, R., & Retinò, A. (2014a). Ro-886
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Figure 1. GSE components of magnetic field observed by MMS 1 (panel a, the sections in

red are the times when the structure is 1D), the l, m, and n components of the MP frame (pan-

els b, c and d) computed by means of the MDD method (Shi et al., 2005) for 16 October 2015,

13:05:30+60s, using burst mode data (128S/s). Note that the m and l directions oscillate rapidly

even during times where n is stable.
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Figure 2. Five second zoom for evidencing the origin of the singularities and the way they are

corrected. Each component of the calculated velocity is the ratio between a numerator (panels

c, d, and e and a denominator (panel a), which is the determinant. The denominator cancels at

several places which are slightly different from the places where the different numerators cancel

(here in GSE frame). This results in singularities, even in the normal coordinate VX (panel f). If

local corrections are applied (panel b), these singularities are suppressed (panel g) as well as the

corresponding jumps in the normal position obtained by integration (panels h and i).
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Figure 3. Test case I: artificial crossing with constant velocity. Comparison between the

STD+, SVF and MVF displacements with the exact model (panel c). The magnetic field, the

associated curlometer currents and the differences between the displacements are plotted, respec-

tively, in panel a, b and d.

481

482

483

484

–23–



manuscript submitted to JGR-Space Physics

Figure 4. Test case II: back and forth crossing. Displacements found using the STD+, SVF

and MVF methods along with the exact model displacement (panel c). The artificial magnetic

field, the associated curlometer currents and the differences between the displacements are plot-

ted, respectively, in panel a, b and d.
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Figure 5. Hodogram of the tangential magnetic field measured by MMS during the 16 Octo-

ber 2015, 13:05:42+22s crossing. The indexes t1 and t2 refers to the tangential directions used to

project data (see the text for more details). The color code refers to the magnitude of the normal

flow crossing the MP plotted in panel 6.e of Figure (6).
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Figure 6. Magnetic field (panel a), curlometer current (panel b), XN (t) coordinates (panel

c), ∆XN,ij differences (panel d), residual normal flow (panel e) and comparison between

|∂t,0(XSTD)| and |∂t,0(XSTD+)| recorded or computed during the 16 October 2015, 13:05:30+60s

crossing (here reduced to the 13:05:42+22s window).
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Figure 7. Comparison between the terms of Equation (2) (blue = ∂t,scB, orange = ∂t,0X ·∇B

and green = ∂t,0B curves) for each of its GSE components (panels b, c and d).
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Figure 8. Comparison between the hand-made sketch made by (Burch et al., 2016c) (on the

left), a hand-made sketch suggested by the relative direction of the MDD normals with respect to

the local magnetic field and the Shue model (Shue et al., 1997) (central sketch) and the path ob-

tained automatically by our MVF technique applied on the 16/10/15, 13:05:42 UT - 13:06:04 UT

period (on the right). The automatic result concerns the portion of the path enclosed in the red

squares drawn on the hand made sketches. In both panels b and c the green curved lines joining

the Bz = 0 points are drawn by hand.
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Figure 9. Time vs space visualization of some quantities of interest for the case 16/10/2015,

10:36:55 + 55s. The quantities are visualised twice: as a function of time on the left and as a

function of space on the right. The figure shows the GSE components of the magnetic field (pan-

els a and a∗), the ions spectrograms and their maxima (panels b and b∗), the ions and electrons

temperatures (panels c, c∗ and d, d∗), the ions and electrons bulk velocities (panels e, e∗ and f ,

f∗).
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Figure A.1. Illustration of the GDMC optimization procedure for determining the threshold

Dlim,SV F . Panels a, b and c show three different moments of the convergence process: the begin

(panel a), the end (panel c) and a step in between (panel b). Each panel shows the first com-

ponents of Cr (Dlim,SV F ) already sorted by means of the fitness function (blue ”+”), the fit of

the best-classified 70 elements (green line), the extrapolated trend (red dashed line) and the new

values randomly generated around the extrapolated trend (orange ”X”). Note that the orange

points, which are derived from a purely mathematical extrapolation, can go without problem to

the negative range of x, even if negative ranks have no meaning in themselves. On the contrary,

the blue points, which are obtained by ranking, always correspond to positive values of x.
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