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Chapter 15

Population Genomics on the Fly: Recent Advances
in Drosophila

Annabelle Haudry, Stefan Laurent, and Martin Kapun

Abstract

Drosophila melanogaster, a small dipteran of African origin, represents one of the best-studied model
organisms. Early work in this system has uniquely shed light on the basic principles of genetics and resulted
in a versatile collection of genetic tools that allow to uncover mechanistic links between genotype and
phenotype. Moreover, given its worldwide distribution in diverse habitats and its moderate genome-size,
Drosophila has proven very powerful for population genetics inference and was one of the first eukaryotes
whose genome was fully sequenced. In this book chapter, we provide a brief historical overview of research
in Drosophila and then focus on recent advances during the genomic era. After describing different types
and sources of genomic data, we discuss mechanisms of neutral evolution including the demographic
history of Drosophila and the effects of recombination and biased gene conversion. Then, we review recent
advances in detecting genome-wide signals of selection, such as soft and hard selective sweeps. We further
provide a brief introduction to background selection, selection of noncoding DNA and codon usage and
focus on the role of structural variants, such as transposable elements and chromosomal inversions, during
the adaptive process. Finally, we discuss how genomic data helps to dissect neutral and adaptive evolution-
ary mechanisms that shape genetic and phenotypic variation in natural populations along environmental
gradients. In summary, this book chapter serves as a starting point to Drosophila population genomics and
provides an introduction to the system and an overview to data sources, important population genetic
concepts and recent advances in the field.

Key words Drosophila melanogaster, Population genetics, Demography, Recombination, Selection,
Background selection, Selective sweeps, Inversions, Transposable elements, Clines

1 Introduction

The fruit fly Drosophila melanogaster is a small Dipteran that origi-
nates from sub-Saharan Africa [1] and has since then colonized all
continents except for Antarctica as a human commensal
[2, 3]. Within the last 15–20,000 years it expanded its range to
Europe and Asia and was only recently introduced to Australia and
the Americas (~200 years ago according to [1, 4]). Because of its
short life cycle and its simple maintenance, it was first adopted as a
laboratory model organism by William Castle and later by Thomas
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HuntMorgan at the beginning of the twentieth century [3, 5]. At a
time when the basic principles of heredity were still under heavy
debate, Morgan used theDrosophila system to experimentally prove
and extend the fundamental predictions of Mendelian genetics,
which led to the discovery of genes and their location on chromo-
somes. This early work was rewarded with Nobel prizes to Morgan
and several of his former students and research assistants and forms
the basis of our present day understanding of genetic mechanisms
[6]. Subsequently, theDrosophila system was further exploited, and
resulted in the development of numerous genetic tools such as
balancer chromosomes, gene-specific knockout mutants and other
transgenic constructs, including the Gal4/UAS system to study
gene expression or more recently, the CRISPR/Cas9 system for
site-specific genome engineering. Moreover, with its condensed
genome of ~180 Mb, D. melanogaster was among the first eukary-
otic organisms whose genome was fully sequenced, assembled and
annotated [7].

Beside major advances in functional genetics Drosophila has
also proven powerful for population genetic inference. Accordingly,
numerous major population genetics discoveries have first been
made in flies. Theodosius Dobzhansky, together with coworkers
and students, was one of the first to systematically investigate
genetic variation in Drosophila—particularly by focusing on chro-
mosomal inversions. His groundbreaking work gave a first insight
into the evolutionary processes that shape genetic variation and
subsequently paved the ground for the modern synthesis of evolu-
tionary biology (seeNote 1) [8, 9]. By sequencing the Adh gene in
11 lines collected in 5 natural populations, Hudson generated the
first fruit fly DNA sequence polymorphism data, identifying only
one nonsynonymous polymorphism out of 43 SNPs [10]. As early
as the 1980s, methods based on restriction enzymes were applied to
D. melanogaster to quantify natural genetic variation across multi-
ple loci [11, 12], followed by the first analyses of Sanger sequenced
DNA fragments from dozens of genes [13]. These studies provided
the first insights into genome-wide patterns of variation in DNA
sequences, revealing abundant silent nucleotide site diversity, less
abundant nonsynonymous diversity and rarer small insertions and
deletions and transposable element insertions [14]. Based on the
null hypothesis of neutral evolution, Hudson et al. proposed a first
statistical test of selection based on comparing polymorphism and
divergence: the Hudson–Kreitman–Aguadé (HKA) test [15],
which postulates that genes should all exhibit the same ratio of
within-species variability (polymorphism) to between-species diver-
gence at neutral sites. As an extension of the HKA test, McDonald
and Kreitman developed a novel test to specifically detect positive
selection on protein sequences, first used to detect positive selec-
tion at the Adh locus in Drosophila, and which has since become a
ubiquitous test of neutrality [16]. The ratio of nonsynonymous to
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synonymous divergence is expected to be equal to the ratio of
nonsynonymous to synonymous polymorphism if nonsynonymous
sites are neutral or deleterious, but higher if they are adaptive. Some
of the strongest evidence for adaptive molecular evolution docu-
mented in all organisms has come from application of the McDo-
nald–Kreitman test and methods based on it (reviewed in [17, 18]).
Finally, a major discovery made in D. melanogaster was that the
level of nucleotide variability is positively correlated with the local
recombination rate [19], suggesting that selection may constitute a
major constraint on levels of genomic diversity.

In summary, the fruit fly D. melanogaster is an ideal model for
studying neutral and adaptive genome evolution in outbred, sexual
organisms since it is characterized by a long history as a genetic
model organism [5], exhibits well-documented, rapid, and wide-
spread adaptations over short (<20 generations) timescales in nat-
ural populations [20, 21], has powerful genetic tools [5, 22] a well-
annotated genome [23], and genome-wide polymorphisms data for
several populations (see Subheading 2.2 for details). Moreover, the
genomes of over 25 of its congeners have been recently sequenced
[24]. In particular, comparative genomics analyses on 12 species
provided fundamental new insights into genome evolution [25]
and led to the ModENCODE Project [26], which aims at identify-
ing functional elements in the D. melanogaster and Caenorhabditis
elegans genomes. In this chapter, we will focus on population
genomics studies (see Note 2), mostly based on next generation
sequencing data, and review different aspects of both neutral and
selective evolution based on the Drosophila system.

2 Data Sources

2.1 Data Acquisition

Techniques

One particular strength of the Drosophila system is its simple main-
tenance under laboratory conditions. Drosophila is commonly pro-
pagated as isofemale lines which originate from a single wild-caught
and inseminated female. This allows researchers to conduct molec-
ular and phenotypic measurements across several years using the
same genetic material and to preserve natural genetic variation
under laboratory conditions. In this paragraph we briefly review
the nature of the genetic material that has been sequenced in large
genome sequencing projects and how these different approaches
potentially affect patterns of variation and missing data.

2.1.1 Isofemale Inbred

Lines

Isofemale inbred lines are started from single gravid females whose
progeny are allowed to interbreed. These lines can be maintained
for several years as long as flies are regularly transferred to new vials
with fresh fly-food (a well-known task for any student in a Drosoph-
ila lab having worked in a fly-room). A high degree of inbreeding
due to small population sizes leads to a rapid reduction of genetic
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variation and heterozygosity at every generation within each iso-
female line. Inbred lines are often referred to as F (Filial genera-
tions) followed by the number of the generations of full-sib mating
(F3, F10, F20, . . .). Due to their near-complete homozygosity,
every line should be considered as contributing a single genome
to the total sample (and not two, as it could be assumed for an
outbred sample). Since isofemale lines are propagated separately
and are not allowed to interbreed, they are a versatile tool to
preserve genetic variation under laboratory conditions, given that
sufficient isofemale lines per population are maintained [27]. One
significant issue with this approach is that lines derived from equa-
torial populations have shown to be particularly resistant to
inbreeding, a problem that has been linked to the presence of
inversion polymorphisms hosting recessive lethal mutations. In
these lines, large regions (>500 kb) of residual heterozygosity can
be observed [28] which complicates the determination of patterns
of polymorphism and divergence in this population [29, 30].More-
over, given the small population sizes at which isofemale lines are
usually propagated, novel mutations that appeared after the capture
of the wild-caught ancestors are likely to accumulate in each line
over time. Isofemale lines that are maintained in the laboratory for
long periods of time will thus slightly deviate from their ancestors
and be poorer indicators of natural variation compared to recently
established lines.

2.1.2 Haploid Embryo

Sequencing

To circumvent problems caused by residual heterozygosity, Langley
et al. proposed to sequence the amplified genome of a single
haploid embryo [29]. Most eggs fertilized by recessive male sterile
mutants ms(3)K81 fail to develop [31]. The few that do, however,
only contain one haploid maternal genome. Such a single haploid
embryo derived from a cross between a female from any line of
interest and anms(3)K81male provides enough genomic DNA for
whole-genome amplification and sequencing [29]. Although
whole-genome amplification increases variance in coverage and
the frequency of chimeric reads, this technique provides a powerful
approach to uniquely generate high-quality sequencing data using
standard paired-end sequencing protocols. Similar to isofemale
inbred lines, this technique provides a single genome per sequenced
individual (female) but allows for obtaining phased DNA sequences
even in the presence of inbreeding-resistant polymorphic
inversions.

2.1.3 Genomic

Sequencing and Phasing

of Hemiclones

Whole-genome sequencing of hybrid F1 crosses—the so-called
hemiclones—which share one common parent [32], represents an
alternative approach to generate phased haplotype sequencing data.
Wild-type Drosophila strains are therefore crossed with the same
highly inbred or fully isogenic lab-strain that acts as a reference. The
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resulting F1 hemiclones are then sequenced as single individuals
alongside their lab-strain parent to bioinformatically distinguish
between the reference and the unknown wild-type allele. This
method has been recently employed inD.melanogaster and allowed
to combine cytological screens with whole-genome sequencing to
generate and analyze fully phased genomes with known inversion
polymorphisms [33]. Additionally, this approach was used to
sequence and characterize a panel of more than 200 wild-type
chromosomes from a North American D. melanogaster
population [34].

2.1.4 Pooled Sequencing

(Pool-Seq)

Pool-Seq is a sequencing technique, where tissues or whole bodies
of multiple individuals are pooled prior to DNA extraction, library
preparation, and whole-genome sequencing. In contrast to single
individual sequencing, Pool-Seq is very cost-efficient and has
proven powerful to accurately estimate population-wide allele fre-
quencies [35–37]. However, Pool-Seq also comes at the cost of
losing information about individual genotypes and haplotype struc-
ture. Moreover, it remains very difficult to distinguish
low-frequency variants from sequencing errors, which further com-
plicates population genetics inference [38, 39] and precludes cal-
culating classic population genetic estimators without statistical
adjustments (see for example [40–43]).

It is important to note that these approaches neither allow to
measure genotype variation in natural populations, which is the
proportion of heterozygote individuals within a population nor
the proportion of heterozygote sites within a single diploid
individual.

2.2 Consortia

and Available Datasets

The first finished genome draft of D. melanogaster was published
more than 17 years ago, and was among the very first fully
sequenced eukaryotic genomes [7]. Since then, the quality of the
reference sequence has further improved, and the number of func-
tional annotations, such as gene models or regulatory elements,
keeps increasing continuously. Both sequence and annotation data
are publicly available at www.flybase.org, a bioinformatics database
that is the main repository of genetic and molecular information for
D. melanogaster (and other species from the Drosophilidae family).
D. melanogaster was also one of the first species for which full-
genome intraspecific variation data was collected. The first whole-
genome population genetics study in D. melanogaster surveyed
natural variation in three African (Malawi) and six North American
(North Carolina) strains using low-coverage sequencing [44].

2.2.1 Drosophila Genetic

Reference Panel (DGRP)

and Drosophila Population

Genomics Project (DPGP)

The first two projects to systematically investigate the genomic
variability in natural D. melanogaster populations were the DGRP
[45] and DPGP [46] initiatives. Both consortia independently
sequenced more than 160 isofemale inbred lines (F20), all sampled
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in Raleigh, North Carolina, USA; a sample that was later extended
to 205 lines [47]. The major aim was to generate whole-genome
sequencing data that can be used for genome-wide association
studies. The genetic and phenotypic data are available from
http://dgrp2.gnets.ncsu.edu. While the DGRP data are well suited
for quantitative genetics analyses (using stable, well-described, and
homogeneous genetic material), they only provide information
about the genetic variation at a single location (North-Eastern
USA) although a large portion of the genetic diversity of the species
is known to reside in its ancestral range in sub-Saharan Africa
[48, 49]. The DGRP data is thus neither suitable for investigating
the demographic history of worldwide populations nor the patterns
and processes leading to local adaptations that likely facilitated the
range expansion and ultimately led to a cosmopolitan distribution
of D. melanogaster.

2.2.2 Drosophila

Population Genomics

Projects

The Drosophila population genomic project (DPGP, http://www.
dpgp.org) is an ongoing major population genomic sequencing
effort: beside the Raleigh population, the DPGP sequenced a pop-
ulation of Malawi (Africa) that exhibited >40% more polymor-
phism genome-wide compared to the North-American one
[46]. Then, the DPGP2 sequenced 139 wild-derived strains repre-
senting 22 populations from sub-Saharan Africa [50]. The analyses
of the DPGP2 data confirmed that the most genetically diverse
populations are located in Southern Africa (e.g., Zambia). After-
ward, the DPGP3 increased the sample size for a Zambian popula-
tion (Siavonga) up to 197 lines [51]. Most DPGP2 and all DPGP3
lines were sequenced from haploid embryos as described above.

2.2.3 The Drosophila

Genome Nexus

The Drosophila Genome Nexus is a population genomic resource
that integrates single-individual D. melanogaster genomes from
multiple published sources [51, 52], including DPGP and DGRP
among others [30, 53–55]. The aim was to generate a comprehen-
sive dataset using the same bioinformatics methods to facilitate
comparisons among them. The latest iteration (DGN v.1.1 [52]),
contains a total of 1121 genomes, from 83 populations in Africa,
Europe, North America, and Australia. It especially highlighted
differences in levels of heterozygosity among the different datasets.
The genome browser PopFly allows for the visualization and
retrieval of numerous population genomics statistics, such as esti-
mates of nucleotide diversity, linkage disequilibrium, recombina-
tion rates [56].

2.2.4 Dros-RTEC

and DrosEU

Complementary to previous efforts, which aim at sequencing single
individual genomes in large numbers from a single population
(DGRP, DPGP, DPGP3) or in small numbers from multiple loca-
tions (DPGP2 [30]), two consortia in North America (Dros-RTEC
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[57]) and in Europe (DrosEU [43]) recently started to generate
Pool-Seq data from wild-caught flies from numerous sampling sites
to quantitatively assess genetic variation and differentiation
through time and space in natural populations. To date, DrosEU
has sequenced and analyzed 48 samples frommore than 30 localities
all across Europe, which revealed strong and previously unknown
population structure—mostly along the longitudinal axis—in Eur-
ope. Moreover, population genetic analyses of these data allowed
for a description of novel candidates for selective sweeps, to detect
previously unknown clines of mitochondrial haplotypes, inversions
and transposable elements (TE) and to isolate novel viral species in
the microbiome. The Dros-RTEC consortium similarly sequenced
72 samples ofD. melanogaster collected from 23 localities mostly in
North America [57]. Due to their focus on rapid seasonal adapta-
tion, many localities were sampled at different time points over the
course of 1–6 years, which allows for a quantitative investigation of
genome-wide seasonal fluctuations in SNPs and inversion poly-
morphisms. These analyses revealed that previous candidates for
seasonality exhibit highly predictable annual allele frequency fluc-
tuations and those signatures of seasonal adaptation parallel spatial
differentiation along latitudinal gradients.

2.2.5 Other Data In addition to these concerted sampling and sequencing efforts,
there is a rapidly growing number that similarly sequenced pools of
flies from natural populations. For example, Pool-Seq data of popu-
lations from the temperature gradients along the North American
and Australia were generated [58–60]. Large pools of flies collected
from Vienna/Austria and Bolzano/Italy were sequenced by
[61]. More recently, Kofler and colleagues [62] generated and
analyzed Pool-Seq data from more than 550 South African flies.
In combination with the aforementioned Pool-Seq data from large
consortia, these data represent highly valuable resources to tackle
fundamental questions about the adaptive process on complex
spatial and temporal scales.

3 Neutral Evolution

3.1 Demographic

Analyses

D. melanogaster is one of eight species described in the melanoga-
ster subgroup of the subgenus Sophophora. Within this group, two
species are cosmopolitan (D. melanogaster and D. simulans), while
the remaining six are endemic to the Afrotropical region
(D. sechellia, D. mauritania, D. erecta, D. orena, D. teissieri,
D. yakuba). This has led early studies to suggest an Afrotropical
origin of D. melanogaster and D. simulans and is now widely
accepted [4]. As expected under this hypothesis, the genome-
wide average diversity measured in Afrotropical populations of
D. melanogaster is higher than in non-African populations
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[44, 48, 63, 64]. In addition and similarly to Homo sapiens, the
genetic variation outside sub-Saharan Africa represents a subset of
the diversity found within sub-Saharan African populations, which
further suggest that South-Eastern tropical Africa represents the
ancestral range of the species [65].

In an influential review summarizing the results of early popu-
lation variation surveys in D. melanogaster [4], David and Capy
categorized worldwide natural populations into three groups:
ancestral, ancient, and new populations (Fig. 1). Ancestral popula-
tions are located in sub-Saharan Africa, where they probably have
split from the sister species D. simulans approximately 2.3 million
years ago [71]. Ancient populations are located in Eurasia and
migrated out of their ancestral range presumably at the end of the

Fig. 1 Map illustrating worldwide distribution, migration routes and clinal differentiation of the cosmopolitan
species D. melanogaster. Populations are separated in ancestral (red), ancient (orange) and newly introduced
(blue) populations, according to the categorization in David and Capy [4]. The expected ancestral range
(Zambia) is highlighted in dark red. Primary colonization routes across populations are shown by colored
arrows: the European colonization started approximately ~10–19,000 years ago [66, 67], followed by a spread
to Asia ~5000 years ago [66] and a more recent range expansion to Australia and North America within the
last 200 years [2]. Patterns of recent admixture (dotted grey arrows) were documented from European alleles
in Africa [50], and from African alleles to North America and Australia [68, 69]. Clinal genetic and phenotypic
differentiation (dash-dotted black arrows and color gradient) are documented along latitudinal gradients in
North America [58, 68] and Australia [60, 68], and along longitudinal gradients in Africa [70] and in Europe
[43]. At the time of the review, no information about demography of South-American populations was
available. The dark grey areas depict expected habitable geographic regions and were modeled from 4951
unique worldwide sampling-points in the TaxoDros database (http://taxodros.uzh.ch) and climatic data from
the WorldClim database (http://worldclim.org) using the R-package dismo (http://rspatial.org/sdm/). Note that
distribution models can be confounded by unequal sampling and may thus explain the missing predicted
distribution in South-Western Africa, Central Asia, and Russia
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last ice age. The third group, new populations, is located in America
and Australia, and represents a blend of ancestral and ancient
populations that recently colonized these two continents along
European shipping routes during the last centuries. Although
these early insights were based on a small number of loci, they
have proven to be surprisingly robust and 30 years later, the cate-
gorization of David and Capy is still widely accepted. Several stud-
ies, however, took advantage of the increasing amount of genetic
data and the rapidly developing field of model-based inference in
population genetics, to investigate the demographic history of the
species within a probabilistic framework. These studies evaluated
the likelihood of competing demographic scenarios and provided
estimates for demographic parameters such as the age of the split
between African and non-African populations, and population sizes
at different times of the colonization process. In the next paragraph
we review how genome-wide data and statistical modeling updated
the insights formulated by David and Capy [4].

Early population genetics surveys identified East and
South African populations to be closer to mutation-drift equilib-
rium compared to West African populations, which were character-
ized by higher linkage disequilibrium and lower diversity levels
[63–65]. These findings suggest that East and South Africa include
the ancestral range of the species. Demographic inference using
samples from sub-Saharan Africa indicated that the ancestral popu-
lation has experienced a population size expansion approximately
60,000 years ago (ranging from 26,000 to 95,000 [72]). This
ancestral expansion is found in all published models incorporating
the African population and is necessary to fit the excess of rare
variants measured in samples from the ancestral range (e.g., Zam-
bia, Zimbabwe). These models, however, assume that all sampled
mutations are neutral, which is unlikely because of putatively
unknown regulatory elements and the presence of background
selection [73]. A simulation showed that ignoring background
selection in demographic inference leads to an overestimation of
growth models [74]. Estimations of the coalescence rate through
time using smc++ indicated that the rate of coalescence in a sample
from the Zambian population (Siavonga, DPGP3) has been con-
stantly decreasing in the last 100,000 years [75], which is in line
with the population expansion scenario suggested by previous
studies. Furthermore, Terhorst et al. [75] measured a strong reduc-
tion in the coalescent rate for times older than 100,000 years,
suggesting either a very large ancestral population size or substan-
tial population structure in the ancestral population [76]. Neither
of these two processes is accounted for in current demographic
models for D. melanogaster and more work is needed to evaluate
whether the decreased ancestral rate measured by [75] is reflecting
true ancestral processes or rather aspects of the genomic data that
are not accounted by the method.More specifically, it remains to be
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clarified whether this approach can correctly recover neutral demo-
graphic processes when applied to small compact genomes with a
high proportion of nonneutral regions. More recently, Kapopoulou
et al. [77] estimated the age of the split between ancestral (Zambia)
and West African populations to be approximately 72,000 years,
which suggests that the population expansion reported by earlier
studies could well reflect a genuine early range expansion of the
species on the African continent.

3.1.1 Out of Africa Analysis of European samples revealed that the time of split
between African and European populations occurred around
13,000 years [66, 72]. These early studies, however, did not
include gene flow between populations in their models and there-
fore predicted that their estimates were probably younger than the
true age of divergence between African and European lineages.
Indeed, Kapopoulou et al. [78] recently confirmed this prediction
using genome-wide polymorphism data and by explicitly account-
ing for the effect of gene flow in their inference procedure. Their
demographic results identified gene flow as an important factor in
the recent history of European and African populations and
reported divergence time estimates of approximately
48,000 years. Independently, Pool et al. [50] reported pervasive
influence of European admixture in many African populations with
greater admixture proportion in urban locations. The “ancient”
status of Southeast Asian populations has also been confirmed by
[66, 79]. Similarly to the European case described above, diver-
gence time estimates between Asian and European populations
strongly depend on whether or not gene flow is taken into account
in the inference method (22,000 vs. 5000 years, respectively).

North-American populations are considered as newly intro-
duced because the colonization process has been observed directly
by entomologists in the second half of the nineteenth century
[2]. Strikingly,D. melanogaster was identified as the most common
species across the USA only 25 years after its introduction, suggest-
ing a dramatic population expansion after colonization [2]. A
genome-wide analysis of 39 flies sampled as part of the DGRP
project [45], using an approximate Bayesian computation method
(ABC) revealed the admixed nature of this population with
European and African admixture proportions of 85% and 15%,
respectively [67]. These estimations confirmed similar conclusions
reached earlier using microsatellite data [80]. This very recent
secondary contact between African and European lineages is likely
responsible for the North-South clinal genetic variation observed
in Northern America and Australia (Fig. 1), but local adaptation
could contribute to the maintenance of this clinal variation by
opposing itself to the homogenizing effect of gene flow
[54, 68]. Arguello et al. [79] recently confirmed the importance
of Afro-European admixture in the ancestry of North American and
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Australian flies using a larger dataset and a more precise inference
procedure. The mosaic ancestry of American and Australian fly
populations therefore represents an exciting opportunity to study
how migration and selection interact along a clinal heterogeneous
environment. Methods based on hidden Markov models were
developed to estimate patterns of local ancestry in samples of
North-American populations (where the term local refers to an
arbitrary subgenomic unit) [69, 81]. In samples with a predomi-
nant European genetic background, their results identify significant
differences in the proportion of African ancestry between func-
tional classes of genomic loci.

3.2 Recombination In most sexually reproducing eukaryotes, recombination ensures
both the proper segregation of homologous chromosomes during
meiosis and the creation of new combinations of alleles at each
generation. During meiosis, a substantial number of double-strand
breaks result in meiotic recombination between homologs. These
double-strand breaks are repaired either as crossover (CO) or non-
crossover (NCO) gene conversions: COs imply reciprocal exchange
between flanking regions, whereas NCOs do not. Both forms of
recombination are key factors in genome evolution as their rates
determine the probability to which extent genomic sites are linked
or evolve independently and hence affect the evolutionary fate of
the alleles. A fundamental understanding of recombination rates is
thus crucial in population genomic studies. In Drosophila, meiotic
recombination only occurs in females, but not in males [82], a
dimorphism known as “achiasmy” (an extreme case of hetero-
chiasmy observed in many species [83]).

In the 1990s, several studies revolutionized population genet-
ics by showing that the level of genetic diversity in populations of
Drosophila species was lower in regions of low recombination
[19, 84, 85]. Recombination itself seems to be the major factor
determining patterns of nucleotide diversity along the genome.
Indeed, mutation associated with recombination can be excluded
as the cause of this correlation, at least in Drosophila, given the lack
of correlation between recombination and divergence
[19, 45]. The frequent occurrence of these patterns [86] has moti-
vated further exploration and estimation of genome-wide patterns
of recombination and diversity.

Classically, the estimation of recombination rates generally
relies on the “Marey approach” that compares a genetic map,
which quantifies distances as CO frequency (in cM) to a physical
map (distances in base pairs). A user-friendly web service called
MareyMap Online [87] allows to get recombination rate estimates
based on such an approach. In their landmark study, Begun and
Aquadro [19] found a strong positive correlation between nucleo-
tide diversity estimated at 20 genes and local rates of COs in natural
populations of D. melanogaster. They used the coefficient of
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exchange as a measure of recombination rate, based on the physical
distance among cytological markers in combination with DNA
content estimates from densities of polytene chromosomes
[88]. The fully sequenced Drosophila genome, which became avail-
able in 2000 [7], represents a highly accurate physical map that was
necessary to generate detailed recombination maps. Marais et al.
[89] fitted a third-order polynomial, which provided a first over-
view of the distribution of COs along each chromosomal arm. They
showed that CO rates decline in proximity to telomeres and cen-
tromeres. Accounting for specific recombination patterns of the
telomeric and centromeric regions, Fiston-Lavier and colleagues
provided corrected estimates of local recombination rates in
D. melanogaster [90].

Besides classical recombination maps based on crosses, alterna-
tive approaches take population genetic variation into account to
estimate CO rates. Patterns of linkage disequilibrium (LD) in a
population result from historical recombination events. Recombi-
nation (CO) rates across the genome can thus be inferred from
linkage disequilibrium, through the population-scaled recombina-
tion parameter ρ ¼ 4Ner where Ne is the effective population size,
and r the CO rate between base pairs per generation [91]. Mc Vean
et al. [92] developed a coalescent-based method implemented in
the software LDHat for the estimation of local recombination rates
(4Ner per kilobase) using a composite likelihood approximation
[93], based on the segregation of a high density of physically
mapped SNPs. Originally developed for human populations, this
method has been applied to many species including Drosophila
[46]. Besides providing a recombination map with a higher resolu-
tion, Langley et al. showed that r and ρ were strongly positively
correlated at a large scale [46], indicating these independent esti-
mates are both capturing heterogeneity in recombination. How-
ever, compared to humans, D. melanogaster harbors much higher
SNP densities, population recombination parameters are an order
of magnitude higher and footprints of positive selection are more
widespread. Since the LDhat method assumes neutral evolution, it
can infer spurious recombination hotspots under certain conditions
of selection. Chan et al. [94] proposed a corrected method (LDhel-
met), which is more robust to the effects of selection and computed
an improved fine-scale, genome-wide recombination map in
D. melanogaster, including a handful of hotspots of at least ten
times the background recombination rate.

Combining both crosses and population variation approaches,
Comeron et al. [95] proposed a method to distinguish between the
two possible outcomes of the repairing of double strand breaks
associated with meiotic recombination: CO and NCO gene con-
versions. While COs involve DNA exchange between chromatid
arms of homologous chromosomes on a large-scale, NCOs are
nonreciprocal recombination events with a swap of small DNA
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fragment. First described in Drosophila [96–98], CO interference
prevents the formation of two COs in close proximity and thus,
reduces the probability of double CO events (~1 CO per chromo-
some per meiosis [99]). Based on the size of genetic regions
affected by gene conversion, Comeron et al. [95] estimated sepa-
rately rates of CO and NCO from crosses, making use of the very
high density of SNPs in D. melanogaster (139 million), which
allowed them to design a 2 kb-resolution map of recombination.
Unlike COs, NCOs appear to be uniformly distributed throughout
the genome [95], insensitive to the centromere effect and without
interference [100], and more frequent (rates of NCO: CO could
reach values over 100 [95]).

While extrapolated and direct recombination estimates are con-
sistent on a large scale, the latter ones show greater variability at the
center of the chromosomal arms [101]. Altogether, these recombi-
nation maps provide baseline estimates for population genomic
studies, especially to model the expected variation under selection
at linked sites (see Subheading 4.2 and [102]).

3.3 Biased Gene

Conversion

Both CO and NCO recombination involve gene conversion. In
particular, the presence of heterozygous sites within heteroduplex
DNA results in the formation of mismatches, which lead to the
conversion of one allele by the other during the repair. There is
evidence, from diverse eukaryotic lineages, that GC:ATmismatches
tend to be more often repaired in GC than in AT alleles, a process
called GC-biased gene conversion (gBGC [103, 104]). gBGC has
been inferred as the main driver of GC-content evolution in verte-
brates [103, 105–107] and several other taxa [108–111]. gBGC is
a nonadaptive mechanism that mimics natural selection, because it
confers a higher transmission probability of GC over AT alleles in
heterozygotes. Therefore, gBGC needs to be accounted for in
molecular evolution studies to correctly model neutral evolution
of the genome [112, 113]. The impact of gBGC inD. melanogaster
is, however, less clear: GC content is positively correlated with CO
rate [89, 114, 115], but not with NCO rate [95]. Globally, whole-
genome polymorphism and divergence data did not support a
gBGC model in D. melanogaster [116], except for the
X chromosome [117, 118] where it may partly explain the stronger
signal of selection on codon usage compared to autosomes [119].

3.4 Population

Genetics

of Chromosomal

Inversions

Chromosomal inversions were first discovered in D. melanogaster
almost exactly 100 years ago [120]. They represent structural
mutations that result in the reversal of genetic order in the affected
genomic region relative to the noninverted (“standard”) arrange-
ment [121, 122]. Inversions can have strong effects on genome
evolution in various different ways: breakpoints may disrupt genes
(e.g., [118]) or result in gene duplications due to staggered breaks
[123, 124]. Moreover, inversions can trigger positional effects,
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where expression patterns of genes are altered due to changes in
their relative chromosomal position ([125–127] but see [128]).
However, their most fundamental effect is the strong suppression
of recombination in heterozygotes, since crossing-over within the
inverted region results in abnormal chromatids [129–131]. As
shown in humans where inversions can cause numerous diseases,
many of these effects have deleterious consequences [132]; how-
ever there are some rare adaptive cases (reviewed in Subheading
4.5). Upon their discovery, inversions have been predominantly
studied in species of the genus Drosophila. Particularly the pioneer-
ing work of Theodosius Dobzhansky and colleagues in
D. pseudoobscura and D. persimilis [8, 9, 133, 134] gave a first
insight into the evolutionary processes that shape genetic variation
and differentiation in natural populations [135–137]. However,
only due to recent advances in whole-genome sequencing technol-
ogy, it became possible to quantitatively test for different evolu-
tionary models and characterize the genetic effects of inversions on
a genome-wide scale. Consistent with the action of spatially varying
selection, many inversions in Drosophila are commonly found to
exhibit steep clines along environmental gradients [138–141]. Sev-
eral of these, such as the latitudinal gradient of the well-studied In
(3R)Payne inversion in D. melanogaster, are replicated on multiple
continents and persist over time ([33, 142] but see [143]). Recent
large-scale genomic datasets of D. melanogaster, for the first time,
allow a quantitative assessment of the genetic and evolutionary
pattern associated with inversions. Analyses of genome-wide data
from African flies allowed for (1) determination of the age and
geographic origin of various cosmopolitan and endemic inversions.
These analyses revealed that most common cosmopolitan inver-
sions are of African origin and predate the out-of-Africa migration
[144]. Furthermore, these data provide (2) a first insight into the
amount and distribution of genetic variation and differentiation
associated with inversions. Data analyses of the DGRP, for example,
found that inversions contribute strongest to genetic differentia-
tion and substructure within a population from Raleigh/North
Carolina [47]. Moreover, only with the help of dense genome-
wide sequencing, it became possible to show that genetic differen-
tiation is not homogeneously elevated within inversions, but decays
toward the inversion center [33, 141, 144–146]. Consistent with
theoretical predictions [147–149], these data suggest that there is a
limited amount of genetic exchange among karyotypes rather than
a complete inhibition of recombination. In addition, local peaks of
strong differentiation close to the inversion center suggest that
several inversions, for example In(3R)Payne, contain various adap-
tive loci which are in strong linkage with the inversion breakpoints
[33, 141, 144, 145]. Analyses of genomic data in combination with
long-range PCR further helped (3) to reconstruct the exact genetic
composition of inversion breakpoints [150] and (4) facilitated the
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development of inversion-specific marker SNPs, which now make it
possible to reliably estimate inversion abundance and frequency in
single-individual and Pool-Seq data, respectively [33, 141,
151]. Together, these analyses highlight that whole-genome data
for the first time allows to quantitatively elucidate the mechanisms
underlying the evolution of chromosomal inversions.

3.5 Population

Genomics

of Transposable

Elements

Transposable elements (TEs) are mobile, self-replicating, repeated
DNA sequences found in every eukaryotic genome at varying
proportions among taxa [152, 153], among closely related species
[24] and among individuals of the same species ([154] for maize;
[155] for Arabidopsis; [156] for Drosophila). Because of their
mutagenic potential (either by inserting into functional regions or
by promoting chromosomal rearrangements via ectopic recombi-
nation—Note 3), TEs are thought to play a significant role in
populations’ evolution and adaptation [157]. According to the
nearly neutral theory, TE insertions are expected to be generally
neutral or deleterious to the host genome [158]. However, rare
cases of adaptive insertions have also been documented (see Sub-
heading 4.6 for examples in Drosophila). The general model of TE
dynamics is the transposition-selection balance model [159]. It
assumes that the maintenance of TEs in the population is explained
by an equilibrium between (1) the increase in copy number
through a constant transposition rate and (2) their removal driven
by natural selection, through the combined effect of excision and
purifying selection acting against the deleterious effects of inserted
TEs [159, 160]. This model predicts that most TEs should be
segregating at low TE frequency in D. melanogaster populations
(see [161] for detailed review). The burst-transposition model [162]
relaxes the assumption of constant transposition rate over time in
proposing periods of intense TE transposition (bursts) to explain
TE dynamics. According to this model, recent insertions have not
yet reached an equilibrium between their transposition rate and
negative selection. TEs may thus be at low frequency even under a
strictly neutral model. Here, a positive correlation between inser-
tions age and their frequency is expected (recently active TEs
should be at low population frequency while long-time inactive
TEs could reach fixation).

D. melanogaster has been used as a model species for the study
of TE population dynamics for more than 25 years [163] and
recent whole-genome population data fuelled this area of research
allowing for testing of previous hypotheses. A bulk of new pro-
grams was recently developed to estimate TE insertion frequency in
a population using NGS datasets (see [164] for review). On top of
the 5434 annotated TEs described in the reference genome,
10,208 and 17,639 insertions were discovered in European [165]
and North American DGRP [166] populations, respectively. How-
ever, these numbers needs to be considered cautiously as the
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performance of methods detecting polymorphic TE insertions
based on short read data depends on many variables, such as the
sequencing coverage, the element family, the age of insertion, the
size of the copy, the genomic location (see a benchmark in [167]).
The large predominance of low frequency insertions along with the
scarcity of insertions in exonic regions observed in both datasets
supports the transposition-selection balance model. In contrast,
Kofler, Betancourt and Schlötterer provided evidence that half of
the TE families have had transposition rates that vary with time
[165], giving support to the burst-transposition model. However,
they also found an excess of rare variants in young TE insertions
compared to neutral expectations which suggests the action of
purifying selection [166]. Overall, population genomics analyses
of TEs provide empirical support for both hypotheses and indicate
that they are not mutually exclusive. This is in agreement with
previous in situ analyses suggesting that models of evolution
could vary among elements and populations [168]. Although
dynamics of some TE families can be explained by a neutral
model with transposition rates varying over time, purifying selec-
tion is necessary to fully explain the patterns of population distri-
bution of TEs [161, 169].

4 Selection

D. melanogaster has been a model species for many studies aiming
at describing the genetic basis of adaptation. Comparisons between
theoretical models of positive and negative selection with empirical
data have started in the early 1980s, when PCR coupled with
Sanger sequencing allowed to directly measure natural variation.
The positive correlation between local rates of recombination and
genetic diversity [19] was among the most important observations
made by these early studies and has been interpreted as evidence for
the widespread effect of selection along the genome. This postulate
challenged the paradigm of the Nearly Neutral extension of the
Neutral Theory [170, 171], which assumes that the large majority
of polymorphic and divergent sites are neutral or slightly deleteri-
ous. Since then, the search for genes underlying adaptation as well
as the quantification of the genome-wide impact of selection has
stimulated the development of statistical methods aiming at detect-
ing past adaptive processes from DNA polymorphism data. In
1991, McDonald and Kreitman developed their reference test of
selection, and detected adaptation on the Adh locus in Drosophila
[16]. Based on theMcDonald and Kreitman test ratios, the fraction
α of nonsynonymous substitutions driven to fixation by position
selection can be estimated by 1 � (DsPn)/(DnPs), with Ds and Dn

the number of synonymous and nonsynonymous substitutions,
respectively and Ps and Pn the number of synonymous and
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nonsynonymous polymorphisms, respectively ([172] and see
Chapter 6 for more details). Numerous studies have provided
evidence for pervasive molecular adaptation in D. melanogaster,
suggesting that approximately 50% of the amino acid changing
substitutions (α ¼ 0.5), and similarly large proportions of noncod-
ing substitutions, were adaptive [173–178].

4.1 Hitchhiking

Effects

The first mathematical formulation of the effect of a positively
selected allele on intra-specific genetic diversity was proposed by
Maynard Smith and Haigh in 1974 and coined the “hitchhiking
model” [179]. Selection reduces diversity not only at selected sites,
but also at linked neutral sites, and the number of variants linked
together around a single selected target is inversely proportional to
the recombination rate. The hitchhiking model summarizes the
relation between the strength of selection on a single adaptive
mutant allele, the local recombination rate, and the distribution
of surrounding neutral alleles across sites and samples. Under such
a linkage model, when a beneficial allele establishes itself in the
population, the high rate at which this establishment occurs creates
an irregularity in the distribution of neutral alleles around the
selected allele. This characteristic signature resulting from positive
selection has been coined “selective sweep” (hard sweep), a termi-
nology used to describe both the adaptive process and the resulting
signal in genetic data. This model served as basis for the develop-
ment of statistical tools designed to capture the signal of a selective
sweep in the presence of different confounding factors ([180, 181]
and see Chapter 5 for more discussion on sweep detection).
D. melanogaster has been among the first organisms for which
this approach has been used to map selective sweeps [72, 182,
183], eventually yielding to the identification of several candidate
genes/regions for adaptations (Table 1) that allowed
D. melanogaster to extend its geographic range to very heteroge-
neous environments and to recent anthropogenic changes
[184, 200, 205]. However, the particular demographic history of
the species, and especially the severe founding events followed by
population expansion should be considered as a confounding fac-
tor, strongly increasing the rate of false positives and thus reducing
the performance of sweep detection methods in this specific
biological system [206–209]. These insights into the confounding
effects of adaptive and neutral processes motivated two lines of
research: (a) characterizing neutral models accounting for the
major demographic events having affected the genome-wide distri-
bution of neutral alleles (see paragraph above) and (b) more general
formulation of the adaptive process initially described by [179].

Soft sweep theory extended the Maynard Smith’s and Haigh’s
hitchhiking model, by including the possibility of (1) recurrent
mutations leading to beneficial alleles and (2) segregating neutral
alleles becoming positively selected (i.e., selection from standing
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Table 1
Documented selective sweeps in African and non-African populations of D. melanogaster

Gene(s) involved in
the sweep

Sweep
size (kb) Populations

Biological
function Reference

Acetylcholineesterase
(Ace)

�1.5 Non-African
populations

Insecticide
resistance

Karasov et al. [184]; Messer
and Petrov [185]; Kapun
et al. [43]

Argonaute-
2 (AGO2)

>50 D. melanogaster,
D. simulans
and D. yakuba

Resistance to viral
infection

Obbard et al. [186]

brinker gene (brk) 83–124 European
population

Cold tolerance Glinka et al. [187]; Wilches
et al. [188]

CG18 508 and
Fcp3C

14 Non-African
populations

DuMont and Aquadro
[189]

CHKov1 ~25 Non-African
populations

Resistance to viral
infection

Magwire et al. [190]

Cyp6g1 Non-African
populations

Insecticide
resistance

Schmidt et al. [191]; Battlay
et al. [192, 193]; Kapun
et al. [43]

Diminutive (dm) 25 African and
non-African
populations

Positive regulator
of body size

Jensen et al. [194]

Fezzik (fiz) 1.8 European
population

Growth Saminadin-Peter et al. [195]
Glaser-Schmitt and
Parsch [196]

HDAC6 2.7 African population Stress surveillance Svetec et al. [197]

Notch 14 Non-African
populations

Development DuMont and Aquadro
[189]

phantom (phm) 12–20 European
population

Cytochrome
P450 enzyme

Orengo and Aguade [198]

polyhomeotic-
proximal (ph-p)

30 European
population

Reduced
temperature-
induced
plasticity

Beisswanger and Stephan
[199]; Voigt et al. [200]

roughest (rst) 0.361 African population Apoptosis Pool et al. [201]

Suppressor of
Hairless (Su[H])

1.2 African population Growth; Notch
signalling

Depaulis et al. [202]

wings apart-like
(wapl)

�60 European
populations

Chromatin
organization

Beisswanger et al. [203]

>50 candidates North-American
population

Garud et al. [204]
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variation; reviewed in [210]). Both cases predict an association of
the beneficial alleles with several background haplotypes (versus a
single one in the hard sweepmodel). Garud et al. [204] scanned the
DGRP dataset to capture signature of hard and soft sweeps, and
found a significantly higher number of candidate genomic regions
than expected under the neutral admixture model previously cali-
brated for this population [67]. Furthermore, they found that
among their top 50 candidates most cases were better explained
by soft than hard sweeps, suggesting that standing genetic variation
and recurrence of beneficial alleles play an important role in real-life
adaptive processes in D. melanogaster. However, the statistical sig-
nificance of their results is highly dependent on an appropriate
calibration of neutral demographic models, suggesting that the
performance of soft-sweep detection methods still needs to be
tested under a large range of demographic models. In the mean-
time, the results of genome-wide soft-sweep detection studies
should be evaluated carefully when used to support claims about
adaptive processes [211].

4.2 Recurrent

Hitchhiking

and Background

Selection

Beyond the study of single instances of selective sweeps,
D. melanogaster and D. simulans have also been used to investigate
the genome-wide effect of recurring sweeps on genetic variation.
The relevant model is the recurrent hitchhiking model [212],
which describes genome-wide patterns of variation as a function
of the occurrence rate of selective sweeps and the distribution of
fitness effects of advantageous mutations. Several studies have
developed model-based inference approaches to estimate these
two parameters using polymorphism and divergence data, reviewed
in [213, 214]. All consistent with a strong impact of selection on
the pattern of diversity in this species, a wide range of the strength
of selection on beneficial mutations (Nes, where Ne is the effective
population size and s the selection coefficient) was estimated, rang-
ing from 1–10 [215, 216], ~12 [217], ~40 [218], 350–3500
[72, 172, 219] to ~10,000 [220]. These studies showed that the
rate and strength of positive selection was large enough such that a
significant amount of neutral alleles in the genome cannot be seen
as evolving independently from adaptive sweeping alleles (the
dependencies being caused by genetic linkage between beneficial
and neutral alleles). Essentially, the disparate estimates reflect varia-
tion in the calibration of the different models, in particular accord-
ing to (1) the type of selection assumed, (2) the modeled
relationship between diversity estimates and selection (strength
and frequency) through the action of recombination. These results
also revealed the difficulty of telling apart whether genome-wide
selection is characterized by a small number of large effect or a large
number of small effect adaptive alleles.

The relative importance of positive selection in Drosophila has
been challenged, however, by studies describing the effect of strictly
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deleterious alleles on linked neutral variants [73, 221, 222]. This
hitchhiking effect caused by selection against recurrent deleterious
mutations called background selection has been shown to be a
valid alternative explanation for low variability in genome regions
with low recombination rates [73, 223]. Importantly, Comeron
generated a map describing the strength of background selection
along the genome as a function of the local recombination and
deleterious mutation rate [224]. This study showed that a large
proportion (70%) of the observed variation in the level of diversity
across autosomes can be explained by background selection alone
and therefore called for the inclusion of background selection in
further population genomics analyses. Elyashiv et al. recently pro-
posed a method to jointly estimate the parameters of distinct modes
of linked selection, accounting for both positive (selective sweeps)
and negative background selection [225]. Applied on
D. melanogaster, they showed that negative selection at linked
sites has had an even more drastic effect on diversity patterns in
D. melanogaster than previously appreciated based on classical
selective sweeps models (1.6–2.5-fold). Their results further sug-
gest that 4% of substitutions between D. melanogaster and
D. simulans have experienced strong positive selection (s � 10–
3.5) and that 35% to 45% of substitutions have been weakly selected
(s between 10–5.5 and 10�6).

4.3 Selection

on Noncoding DNA

Since the 2000s, whole-genome comparative analyses accumulated
evidence that only a small portion of conserved sequences across
species (i.e., potentially functional) was composed of protein-
coding genes [226, 227]. In the meantime, genomic surveys iden-
tified noncoding genomic sequences showing exceptionally high
levels of similarity across species, which were termed conserved
noncoding elements or CNEs (reviewed in [228]). In Drosophila,
CNEs are estimated to cover ~30–40% of the genome
[226, 229]. The high levels of evolutionary conservation observed
in these regions are postulated to be the result of functional con-
straints since many CNEs partially overlap with cis-regulatory ele-
ments [230] and functional noncoding RNAs [231, 232]. In
Drosophila, several classes of noncoding DNA evolve considerably
slower than synonymous sites yet show an excess of between-
species divergence relative to polymorphism when compared with
synonymous sites [175]. While the former observation indicates
selective constraints, the latter is a signature of adaptive evolution,
which resembles patterns of protein evolution in Drosophila
[173, 174]. To quantify the intensity and the relative importance
of selection in shaping the evolution of noncoding DNA, several
studies applied extensions of the McDonald–Kreitman approach,
combining polymorphism and divergence analyses. When analysing
noncoding DNA in a population from Zimbabwe, Andolfatto esti-
mated that ~20% of nucleotide divergence in introns and intergenic
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DNA and ~60% in UTRs were driven to fixation by positive selec-
tion [175]. Using a hierarchical Bayesian framework, he estimated
that significant positive selection acted on noncoding sequences,
especially in UTRs [175]. This was recently supported by a whole-
genome survey of 50 European populations that showed that
UTRs and noncoding RNAs are the noncoding genomic regions
most subjected to adaptive selection, with >40% of divergence
being driven by positive selection [229]. Specifically focusing on
CNEs of the X chromosome, Casillas et al. [233] observed a large
excess of low-frequency derived SNP alleles within CNE relative to
non-CNE regions in an African and two European populations.
While low levels of purifying and positive selection also act outside
of CNEs, Casillas et al. [233] estimated that 85% of the CNEs were
functional and evolved under moderately strong purifying selection
(Nes ~10–100). Altogether, these studies strongly suggest that
CNEs are not solely neutral genomic regions with extremely low
mutation rates known as mutation “cold spots” [234] but shaped
by both purifying selection and adaptive evolution in Drosophila.
Moreover, these findings support the important role of noncoding
regulatory changes in evolution.

4.4 Selection

on Synonymous Codon

Usage

The McDonald and Kreitman test and its extensions are built
around the hypothesis that synonymous or fourfold degenerate
sites (see Note 4) mostly evolve neutrally, while nonsynonymous
sites are under strong purifying or positive selection. However,
both synonymous and fourfold degenerate sites might be subject
to selection on synonymous codon usage (see original reference for
Drosophila by [235], and more recent review by [236]). Compari-
son of polymorphism and divergence patterns suggested that both
strong (4Nes � 1) and weak (4Nes � 1) selection applies to synon-
ymous sites inD. melanogaster [237, 238]. In this species, the level
of codon bias is positively correlated to the levels of expression
[239], but negatively correlated to the levels of divergence
[240, 241]. Both findings suggest selection on codon usage bias.
As in most Drosophila species, all preferred codons are GC-ending
[239, 242]; selection on codon bias is therefore expected to
increase GC content at synonymous sites. Several attempts to
detect selection on codon usage bias in D. melanogaster have
come to conflicting conclusions. Some studies detected evidence
for selection favoring GC-ending codons [119, 243], although the
intensity of selection may be weaker in D. melanogaster compared
to other Drosophila species [244]. Other studies did not find sup-
port for such on-going selection [245, 246], but rather revealed an
excess of substitutions toward AT-ending codons. This may either
reflect a reduction in selection efficacy (4Nes) or a shift in the
mutational bias in D. melanogaster lineage [247]. The population
genetics of codon usage bias can however be affected by confound-
ing, nonadaptive processes such as GC-biased gene conversion
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([113] but see Subheading 3.3). In a recent study, Jackson et al.
[248] modeled base composition evolution, and found evidence
for selection on fourfold degenerate sites along both
D. melanogaster and D. simulans lineages over a substantial period.
They showed that while selection intensity on codon usage was
rather stable in D. simulans in the recent past, it was declining in
D. melanogaster. In conclusion, the observed AT-biased substitu-
tion pattern could not only result from a mutational bias, but likely
partially reflects an ancestral reduction in selection intensity.

4.5 Adaptive

Chromosomal

Inversions

There is ample evidence that inversions play a pivotal role during
adaptive processes and various hypotheses have been developed to
explain their evolutionary impact [135–137, 249]: (1) According
to the “coadaptation” model, inversions have higher fitness and
spread because they suppress maladaptive crossing-over which
would unlink coadapted alleles at epistatically interacting loci with
high marginal fitness [9, 250]. Genomic analyses in
D. pseudoobscura support this model and provide evidence that
loci in tight linkage with an inversion show epistatic interactions
[251]. (2) Under the “local adaptation model,” an inversion bears
higher fitness because it captures and protects locally adapted loci
from recombination with maladaptive migrant haplotypes as initi-
ally proposed by [252] and recently revised by [253]. A remarkable
conclusion of this model is that the selective advantage of an
inversion is determined only by the migration rate of maladapted
haplotypes and the amount of linkage among the locally adapted
loci. (3) The frequent occurrence of fixed inversions in different
species of the genus Drosophila [254–257] and in other species
groups [258, 259] suggests that many divergent inversions evolved
by underdominance and are important components of the specia-
tion process by suppressing gene flow among young sym- or para-
patric species [260]. Similarly, inversions play a key role in the
evolution of sex chromosomes by keeping together alleles in sex
determining factors and sexually antagonistic genes [261]. (4) Con-
versely, inversions can also be maintained due to overdominance or
other types of balancing selection. In line with this model, many
inversions, particularly in Drosophila, are commonly found to seg-
regate at intermediate frequencies in natural and experimental
populations [262].

4.6 Adaptive

Insertions

of Transposons

Like other type of mutations, TE insertions are expected to be
mostly deleterious or evolutionary neutral. However, some trans-
posable elements could be beneficial and positively selected. There
are several possible mechanisms by which a TE can be advanta-
geous; either by directly affecting the gene function of individual
genes, or by modifying regulatory elements [263, 264]. Due to
recent technical advances in sequencing technology (NGS) and due
to the rapidly growing number of whole-genome data, the ability to
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detect selected TE insertions has considerably increased in the past
few years. Different methods have been developed to infer selection
acting on TE insertions. Villanueva-Cañas et al. [265] provide a
detailed overview over the main approaches and their specificities:
(1) DNA sequence conservation analyses can be used to detect
past events of domestication of TEs as regulatory elements, where
TE insertions are conserved among closely related species due to
purifying selection (see for example [229]). (2) Methods developed
to detect selection on linked polymorphisms from SNPs (see
Subheading 4.1 and Chapter 5 for more discussion) can also be
applied to identify positively selected TEs. Based on either a bias in
frequency spectra or haplotype structure, over 35 putatively adap-
tive TEs were identified in genome-wide studies inD. melanogaster
to date [161, 165, 266, 267]. (3) A third method is built around
environmental association analyses that include genome scans for
selection performed in parallel in populations from different envir-
onments to detect specific adaptation driven by environmental
conditions. Using this approach, González et al. [268] discovered
several recent TE insertions in D. melanogaster that are putatively
involved in local adaptation. These TEs exhibit low population
frequencies in ancestral population (Africa) but are common in
derived populations (North America and Australia). (4) Using a
coalescent framework approach, Blumenstiel et al. [169] identified
seven additional putative adaptive insertions exhibiting higher pop-
ulation frequency than expected according to their estimated allele
age. (5) Finally, selection on TE insertions should be validated at
the phenotypic level using functional assays to identify the molec-
ular and fitness effects. One well-documented example is the inser-
tion Bari-Jheh that was found to affect the level of expression of its
nearby genes under oxidative stress conditions and to increase
resistance to this stress [269, 270].

Beside the impact of single TE insertions, there is growing
evidence for a more global effect of TEs on molecular functions.
Especially, in Drosophila, TEs seem to play a role in a diversity of
cellular processes [161], such as the establishment of dosage com-
pensation [271], heterochromatin assembly [272] and brain geno-
mic heterogeneity [273].

4.7 Faster-X

Evolution

According to a theory proposed by Charlesworth et al. [274], the
rates of evolution of X-linked loci are expected to be faster than
autosomal ones if mutations are partially recessive (0 < h < 1/2,
with h the coefficient of dominance) and expressed in both sexes or
males only. In heterogametic males (XY), X-linked mutations are
hemizygous and therefore directly exposed to selection, whereas
new recessive autosomal mutations are masked from expression in
heterozygotes individuals. Moreover, the effective recombination
rate is ~1.8-fold greater on the X compared to autosomes [213],
which reduces Hill–Robertson interference and increases the
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efficiency of selection. The increased selection in hemizygous males
together with the higher efficiency of selection due to the increased
recombination may act synergistically to account for the “faster-X
evolution,” which is generally supported by genomic data collected
in Drosophila populations (reviewed in [275]). Levels of polymor-
phism are similar on X-linked loci to autosomal ones in African
populations, but lower in derived populations [30, 50], which
might be a consequence of selective sweeps in response to the
adaptation of new environments [276]. However, recombination
seems to play a secondary role in determining pattern of diversity
along the X-chromosome. Contrary to autosomes, the X-chromo-
some exhibits global nucleotide diversity only weakly correlated
with recombination rate (Fig. 2), and a nonsynonymous diversity
completely independent [277].

In contrast with polymorphism, divergence among Drosophila
relatives is greater for the X than for autosomes (reviewed in
[275]). Higher efficiency of selection on X is supported by the
estimated higher percentage of sites undergoing both strongly
deleterious and adaptive evolution than autosomes, and a lower
level of weak negative selection in D. melanogaster [45, 46,
277]. Codon usage bias in Drosophila is also higher for X-linked
genes than for autosomal ones, possibly due to the higher effective
recombination rate and their resulting reduced susceptibility to
Hill–Robertson effects [119]. In the end, faster-X evolution also
implies that genes for reproductive isolation have a higher proba-
bility of being X-linked, what is generally true [161].
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Fig. 2 Correlation between nucleotide diversity and recombination. Nucleotide
diversity (π) calculated in 10 kb nonoverlapping windows was estimated for 48
European populations (DrosEU data, [43] and compared to recombination rate (r)
obtained from [95] for the four autosomal arms (2L, 2R, 3L, and 3R) and the
X chromosome. We therefore averaged π in equally sized bins according to
discrete log-transformed values of r observed in the corresponding genomic
regions. The shaded polygons surrounding average values (central lines) for
each of the 48 populations show the 95% confidence intervals
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5 Perspectives: Temporal and Geographical Clines

Organisms with broad geographic distributions, such as various
species of the genus Drosophila, are commonly found along envi-
ronmental gradients. Such transects have long been in the focus of
evolutionary geneticists, as they provide natural test beds to inves-
tigate the evolutionary underpinnings of local adaptation
[278]. Studying spatially or temporally changing genotypes and
phenotypes, which are commonly referred to as “clines” [279],
has a long history in D. melanogaster [280–282]. While there is
growing evidence for longitudinal clines in Africa [70] and in
Europe [43], most data have been collected from latitudinal gra-
dients along the North American and Australian east coasts. A large
body of literature documents steep and persistent clines in many
fitness-related phenotypes, which are often recapitulated on multi-
ple continents. These include, for example, clines in body-, wing-
and organ-size [283–287], lifetime fecundity and lifespan [288] as
well as heat and cold resistance [289–291]. Similarly, various
genetic polymorphisms such as microsatellites [292], SNPs [293],
TEs [266] and inversions [141–143] have been found to vary
clinally. Besides these well-defined spatial clines there is growing
evidence for rapid adaptation on seasonal timescales leading to
temporal clines. These are characterized by predictable annual fluc-
tuations in allele frequencies [20] and variation in life history traits
[21] and innate immunity [294].

Ongoing advances in next-generation sequencing technology
prompted the development of analytical methods to identify puta-
tive targets of local and clinal adaptation (reviewed in [295]) and
only recently allowed to extend the hunt for clinal genetic variation
from single loci to genome-wide scales. A rapidly increasing num-
ber of studies in D. melanogaster have started to comprehensively
investigate clinal genomic patterns—mostly by comparing the end-
points of latitudinal gradients from the Australian and North Amer-
ican east coasts [58–60, 293]. Many of these pioneering studies
identified common patterns in the distribution of genome-wide
clinal variation which provide insights, but also raise new questions
about the evolutionary mechanisms involved in adaptation:
(1) Loci with extensive clinal differentiation are not homo-
geneously distributed along the genome, but strongly clustered
within large inversions [58, 60, 141], which suggests that inver-
sions play an important role during local adaptation—potentially by
keeping together coadapted loci associated with polygenic trait
variation [252, 253]. However, the identity of these loci and the
affected traits remain largely unknown so far. (2) Many clinal poly-
morphisms, such as the chromosomal inversion In(3R)Payne and
variants of the alcohol dehydrogenase (Adh) locus, are paralleled on
multiple continents [33, 58, 59, 293] and change frequencies in a
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predictable fashion. While parallel adaptive evolution due to spa-
tially varying selection along analogous environmental gradients on
different continents may shape many clinal patterns, other non-
adaptive evolutionary forces could have similar effects. For exam-
ple, a handful of studies found independent evidence for varying
levels of admixture with African genetic variation both in North
America [54, 67, 80] and Australia [68]. These findings highlight
that clines, which are often considered to be the prime outcome of
spatially or temporally varying selection, are potentially con-
founded with neutral evolutionary processes such as spatially
restricted gene flow or admixture [296]. At last, (3) all aforemen-
tioned studies failed to identify large numbers of clinal loci with
large or even fixed allele differences at the opposite endpoints of the
latitudinal gradients. For example, no more than 0.1% of all SNPs
exhibited allele frequency differences >0.5 between Florida and
Maine, while not a single SNP exceed an allele frequency difference
of 0.92 in the analyses of [58]. These findings are consistent with
observations from otherDrosophila species, which also found mod-
erate and gradual clinal allele frequency changes [140, 297, 298],
but in stark contrast to common model expectations for clinal
evolution [299]. Together, these first analyses of clinal genomic
data clearly show that it still remains challenging to disentangle the
evolutionary contribution of selection and demography to clinal
variation in natural populations.

Efforts of two large population genomic consortia are currently
underway to densely sample natural populations through time and
space both in North America [57] and Europe [43]. These com-
prehensive datasets will markedly extend earlier efforts that focused
mostly on the comparison of clinal endpoints. Particularly the
analyses of previously largely ignored European D. melanogaster
populations will allow to make clear predictions about the adaptive
process in derived populations from North America and Australia.

6 Notes

1. The mathematical framework that integrated Darwin’s theory
of evolution and the mechanisms of heredity discovered by
Mendel.

2. Defined as genome scale analyses of polymorphism including
polymorphism/divergence comparisons, but not analyses
strictly based on divergence.

3. Ectopic recombination: recombination between two similar
nonhomologous sequences, that is, two TE copies of the
same family inserted at different genomic locations. Such
DNA exchange between nonorthologous regions leads to
chromosomal rearrangement.
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4. Fourfold degenerate sites consist in sites for which all four
possible nucleotides at this position would encode for the
same amino acid, representing a subset of all synonymous sites.
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